Quasiconformal Homogeneity and Subgroups of the Mapping Class Group

Abstract

Nicholas G. Vlamis Abstract. In the vein of Bonfert-Taylor, Bridgeman, Canary, and Taylor we introduce the notion of quasiconformal homogeneity for closed oriented hyperbolic surfaces restricted to subgroups of the mapping class group. We find uniform lower bounds for the associated quasiconformal homogeneity constants across all closed hyperbolic surfaces in several cases, including the Torelli group, congruence subgroups, and pure cyclic subgroups. Further, we introduce a counting argument providing a possible path to exploring a uniform lower bound for the nonrestricted quasiconformal homogeneity constant across all closed hyperbolic surfaces.

1. Introduction

Let M be a hyperbolic manifold, and $\mathrm{QC}(M)$ be the associated group of quasiconformal homeomorphisms from M to itself. Given any subgroup $\Gamma \leq \mathrm{QC}(M)$, we say that M is Γ-homogeneous if the action of Γ on M is transitive. Furthermore, we say that M is Γ_{K}-homogeneous for $K \in[1, \infty)$ if the restriction of the action of Γ on M to the subset

$$
\Gamma_{K}=\left\{f \in \Gamma: K_{f} \leq K\right\}
$$

on M is transitive, where $K_{f}=\inf \{K: f$ is K-quasiconformal $\}$ is the dilatation of f.

If $\Gamma=\mathrm{QC}(M)$ and there exists a K such that M is Γ_{K}-homogeneous, then this manifold is said to be K-quasiconformally homogeneous, or $K-q c h$. In [BTCMT05] it is shown that for each $n \geq 3$, there exists a constant $K_{n}>1$ such that if $M \neq \mathbb{H}^{n}$ is an n-dimensional K-quasiconformally homogeneous hyperbolic manifold, then $K \geq K_{n}$. This result relies on rigidity in higher dimensions, which does not occur in dimension two. The natural question motivating this paper is as follows.

Question 1.1. Does there exist a constant $K_{2}>1$ such that every K-qch surface $X \neq \mathbb{H}^{2}$ satisfies $K \geq K_{2}$?

Let $\mathrm{Homeo}^{+}(S)$ be the group of orientation-preserving homeomorphisms of a surface S. Then the mapping class group of S is defined to be $\pi_{0}\left(\operatorname{Homeo}^{+}(S)\right)$ and is denoted $\operatorname{Mod}(S)$. Given a closed hyperbolic surface X and $f \in \mathrm{QC}(X)$, let $[f] \in \operatorname{Mod}(X)$ denote its homotopy class. Then, the map $\pi: \mathrm{QC}(X) \rightarrow \operatorname{Mod}(X)$

[^0]defined by $f \mapsto[f]$ is surjective. If $H \leq \operatorname{Mod}(X)$, then we say that X is H-homogeneous if X is $\pi^{-1}(H)$-homogeneous. Similarly, we say that X is H_{K}-homogeneous if it is $\pi^{-1}(H)_{K}$-homogeneous.

The focus of this paper will be to restrict ourselves to homogeneity with respect to subgroups of the mapping class group of closed hyperbolic surfaces and find lower bounds for the associated homogeneity constants. We will go about this by leveraging lower bounds on the quasiconformal dilatations for maps in a given homotopy class.

Torelli and Congruence Subgroups

Let S be a closed orientable surface; then $\operatorname{Mod}(S)$ acts on the first homology $H_{1}(S, \mathbb{Z})$ by isomorphisms, and the kernel of this action is called the Torelli group, denoted $\mathcal{I}(S)$. Similarly, the kernel of the action of $\operatorname{Mod}(S)$ on $H_{1}(S, \mathbb{Z} / r \mathbb{Z})$ is called the level r congruence subgroup and is denoted by $\operatorname{Mod}(S)[r]$. The first theorem gives a universal bound on the quasiconformal homogeneity constant with respect to these subgroups for closed hyperbolic surfaces.

Theorem 1.2. There exists a constant $K_{T}>1$ such that if X is a closed hyperbolic surface that is Γ_{K}-homogeneous for $\Gamma=\mathcal{I}(X)$ or $\Gamma=\operatorname{Mod}(X)[r]$ with $r \geq 3$, then $K \geq K_{T}$.

The case of $\Gamma=\mathcal{I}(X)$ was independently discovered by Greenfield [Gre13].
Since $H_{1}(S, \mathbb{Z} / r \mathbb{Z})$ is a finite group, so is its automorphism group; hence, $\operatorname{Mod}(S)[r]$ is finite index in $\operatorname{Mod}(S)$. Theorem 1.2 provides an optimistic outlook for answering Question 1.1 in the positive for the case of closed surfaces.

Homogeneity and Teichmüller Space

The rest of the paper is flavored by a technique, introduced in Section 4, which translates questions about homogeneity constants to questions about orbit points under the action of the mapping class group on Teichmüller space. Given a closed hyperbolic surface S, we define its associated Teichmüller space $\operatorname{Teich}(S)$ to be the space of equivalence classes of pairs (X, ϕ), where X is a hyperbolic surface, and $\phi: S \rightarrow X$ is a homeomorphism called the marking. Two such pairs (X, ϕ) and (Y, ψ) are equivalent if $\psi \circ \phi^{-1}: X \rightarrow Y$ is homotopic to an isometry (see [Hub06]). The mapping class group $\operatorname{Mod}(S)$ acts on $\operatorname{Teich}(S)$ by changing the marking:

$$
[f] \cdot[(X, \phi)]=\left[\left(X, \phi \circ f^{-1}\right)\right] .
$$

Furthermore, this action is by isometries with respect to the Teichmüller metric on Teich (S), which is defined by

$$
d_{T}([(X, \phi)],[(Y, \psi)])=\frac{1}{2} \log (\min K(h)),
$$

where the minimum of the quasiconformal dilatation is over all quasiconformal maps $h: X \rightarrow Y$ homotopic to $\psi \circ \phi^{-1}$. The fact that this minimum exists is a well-known theorem of Teichmüller (a proof can be found in [Hub06]).

Our next theorem is a direct result of the technique mentioned before and gives a possible path to finding a lower bound for the quasiconformal homogeneity constant for closed hyperbolic surfaces. It is shown in [BTCMT05] (see Theorem 2.3 below) that surfaces with short curves have large homogeneity constants. We let

$$
\operatorname{Teich}_{(\varepsilon, \infty)}(S)=\{[(X, \phi)] \in \operatorname{Teich}(S): \ell(X)>\varepsilon\}
$$

where $\ell(X)$ is the length of the systole. Also, given a point $\mathscr{X} \in \operatorname{Teich}(S)$, let $B_{R}(\mathscr{X})$ be the ball of radius R about \mathscr{X} in $\left(\operatorname{Teich}(S), d_{T}\right)$. We let S_{g} be an oriented closed genus g surface.

Theorem 1.3. Suppose there exist constants $\varepsilon, R, C>0$ such that for any $\mathscr{X} \in$ $\operatorname{Teich}_{(\varepsilon, \infty)}\left(S_{g}\right)$ with $g>1$,

$$
\left|\left\{f \in \operatorname{Mod}\left(S_{g}\right): f \cdot \mathscr{X} \in B_{R}(\mathscr{X})\right\}\right| \leq C g .
$$

Then, there exists a constant $K_{2}>1$ such that any closed K-qch surface must have $K \geq K_{2}$.

Question 1.4. Does there exist such ε, R, C ?
Note that ε and C can be chosen to be arbitrarily large and R can be chosen to be arbitrarily small.

Finite, Cyclic, and Torsion-Free Subgroups
Returning to more restrictive forms of homogeneity, we use this counting method to consider finite and cyclic subgroups of the mapping class group.

Theorem 1.5. There exists a constant $K_{F}>1$ such that if a closed hyperbolic surface X is Γ_{K}-homogeneous, where $\Gamma<\operatorname{Mod}(X)$ has finite order, then $K \geq K_{F}$. Furthermore, we have

$$
K_{F} \geq \sqrt{\psi\left(2 \operatorname{arccosh}\left(\frac{1}{42}+1\right)\right)}=1.11469 \ldots
$$

where ψ is defined in equation (4.1).
Theorem 1.6. There exists a constant $K_{C}>1$ such that if a closed hyperbolic surface X is Γ_{K}-homogeneous, where $\Gamma=\langle[f]\rangle$ with $[f] \in \operatorname{Mod}(X)$ a pure mapping class, then $K \geq K_{C}$. Furthermore, we have $K_{C} \geq 1.09297$.

It is particularly difficult to understand the orbit of points in Teich (S) under periodic mapping classes; hence, our last theorem deals with torsion-free subgroups of $\operatorname{Mod}(S)$.

Theorem 1.7. Let X be a closed hyperbolic surface and suppose $\Gamma<\operatorname{Mod}(X)$ is torsion-free. If X is Γ_{K}-homogeneous, then

$$
\log K \geq \frac{1}{7,000 g^{2}}
$$

where g is the genus of X.

Question 1.8. Can one find a constant C such that every closed K-qch surface satisfies $K \geq C g^{-2}$?

The rest of the paper discusses how to define continuous functions on Teichmüller space and moduli space using subgroups of the mapping class group and the associated homogeneity constants for surfaces.

Related Results in the Literature

In recent years there have been several papers published that make progress toward understanding quasiconformal homogeneity of surfaces. In [ВТВСТ07] the authors bound the quasiconformal constant of hyperbolic surfaces having automorphisms with many fixed points away from 1, in particular, all hyperelliptic surfaces. In the same paper, they also consider homogeneity with respect to $\Gamma=\{e\}<\operatorname{Mod}(X)$ and $\operatorname{Aut}(X)$. They prove that a surface is $\{e\}_{K}$-homogeneous for some K if and only if it is closed; furthermore, there exists a constant $K_{e}>1$ such that $K \geq K_{e}$. In a similar fashion, the authors find that a hyperbolic surface X is $\operatorname{Aut}(X)_{K}$-homogeneous for some K if and only if it is a regular cover of a hyperbolic orbifold; furthermore, there exists a constant $K_{\text {aut }}>1$ such that $K \geq K_{\text {aut }}$. A sharp bound is found for the constant $K_{\text {aut }}$ in [BTMRT11]. The authors in [KM11] show the existence of a lower bound $K_{0}>1$ for the quasiconformal homogeneity constant of genus zero surfaces, which answers a question about quasiconformal homogeneity of planar domains posed by Gehring and Palka in [GP76].

