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Quasiconformal Homogeneity and Subgroups of the
Mapping Class Group

Nicholas G. Vlamis

Abstract. In the vein of Bonfert-Taylor, Bridgeman, Canary, and
Taylor we introduce the notion of quasiconformal homogeneity for
closed oriented hyperbolic surfaces restricted to subgroups of the
mapping class group. We find uniform lower bounds for the associ-
ated quasiconformal homogeneity constants across all closed hyper-
bolic surfaces in several cases, including the Torelli group, congru-
ence subgroups, and pure cyclic subgroups. Further, we introduce a
counting argument providing a possible path to exploring a uniform
lower bound for the nonrestricted quasiconformal homogeneity con-
stant across all closed hyperbolic surfaces.

1. Introduction

Let M be a hyperbolic manifold, and QC(M) be the associated group of quasi-
conformal homeomorphisms from M to itself. Given any subgroup � ≤ QC(M),
we say that M is �-homogeneous if the action of � on M is transitive. Further-
more, we say that M is �K -homogeneous for K ∈ [1,∞) if the restriction of the
action of � on M to the subset

�K = {f ∈ � : Kf ≤ K}
on M is transitive, where Kf = inf{K : f is K-quasiconformal} is the dilatation
of f .

If � = QC(M) and there exists a K such that M is �K -homogeneous, then
this manifold is said to be K-quasiconformally homogeneous, or K-qch. In
[BTCMT05] it is shown that for each n ≥ 3, there exists a constant Kn > 1 such
that if M �= H

n is an n-dimensional K-quasiconformally homogeneous hyper-
bolic manifold, then K ≥ Kn. This result relies on rigidity in higher dimensions,
which does not occur in dimension two. The natural question motivating this pa-
per is as follows.

Question 1.1. Does there exist a constant K2 > 1 such that every K-qch surface
X �= H

2 satisfies K ≥ K2?

Let Homeo+(S) be the group of orientation-preserving homeomorphisms of a
surface S. Then the mapping class group of S is defined to be π0(Homeo+(S))

and is denoted Mod(S). Given a closed hyperbolic surface X and f ∈ QC(X), let
[f ] ∈ Mod(X) denote its homotopy class. Then, the map π : QC(X) → Mod(X)
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defined by f �→ [f ] is surjective. If H ≤ Mod(X), then we say that X is
H -homogeneous if X is π−1(H)-homogeneous. Similarly, we say that X is
HK -homogeneous if it is π−1(H)K -homogeneous.

The focus of this paper will be to restrict ourselves to homogeneity with respect
to subgroups of the mapping class group of closed hyperbolic surfaces and find
lower bounds for the associated homogeneity constants. We will go about this by
leveraging lower bounds on the quasiconformal dilatations for maps in a given
homotopy class.

Torelli and Congruence Subgroups

Let S be a closed orientable surface; then Mod(S) acts on the first homology
H1(S,Z) by isomorphisms, and the kernel of this action is called the Torelli group,
denoted I(S). Similarly, the kernel of the action of Mod(S) on H1(S,Z/rZ) is
called the level r congruence subgroup and is denoted by Mod(S)[r]. The first
theorem gives a universal bound on the quasiconformal homogeneity constant
with respect to these subgroups for closed hyperbolic surfaces.

Theorem 1.2. There exists a constant KT > 1 such that if X is a closed hy-
perbolic surface that is �K -homogeneous for � = I(X) or � = Mod(X)[r] with
r ≥ 3, then K ≥ KT .

The case of � = I(X) was independently discovered by Greenfield [Gre13].
Since H1(S,Z/rZ) is a finite group, so is its automorphism group; hence,

Mod(S)[r] is finite index in Mod(S). Theorem 1.2 provides an optimistic outlook
for answering Question 1.1 in the positive for the case of closed surfaces.

Homogeneity and Teichmüller Space

The rest of the paper is flavored by a technique, introduced in Section 4, which
translates questions about homogeneity constants to questions about orbit points
under the action of the mapping class group on Teichmüller space. Given a closed
hyperbolic surface S, we define its associated Teichmüller space Teich(S) to be
the space of equivalence classes of pairs (X,φ), where X is a hyperbolic surface,
and φ : S → X is a homeomorphism called the marking. Two such pairs (X,φ)

and (Y,ψ) are equivalent if ψ ◦ φ−1 : X → Y is homotopic to an isometry (see
[Hub06]). The mapping class group Mod(S) acts on Teich(S) by changing the
marking:

[f ] · [(X,φ)] = [(X,φ ◦ f −1)].
Furthermore, this action is by isometries with respect to the Teichmüller metric
on Teich(S), which is defined by

dT ([(X,φ)], [(Y,ψ)]) = 1

2
log(minK(h)),

where the minimum of the quasiconformal dilatation is over all quasiconformal
maps h : X → Y homotopic to ψ ◦ φ−1. The fact that this minimum exists is a
well-known theorem of Teichmüller (a proof can be found in [Hub06]).
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Our next theorem is a direct result of the technique mentioned before and gives
a possible path to finding a lower bound for the quasiconformal homogeneity con-
stant for closed hyperbolic surfaces. It is shown in [BTCMT05] (see Theorem 2.3
below) that surfaces with short curves have large homogeneity constants. We let

Teich(ε,∞)(S) = {[(X,φ)] ∈ Teich(S) : �(X) > ε},
where �(X) is the length of the systole. Also, given a point X ∈ Teich(S), let
BR(X ) be the ball of radius R about X in (Teich(S), dT ). We let Sg be an
oriented closed genus g surface.

Theorem 1.3. Suppose there exist constants ε,R,C > 0 such that for any X ∈
Teich(ε,∞)(Sg) with g > 1,

|{f ∈ Mod(Sg) : f · X ∈ BR(X )}| ≤ Cg.

Then, there exists a constant K2 > 1 such that any closed K-qch surface must
have K ≥ K2.

Question 1.4. Does there exist such ε,R,C?

Note that ε and C can be chosen to be arbitrarily large and R can be chosen to be
arbitrarily small.

Finite, Cyclic, and Torsion-Free Subgroups

Returning to more restrictive forms of homogeneity, we use this counting method
to consider finite and cyclic subgroups of the mapping class group.

Theorem 1.5. There exists a constant KF > 1 such that if a closed hyper-
bolic surface X is �K -homogeneous, where � < Mod(X) has finite order, then
K ≥ KF . Furthermore, we have

KF ≥
√

ψ

(
2 arccosh

(
1

42
+ 1

))
= 1.11469 . . . ,

where ψ is defined in equation (4.1).

Theorem 1.6. There exists a constant KC > 1 such that if a closed hyperbolic
surface X is �K -homogeneous, where � = 〈[f ]〉 with [f ] ∈ Mod(X) a pure map-
ping class, then K ≥ KC . Furthermore, we have KC ≥ 1.09297.

It is particularly difficult to understand the orbit of points in Teich(S) under peri-
odic mapping classes; hence, our last theorem deals with torsion-free subgroups
of Mod(S).