2. Background

2.1. Quasiconformal Geometry

We may think of a quasiconformal map $f: \mathbb{C} \rightarrow \mathbb{C}$ as a function whose derivative $d f_{p}$ sends the unit circle in $T_{p} \mathbb{C}$ to an ellipse in $T_{f(p)} \mathbb{C}$ whose ratio of the major to minor axis we call $K_{f}(p)$, wherever the derivative is defined, and $K_{f}(p)$ is required to be bounded uniformly for all $p \in \mathbb{C}$. We let K_{f} or $K(f)$ denote the dilatation of f, which is defined to be the supremum of $K_{f}(p)$ over all of \mathbb{C}. Since this is a local condition, this notion holds for Riemann surfaces. Since $K_{f \circ g} \leq$ $K_{f} \cdot K_{g}$, we see that

$$
\mathrm{QC}(X)=\{f: X \rightarrow X \mid f \text { is a quasiconformal homeomorphism }\}
$$

is a group. We refer the reader to [Hub06] and [FM11] for details.
There are two properties of quasiconformal maps that will play a key role in what follows. The first property shows us that quasiconformal maps retain some of the nicety of conformal maps. Let \mathbb{D} denote the unit disk in \mathbb{C}. The following theorem and proof can be found in [Hub06].

Theorem 2.1. Denote by $\mathcal{F}_{K}(\mathbb{D})$ the set of K-quasiconformal homeomorphisms $f: \mathbb{D} \rightarrow \mathbb{D}$ with $f(0)=0$. Then $\mathcal{F}_{K}(\mathbb{D})$ is a normal family.

We will rely heavily on this theorem for the convergence of sequences of quasiconformal maps, especially in understanding the continuity of the quasiconformal homogeneity constants on the moduli space.

The next property relates the quasiconformal condition of a homeomorphism $f: \mathbb{D} \rightarrow \mathbb{D}$ to the geometry of the hyperbolic plane. We say that $f: \mathbb{D} \rightarrow \mathbb{D}$ is an (A, B)-quasi-isometry if there are constants $A, B>0$ such that

$$
\frac{d(z, w)}{A}-B \leq d(f(z), f(w)) \leq A d(z, w)+B
$$

for all $z, w \in \mathbb{D}$ and where d is the hyperbolic metric on \mathbb{D}. The following theorem can be found in [Vuo88].

Theorem 2.2. Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be K-quasiconformal. Then f is $a(K, K \log 4)$ -quasi-isometry with respect to the hyperbolic metric.

In particular, the image of a geodesic $\gamma \in \mathbb{D}$ under a K-quasiconformal $f: \mathbb{D} \rightarrow$ \mathbb{D} is a $(K, K \log 4)$-quasi-geodesic. It is well known (see [Kap01]) that a quasigeodesic stays within a bounded distance of a geodesic. In our case, we know that there exists some $C(K)$ and some geodesic $\tilde{\gamma}$ such that $f(\gamma) \subset N_{C(K)}(\tilde{\gamma})$, where $N_{C(K)}$ is the $C(K)$-neighborhood.

2.2. Quasiconformal Homogeneity

The main goal of this section is to state one of the main results of [BTCMT05], which describes how quasiconformal homogeneity interacts with the geometry of a manifold. Though this paper is focused on surfaces, their work deals with arbitrary dimension, so for the moment, we will work in the general setting of hyperbolic manifolds. If M is an orientable hyperbolic n-manifold, then there exists a discrete subgroup $\Gamma<\operatorname{Isom}^{+}\left(\mathbb{H}^{n}\right)$, called a Kleinian group, so that M is isometric to \mathbb{H}^{n} / Γ. The action of Γ extends to $\partial \mathbb{H}^{n}=\mathbb{S}^{n-1}$ and acts by conformal automorphisms. The limit set $\Lambda(\Gamma)$ is defined to be the intersection of the closure of an orbit of a point $x \in \mathbb{H}^{n}$ with $\partial \mathbb{H}^{n}$, that is, $\Lambda(\Gamma)=\overline{\Gamma \cdot x} \cap \partial \mathbb{H}^{n}$ (note that this definition is independent of the choice of x). See [Thu79] for more on Kleinian groups. Also define $\ell(M)$ to be the infimum of the lengths of homotopically nontrivial curves in M and define $d(M)$ to be the supremum of the diameters of embedded hyperbolic balls in M.

Theorem 2.3 (Theorem 1.1 in [BTCMT05]). For each dimension $n \geq 2$ and each $K \geq 1$, there is a positive constant $m(n, K)$ with the following property. Let $M=\mathbb{H}^{n} / \Gamma$ be a K-quasiconformally homogeneous hyperbolic n-manifold that is not \mathbb{H}^{n}. Then:
(1) $d(M) \leq K \ell(M)+2 K \log 4$.
(2) $\ell(M) \geq m(n, K)$, that is, there is a lower bound on the injectivity radius of M that only depends on n and K.
(3) Every nontrivial element of Γ is hyperbolic, and the limit set $\Lambda(\Gamma)$ of Γ is $\partial \mathbb{H}^{n}$.

In addition, every closed manifold is K-quasiconformally homogeneous for some K (also in [BTCMT05]). These facts tell us that a geometrically finite hyperbolic surface is K-quasiconformally homogeneous for some K if and only if it is closed. Observe that if $G<G^{\prime}<\operatorname{Mod}(X)$ for some hyperbolic surface X, then if X is G_{K}-homogeneous, then we have that X is also G_{K}^{\prime}-homogeneous. In particular, a geometrically finite hyperbolic surface X is G_{K}-homogeneous for $G<\operatorname{Mod}(X)$ if and only if X is closed. This fact will be our motivation for stating our theorems in terms of closed surfaces as opposed to the geometrically finite terminology.

The other key tool we will need comes from understanding the quasiconformal homogeneity constant under geometric convergence and the fact that the only hyperbolic n-manifold that is 1 -quasiconformally homogeneous is \mathbb{H}^{n}.

Proposition 2.4 (Proposition 3.2 in [BTBCT07]). Let $\left\{M_{i}\right\}$ be a sequence of hyperbolic manifolds with M_{i} being K_{i}-quasiconformally homogeneous. If $\lim _{i \rightarrow \infty} K_{i}=1$, then $\lim _{i \rightarrow \infty} \ell\left(M_{i}\right)=\infty$.

3. Torelli Groups and Congruence Subgroups

For a closed orientable surface S_{g} with genus $g \geq 2$, the Torelli group $\mathcal{I}\left(S_{g}\right)$ is the kernel of the action of $\operatorname{Mod}\left(S_{g}\right)$ on $H_{1}\left(S_{g}, \mathbb{Z}\right)$, the first homology with \mathbb{Z} coefficients. We similarly define the level m congruence subgroup $\operatorname{Mod}\left(S_{g}\right)[m]$ as the kernel of the action of $\operatorname{Mod}\left(S_{g}\right)$ on $H_{1}\left(S_{g}, \mathbb{Z} / m \mathbb{Z}\right)$. For the rest of this section, all the results stated will hold for both classes of subgroups just mentioned with $m \geq 3$ in the latter case; we will set $\Gamma(S)=\mathcal{I}(S), \operatorname{Mod}(S)[m]$.

An element $f \in \operatorname{Mod}(S)$ is called pseudo-Anosov if it has infinite order and no power of f fixes the isotopy class of any essential 1-submanifold. Let Teich (S) denote the Teichmüller space, the parameterization space of hyperbolic structures associated to S. Given any $f \in \operatorname{Mod}(S)$, define

$$
\begin{equation*}
\tau(f)=\inf _{\mathscr{X} \in \operatorname{Teich}(S)}\left\{d_{T}(\mathscr{X}, f \cdot \mathscr{X})\right\} \tag{3.1}
\end{equation*}
$$

Then f is pseudo-Anosov if and only if $\tau(f)>0$ and is realized by some $\mathscr{X} \in$ Teich (S) (see [Ber78]). If f is pseudo-Anosov, then we define its dilatation to be $\lambda(f)=\exp (\tau(f))$.

In [FLM08] the authors prove that for a pseudo-Anosov element $f \in \Gamma(S)$, $\log \lambda(f) \geq 0.197$. We would like to have a similar result for reducible elements of these subgroups. We can get such a result directly from the authors' original proof with understanding how their pseudo-Anosov assumption is being used.

In their proof, they use a cone metric on S coming from a quadratic differential with stable and unstable foliations corresponding to the stable and unstable foliations for f. They use this metric to compare lengths of curves. The same proof can be given using a hyperbolic metric on S yielding $2 \tau(f)=\log \left(\lambda(f)^{2}\right) \geq 0.197$. The authors' proof over a hyperbolic metric views f as a quasiconformal map and uses Wolpert's lemma.

Lemma 3.1 (Wolpert's lemma, Lemma 12.5 in [FM11]). Let X, Y be hyperbolic surfaces, and let $f: X \rightarrow Y$ be a K-quasiconformal homeomorphism. For any isotopy class c of simple closed curves in X, the following holds:

$$
\frac{\ell_{X}(c)}{K} \leq \ell_{Y}(f(c)) \leq K \ell_{X}(c)
$$

where $\ell_{X}(c)$ denotes the length of the unique geodesic representative of c in X.
This is also explained in a remark in [FLM08]. By replacing the cone metric coming from the pseudo-Anosov with a hyperbolic metric we remove the first instance of the pseudo-Anosov assumption.

The second way that the pseudo-Anosov assumption is used is to state that f does not fix the homotopy class of a shortest curve. We can remove this assumption by looking at mapping classes that do not fix a shortest curve.

Theorem 3.2 (Farb, Leininger, and Margalit [FLM08]). Let X be a hyperbolic surface, and γ the homotopy class of a shortest curve in X. If $f: X \rightarrow X$ is a quasiconformal homeomorphism with $[f] \in \mathcal{I}(X)$ or $[f] \in \operatorname{Mod}(X)[m]$ for some $m \geq 3$ such that $f(\gamma) \neq \gamma$, then $\log K(f) \geq 0.197$.

For studying quasiconformal homogeneity with respect to $\Gamma(S)$, this theorem will allow us to discard any elements not fixing a shortest curve. This will be enough to prove our theorem. We start with a lemma describing the situation for large genus surfaces.

Lemma 3.3. There exists g_{0} such that if X is a closed hyperbolic surface of genus $g>g_{0}$ and X is Γ_{K}-homogeneous for either $\Gamma=\mathcal{I}(X)$ or $\Gamma=\operatorname{Mod}(X)[m]$ for $m \geq 3$, then $\log K>0.197$.

Proof. From Theorem 2.2 we know that if $f: X \rightarrow X$ is K-quasiconformal, then f is a $(K, K \log 4)$-quasi-isometry. In particular, there is some $C(K) \geq 0$ such that if γ is a geodesic in X, then $f(\gamma)$ is contained in a $C(K)$-neighborhood of $\tilde{\gamma}$, call it $N_{C(K)}(\tilde{\gamma})$, for some geodesic $\tilde{\gamma}$ in X. Define $C_{0}=C \exp (0.197)$. Also, if X is a genus g hyperbolic surface, then $\ell(X) \leq A \log g$, where A is a constant independent of genus (this is Gromov's inequality for surfaces, see [Gro83]). Now choose g_{0} such that

$$
\frac{4 \pi\left(g_{0}-1\right)}{A \log g_{0}}>2 \sinh C_{0}
$$

Assume that the genus of X is $g>g_{0}$ and that X is Γ_{K}-homogeneous. Let γ be a closed geodesic in X of shortest length; then it satisfies $\ell_{X}(\gamma) \leq A \log g$. For every $y \in X$ and $x \in \gamma$, there exists $f: X \rightarrow X$ such that $[f] \in \Gamma_{K}$ and $f(x)=y$. If $\log K<0.197$, then $[f(\gamma)]=[\gamma]$, implying that every point of X must be in the C_{0}-neighborhood of γ. Let us identify the universal cover of X with \mathbb{H}^{2}, so that $X=\mathbb{H}^{2} / G$ for $G<\operatorname{Isom}{ }^{+}\left(\mathbb{H}^{2}\right)$. In the upper half-plane model, we can translate a lift of γ to be the imaginary axis, so that the geodesic segment [i,ie $\left.e^{\ell_{X}(\gamma)}\right]$ maps onto γ. If U is a C_{0}-neighborhood of this segment in \mathbb{H}^{2}, then by
the preceding we know that there exists a fundamental domain for the action of G on \mathbb{H}^{2} contained in U. In particular, this implies $\operatorname{Area}(U) \geq \operatorname{Area}(X)$. However,

$$
\operatorname{Area}(U)=2 \ell_{X}(\gamma) \sinh C_{0}<2 A \log (g) \sinh \left(C_{0}\right)<4 \pi(g-1)
$$

But $4 \pi(g-1)=\operatorname{Area}(X)$; hence, we found $\operatorname{Area}(U)<\operatorname{Area}(X)$. This is a contradiction; thus, we must have $\log K>0.197$.

Theorem 1.2. There exists a constant $K_{T}>1$ such that if X is a closed hyperbolic surface that is Γ_{K}-homogeneous for $\Gamma=\mathcal{I}(X)$ or $\Gamma=\operatorname{Mod}(X)[r]$ with $r \geq 3$, then $K \geq K_{T}$.

Proof. Given a sequence of hyperbolic surfaces $\left\{X_{n}\right\}$, let g_{n} be the genus of X_{n} and $\Gamma_{n}=\mathcal{I}\left(X_{n}\right), \operatorname{Mod}\left(X_{n}\right)[m]$ for $m \geq 3$. We proceed by contradiction: Suppose the statement is false; then there exists a sequence of hyperbolic surfaces $\left\{X_{n}\right\}$ that are $\left(\Gamma_{n}\right)_{K_{n}}$-homogeneous such that $\lim _{n \rightarrow \infty} K_{n}=1$. Since $K_{n} \rightarrow 1$, Proposition 2.4 tells us that $\ell\left(X_{n}\right) \rightarrow \infty$, and Gromov's inequality implies that $g_{n} \rightarrow \infty$. Pick N such that $g_{N}>g_{0}$, where g_{0} is from Lemma 3.3. For all $n>N$, we have $\log K_{n}>0.197$, contradicting $K_{n} \rightarrow 1$. This completes the proof.

4. A Counting Problem in Teichmüller Space

For the rest of the paper, our main method of studying quasiconformal homogeneity will be to translate the problem of understanding the homogeneity constants to one of counting orbit points in Teichmüller space under the action of the mapping class group. Before stating the lemma that will allow us to accomplish this, we recall a proposition in [BTBCT07].

Proposition 4.1 (Proposition 6.2 in [BTBCT07]). Let $f: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ be a quasiconformal map that extends to the identity on $\partial_{\infty} \mathbb{H}^{2}$, and let $x \in \mathbb{H}^{2}$. Then $K(f) \geq \psi(d(x, f(x)))$, where $\psi:[0, \infty) \rightarrow[1, \infty)$ is the increasing homeomorphism given by the function

$$
\begin{equation*}
\psi(d)=\operatorname{coth}^{2}\left(\frac{\pi^{2}}{4 \mu\left(e^{-d}\right)}\right)=\operatorname{coth}^{2} \mu\left(\sqrt{1-e^{-2 d}}\right) \tag{4.1}
\end{equation*}
$$

where $\mu(r)$ is the modulus of the Grötsch ring whose complementary components are $\overline{\mathbb{B}^{2}}$ and $[1 / r, \infty]$ for $0<r<1$.

The explicit formula for ψ was originally due to Teichmüller [Tei44]. In what follows, we will define $K(\phi)$ for $\phi \in \operatorname{Mod}(X)$ by

$$
K(\phi)=\min \left\{K_{f}: f \in \mathrm{QC}(X) \text { and }[f]=\phi\right\},
$$

where $[f]$ denotes the homotopy class of f.
Lemma 4.2. Let X be a genus g closed hyperbolic surface and $\Gamma<\operatorname{Mod}(X)$ such that X is Γ_{K}-homogeneous. If the set

$$
\{\phi \in \Gamma: K(\phi)<K\}
$$

is finite with cardinality n, then

$$
K \geq \sqrt{\psi\left(2 \operatorname{arccosh}\left(\frac{2}{n}(g-1)+1\right)\right)}
$$

where ψ is defined in (4.1).
Proof. Since the action of $\operatorname{Mod}(X)$ on $\operatorname{Teich}(X)$ is properly discontinuous, there can only be finitely many mapping classes with dilatation less than K. Let $\phi_{1}, \ldots, \phi_{n}$ be the n elements in Γ such that $K\left(\phi_{i}\right) \leq K$. Fix $a \in X$ and let

$$
U_{i}=\left\{x \in X: \exists f \in \mathrm{QC}_{K}(X) \text { such that }[f]=\phi_{i} \text { and } f(a)=x\right\}
$$

In particular, $X=\bigcup_{i=1}^{n} U_{i}$. Now $\operatorname{Area}(X)=4 \pi(g-1) \leq \sum \operatorname{Area}\left(U_{i}\right)$; hence, there exists $k \in\{1, \ldots, n\}$ such that $U=U_{k}$ satisfies $\operatorname{Area}(U) \geq \frac{4 \pi}{n}(g-1)$. Let d be the diameter of U, so that

$$
2 \pi\left(\cosh \frac{d}{2}-1\right) \geq \operatorname{Area}(U) \geq \frac{4 \pi}{n}(g-1)
$$

where the leftmost term is the area of the hyperbolic ball of diameter d. This implies

$$
d \geq 2 \operatorname{arccosh}\left(\frac{2}{n}(g-1)+1\right)
$$

For $\varepsilon>0$, let $x, y \in U$ be such that $d_{X}(x, y)=d-\varepsilon$ and pick $f, g \in \mathrm{QC}_{K}(X)$ with $[f]=[g]=\phi_{i}$ such that $f(a)=x$ and $g(a)=y$. Then $h=g \circ f^{-1}$ is isotopic to the identity, and $h(x)=y$. Let $\tilde{h}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ be a lift of h that extends to the identity on $\partial_{\infty} \mathbb{H}^{2}$. Proposition 4.1 implies

$$
K(\tilde{h})=K(h) \geq \psi(d(x, y))=\psi(d-\varepsilon)
$$

We now have

$$
K^{2} \geq K(f) \cdot K\left(g^{-1}\right) \geq K\left(f \circ g^{-1}\right)=K(h) \geq \psi\left(d_{X}(x, y)\right)=\psi(d-\varepsilon)
$$

The result follows by letting ε tend to zero and the fact that ψ is increasing.
Let us wrap Lemma 4.2 in the language of Teichmüller theory. Given $\mathscr{X}=$ $(X, \phi) \in \operatorname{Teich}\left(S_{g}\right)$, we can identify $f \in \operatorname{Mod}\left(S_{g}\right)$ with $\phi \circ f \circ \phi^{-1} \in \operatorname{Mod}(X)$. Then

$$
|\{g \in \operatorname{Mod}(X): K(g)<K\}|=\left|\left\{f \in \operatorname{Mod}\left(S_{g}\right): f \cdot \mathscr{X} \in B_{\log \sqrt{K}}(\mathscr{X})\right\}\right|
$$

where $B_{R}(\mathscr{X})$ is the ball of radius R in the Teicmüller metric centered at $\mathscr{X} \in$ Teich $\left(S_{g}\right)$. This allows us to think about orbits in Teich $\left(S_{g}\right)$. Lemma 4.2 provides a possible route to proving that there exists an universal constant $K_{2}>1$ such that if X is a K-quasiconformally homogeneous closed hyperbolic surface, then $K \geq K_{2}$.