Theorem 1.7. Let X be a closed hyperbolic surface and suppose � < Mod(X)

is torsion-free. If X is �K -homogeneous, then

logK ≥ 1

7,000g2
,

where g is the genus of X.
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Question 1.8. Can one find a constant C such that every closed K-qch surface
satisfies K ≥ Cg−2?

The rest of the paper discusses how to define continuous functions on Teichmüller
space and moduli space using subgroups of the mapping class group and the as-
sociated homogeneity constants for surfaces.

Related Results in the Literature

In recent years there have been several papers published that make progress to-
ward understanding quasiconformal homogeneity of surfaces. In [BTBCT07] the
authors bound the quasiconformal constant of hyperbolic surfaces having auto-
morphisms with many fixed points away from 1, in particular, all hyperellip-
tic surfaces. In the same paper, they also consider homogeneity with respect to
� = {e} < Mod(X) and Aut(X). They prove that a surface is {e}K -homogeneous
for some K if and only if it is closed; furthermore, there exists a constant Ke > 1
such that K ≥ Ke . In a similar fashion, the authors find that a hyperbolic sur-
face X is Aut(X)K -homogeneous for some K if and only if it is a regular cover
of a hyperbolic orbifold; furthermore, there exists a constant Kaut > 1 such that
K ≥ Kaut. A sharp bound is found for the constant Kaut in [BTMRT11]. The au-
thors in [KM11] show the existence of a lower bound K0 > 1 for the quasiconfor-
mal homogeneity constant of genus zero surfaces, which answers a question about
quasiconformal homogeneity of planar domains posed by Gehring and Palka in
[GP76].

2. Background

2.1. Quasiconformal Geometry

We may think of a quasiconformal map f : C → C as a function whose derivative
dfp sends the unit circle in TpC to an ellipse in Tf (p)C whose ratio of the major
to minor axis we call Kf (p), wherever the derivative is defined, and Kf (p) is
required to be bounded uniformly for all p ∈ C. We let Kf or K(f ) denote the
dilatation of f , which is defined to be the supremum of Kf (p) over all of C. Since
this is a local condition, this notion holds for Riemann surfaces. Since Kf ◦g ≤
Kf · Kg , we see that

QC(X) = {f : X → X | f is a quasiconformal homeomorphism}
is a group. We refer the reader to [Hub06] and [FM11] for details.

There are two properties of quasiconformal maps that will play a key role in
what follows. The first property shows us that quasiconformal maps retain some
of the nicety of conformal maps. Let D denote the unit disk in C. The following
theorem and proof can be found in [Hub06].

Theorem 2.1. Denote by FK(D) the set of K-quasiconformal homeomorphisms
f : D → D with f (0) = 0. Then FK(D) is a normal family.
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We will rely heavily on this theorem for the convergence of sequences of quasi-
conformal maps, especially in understanding the continuity of the quasiconformal
homogeneity constants on the moduli space.

The next property relates the quasiconformal condition of a homeomorphism
f : D → D to the geometry of the hyperbolic plane. We say that f : D → D is an
(A,B)-quasi-isometry if there are constants A,B > 0 such that

d(z,w)

A
− B ≤ d(f (z), f (w)) ≤ Ad(z,w) + B

for all z,w ∈D and where d is the hyperbolic metric on D. The following theorem
can be found in [Vuo88].

Theorem 2.2. Let f : D → D be K-quasiconformal. Then f is a (K,K log 4)-
quasi-isometry with respect to the hyperbolic metric.

In particular, the image of a geodesic γ ∈ D under a K-quasiconformal f : D →
D is a (K,K log 4)-quasi-geodesic. It is well known (see [Kap01]) that a quasi-
geodesic stays within a bounded distance of a geodesic. In our case, we know that
there exists some C(K) and some geodesic γ̃ such that f (γ ) ⊂ NC(K)(γ̃ ), where
NC(K) is the C(K)-neighborhood.

2.2. Quasiconformal Homogeneity

The main goal of this section is to state one of the main results of [BTCMT05],
which describes how quasiconformal homogeneity interacts with the geometry
of a manifold. Though this paper is focused on surfaces, their work deals with
arbitrary dimension, so for the moment, we will work in the general setting of
hyperbolic manifolds. If M is an orientable hyperbolic n-manifold, then there ex-
ists a discrete subgroup � < Isom+(Hn), called a Kleinian group, so that M is
isometric to H

n/�. The action of � extends to ∂Hn = S
n−1 and acts by confor-

mal automorphisms. The limit set 
(�) is defined to be the intersection of the
closure of an orbit of a point x ∈ H

n with ∂Hn, that is, 
(�) = � · x ∩ ∂Hn (note
that this definition is independent of the choice of x). See [Thu79] for more on
Kleinian groups. Also define �(M) to be the infimum of the lengths of homotopi-
cally nontrivial curves in M and define d(M) to be the supremum of the diameters
of embedded hyperbolic balls in M .

Theorem 2.3 (Theorem 1.1 in [BTCMT05]). For each dimension n ≥ 2 and
each K ≥ 1, there is a positive constant m(n,K) with the following property.
Let M = H

n/� be a K-quasiconformally homogeneous hyperbolic n-manifold
that is not Hn. Then:

(1) d(M) ≤ K�(M) + 2K log 4.
(2) �(M) ≥ m(n,K), that is, there is a lower bound on the injectivity radius of

M that only depends on n and K .
(3) Every nontrivial element of � is hyperbolic, and the limit set 
(�) of �

is ∂Hn.
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In addition, every closed manifold is K-quasiconformally homogeneous for some
K (also in [BTCMT05]). These facts tell us that a geometrically finite hyper-
bolic surface is K-quasiconformally homogeneous for some K if and only if it
is closed. Observe that if G < G′ < Mod(X) for some hyperbolic surface X,
then if X is GK -homogeneous, then we have that X is also G′

K -homogeneous.
In particular, a geometrically finite hyperbolic surface X is GK -homogeneous for
G < Mod(X) if and only if X is closed. This fact will be our motivation for stat-
ing our theorems in terms of closed surfaces as opposed to the geometrically finite
terminology.

The other key tool we will need comes from understanding the quasiconformal
homogeneity constant under geometric convergence and the fact that the only
hyperbolic n-manifold that is 1-quasiconformally homogeneous is Hn.

Proposition 2.4 (Proposition 3.2 in [BTBCT07]). Let {Mi} be a sequence
of hyperbolic manifolds with Mi being Ki -quasiconformally homogeneous.
If limi→∞ Ki = 1, then limi→∞ �(Mi) = ∞.

3. Torelli Groups and Congruence Subgroups

For a closed orientable surface Sg with genus g ≥ 2, the Torelli group I(Sg)

is the kernel of the action of Mod(Sg) on H1(Sg,Z), the first homology with Z

coefficients. We similarly define the level m congruence subgroup Mod(Sg)[m] as
the kernel of the action of Mod(Sg) on H1(Sg,Z/mZ). For the rest of this section,
all the results stated will hold for both classes of subgroups just mentioned with
m ≥ 3 in the latter case; we will set �(S) = I(S), Mod(S)[m].

An element f ∈ Mod(S) is called pseudo-Anosov if it has infinite order and no
power of f fixes the isotopy class of any essential 1-submanifold. Let Teich(S)

denote the Teichmüller space, the parameterization space of hyperbolic structures
associated to S. Given any f ∈ Mod(S), define

τ(f ) = inf
X ∈Teich(S)

{dT (X , f · X )}. (3.1)

Then f is pseudo-Anosov if and only if τ(f ) > 0 and is realized by some X ∈
Teich(S) (see [Ber78]). If f is pseudo-Anosov, then we define its dilatation to be
λ(f ) = exp(τ (f )).

In [FLM08] the authors prove that for a pseudo-Anosov element f ∈ �(S),
logλ(f ) ≥ 0.197. We would like to have a similar result for reducible elements
of these subgroups. We can get such a result directly from the authors’ original
proof with understanding how their pseudo-Anosov assumption is being used.

In their proof, they use a cone metric on S coming from a quadratic differential
with stable and unstable foliations corresponding to the stable and unstable folia-
tions for f . They use this metric to compare lengths of curves. The same proof can
be given using a hyperbolic metric on S yielding 2τ(f ) = log(λ(f )2) ≥ 0.197.
The authors’ proof over a hyperbolic metric views f as a quasiconformal map
and uses Wolpert’s lemma.
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Lemma 3.1 (Wolpert’s lemma, Lemma 12.5 in [FM11]). Let X, Y be hyperbolic
surfaces, and let f : X → Y be a K-quasiconformal homeomorphism. For any
isotopy class c of simple closed curves in X, the following holds:

�X(c)

K
≤ �Y (f (c)) ≤ K�X(c),

where �X(c) denotes the length of the unique geodesic representative of c in X.

This is also explained in a remark in [FLM08]. By replacing the cone metric
coming from the pseudo-Anosov with a hyperbolic metric we remove the first
instance of the pseudo-Anosov assumption.

The second way that the pseudo-Anosov assumption is used is to state that f

does not fix the homotopy class of a shortest curve. We can remove this assump-
tion by looking at mapping classes that do not fix a shortest curve.

Theorem 3.2 (Farb, Leininger, and Margalit [FLM08]). Let X be a hyperbolic
surface, and γ the homotopy class of a shortest curve in X. If f : X → X is a
quasiconformal homeomorphism with [f ] ∈ I(X) or [f ] ∈ Mod(X)[m] for some
m ≥ 3 such that f (γ ) �= γ , then logK(f ) ≥ 0.197.

For studying quasiconformal homogeneity with respect to �(S), this theorem will
allow us to discard any elements not fixing a shortest curve. This will be enough
to prove our theorem. We start with a lemma describing the situation for large
genus surfaces.

Lemma 3.3. There exists g0 such that if X is a closed hyperbolic surface of genus
g > g0 and X is �K -homogeneous for either � = I(X) or � = Mod(X)[m] for
m ≥ 3, then logK > 0.197.

Proof. From Theorem 2.2 we know that if f : X → X is K-quasiconformal, then
f is a (K,K log 4)-quasi-isometry. In particular, there is some C(K) ≥ 0 such
that if γ is a geodesic in X, then f (γ ) is contained in a C(K)-neighborhood of
γ̃ , call it NC(K)(γ̃ ), for some geodesic γ̃ in X. Define C0 = C exp(0.197). Also,
if X is a genus g hyperbolic surface, then �(X) ≤ A logg, where A is a constant
independent of genus (this is Gromov’s inequality for surfaces, see [Gro83]). Now
choose g0 such that

4π(g0 − 1)

A logg0
> 2 sinhC0.

Assume that the genus of X is g > g0 and that X is �K -homogeneous. Let
γ be a closed geodesic in X of shortest length; then it satisfies �X(γ ) ≤ A logg.
For every y ∈ X and x ∈ γ , there exists f : X → X such that [f ] ∈ �K and
f (x) = y. If logK < 0.197, then [f (γ )] = [γ ], implying that every point of X

must be in the C0-neighborhood of γ . Let us identify the universal cover of X

with H2, so that X = H2/G for G < Isom+(H2). In the upper half-plane model,
we can translate a lift of γ to be the imaginary axis, so that the geodesic segment
[i, ie�X(γ )] maps onto γ . If U is a C0-neighborhood of this segment in H

2, then by
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the preceding we know that there exists a fundamental domain for the action of G

on H
2 contained in U . In particular, this implies Area(U) ≥ Area(X). However,

Area(U) = 2�X(γ ) sinhC0 < 2A log(g) sinh(C0) < 4π(g − 1).

But 4π(g − 1) = Area(X); hence, we found Area(U) < Area(X). This is a con-
tradiction; thus, we must have logK > 0.197. �

Theorem 1.2. There exists a constant KT > 1 such that if X is a closed hy-
perbolic surface that is �K -homogeneous for � = I(X) or � = Mod(X)[r] with
r ≥ 3, then K ≥ KT .

Proof. Given a sequence of hyperbolic surfaces {Xn}, let gn be the genus of Xn

and �n = I(Xn), Mod(Xn)[m] for m ≥ 3. We proceed by contradiction: Sup-
pose the statement is false; then there exists a sequence of hyperbolic surfaces
{Xn} that are (�n)Kn -homogeneous such that limn→∞ Kn = 1. Since Kn → 1,
Proposition 2.4 tells us that �(Xn) → ∞, and Gromov’s inequality implies that
gn → ∞. Pick N such that gN > g0, where g0 is from Lemma 3.3. For all n > N ,
we have logKn > 0.197, contradicting Kn → 1. This completes the proof. �

4. A Counting Problem in Teichmüller Space

For the rest of the paper, our main method of studying quasiconformal homogene-
ity will be to translate the problem of understanding the homogeneity constants to
one of counting orbit points in Teichmüller space under the action of the mapping
class group. Before stating the lemma that will allow us to accomplish this, we
recall a proposition in [BTBCT07].

Proposition 4.1 (Proposition 6.2 in [BTBCT07]). Let f : H2 → H
2 be a qua-

siconformal map that extends to the identity on ∂∞H2, and let x ∈ H2. Then
K(f ) ≥ ψ(d(x,f (x))), where ψ : [0,∞) → [1,∞) is the increasing homeo-
morphism given by the function

ψ(d) = coth2
(

π2

4μ(e−d)

)
= coth2 μ

(√
1 − e−2d

)
, (4.1)

where μ(r) is the modulus of the Grötsch ring whose complementary components
are B2 and [1/r,∞] for 0 < r < 1.

The explicit formula for ψ was originally due to Teichmüller [Tei44]. In what
follows, we will define K(φ) for φ ∈ Mod(X) by

K(φ) = min{Kf : f ∈ QC(X) and [f ] = φ},
where [f ] denotes the homotopy class of f .