Theorem 1.3. Suppose there exist constants $\varepsilon, R, C>0$ such that for any $\mathscr{X} \in$ $\operatorname{Teich}_{(\varepsilon, \infty)}\left(S_{g}\right)$ with $g>1$,

$$
\left|\left\{f \in \operatorname{Mod}\left(S_{g}\right): f \cdot \mathscr{X} \in B_{R}(\mathscr{X})\right\}\right| \leq C g
$$

Then, there exists a constant $K_{2}>1$ such that any closed K-qch surface must have $K \geq K_{2}$.

Proof. We proceed by contradiction: Assume that there exists a sequence of closed hyperbolic surfaces $\left\{X_{n}\right\}$ such that X_{n} is K_{n}-quasiconformally homogeneous and $K_{n} \rightarrow 1$. This implies $\ell\left(X_{n}\right) \rightarrow \infty$ by Proposition 2.4 and $g_{n} \rightarrow \infty$ by Gromov's inequality, where g_{n} is the genus of X_{n}. By Lemma 4.2 and the cardinality assumption we have that

$$
K_{n} \geq \sqrt{\psi\left(2 \operatorname{arccosh}\left(\frac{2}{C g_{n}}\left(g_{n}-1\right)+1\right)\right)}
$$

(Note that we use that both ψ and arccosh are increasing functions.) In particular, we have

$$
\lim _{n \rightarrow \infty} K_{n} \geq \sqrt{\psi\left(2 \operatorname{arccosh}\left(\frac{2}{C}+1\right)\right)}>1
$$

This contradicts the assumption $K_{n} \rightarrow 1$, which completes the proof.

5. Finite Subgroups

For a closed orientable surface S with negative Euler characteristic, there are well-known bounds for the order of finite groups and elements in $\operatorname{Mod}(S)$: it is a theorem of Hurwitz that the group Isom ${ }^{+}(X)$ for a closed hyperbolic surface X of genus $g \geq 2$ has order bounded above by $84(g-1)$. Also, it was proved by Wiman [Wim95] that any element in $\operatorname{Isom}^{+}(X)$ has order bounded above by $4 g+2$ (both of these are proved in [FM11]). In addition, the Nielsen realization theorem proved by Kerckhoff [Ker83] tells us that a finite subgroup of $\operatorname{Mod}(S)$ can be realized as a subgroup of $\operatorname{Isom}^{+}(X)$ for some hyperbolic surface X homeomorphic to S. Combining these results with Lemma 4.2, we get the following results.

Theorem 1.5. There exists a constant $K_{F}>1$ such that if a closed hyperbolic surface X is Γ_{K}-homogeneous, where $\Gamma<\operatorname{Mod}(X)$ has finite order, then $K \geq K_{F}$. Furthermore, we have

$$
K_{F} \geq \sqrt{\psi\left(2 \operatorname{arccosh}\left(\frac{1}{42}+1\right)\right)}=1.11469 \ldots
$$

where ψ is defined in equation (4.1).
Proof. From the preceding discussion we know that $|\Gamma| \leq 84(g-1)$. The result follows by setting $n=84(g-1)$ in Lemma 4.2.

Theorem 5.1. There exists a constant $K_{P}>1$ such that if a closed hyperbolic surface X is Γ_{K}-homogeneous, where $\Gamma=\langle f\rangle$ and $f \in \operatorname{Mod}(X)$ is periodic, then
$K \geq K_{P}$. In particular, we have

$$
K_{P} \geq \sqrt{\psi\left(2 \operatorname{arccosh}\left(\frac{6}{5}\right)\right)}=1.35547 \ldots
$$

Proof. From the preceding discussion we know that $|\phi| \leq 4 g+2$, so we can use Lemma 4.2 with $n=4 g+2$. We see that the worst case is $n=4 g+2$ when $g=2$.

6. Pure Cyclic Subgroups

We follow [Iva92] in calling a homeomorphism $f: S \rightarrow S$ pure if for some closed one-dimensional submanifold C of S, the following are true:
(1) the components of C are nontrivial,
(2) $\left.f\right|_{C}$ is the identity,
(3) f does not rearrange the components of $S \backslash C$, and
(4) f induces on each component of S cut along C a homeomorphism either homotopic to a pseudo-Anosov or the identity homeomorphism.
An element of $\operatorname{Mod}(S)$ is called pure if the homotopy class contains a pure homeomorphism. Note that we allow $C=\emptyset$, so that pseudo-Anosov homeomorphisms are pure. Recall that for a mapping class $f \in \operatorname{Mod}(S)$, we let $\tau(f)$ denote its translation length in Teich (S). We can then break pure mapping class elements into three categories along the lines of Bers's classification of surface diffeomorphisms: if $f \in \operatorname{Mod}(S)$ is pure, then:
(i) $\tau(f)>0$ and realized, so that f is a (full) pseudo-Anosov,
(ii) $\tau(f)>0$ and not realized, so that f induces a pseudo-Anosov homeomorphism on some component of S cut along the canonical reduction system for f (we will call these partial pseudo-Anosov), or
(iii) $\tau(f)=0$ and not realized, so that f is a Dehn twist about a multicurve, which we will call a multitwist.

We will consider homogeneity with respect to cyclic subgroups generated by each type of pure mapping class in turn.

6.1. Full and Partial Pseudo-Anosov Mapping Classes

Let S be a closed surface, and $f \in \operatorname{Mod}(S)$ be a pure partial pseudo-Anosov mapping class. Then there exists a multicurve C and a representative of f, which we will also call f, such that f fixes C pointwise. Let R be a component of the (possibly disconnected) surface resulting from cutting S along C such that $\left.f\right|_{R}$ is pseudo-Anosov. We can build a punctured surface F by gluing punctured disks to each of the boundary components of R, so that R is embedded in F. Furthermore, since f restricted to ∂R is the identity, we can extend $\left.f\right|_{R}$ to a map $\hat{f}: F \rightarrow F$ by defining $\left.\hat{f}\right|_{R}=\left.f\right|_{R}$ and $\left.\hat{f}\right|_{F \backslash R}=i d$. We have constructed \hat{f} so that $[\hat{f}] \in \operatorname{Mod}(F)$ is a full pseudo-Anosov map on a punctured surface, and our
first goal will be to relate the translation length $\tau(f)$ of f in $\operatorname{Teich}(S)$ to the translation length $\tau(\hat{f})$ of \hat{f} in $\operatorname{Teich}(F)$.

Lemma 6.1. Let S, f, F, \hat{f} be defined as before. Then $\tau(f) \geq \tau(\hat{f})$.
Proof. Recall that $\tau(f)$ is not realized, so let $\left\{\left(X_{n}, \phi_{n}\right)\right\}$ be a sequence in Teich (S), and $f_{n}: X_{n} \rightarrow X_{n}$ be the Teichmüller map in the homotopy class of $\phi_{n} \circ f \circ \phi_{n}^{-1}$ so that $\lim _{n \rightarrow \infty} K\left(f_{n}\right)=e^{2 \tau(f)}$. Define R_{n} to be the geometric straightening of $\phi_{n}(R)$ in X_{n} so that ∂R_{n} is a disjoint union of simple closed geodesics. The collaring lemma provides disjoint neighborhoods around each boundary component of R_{n}; let N_{n} be the union of these neighborhoods. We can then pick points $x_{n} \in R_{n} \backslash N_{n}$ such that $f_{n}\left(x_{n}\right) \in R_{n} \backslash N_{n}$. The sequencepossibly a subsequence-of pointed surfaces (X_{n}, x_{n}) converges geometrically to (X_{∞}, x_{∞}), where X_{∞} is homeomorphic to F since the collection of curves permuted by f must be pinched. This convergence is clear since this limit agrees with the visual limit from the viewpoint of x_{n}. With this setup we will construct a quasiconformal map on X_{∞} that has the same translation length in $\operatorname{Teich}(F)$ as \hat{f} and smaller dilatation than $\lim _{n \rightarrow \infty} K\left(f_{n}\right)$.

We will want to work in the hyperbolic plane; in particular, we will use the disk model $\left(\mathbb{D}, d_{H}\right)$, where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and d_{H} is the hyperbolic metric. Let us identify the universal cover of (X_{n}, x_{n}) with ($\mathbb{D}, 0$), and let $\Gamma_{n}<\operatorname{Isom}(\mathbb{D})$ be such that $X_{n}=\mathbb{D} / \Gamma_{n}$. We may assume that our marking $\phi_{n}: S \rightarrow X_{n}$ induces the representation $\rho_{n}=\left(\phi_{n}\right)_{*}: \pi_{1} S \rightarrow \Gamma_{n}$. We note that the Γ_{n} converge to a group Γ_{∞} such that $\mathbb{H}^{2} / \Gamma_{\infty}=X_{\infty}$. Let \tilde{y}_{n} be a lift of $f\left(x_{n}\right)$ such that $d_{H}\left(0, \tilde{y}_{n}\right)=d_{X}\left(x_{n}, f\left(x_{n}\right)\right)$, then choose a lift $\tilde{f}_{n}: \mathbb{D} \rightarrow \mathbb{D}$ of f_{n} with $\tilde{f}_{n}(0)=\tilde{y}_{n}$. By compactness, the sequence of points $\left\{\tilde{y}_{n}\right\}$ must have a convergent subsequence, which we also call $\left\{\tilde{y}_{n}\right\}$, in $\overline{\mathbb{D}}=\{z \in \mathbb{C}:|z| \leq 1\}$. Set $\tilde{y}_{\infty}=\lim _{n \rightarrow \infty}\left\{\tilde{y}_{n}\right\}$, then since the $x_{n} \in R_{n}$ have been chosen to avoid going up the cusp, we see that $\tilde{y}_{\infty} \in \mathbb{D}$. Let $y_{n} \in X_{n}$ be the projection of \tilde{y}_{∞} to X_{n}. Define $h_{n}: X_{n} \rightarrow X_{n}$ such that h_{n} is isotopic to the identity, $h_{n}\left(f\left(x_{n}\right)\right)=y_{n}$, and $\lim _{n \rightarrow \infty} K\left(h_{n}\right)=1$. Now $g_{n}=h_{n} \circ f_{n}: X_{n} \rightarrow X_{n}$ with $g_{n}\left(x_{n}\right)=y_{n}$; in particular, we can choose lifts $\tilde{g}_{n}: \mathbb{D} \rightarrow \mathbb{D}$ of the g_{n} with $\tilde{g}_{n}(0)=\tilde{y}_{\infty}$.