Lemma 4.2. Let X be a genus g closed hyperbolic surface and � < Mod(X) such
that X is �K -homogeneous. If the set

{φ ∈ � : K(φ) < K}
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is finite with cardinality n, then

K ≥
√

ψ

(
2 arccosh

(
2

n
(g − 1) + 1

))
,

where ψ is defined in (4.1).

Proof. Since the action of Mod(X) on Teich(X) is properly discontinuous, there
can only be finitely many mapping classes with dilatation less than K . Let
φ1, . . . , φn be the n elements in � such that K(φi) ≤ K . Fix a ∈ X and let

Ui = {x ∈ X : ∃f ∈ QCK(X) such that [f ] = φi and f (a) = x}.
In particular, X = ⋃n

i=1 Ui . Now Area(X) = 4π(g − 1) ≤ ∑
Area(Ui); hence,

there exists k ∈ {1, . . . , n} such that U = Uk satisfies Area(U) ≥ 4π
n

(g − 1). Let
d be the diameter of U , so that

2π

(
cosh

d

2
− 1

)
≥ Area(U) ≥ 4π

n
(g − 1),

where the leftmost term is the area of the hyperbolic ball of diameter d . This
implies

d ≥ 2 arccosh

(
2

n
(g − 1) + 1

)
.

For ε > 0, let x, y ∈ U be such that dX(x, y) = d − ε and pick f,g ∈ QCK(X)

with [f ] = [g] = φi such that f (a) = x and g(a) = y. Then h = g ◦ f −1 is
isotopic to the identity, and h(x) = y. Let h̃ : H2 →H

2 be a lift of h that extends
to the identity on ∂∞H

2. Proposition 4.1 implies

K(h̃) = K(h) ≥ ψ(d(x, y)) = ψ(d − ε).

We now have

K2 ≥ K(f ) · K(g−1) ≥ K(f ◦ g−1) = K(h) ≥ ψ(dX(x, y)) = ψ(d − ε).

The result follows by letting ε tend to zero and the fact that ψ is increasing. �

Let us wrap Lemma 4.2 in the language of Teichmüller theory. Given X =
(X,φ) ∈ Teich(Sg), we can identify f ∈ Mod(Sg) with φ ◦ f ◦ φ−1 ∈ Mod(X).
Then

|{g ∈ Mod(X) : K(g) < K}| = |{f ∈ Mod(Sg) : f · X ∈ Blog
√

K
(X )}|,

where BR(X ) is the ball of radius R in the Teicmüller metric centered at X ∈
Teich(Sg). This allows us to think about orbits in Teich(Sg). Lemma 4.2 provides
a possible route to proving that there exists an universal constant K2 > 1 such
that if X is a K-quasiconformally homogeneous closed hyperbolic surface, then
K ≥ K2.

Theorem 1.3. Suppose there exist constants ε,R,C > 0 such that for any X ∈
Teich(ε,∞)(Sg) with g > 1,

|{f ∈ Mod(Sg) : f · X ∈ BR(X )}| ≤ Cg.
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Then, there exists a constant K2 > 1 such that any closed K-qch surface must
have K ≥ K2.

Proof. We proceed by contradiction: Assume that there exists a sequence of
closed hyperbolic surfaces {Xn} such that Xn is Kn-quasiconformally homoge-
neous and Kn → 1. This implies �(Xn) → ∞ by Proposition 2.4 and gn → ∞
by Gromov’s inequality, where gn is the genus of Xn. By Lemma 4.2 and the
cardinality assumption we have that

Kn ≥
√

ψ

(
2 arccosh

(
2

Cgn

(gn − 1) + 1

))
.

(Note that we use that both ψ and arccosh are increasing functions.) In particular,
we have

lim
n→∞Kn ≥

√
ψ

(
2 arccosh

(
2

C
+ 1

))
> 1.

This contradicts the assumption Kn → 1, which completes the proof. �

5. Finite Subgroups

For a closed orientable surface S with negative Euler characteristic, there are
well-known bounds for the order of finite groups and elements in Mod(S): it is
a theorem of Hurwitz that the group Isom+(X) for a closed hyperbolic surface
X of genus g ≥ 2 has order bounded above by 84(g − 1). Also, it was proved
by Wiman [Wim95] that any element in Isom+(X) has order bounded above by
4g + 2 (both of these are proved in [FM11]). In addition, the Nielsen realization
theorem proved by Kerckhoff [Ker83] tells us that a finite subgroup of Mod(S)

can be realized as a subgroup of Isom+(X) for some hyperbolic surface X home-
omorphic to S. Combining these results with Lemma 4.2, we get the following
results.

Theorem 1.5. There exists a constant KF > 1 such that if a closed hyper-
bolic surface X is �K -homogeneous, where � < Mod(X) has finite order, then
K ≥ KF . Furthermore, we have

KF ≥
√

ψ

(
2 arccosh

(
1

42
+ 1

))
= 1.11469 . . . ,

where ψ is defined in equation (4.1).

Proof. From the preceding discussion we know that |�| ≤ 84(g − 1). The result
follows by setting n = 84(g − 1) in Lemma 4.2. �

Theorem 5.1. There exists a constant KP > 1 such that if a closed hyperbolic
surface X is �K -homogeneous, where � = 〈f 〉 and f ∈ Mod(X) is periodic, then
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K ≥ KP . In particular, we have

KP ≥
√

ψ

(
2 arccosh

(
6

5

))
= 1.35547 . . . .

Proof. From the preceding discussion we know that |φ| ≤ 4g + 2, so we can use
Lemma 4.2 with n = 4g + 2. We see that the worst case is n = 4g + 2 when
g = 2. �

6. Pure Cyclic Subgroups

We follow [Iva92] in calling a homeomorphism f : S → S pure if for some closed
one-dimensional submanifold C of S, the following are true:

(1) the components of C are nontrivial,
(2) f |C is the identity,
(3) f does not rearrange the components of S \ C, and
(4) f induces on each component of S cut along C a homeomorphism either

homotopic to a pseudo-Anosov or the identity homeomorphism.

An element of Mod(S) is called pure if the homotopy class contains a pure home-
omorphism. Note that we allow C = ∅, so that pseudo-Anosov homeomorphisms
are pure. Recall that for a mapping class f ∈ Mod(S), we let τ(f ) denote its
translation length in Teich(S). We can then break pure mapping class elements
into three categories along the lines of Bers’s classification of surface diffeomor-
phisms: if f ∈ Mod(S) is pure, then:

(i) τ(f ) > 0 and realized, so that f is a (full) pseudo-Anosov,
(ii) τ(f ) > 0 and not realized, so that f induces a pseudo-Anosov homeomor-

phism on some component of S cut along the canonical reduction system for
f (we will call these partial pseudo-Anosov), or

(iii) τ(f ) = 0 and not realized, so that f is a Dehn twist about a multicurve,
which we will call a multitwist.

We will consider homogeneity with respect to cyclic subgroups generated by each
type of pure mapping class in turn.