The family of K-quasiconformal maps

$$
\left\{g: \mathbb{D} \rightarrow \mathbb{D}: K(g) \leq K \text { and } g(0)=\tilde{y}_{\infty}\right\}
$$

is normal [Hub06]; therefore, the sequence $\left\{\tilde{g}_{n}\right\}$ of quasiconformal maps has a convergent subsequence, which we also call $\left\{\tilde{g}_{n}\right\}$. Define $\tilde{g}_{\infty}=\lim _{n \rightarrow \infty}\left\{\tilde{g}_{n}\right\}$, so that $\tilde{g}_{\infty}(0)=\tilde{y}_{\infty}$ and

$$
K\left(\tilde{g}_{\infty}\right)=\lim _{n \rightarrow \infty} K\left(\tilde{g}_{n}\right)=\lim _{n \rightarrow \infty} K\left(g_{n}\right) \leq \lim _{n \rightarrow \infty}\left[K\left(h_{n}\right) \cdot K\left(f_{n}\right)\right]=e^{2 \tau(f)}
$$

It is left to show that \tilde{g}_{∞} descends to a map $g_{\infty}: X_{\infty} \rightarrow X_{\infty}$ and $\tau(\hat{f}) \leq$ $\frac{1}{2} \log K\left(g_{\infty}\right)$.

In order to finish the proof, we will look at a particular definition of the geometric limit (details for geometric limits can found in $\S E .1$ in [BP92]). Let $p_{n}: \mathbb{H}^{2} \rightarrow X_{n}$ be the canonical projections (where we identify $X_{n}=\mathbb{H}^{2} / \Gamma_{n}$).

Since the sequence $\left(X_{n}, x_{n}\right)$ converges to (X_{∞}, x_{∞}) geometrically, we can find bi-Lipschitz maps $\tilde{\psi}_{n}: \overline{B\left(0, r_{n}\right)} \rightarrow \mathbb{H}^{2}$, where $B(z, r)$ is the ball of radius r about z, such that $\tilde{\psi}_{n}(0)=0$, the $\tilde{\psi}_{n}$ converge to the identity on \mathbb{H}^{2}, and for all z_{1}, z_{2} in the domain of $\tilde{\psi}_{n}$,

$$
\begin{equation*}
p_{\infty}\left(z_{1}\right)=p_{\infty}\left(z_{2}\right) \quad \Longleftrightarrow \quad p_{n}\left(\tilde{\psi}_{n}\left(z_{1}\right)\right)=p_{n}\left(\tilde{\psi}_{n}\left(z_{2}\right)\right) \tag{6.1}
\end{equation*}
$$

In particular, the maps $\tilde{\psi}_{n}^{-1} \circ \tilde{g}_{n} \circ \tilde{\psi}_{n}$ converge to \tilde{g}_{∞}. Combining (6.1) with the fact that \tilde{g}_{n} is Γ_{n}-equivariant we see that $\tilde{\psi}_{n}^{-1} \circ \tilde{g}_{n} \circ \tilde{\psi}_{n}$ is $\Gamma_{\infty^{-}}$ equivariant on its domain. This implies that \tilde{g}_{∞} is Γ_{∞}-equivariant and descends to $g_{\infty}: X_{\infty} \rightarrow X_{\infty}$.

It is left to show $\tau(\hat{f}) \leq \frac{1}{2} \log K\left(g_{\infty}\right)$. Condition (6.1) implies that the maps $\tilde{\psi}_{n}$ descend to $\psi_{n}: K_{n} \hookrightarrow X_{n}$, where K_{n} is a compact set in X_{∞}. By the preceding we know that the domain of $\psi_{n}^{-1} \circ g_{n} \circ \psi_{n}$ is converging to X_{∞} and $\psi_{n}^{-1} \circ g_{n} \circ \psi_{n}$ is converging to g_{∞}. Choose N such that for $n>N$, removing the domain of $\psi_{n}^{-1} \circ g_{n} \circ \psi_{n}$ from X_{∞} results in a disjoint union of punctured disks. We can then extend $\psi_{n}^{-1} \circ g_{n} \circ \psi_{n}: X_{\infty} \rightarrow X_{\infty}$ without affecting convergence. We therefore see that for large $n, \psi_{n}^{-1} \circ g_{n} \circ \psi_{n}$ is homotopic to g_{∞}, which implies

$$
g_{\infty} \simeq \psi_{n}^{-1} \circ \phi_{n} \circ f \circ \phi_{n}^{-1} \circ \psi_{n}
$$

On the domain of interest, we are really looking at restricting the ϕ_{n} and f to R and then extending. In fact, we see that

$$
g_{\infty} \simeq \psi_{n}^{-1} \circ \phi_{n} \circ \hat{f} \circ \phi_{n}^{-1} \circ \psi_{n}
$$

We can think of an extension of $\left.\psi_{n}^{-1} \circ \phi_{n}\right|_{R}$ as a marking $F \rightarrow X_{\infty}$, which implies $\tau(\hat{f}) \leq \frac{1}{2} \log K\left(g_{\infty}\right) \leq \tau(f)$ as desired.

We will consider both full and partial pseudo-Anosov homeomorphisms at the same time. We will rely on a result of Penner [Pen91], which provides a lower bound for the dilatation of a pseudo-Anosov $f \in \operatorname{Mod}(S)$:

$$
\log \lambda(f) \geq \frac{\log 2}{|\chi(S)|}
$$

where $\chi(S)$ denotes the Euler characteristic of S. This holds for both closed and punctured surfaces.

Theorem 6.2. There exists a constant $K_{A}>1$ such that if a closed hyperbolic surface X is Γ_{K}-homogeneous, where $\Gamma=\langle f\rangle$ with $f \in \operatorname{Mod}(X)$ either pseudoAnosov or partial pseudo-Anosov, then $K \geq K_{A}$. In particular, we have $K_{A} \geq$ 1.42588 .

Proof. Let $[f] \in \operatorname{Mod}(X)$, and let $R \subseteq X$ be a connected subsurface such that $\left.f\right|_{R}$ is pseudo-Anosov and $f(R)$ is isotopic to R. Note that in the case f is not reducible, $R=X$. We will keep with our notation as before, so that we can extend $\left.f\right|_{R}$ to $\hat{f}: F \rightarrow F$, where F is a punctured surface in the reducible case or again $F=X$ and $\hat{f}=f$ in the pseudo-Anosov case. If we let $\tau(\hat{f})$ denote
the translation length of \hat{f} in $\operatorname{Teich}(F)$, then, since $|\chi(F)| \leq|\chi(X)|$, we have $\tau(\hat{f}) \geq \frac{\log 2}{12(g-1)}$, where g is the genus of X (see [Pen91]). Let $m \in \mathbb{Z}$ be such that

$$
\frac{m \log 2}{6(g-1)} \geq \log K
$$

Since $\left(\hat{f}^{2}\right)=\hat{f}^{2}$ and $\tau\left(\hat{f}^{2}\right)=2 \tau(\hat{f})$, we find

$$
\tau\left(f^{m}\right) \geq \tau\left(\hat{f}^{m}\right)=m \tau(\hat{f}) \geq \frac{m \log 2}{12(g-1)} \geq \frac{1}{2} \log K
$$

In particular, $K\left(f^{m}\right) \geq K$. We can now appeal to Lemma 4.2 with $n \leq 2 m+1$ (accounting for negative powers and the identity) to find that

$$
K \geq \mu_{g}(K)
$$

where we define

$$
\mu_{g}(K)=\sqrt{\psi\left(2 \operatorname{arccosh}\left(\frac{2 \log 2}{12(g-1) \log K+\log 2}(g-1)+1\right)\right)}
$$

Since $\mu_{g}(K)$ increases with g, we have that $K \geq \mu_{2}(K)$. For $K \geq 1$, we see that $\mu_{2}(K)$ is decreasing and so there exists a unique solution to $K-\mu_{2}(K)=0$, call it K_{A}. A computation shows that $K_{A}=1.42588 \ldots$, and the result follows.

6.2. Multitwists

We start this section with finding a lower bound for the dilatation of a quasiconformal homeomorphism homotopic to a multitwist. We do this by understanding the map induced on the boundary of the hyperbolic plane. Let X be a closed hyperbolic surface, and let $f \in \mathrm{QC}(X)$. Then by identifying the universal cover of X with \mathbb{H}^{2} we can choose $\tilde{f}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ to be a lift of f. Furthermore, we can extend \tilde{f} to the boundary of \mathbb{H}^{2} continuously, which we identify with $\overline{\mathbb{R}}$. Let $\bar{f}: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}$ be the restriction of \tilde{f} to $\overline{\mathbb{R}}=\partial \mathbb{H}^{2}$. We can choose \tilde{f} such that $\bar{f}(\infty)=\infty$. In this setup there exists an M such that \bar{f} is \mathbb{R}-quasi-symmetric with modulus M, that is,

$$
\frac{1}{M} \leq \frac{\bar{f}(x+t)-\bar{f}(x)}{\bar{f}(x)-\bar{f}(x-t)} \leq M
$$

for all $x \in \mathbb{R}$ and $t>0$ (see $\S 4.9$ of [Hub06]). Sharp bounds are known for the modulus M associated to a K-quasiconformal homeomorphism of \mathbb{H}^{2} : define

$$
\lambda(K)=\frac{1}{\left(\mu^{-1}(\pi K / 2)\right)^{2}}-1
$$

where $\mu(r)$ is the modulus of the Grötsch ring whose complementary components are $\overline{\mathbb{B}^{2}}$ and $[1 / r, \infty]$ for $0<r<1$. Then (see [LV73]) we have

$$
\begin{equation*}
\frac{1}{\lambda(K(f))} \leq \frac{\bar{f}(x+t)-\bar{f}(x)}{\bar{f}(x)-\bar{f}(x-t)} \leq \lambda(K(f)) \tag{6.2}
\end{equation*}
$$

Figure 1 A 4-punctured sphere in X with γ bounding two embedded pairs of pants. The curve α intersects γ once and spirals toward both β_{1} and β_{2} so that it is disjoint from all boundary components

If f is homotopic to a multitwist, then this is enough information to produce a lower bound for $K(f)$ in terms of the lengths of the curves f twists about.