6.1. Full and Partial Pseudo-Anosov Mapping Classes

Let S be a closed surface, and f ∈ Mod(S) be a pure partial pseudo-Anosov
mapping class. Then there exists a multicurve C and a representative of f , which
we will also call f , such that f fixes C pointwise. Let R be a component of
the (possibly disconnected) surface resulting from cutting S along C such that
f |R is pseudo-Anosov. We can build a punctured surface F by gluing punctured
disks to each of the boundary components of R, so that R is embedded in F .
Furthermore, since f restricted to ∂R is the identity, we can extend f |R to a map
f̂ : F → F by defining f̂ |R = f |R and f̂ |F\R = id. We have constructed f̂ so
that [f̂ ] ∈ Mod(F ) is a full pseudo-Anosov map on a punctured surface, and our
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first goal will be to relate the translation length τ(f ) of f in Teich(S) to the
translation length τ(f̂ ) of f̂ in Teich(F ).

Lemma 6.1. Let S, f , F , f̂ be defined as before. Then τ(f ) ≥ τ(f̂ ).

Proof. Recall that τ(f ) is not realized, so let {(Xn,φn)} be a sequence in
Teich(S), and fn : Xn → Xn be the Teichmüller map in the homotopy class of
φn ◦ f ◦ φ−1

n so that limn→∞ K(fn) = e2τ(f ). Define Rn to be the geometric
straightening of φn(R) in Xn so that ∂Rn is a disjoint union of simple closed
geodesics. The collaring lemma provides disjoint neighborhoods around each
boundary component of Rn; let Nn be the union of these neighborhoods. We
can then pick points xn ∈ Rn \ Nn such that fn(xn) ∈ Rn \ Nn. The sequence—
possibly a subsequence—of pointed surfaces (Xn, xn) converges geometrically to
(X∞, x∞), where X∞ is homeomorphic to F since the collection of curves per-
muted by f must be pinched. This convergence is clear since this limit agrees
with the visual limit from the viewpoint of xn. With this setup we will construct
a quasiconformal map on X∞ that has the same translation length in Teich(F ) as
f̂ and smaller dilatation than limn→∞ K(fn).

We will want to work in the hyperbolic plane; in particular, we will use the disk
model (D, dH ), where D = {z ∈C : |z| < 1} and dH is the hyperbolic metric. Let
us identify the universal cover of (Xn, xn) with (D,0), and let �n < Isom(D)

be such that Xn = D/�n. We may assume that our marking φn : S → Xn in-
duces the representation ρn = (φn)∗ : π1S → �n. We note that the �n converge
to a group �∞ such that H

2/�∞ = X∞. Let ỹn be a lift of f (xn) such that
dH (0, ỹn) = dX(xn, f (xn)), then choose a lift f̃n : D → D of fn with f̃n(0) = ỹn.
By compactness, the sequence of points {ỹn} must have a convergent subse-
quence, which we also call {ỹn}, in D = {z ∈ C : |z| ≤ 1}. Set ỹ∞ = limn→∞{ỹn},
then since the xn ∈ Rn have been chosen to avoid going up the cusp, we see that
ỹ∞ ∈ D. Let yn ∈ Xn be the projection of ỹ∞ to Xn. Define hn : Xn → Xn such
that hn is isotopic to the identity, hn(f (xn)) = yn, and limn→∞ K(hn) = 1. Now
gn = hn ◦ fn : Xn → Xn with gn(xn) = yn; in particular, we can choose lifts
g̃n : D → D of the gn with g̃n(0) = ỹ∞.

The family of K-quasiconformal maps

{g : D → D : K(g) ≤ K and g(0) = ỹ∞}
is normal [Hub06]; therefore, the sequence {g̃n} of quasiconformal maps has a
convergent subsequence, which we also call {g̃n}. Define g̃∞ = limn→∞{g̃n}, so
that g̃∞(0) = ỹ∞ and

K(g̃∞) = lim
n→∞K(g̃n) = lim

n→∞K(gn) ≤ lim
n→∞[K(hn) · K(fn)] = e2τ(f ).

It is left to show that g̃∞ descends to a map g∞ : X∞ → X∞ and τ(f̂ ) ≤
1
2 logK(g∞).

In order to finish the proof, we will look at a particular definition of the
geometric limit (details for geometric limits can found in §E.1 in [BP92]). Let
pn : H2 → Xn be the canonical projections (where we identify Xn = H

2/�n).
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Since the sequence (Xn, xn) converges to (X∞, x∞) geometrically, we can find
bi-Lipschitz maps ψ̃n : B(0, rn) → H

2, where B(z, r) is the ball of radius r

about z, such that ψ̃n(0) = 0, the ψ̃n converge to the identity on H
2, and for

all z1, z2 in the domain of ψ̃n,

p∞(z1) = p∞(z2) ⇐⇒ pn(ψ̃n(z1)) = pn(ψ̃n(z2)). (6.1)

In particular, the maps ψ̃−1
n ◦ g̃n ◦ ψ̃n converge to g̃∞. Combining (6.1)

with the fact that g̃n is �n-equivariant we see that ψ̃−1
n ◦ g̃n ◦ ψ̃n is �∞-

equivariant on its domain. This implies that g̃∞ is �∞-equivariant and descends
to g∞ : X∞ → X∞.

It is left to show τ(f̂ ) ≤ 1
2 logK(g∞). Condition (6.1) implies that the maps

ψ̃n descend to ψn : Kn ↪→ Xn, where Kn is a compact set in X∞. By the pre-
ceding we know that the domain of ψ−1

n ◦ gn ◦ ψn is converging to X∞ and
ψ−1

n ◦ gn ◦ ψn is converging to g∞. Choose N such that for n > N , removing the
domain of ψ−1

n ◦ gn ◦ ψn from X∞ results in a disjoint union of punctured disks.
We can then extend ψ−1

n ◦ gn ◦ ψn : X∞ → X∞ without affecting convergence.
We therefore see that for large n, ψ−1

n ◦gn ◦ψn is homotopic to g∞, which implies

g∞ � ψ−1
n ◦ φn ◦ f ◦ φ−1

n ◦ ψn.

On the domain of interest, we are really looking at restricting the φn and f to R

and then extending. In fact, we see that

g∞ � ψ−1
n ◦ φn ◦ f̂ ◦ φ−1

n ◦ ψn.

We can think of an extension of ψ−1
n ◦ φn|R as a marking F → X∞, which implies

τ(f̂ ) ≤ 1
2 logK(g∞) ≤ τ(f ) as desired. �

We will consider both full and partial pseudo-Anosov homeomorphisms at the
same time. We will rely on a result of Penner [Pen91], which provides a lower
bound for the dilatation of a pseudo-Anosov f ∈ Mod(S):

logλ(f ) ≥ log 2

|χ(S)| ,
where χ(S) denotes the Euler characteristic of S. This holds for both closed and
punctured surfaces.

Theorem 6.2. There exists a constant KA > 1 such that if a closed hyperbolic
surface X is �K -homogeneous, where � = 〈f 〉 with f ∈ Mod(X) either pseudo-
Anosov or partial pseudo-Anosov, then K ≥ KA. In particular, we have KA ≥
1.42588.

Proof. Let [f ] ∈ Mod(X), and let R ⊆ X be a connected subsurface such that
f |R is pseudo-Anosov and f (R) is isotopic to R. Note that in the case f is not
reducible, R = X. We will keep with our notation as before, so that we can ex-
tend f |R to f̂ : F → F , where F is a punctured surface in the reducible case
or again F = X and f̂ = f in the pseudo-Anosov case. If we let τ(f̂ ) denote
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the translation length of f̂ in Teich(F ), then, since |χ(F )| ≤ |χ(X)|, we have
τ(f̂ ) ≥ log 2

12(g−1)
, where g is the genus of X (see [Pen91]). Let m ∈ Z be such that

m log 2

6(g − 1)
≥ logK.

Since ˆ(f 2) = f̂ 2 and τ(f̂ 2) = 2τ(f̂ ), we find

τ(f m) ≥ τ(f̂ m) = mτ(f̂ ) ≥ m log 2

12(g − 1)
≥ 1

2
logK.

In particular, K(f m) ≥ K . We can now appeal to Lemma 4.2 with n ≤ 2m + 1
(accounting for negative powers and the identity) to find that

K ≥ μg(K),

where we define

μg(K) =
√

ψ

(
2 arccosh

(
2 log 2

12(g − 1) logK + log 2
(g − 1) + 1

))
.

Since μg(K) increases with g, we have that K ≥ μ2(K). For K ≥ 1, we see that
μ2(K) is decreasing and so there exists a unique solution to K − μ2(K) = 0, call
it KA. A computation shows that KA = 1.42588 . . . , and the result follows. �

6.2. Multitwists

We start this section with finding a lower bound for the dilatation of a quasicon-
formal homeomorphism homotopic to a multitwist. We do this by understanding
the map induced on the boundary of the hyperbolic plane. Let X be a closed hy-
perbolic surface, and let f ∈ QC(X). Then by identifying the universal cover of X

with H
2 we can choose f̃ : H2 →H

2 to be a lift of f . Furthermore, we can extend
f̃ to the boundary of H2 continuously, which we identify with R. Let f : R → R

be the restriction of f̃ to R = ∂H2. We can choose f̃ such that f (∞) = ∞. In
this setup there exists an M such that f is R-quasi-symmetric with modulus M ,
that is,

1

M
≤ f (x + t) − f (x)

f (x) − f (x − t)
≤ M

for all x ∈ R and t > 0 (see §4.9 of [Hub06]). Sharp bounds are known for the
modulus M associated to a K-quasiconformal homeomorphism of H2: define

λ(K) = 1

(μ−1(πK/2))2
− 1,

where μ(r) is the modulus of the Grötsch ring whose complementary components
are B2 and [1/r,∞] for 0 < r < 1. Then (see [LV73]) we have

1

λ(K(f ))
≤ f (x + t) − f (x)

f (x) − f (x − t)
≤ λ(K(f )). (6.2)
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Figure 1 A 4-punctured sphere in X with γ bounding two embedded
pairs of pants. The curve α intersects γ once and spirals toward both
β1 and β2 so that it is disjoint from all boundary components

If f is homotopic to a multitwist, then this is enough information to produce a
lower bound for K(f ) in terms of the lengths of the curves f twists about.

Lemma 6.3. Let X be a closed hyperbolic surface, and f ∈ QC(X) be homotopic
to a multitwist TC about a multicurve C = {γ1, . . . , γn}, so that TC = T

m1
γ1 ◦ · · · ◦

T
mn
γn . If m = |mk| and � = �X(γk) is such that m� = maxi{|mi | · �X(γi)}, then

K(f ) ≥ 2

π
μ

(√
2

2 + e(m−1)� + e(m−1/2)�

)
,

where μ(r) is the modulus of the Grötsch ring whose complementary components
are B2 and [1/r,∞] for 0 < r < 1.

Proof. Let γ = γk so that � = �X (γ ) and extend the collection C = {γ1, . . . , γn}
of disjoint simple closed curves to a maximal collection, call it C′, giving a pants
decomposition for X. We want to construct an infinite simple complete geodesic
in X that does not intersect any element of C′ other than γ . First assume that γ

bounds two pairs of pants P1 and P2 as in Figure 1. Let βi be a component of
∂Pi for i = 1,2 such that βi �= γ . Then there exists a geodesic ray in Pi spiraling
toward βi and meeting γ perpendicularly at bi . In X, P1 and P2 are glued together
with a twist along γ , so we can create a geodesic α by connecting the two rays
via an arc on γ connecting the images of b1 and b2 in X and pulling this curve
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Figure 2 Lifts of α and γ in the upper half-plane. Also drawn is a
copy of α̃ under a translation by the element of π1X representing γ .
The dotted geodesic is the image of α̃ under the lift of a Dehn twist
about γ

tight. The other possibility is that γ bounds a single pair of pants P . In P we have
two copies of γ and one other boundary component. There exists a ray emanating
perpendicularly from each copy of γ spiraling toward this other component such
that these two rays are disjoint. We then construct α from these rays as before. We
see that α is our desired complete geodesic.

We can identify the universal cover X̃ of X with the upper half-plane {z ∈ C:
Im(z) > 0} so that we have lifts γ̃ , α̃ of γ , α in the configuration showed in
Figure 2. Let Tγ : X → X be a left Dehn twist about γ , and let T̃γ : H2 → H

2 be a
lift of Tγ fixing γ̃ . Let [x, y] denote the geodesic in H

2 with endpoints x, y ∈ ∂H2.
In our setup, α̃ = [−1, a], and we see that T̃γ (α̃) is homotopic to the dotted curve
shown in Figure 2 and has endpoints [−1, ae�]. By iterating this map, we can
construct a family of geodesics {αn} in X that are the projection of T̃ n

γ (α̃) =
[−1, aen�]. Furthermore, every αn is an infinite simple complete geodesic in X

that does not intersect any element of C′ other than γ . We can then find an integer
k such that aek� ∈ [ 1

2 (e−�+e−�/2), 1
2 (1+e�/2)]; define β̃ = [−1, aek�] = [−1, b],

so that the image of β̃ is β = αk .
We now want to investigate K = K(f ) by studying f : ∂H2 → ∂H2, which

is the induced boundary map from the lift f̃ : H2 → H
2 fixing 0, −1, ∞. Since

two homotopic maps induce the same boundary map on H
2, we have f̄ = T C

(it is convenient to think of f̄ as the map on ∂H2 coming from a left earthquake
along the complete lift of the multicurve C; see [Ker83] for the definition of an
earthquake). Let us assume for now that 1

2 (e−� + e−�/2) ≤ b ≤ 1 and that f twists
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left about γ (if not, we can just study f −1). By construction, β is infinite in
X, β intersects γ exactly once, and β ∩ γi = ∅ for i �= k; this implies that γ̃ is
the only geodesic in the full lift of C that β̃ intersects. Therefore, we know that
f (b) = bem� and also that [−1, bm�] and [−1, f (1)] do not intersect as [−1, b]
and [−1,1] do not. In particular, we must have that f (1) ≥ bm�. This yields:

λ(K) ≥ f (1) − f (0)

f (0) − f (−1)
= f (1) ≥ bem� ≥ 1

2
(e(m−1)� + e(m−1/2)�).