Lemma 6.3. Let X be a closed hyperbolic surface, and $f \in \mathrm{QC}(X)$ be homotopic to a multitwist T_{C} about a multicurve $C=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$, so that $T_{C}=T_{\gamma_{1}}^{m_{1}} \circ \cdots \circ$ $T_{\gamma_{n}}^{m_{n}}$. If $m=\left|m_{k}\right|$ and $\ell=\ell_{X}\left(\gamma_{k}\right)$ is such that $m \ell=\max _{i}\left\{\left|m_{i}\right| \cdot \ell_{X}\left(\gamma_{i}\right)\right\}$, then

$$
K(f) \geq \frac{2}{\pi} \mu\left(\sqrt{\frac{2}{2+e^{(m-1) \ell}+e^{(m-1 / 2) \ell}}}\right)
$$

where $\mu(r)$ is the modulus of the Grötsch ring whose complementary components are $\overline{\mathbb{B}^{2}}$ and $[1 / r, \infty]$ for $0<r<1$.

Proof. Let $\gamma=\gamma_{k}$ so that $\ell=\ell_{\mathscr{X}}(\gamma)$ and extend the collection $C=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ of disjoint simple closed curves to a maximal collection, call it C^{\prime}, giving a pants decomposition for X. We want to construct an infinite simple complete geodesic in X that does not intersect any element of C^{\prime} other than γ. First assume that γ bounds two pairs of pants P_{1} and P_{2} as in Figure 1. Let β_{i} be a component of ∂P_{i} for $i=1,2$ such that $\beta_{i} \neq \gamma$. Then there exists a geodesic ray in P_{i} spiraling toward β_{i} and meeting γ perpendicularly at b_{i}. In X, P_{1} and P_{2} are glued together with a twist along γ, so we can create a geodesic α by connecting the two rays via an arc on γ connecting the images of b_{1} and b_{2} in X and pulling this curve

Figure 2 Lifts of α and γ in the upper half-plane. Also drawn is a copy of $\tilde{\alpha}$ under a translation by the element of $\pi_{1} X$ representing γ. The dotted geodesic is the image of $\tilde{\alpha}$ under the lift of a Dehn twist about γ
tight. The other possibility is that γ bounds a single pair of pants P. In P we have two copies of γ and one other boundary component. There exists a ray emanating perpendicularly from each copy of γ spiraling toward this other component such that these two rays are disjoint. We then construct α from these rays as before. We see that α is our desired complete geodesic.

We can identify the universal cover \tilde{X} of X with the upper half-plane $\{z \in \mathbb{C}$: $\operatorname{Im}(z)>0\}$ so that we have lifts $\tilde{\gamma}, \tilde{\alpha}$ of γ, α in the configuration showed in Figure 2. Let $T_{\gamma}: X \rightarrow X$ be a left Dehn twist about γ, and let $\tilde{T}_{\gamma}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ be a lift of T_{γ} fixing $\tilde{\gamma}$. Let $[x, y]$ denote the geodesic in \mathbb{H}^{2} with endpoints $x, y \in \partial \mathbb{H}^{2}$. In our setup, $\tilde{\alpha}=[-1, a]$, and we see that $\tilde{T}_{\gamma}(\tilde{\alpha})$ is homotopic to the dotted curve shown in Figure 2 and has endpoints $\left[-1, a e^{\ell}\right]$. By iterating this map, we can construct a family of geodesics $\left\{\alpha_{n}\right\}$ in X that are the projection of $\tilde{T}_{\gamma}^{n}(\tilde{\alpha})=$ $\left[-1, a e^{n \ell}\right]$. Furthermore, every α_{n} is an infinite simple complete geodesic in X that does not intersect any element of C^{\prime} other than γ. We can then find an integer k such that $a e^{k \ell} \in\left[\frac{1}{2}\left(e^{-\ell}+e^{-\ell / 2}\right), \frac{1}{2}\left(1+e^{\ell / 2}\right)\right]$; define $\tilde{\beta}=\left[-1, a e^{k \ell}\right]=[-1, b]$, so that the image of $\tilde{\beta}$ is $\beta=\alpha_{k}$.

We now want to investigate $K=K(f)$ by studying $\bar{f}: \partial \mathbb{H}^{2} \rightarrow \partial \mathbb{H}^{2}$, which is the induced boundary map from the lift $\tilde{f}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ fixing $0,-1, \infty$. Since two homotopic maps induce the same boundary map on \mathbb{H}^{2}, we have $\bar{f}=\bar{T}_{C}$ (it is convenient to think of \bar{f} as the map on $\partial \mathbb{H}^{2}$ coming from a left earthquake along the complete lift of the multicurve C; see [Ker83] for the definition of an earthquake). Let us assume for now that $\frac{1}{2}\left(e^{-\ell}+e^{-\ell / 2}\right) \leq b \leq 1$ and that f twists
left about γ (if not, we can just study f^{-1}). By construction, β is infinite in X, β intersects γ exactly once, and $\beta \cap \gamma_{i}=\emptyset$ for $i \neq k$; this implies that $\tilde{\gamma}$ is the only geodesic in the full lift of C that $\tilde{\beta}$ intersects. Therefore, we know that $\bar{f}(b)=b e^{m \ell}$ and also that $\left[-1, b^{m \ell}\right]$ and $[-1, \bar{f}(1)]$ do not intersect as $[-1, b]$ and $[-1,1]$ do not. In particular, we must have that $\bar{f}(1) \geq b^{m \ell}$. This yields:

$$
\lambda(K) \geq \frac{\bar{f}(1)-\bar{f}(0)}{\bar{f}(0)-\bar{f}(-1)}=\bar{f}(1) \geq b e^{m \ell} \geq \frac{1}{2}\left(e^{(m-1) \ell}+e^{(m-1 / 2) \ell}\right)
$$

By the preceding we can write

$$
K=\frac{2}{\pi} \mu\left(\sqrt{\frac{1}{\lambda(K)+1}}\right)
$$

and since μ is a decreasing function (see [LV73]), we have

$$
K \geq \frac{2}{\pi} \mu\left(\sqrt{\frac{2}{2+e^{(m-1) \ell}+e^{(m-1 / 2) \ell}}}\right)
$$

Now assume that $1 \leq b \leq \frac{1}{2}\left(1+e^{\ell}\right)$. Furthermore, since $K(f)=K\left(f^{-1}\right)$ for any quasiconformal map, we may assume that f twists to the right along γ. We have the same exact setup as before, except that this time the inequality is as follows:

$$
\frac{1}{\lambda(K)} \leq \frac{\bar{f}(1)-\bar{f}(0)}{\bar{f}(0)-\bar{f}(-1)}=\bar{f}(1) \leq \bar{f}(b)=b e^{-m \ell} \leq \frac{1}{2}\left(e^{-m \ell}+e^{(1 / 2-m) \ell}\right)
$$

yielding

$$
K \geq \frac{2}{\pi} \mu\left(\sqrt{\frac{1+e^{\ell / 2}}{1+e^{\ell / 2}+2 e^{m \ell}}}\right)
$$

Since μ is decreasing, for $\ell \geq 0$, the first inequality for K is always smaller.
We saw in Theorem 2.3 that a hyperbolic surface X with a short curve has a large homogeneity constant. We leverage this with the above lemma to get a universal bound for the homogeneity constant with respect to a subgroup of $\operatorname{Mod}(X)$ generated by a multitwist.

Theorem 6.4. There exists a constant $K_{D}>1$ such that if a closed hyperbolic surface X is Γ_{K}-homogeneous, where $\Gamma=\langle f\rangle<\operatorname{Mod}(X)$ with f being a multitwist, then $K \geq K_{D}$. In particular, we have $K_{D} \geq 1.09297$.

Proof. Let $\ell=\ell(X)$ be the systole of X. From the definition of $m(2, K)$ in Theorem 2.3 given in [BTCMT05] and the inequality $\ell \geq m(2, K)$ we have

$$
\begin{equation*}
K \geq \frac{\log ((1 / 2) \tanh (\ell / 2))-\log 2 e}{\log \left((1 / 2) \tanh \left(d_{2} / 2\right)\right)-\log 2 e} \equiv \Phi(\ell) \tag{6.3}
\end{equation*}
$$

where d_{2} is defined such that every closed hyperbolic surface contains an embedded hyperbolic disk of diameter d_{2}. It is shown in [Yam81] that we can take
$d_{2}=2 \log (1+\sqrt{2})$. From Lemma 6.3 we have

$$
\begin{equation*}
K(f) \geq \frac{2}{\pi} \mu\left(\sqrt{\frac{2}{3+e^{\ell / 2}}}\right) \equiv \Psi(\ell) \tag{6.4}
\end{equation*}
$$

Now, Φ is decreasing on $\mathbb{R}^{>0}$ with $\Phi(0)=+\infty$, and Ψ is an increasing function on $\mathbb{R}^{>0}$ with $\Psi(0)=1$; hence, there exists a unique value L such that $\Phi(L)=$ $\Psi(L)$. We note that $L \approx 1.33994$ and $\Phi(L) \approx 1.09297$. If $\ell \leq L$, then $K \geq \Phi(L)$. Assume that $\ell \geq L$ and $K<\Psi(L)$. Then $K(f) \geq \Psi(L)$ and every element in Γ_{K} is isotopic to the identity: this case is handled in [BTBCT07] and tells us that it must be $K \geq 1.626>\Psi(L)$. This contradiction proves the theorem.

Theorem 1.6 is now just a corollary of the previous two sections with setting $K_{C}=\min \left\{K_{D}, K_{A}\right\}$.