By the preceding we can write

K = 2

π
μ

(√
1

λ(K) + 1

)
,

and since μ is a decreasing function (see [LV73]), we have

K ≥ 2

π
μ

(√
2

2 + e(m−1)� + e(m−1/2)�

)
.

Now assume that 1 ≤ b ≤ 1
2 (1 + e�). Furthermore, since K(f ) = K(f −1) for

any quasiconformal map, we may assume that f twists to the right along γ . We
have the same exact setup as before, except that this time the inequality is as
follows:

1

λ(K)
≤ f (1) − f (0)

f (0) − f (−1)
= f (1) ≤ f (b) = be−m� ≤ 1

2
(e−m� + e(1/2−m)�),

yielding

K ≥ 2

π
μ

(√
1 + e�/2

1 + e�/2 + 2em�

)
.

Since μ is decreasing, for � ≥ 0, the first inequality for K is always smaller. �

We saw in Theorem 2.3 that a hyperbolic surface X with a short curve has a large
homogeneity constant. We leverage this with the above lemma to get a univer-
sal bound for the homogeneity constant with respect to a subgroup of Mod(X)

generated by a multitwist.

Theorem 6.4. There exists a constant KD > 1 such that if a closed hyperbolic
surface X is �K -homogeneous, where � = 〈f 〉 < Mod(X) with f being a multi-
twist, then K ≥ KD . In particular, we have KD ≥ 1.09297.

Proof. Let � = �(X) be the systole of X. From the definition of m(2,K) in The-
orem 2.3 given in [BTCMT05] and the inequality � ≥ m(2,K) we have

K ≥ log((1/2) tanh(�/2)) − log 2e

log((1/2) tanh(d2/2)) − log 2e
≡ �(�), (6.3)

where d2 is defined such that every closed hyperbolic surface contains an em-
bedded hyperbolic disk of diameter d2. It is shown in [Yam81] that we can take
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d2 = 2 log(1 + √
2). From Lemma 6.3 we have

K(f ) ≥ 2

π
μ

(√
2

3 + e�/2

)
≡ �(�). (6.4)

Now, � is decreasing on R>0 with �(0) = +∞, and � is an increasing function
on R>0 with �(0) = 1; hence, there exists a unique value L such that �(L) =
�(L). We note that L ≈ 1.33994 and �(L) ≈ 1.09297. If � ≤ L, then K ≥ �(L).
Assume that � ≥ L and K < �(L). Then K(f ) ≥ �(L) and every element in �K

is isotopic to the identity: this case is handled in [BTBCT07] and tells us that it
must be K ≥ 1.626 > �(L). This contradiction proves the theorem. �

Theorem 1.6 is now just a corollary of the previous two sections with setting
KC = min{KD,KA}.

7. Torsion-Free Subgroups

In this section we investigate a lower bound for the homogeneity constant of a
surface in terms of its genus. The idea is to find a lower bound for the dilatation
of a quasiconformal map on a thick surface. Periodic elements create serious dif-
ficulties that we do not know how to deal with, so we will restrict ourselves to the
torsion-free case.

Theorem 1.7. Let X be a closed hyperbolic surface and suppose � < Mod(X)

is torsion-free. If X is �K -homogeneous, then

logK ≥ 1

7,000g2
,

where g is the genus of X.

Proof. Let F = {f ∈ � : logK(f ) < 7,000−1g−2}. Then our goal is to show
that F = {id}. The first observation is that F cannot contain any pseudo-Anosov
or pure partial pseudo-Anosov elements. This is seen by combining the bounds in
[Pen91] already mentioned and Lemma 6.1.

We can find �0 such that log�(�0) > 1, where � is defined in (6.3); in par-
ticular, we can take �0 = 1.8. Furthermore, we know that if �(X) < �0, then
K > �(�0) > exp(g−2). Therefore, we may assume that �(X) > �0, and so F
cannot contain any multitwists since any mutlitwist will have dilatation bigger
than �(�0) = 1.12, where � is defined in (6.4). We are left with mapping classes
of the form f where some power of f is either a partial pseudo-Anosov or multi-
twist.

Let us first consider the partial pseudo-Anosov case: we can find a subsur-
face R ⊂ X and a k > 0 such that f k fixes the isotopy class of R and f k|R is
pseudo-Anosov. There are at most χ(X)/χ(R) copies of R permuted by f in X;
therefore, we may choose k ≤ χ(X)/χ(R). We then have

logK(f k) ≥ log 4

|χ(R)| .
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It follows that

k · |χ(R)| · logK(f ) ≥ |χ(R)| · logK(f k) ≥ log 4

and

logK(f ) ≥ log 4

k · |χ(R)| ≥ log 4

|χ(X)| .
This shows that f /∈ F .

We may now suppose that some power of f is a multitwist. Recall that
�(X) > �0. Choose a simple closed curve γ and k > 0 such that f k([γ ]) = [γ ].
Define R1 and R2 to be the subsurfaces on either side of γ (possibly R1 = R2)
such that there exists n > 0 with f n|R1 = f n|R2 = id. Let R = R1 ∪ R2. Then we
can choose k < χ(X)/χ(R); furthermore, f 2k fixes the isotopy classes of both
R1, R2. Now choose mi such that f 2kmi |Ri

= id for i = 1,2. By doubling Ri we
see that

mi ≤ 4|χ(Ri)| + 6 ≤ 10|χ(Ri)|
(recall that for a periodic element h ∈ Mod(Sg), |〈h〉| ≤ 4g + 2 = 2|χ(Sg)| + 6).
This implies 2km1m2 < 800g2. The same line of argument as before tells us that

2 · k · m1 · m2 · logK(f ) ≥ log�(�0)

and

logK(f ) ≥ log�(�0)

800g2
>

1

7,000g2
.

Again we see that f /∈F .
We have exhausted all the torsion-free elements in Mod(Sg); hence, F = {id},

as claimed. If logK < 7,000−1g−2, then we can proceed by contradiction as we
did in the cyclic multitwist case: we must have that the elements in �K are isotopic
to the identity: this case is handled in [BTBCT07] and implies K ≥ 1.626, which
is larger than our assumption. This is a contradiction, so we see that logK >

7,000−1g−2. �

8. Functions on Teichmüller Space and Moduli Space

This section looks at building functions on Teichmüller space out of measuring
the homogeneity constant at a given point. The statements and techniques follow
the related results in [BTBCT07]. For the entirety of this section, let S be a closed
orientable surface with χ(S) < 0. Let X = [(X,φ)] ∈ Teich(S). Then, given � <

Mod(S), define

�φ = {[φ ◦ f ◦ φ−1] : f ∈ Homeo+(S) and [f ] ∈ �} < Mod(X).

We then define K� : Teich(S) → (1,∞) by

K�([(X,φ)]) = min{K : X is (�φ)K -homogeneous}.
Lemma 8.1. Given � < Mod(S), the function K� : Teich(S) → (1,∞) exists and
is well defined.
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Proof. We first need to prove that K� exists, that is, that the minimum exists. Let
X be a hyperbolic surface, and let φ : S → X be a diffeomorphism. Set

K = inf{Q : X is (�φ)Q-homogeneous}.
We can then find a sequence {Kj } converging to K such that X is (�φ)Kj

-
homogeneous. We want to show that X is (�φ)K -homogeneous.

Let x, y ∈ X. Then we can find a Kj -quasiconformal homeomorphisms fj

such that fj (x) = y. Pick lifts x̃, ỹ ∈ H
2 and f̃j : H2 → H

2 of x, y, and
fj , respectively, such that f̃j (x̃) = ỹ. We recall that the family of all Q-
quasiconformal homeomorphisms of H2 sending x̃ to ỹ is normal (see Cor. 4.4.3
in [Hub06]). Therefore, there exists a subsequence of {f̃j } that converges to
a K-quasiconformal homeomorphism f̃ : H2 → H

2 with f̃ (x̃) = ỹ. Further-
more, f̃ descends to a K-quasiconformal mapping f : X → X. It is left to show
that [f ] ∈ �φ . Since the connected components of QC(X) are given by isotopy
classes, we must have that for j large, [fj ] = [f ], and since each [fj ] ∈ �φ , so is
[f ]. This shows that the minimum exists.

Since a point in Teichmüller space is an equivalence class, we must check
that K� is well defined. Let (X,φ) = (X,ψ) ∈ Teich(S), so that φ and ψ are
isotopic. Since Mod(X) is defined up to isotopy, it is clear that �φ = �ψ and
K�((X,φ)) = K�((X,ψ)). Now let (X,φ) = (Y, ξ) ∈ Teich(S), so that φ◦ξ−1 �
I for some conformal map I : Y → X. Since conformal maps preserve quasi-
conformal dilatations, it is clear that K�((Y, ξ)) = K�((X, I ◦ ξ)). By definition
I ◦ξ � ψ , so that by the previous argument K�((X,φ)) = K�((Y, ξ)). This shows
that K� : Teich(S) → (1,∞) is well defined. �
We now associated to each subgroup of the mapping class group a continuous
function of Teichmüller space. In the following we closely adhere to the proof of
Lemma 7.1 in [BTBCT07].

Proposition 8.2. For � < Mod(S), the function K� : Teich(S) → (1,∞) is con-
tinuous.

Proof. We will prove the continuity in two steps: we will first prove that K�

is lower semicontinuous and then that it is upper semicontinuous. We make
the following definitions for the entirety of the proof: Let {Xn} = {(Xn,φn)}
be a sequence in Teich(S) converging to X = (X,φ) ∈ Teich(S). Let fn =
φ ◦ φ−1

n : Xn → X and observe that limn→∞ K(fn) = 1.
Pick x, y ∈ X and set xn = f −1

n (x) and yn = f −1
n (y). Then there is a K�(Xn)-

qc mapping gn : Xn → Xn such that gn(xn) = yn with [gn] ∈ �φn . Let {Xnj
}

be a subsequence of {Xn} such that limK�(Xnj
) = lim infK�(Xn). Since

fnj
◦ gnj

◦ f −1
nj

: X → X with fnj
◦ gnj

◦ f −1
nj

(x) = y and limK(fnj
◦ gnj

◦
f −1

nj
) ≤ lim infK(fnj

)2K(gnj
) = lim infK(gnj

), we can pass to another subse-

quence, still labelled {Xnj
}, such that fnj

◦ gnj
◦ f −1

nj
converges to a quasicon-

formal mapping g : X → X such that g(x) = y (this is again due to normality as
in Lemma 8.1). For j large, we must have that fnj

◦ gnj
◦ f −1

nj
is homotopic to g,



Quasiconformal Homogeneity of Hyperbolic Surfaces 73

again since the connected components of QC(X) are given by isotopy classes.
Since gnj

∈ �φnj
, we have [g] ∈ �fnj

◦φnj
, but fnj

◦ φnj
= φ, so that [g] ∈ �φ . By

our setup we now have

K(g) ≤ lim infK(gnj
) ≤ limK�(Xn) = lim inf(Xn).

Since x, y were arbitrary,

K�(X ) ≤ lim infK�(Xn).

Therefore, K� is lower semicontinuous.
It is left to show that K� is upper semicontinuous. Fix n, choose xn, yn ∈ Xn,

and set x = fn(xn) and y = fn(yn). Then there exists a K�(X )-qc mapping
gn : X → X such that gn(x) = y. We then have that hn = f −1

n ◦ gn ◦ fn is a qc
mapping of Xn such that hn(xn) = yn and [hn] ∈ �φn . Furthermore,

K(hn) ≤ K(fn)
2K(gn) ≤ K(fn)

2K�(X ).

Since xn, yn were arbitrary, we have that

K�(Xn) ≤ K(fn)
2K�(X )

and thus
lim supK�(Xn) ≤ limK(fn)

2K�(X ) = K�(X ).

Therefore, K� is upper semicontinuous. �

It is natural to ask when these functions descend to functions on the moduli space.
Recall that if X ∈ M(S), then two points X ,Y ∈ Teich(S) are in the preimage
of X under the projection Teich(S) → M(S) if there exists [f ] ∈ Mod(S) with
Y = [f ] · X . If X = [(X,φ)], then [f ] · X = [(X,ψ)] with ψ = φ ◦ f −1.
Given a normal subgroup � � Mod(S), then by definition we have

�ψ = {[ψ ◦ g ◦ ψ−1] : g ∈ Homeo+(S) and [g] ∈ �}
= {[φ ◦ f −1 ◦ g ◦ f ◦ ψ−1] : g ∈ Homeo+(S) and [g] ∈ �}
= {[φ ◦ g′ ◦ φ−1] : g′ ∈ Homeo+(S) and [g′] ∈ �}
= �φ.

Since �ψ = �φ , it is clear that K�(X ) = K�(f · X ). This proves the following:

Proposition 8.3. For a normal subgroup � � Mod(S), the function K� :
Teich(S) → (1,∞) descends to a continuous function K� : M(S) → (1,∞).

Remark 8.4. The normality of the subgroup in Lemma 8.1 is required: Dehn
twists about curves with different lengths have different dilatations, and all Dehn
twists about nonseparating simple closed curves are conjugates. If we take � =
〈f 〉 where f ∈ Mod(S) is a Dehn twist about a curve γ , then for X ∈ M(S)

with �(X) very small, we can choose φ : S → X and ψ : S → X and some K

such that |(�φ)K | = 1 (where �(φ(γ )) is very large) and |(�ψ)K | = 1,000 (where
�(ψ(γ )) is very small). In the latter case, you have more quasiconformal maps at
your disposal.
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