7. Torsion-Free Subgroups

In this section we investigate a lower bound for the homogeneity constant of a surface in terms of its genus. The idea is to find a lower bound for the dilatation of a quasiconformal map on a thick surface. Periodic elements create serious difficulties that we do not know how to deal with, so we will restrict ourselves to the torsion-free case.

Theorem 1.7. Let X be a closed hyperbolic surface and suppose $\Gamma<\operatorname{Mod}(X)$ is torsion-free. If X is Γ_{K}-homogeneous, then

$$
\log K \geq \frac{1}{7,000 g^{2}}
$$

where g is the genus of X.
Proof. Let $\mathcal{F}=\left\{f \in \Gamma: \quad \log K(f)<7,000^{-1} g^{-2}\right\}$. Then our goal is to show that $\mathcal{F}=\{i d\}$. The first observation is that \mathcal{F} cannot contain any pseudo-Anosov or pure partial pseudo-Anosov elements. This is seen by combining the bounds in [Pen91] already mentioned and Lemma 6.1.

We can find ℓ_{0} such that $\log \Phi\left(\ell_{0}\right)>1$, where Φ is defined in (6.3); in particular, we can take $\ell_{0}=1.8$. Furthermore, we know that if $\ell(X)<\ell_{0}$, then $K>\Phi\left(\ell_{0}\right)>\exp \left(g^{-2}\right)$. Therefore, we may assume that $\ell(X)>\ell_{0}$, and so \mathcal{F} cannot contain any multitwists since any mutlitwist will have dilatation bigger than $\Psi\left(\ell_{0}\right)=1.12$, where Ψ is defined in (6.4). We are left with mapping classes of the form f where some power of f is either a partial pseudo-Anosov or multitwist.

Let us first consider the partial pseudo-Anosov case: we can find a subsurface $R \subset X$ and a $k>0$ such that f^{k} fixes the isotopy class of R and $\left.f^{k}\right|_{R}$ is pseudo-Anosov. There are at most $\chi(X) / \chi(R)$ copies of R permuted by f in X; therefore, we may choose $k \leq \chi(X) / \chi(R)$. We then have

$$
\log K\left(f^{k}\right) \geq \frac{\log 4}{|\chi(R)|}
$$

It follows that

$$
k \cdot|\chi(R)| \cdot \log K(f) \geq|\chi(R)| \cdot \log K\left(f^{k}\right) \geq \log 4
$$

and

$$
\log K(f) \geq \frac{\log 4}{k \cdot|\chi(R)|} \geq \frac{\log 4}{|\chi(X)|}
$$

This shows that $f \notin \mathcal{F}$.
We may now suppose that some power of f is a multitwist. Recall that $\ell(X)>\ell_{0}$. Choose a simple closed curve γ and $k>0$ such that $f^{k}([\gamma])=[\gamma]$. Define R_{1} and R_{2} to be the subsurfaces on either side of γ (possibly $R_{1}=R_{2}$) such that there exists $n>0$ with $\left.f^{n}\right|_{R_{1}}=\left.f^{n}\right|_{R_{2}}=i d$. Let $R=R_{1} \cup R_{2}$. Then we can choose $k<\chi(X) / \chi(R)$; furthermore, $f^{2 k}$ fixes the isotopy classes of both R_{1}, R_{2}. Now choose m_{i} such that $\left.f^{2 k m_{i}}\right|_{R_{i}}=i d$ for $i=1,2$. By doubling R_{i} we see that

$$
m_{i} \leq 4\left|\chi\left(R_{i}\right)\right|+6 \leq 10\left|\chi\left(R_{i}\right)\right|
$$

(recall that for a periodic element $h \in \operatorname{Mod}\left(S_{g}\right),|\langle h\rangle| \leq 4 g+2=2\left|\chi\left(S_{g}\right)\right|+6$). This implies $2 \mathrm{~km}_{1} m_{2}<800 \mathrm{~g}^{2}$. The same line of argument as before tells us that

$$
2 \cdot k \cdot m_{1} \cdot m_{2} \cdot \log K(f) \geq \log \Phi\left(\ell_{0}\right)
$$

and

$$
\log K(f) \geq \frac{\log \Phi\left(\ell_{0}\right)}{800 g^{2}}>\frac{1}{7,000 g^{2}}
$$

Again we see that $f \notin \mathcal{F}$.
We have exhausted all the torsion-free elements in $\operatorname{Mod}\left(S_{g}\right)$; hence, $\mathcal{F}=\{i d\}$, as claimed. If $\log K<7,000^{-1} g^{-2}$, then we can proceed by contradiction as we did in the cyclic multitwist case: we must have that the elements in Γ_{K} are isotopic to the identity: this case is handled in [BTBCT07] and implies $K \geq 1.626$, which is larger than our assumption. This is a contradiction, so we see that $\log K>$ $7,000^{-1} g^{-2}$.

8. Functions on Teichmüller Space and Moduli Space

This section looks at building functions on Teichmüller space out of measuring the homogeneity constant at a given point. The statements and techniques follow the related results in [BTBCT07]. For the entirety of this section, let S be a closed orientable surface with $\chi(S)<0$. Let $\mathscr{X}=[(X, \phi)] \in \operatorname{Teich}(S)$. Then, given $\Gamma<$ $\operatorname{Mod}(S)$, define

$$
\Gamma_{\phi}=\left\{\left[\phi \circ f \circ \phi^{-1}\right]: f \in \operatorname{Homeo}^{+}(S) \text { and }[f] \in \Gamma\right\}<\operatorname{Mod}(X) .
$$

We then define $K_{\Gamma}: \operatorname{Teich}(S) \rightarrow(1, \infty)$ by

$$
K_{\Gamma}([(X, \phi)])=\min \left\{K: X \text { is }\left(\Gamma_{\phi}\right)_{K} \text {-homogeneous }\right\} .
$$

Lemma 8.1. Given $\Gamma<\operatorname{Mod}(S)$, the function $K_{\Gamma}: \operatorname{Teich}(S) \rightarrow(1, \infty)$ exists and is well defined.

Proof. We first need to prove that K_{Γ} exists, that is, that the minimum exists. Let X be a hyperbolic surface, and let $\phi: S \rightarrow X$ be a diffeomorphism. Set

$$
K=\inf \left\{Q: X \text { is }\left(\Gamma_{\phi}\right)_{Q} \text {-homogeneous }\right\} .
$$

We can then find a sequence $\left\{K_{j}\right\}$ converging to K such that X is $\left(\Gamma_{\phi}\right)_{K_{j}}-$ homogeneous. We want to show that X is $\left(\Gamma_{\phi}\right)_{K}$-homogeneous.

Let $x, y \in X$. Then we can find a K_{j}-quasiconformal homeomorphisms f_{j} such that $f_{j}(x)=y$. Pick lifts $\tilde{x}, \tilde{y} \in \mathbb{H}^{2}$ and $\tilde{f}_{j}: \mathbb{H} \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ of x, y, and f_{j}, respectively, such that $\tilde{f}_{j}(\tilde{x})=\tilde{y}$. We recall that the family of all Q quasiconformal homeomorphisms of \mathbb{H}^{2} sending \tilde{x} to \tilde{y} is normal (see Cor. 4.4.3 in [Hub06]). Therefore, there exists a subsequence of $\left\{\tilde{f}_{j}\right\}$ that converges to a K-quasiconformal homeomorphism $\tilde{f}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ with $\tilde{f}(\tilde{x})=\tilde{y}$. Furthermore, \tilde{f} descends to a K-quasiconformal mapping $f: X \rightarrow X$. It is left to show that $[f] \in \Gamma_{\phi}$. Since the connected components of $\mathrm{QC}(X)$ are given by isotopy classes, we must have that for j large, $\left[f_{j}\right]=[f]$, and since each $\left[f_{j}\right] \in \Gamma_{\phi}$, so is $[f]$. This shows that the minimum exists.

Since a point in Teichmüller space is an equivalence class, we must check that K_{Γ} is well defined. Let $(X, \phi)=(X, \psi) \in \operatorname{Teich}(S)$, so that ϕ and ψ are isotopic. Since $\operatorname{Mod}(X)$ is defined up to isotopy, it is clear that $\Gamma_{\phi}=\Gamma_{\psi}$ and $K_{\Gamma}((X, \phi))=K_{\Gamma}((X, \psi))$. Now let $(X, \phi)=(Y, \xi) \in \operatorname{Teich}(S)$, so that $\phi \circ \xi^{-1} \simeq$ I for some conformal map $I: Y \rightarrow X$. Since conformal maps preserve quasiconformal dilatations, it is clear that $K_{\Gamma}((Y, \xi))=K_{\Gamma}((X, I \circ \xi))$. By definition $I \circ \xi \simeq \psi$, so that by the previous argument $K_{\Gamma}((X, \phi))=K_{\Gamma}((Y, \xi))$. This shows that $K_{\Gamma}: \operatorname{Teich}(S) \rightarrow(1, \infty)$ is well defined.

We now associated to each subgroup of the mapping class group a continuous function of Teichmüller space. In the following we closely adhere to the proof of Lemma 7.1 in [BTBCT07].

Proposition 8.2. For $\Gamma<\operatorname{Mod}(S)$, the function $K_{\Gamma}: \operatorname{Teich}(S) \rightarrow(1, \infty)$ is continuous.

Proof. We will prove the continuity in two steps: we will first prove that K_{Γ} is lower semicontinuous and then that it is upper semicontinuous. We make the following definitions for the entirety of the proof: Let $\left\{\mathscr{X}_{n}\right\}=\left\{\left(X_{n}, \phi_{n}\right)\right\}$ be a sequence in $\operatorname{Teich}(S)$ converging to $\mathscr{X}=(X, \phi) \in \operatorname{Teich}(S)$. Let $f_{n}=$ $\phi \circ \phi_{n}^{-1}: X_{n} \rightarrow X$ and observe that $\lim _{n \rightarrow \infty} K\left(f_{n}\right)=1$.

Pick $x, y \in X$ and set $x_{n}=f_{n}^{-1}(x)$ and $y_{n}=f_{n}^{-1}(y)$. Then there is a $K_{\Gamma}\left(X_{n}\right)-$ qc mapping $g_{n}: X_{n} \rightarrow X_{n}$ such that $g_{n}\left(x_{n}\right)=y_{n}$ with [$\left.g_{n}\right] \in \Gamma_{\phi_{n}}$. Let $\left\{\mathscr{X}_{n_{j}}\right\}$ be a subsequence of $\left\{\mathscr{X}_{n}\right\}$ such that $\lim K_{\Gamma}\left(\mathscr{X}_{n_{j}}\right)=\liminf K_{\Gamma}\left(\mathscr{X}_{n}\right)$. Since $f_{n_{j}} \circ g_{n_{j}} \circ f_{n_{j}}^{-1}: X \rightarrow X$ with $f_{n_{j}} \circ g_{n_{j}} \circ f_{n_{j}}^{-1}(x)=y$ and $\lim K\left(f_{n_{j}} \circ g_{n_{j}} \circ\right.$ $\left.f_{n_{j}}^{-1}\right) \leq \liminf K\left(f_{n_{j}}\right)^{2} K\left(g_{n_{j}}\right)=\liminf K\left(g_{n_{j}}\right)$, we can pass to another subsequence, still labelled $\left\{\mathscr{X}_{n_{j}}\right\}$, such that $f_{n_{j}} \circ g_{n_{j}} \circ f_{n_{j}}^{-1}$ converges to a quasiconformal mapping $g: X \rightarrow X$ such that $g(x)=y$ (this is again due to normality as in Lemma 8.1). For j large, we must have that $f_{n_{j}} \circ g_{n_{j}} \circ f_{n_{j}}^{-1}$ is homotopic to g,
again since the connected components of $\mathrm{QC}(X)$ are given by isotopy classes. Since $g_{n_{j}} \in \Gamma_{\phi_{n_{j}}}$, we have $[g] \in \Gamma_{f_{n_{j}} \circ \phi_{n_{j}}}$, but $f_{n_{j}} \circ \phi_{n_{j}}=\phi$, so that $[g] \in \Gamma_{\phi}$. By our setup we now have

$$
K(g) \leq \liminf K\left(g_{n_{j}}\right) \leq \lim K_{\Gamma}\left(\mathscr{X}_{n}\right)=\liminf \left(\mathscr{X}_{n}\right) .
$$

Since x, y were arbitrary,

$$
K_{\Gamma}(\mathscr{X}) \leq \liminf K_{\Gamma}\left(\mathscr{X}_{n}\right) .
$$

Therefore, K_{Γ} is lower semicontinuous.
It is left to show that K_{Γ} is upper semicontinuous. Fix n, choose $x_{n}, y_{n} \in X_{n}$, and set $x=f_{n}\left(x_{n}\right)$ and $y=f_{n}\left(y_{n}\right)$. Then there exists a $K_{\Gamma}(\mathscr{X})$-qc mapping $g_{n}: X \rightarrow X$ such that $g_{n}(x)=y$. We then have that $h_{n}=f_{n}^{-1} \circ g_{n} \circ f_{n}$ is a qc mapping of X_{n} such that $h_{n}\left(x_{n}\right)=y_{n}$ and $\left[h_{n}\right] \in \Gamma_{\phi_{n}}$. Furthermore,

$$
K\left(h_{n}\right) \leq K\left(f_{n}\right)^{2} K\left(g_{n}\right) \leq K\left(f_{n}\right)^{2} K_{\Gamma}(\mathscr{X})
$$

Since x_{n}, y_{n} were arbitrary, we have that

$$
K_{\Gamma}\left(\mathscr{X}_{n}\right) \leq K\left(f_{n}\right)^{2} K_{\Gamma}(\mathscr{X})
$$

and thus

$$
\limsup K_{\Gamma}\left(\mathscr{X}_{n}\right) \leq \lim K\left(f_{n}\right)^{2} K_{\Gamma}(\mathscr{X})=K_{\Gamma}(\mathscr{X})
$$

Therefore, K_{Γ} is upper semicontinuous.
It is natural to ask when these functions descend to functions on the moduli space. Recall that if $X \in \mathcal{M}(S)$, then two points $\mathscr{X}, \mathscr{Y} \in \operatorname{Teich}(S)$ are in the preimage of X under the projection Teich $(S) \rightarrow \mathcal{M}(S)$ if there exists $[f] \in \operatorname{Mod}(S)$ with $\mathscr{Y}=[f] \cdot \mathscr{X}$. If $\mathscr{X}=[(X, \phi)]$, then $[f] \cdot \mathscr{X}=[(X, \psi)]$ with $\psi=\phi \circ f^{-1}$. Given a normal subgroup $\Gamma \triangleleft \operatorname{Mod}(S)$, then by definition we have

$$
\begin{aligned}
\Gamma_{\psi} & =\left\{\left[\psi \circ g \circ \psi^{-1}\right]: g \in \operatorname{Homeo}^{+}(S) \text { and }[g] \in \Gamma\right\} \\
& =\left\{\left[\phi \circ f^{-1} \circ g \circ f \circ \psi^{-1}\right]: g \in \operatorname{Homeo}^{+}(S) \text { and }[g] \in \Gamma\right\} \\
& =\left\{\left[\phi \circ g^{\prime} \circ \phi^{-1}\right]: g^{\prime} \in \operatorname{Homeo}^{+}(S) \text { and }\left[g^{\prime}\right] \in \Gamma\right\} \\
& =\Gamma_{\phi} .
\end{aligned}
$$

Since $\Gamma_{\psi}=\Gamma_{\phi}$, it is clear that $K_{\Gamma}(\mathscr{X})=K_{\Gamma}(f \cdot \mathscr{X})$. This proves the following:
Proposition 8.3. For a normal subgroup $\Gamma \triangleleft \operatorname{Mod}(S)$, the function K_{Γ} : $\operatorname{Teich}(S) \rightarrow(1, \infty)$ descends to a continuous function $K_{\Gamma}: \mathcal{M}(S) \rightarrow(1, \infty)$.

Remark 8.4. The normality of the subgroup in Lemma 8.1 is required: Dehn twists about curves with different lengths have different dilatations, and all Dehn twists about nonseparating simple closed curves are conjugates. If we take $\Gamma=$ $\langle f\rangle$ where $f \in \operatorname{Mod}(S)$ is a Dehn twist about a curve γ, then for $X \in \mathcal{M}(S)$ with $\ell(X)$ very small, we can choose $\phi: S \rightarrow X$ and $\psi: S \rightarrow X$ and some K such that $\left|\left(\Gamma_{\phi}\right)_{K}\right|=1$ (where $\ell(\phi(\gamma))$ is very large) and $\left|\left(\Gamma_{\psi}\right)_{K}\right|=1,000$ (where $\ell(\psi(\gamma))$ is very small). In the latter case, you have more quasiconformal maps at your disposal.

Acknowledgments. I would like to thank my adviser, Martin Bridgeman, for his guidance. I would also like to thank Ian Biringer, especially for his help with the geometric convergence argument in Lemma 6.1, Andrew Yarmola for helpful conversations, and the reviewer for pointing out improvements to the paper.

References

[Ber78] L. Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), no. 1, 73-98.
[BP92] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Springer Verlag, Berlin, 1992.
[BTBCT07] P. Bonfert-Taylor, M. Bridgeman, R. D. Canary, and E. C. Taylor, Quasiconformal homogeneity of hyperbolic surfaces with fixed-point full automorphisms, Mathematical proceedings of the Cambridge philosophical society, 143, pp. 71-84, Cambridge Univ. Press, Cambridge, 2007.
[BTCMT05] P. Bonfert-Taylor, R. D. Canary, G. Martin, and E. Taylor, Quasiconformal homogeneity of hyperbolic manifolds, Math. Ann. 331 (2005), no. 2, 281295.
[BTMRT11] P. Bonfert-Taylor, G. Martin, A. W. Reid, and E. C. Taylor, Teichmüller mappings, quasiconformal homogeneity, and non-amenable covers of Riemann surfaces, Pure Appl. Math. Q. 7 (2011), no. 2, 455-468.
[FLM08] B. Farb, C. J. Leininger, and D. Margalit, The lower central series and pseudo-Anosov dilatations, Amer. J. Math. 130 (2008), no. 3, 799-827.
[FM11] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Math. Ser., 49, Princeton University Press, Princeton, 2011.
[GP76] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Anal. Math. 30 (1976), no. 1, 172-199.
[Gre13] M. Greenfield, A lower bound for Torelli-K-quasiconformal homogeneity, Geom. Dedicata (2013), 1-10.
[Gro83] M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1-147.
[Hub06] J. H. Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics, 1, Matrix Pr, Ithaca, 2006.
[Iva92] N. V. Ivanov, Subgroups of Teichmuller modular groups, 115, American Mathematical Society, Providence, 1992.
[Kap01] M. Kapovich, Hyperbolic manifolds and discrete groups, 183, Birkhauser, Basel, 2001.
[Ker83] S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235-265.
[KM11] F. Kwakkel and V. Markovic, Quasiconformal homogeneity of genus zero surfaces, J. Anal. Math. 113 (2011), no. 1, 173-195.
[LV73] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 126, Springer, New York, 1973.
[Pen91] R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc 113 (1991), 443-450.
[Tei44] O. Teichmüller, Ein Verschiebungssatz der quasikonformen Abbildung, Deutsche Math. 7 (1944), no. 8, 336-343.
[Thu79] W. P. Thurston, The geometry and topology of three-manifolds, Princeton University Princeton, Princeton, 1979.
[Vuo88] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin, 1988.
[Wim95] A. Wiman, Über die hyperelliptischen Curven und diejenigen vom Geschlechte $p=3$, welche eindeutige Transformationen in sich zulassen, Bihang Till Kongl. Svenska Vetenskaps-Akademiens Handlingar 21 (1895a), no. 1, 1-23.
[Yam81] A. Yamada, On Marden's universal constant of Fuchsian groups, Kodai Math. J. 4 (1981), no. 2, 266-277.

Department of Mathematics
Boston College
140 Commonwealth Ave.
Chestnut Hill, MA 02467
USA
nicholas.vlamis@bc.edu

[^0]: Received November 21, 2013. Revision received November 20, 2014.

