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When Are Two Coxeter Orbifolds Diffeomorphic?

Michael W. Davis

Abstract. One can define what it means for a compact manifold with
corners to be a “contractible manifold with contractible faces.” Two
combinatorially equivalent, contractible manifolds with contractible
faces are diffeomorphic if and only if their four-dimensional faces
are diffeomorphic. It follows that two simple convex polytopes are
combinatorially equivalent if and only if they are diffeomorphic as
manifolds with corners. On the other hand, by a result of Akbulut,
for each n ≥ 4, there are smooth, contractible n-manifolds with con-
tractible faces that are combinatorially equivalent but not diffeomor-
phic. Applications are given to rigidity questions for reflection groups
and smooth torus actions.

1. Introduction

More than once during the past few years I have been asked, “Are combinatorially
equivalent Coxeter orbifolds diffeomorphic?” (Taras Panov and Mikiya Masuda
asked me this at a 2010 conference on toric topology in Banff. More recently,
Suhyoung Choi asked me the same question in connection with projective rep-
resentations of Coxeter groups, cf. [5, Question 3.3].) By “Coxeter orbifold” the
questioner means something like the fundamental polytope of a geometric reflec-
tion group. The underlying space of such an orbifold has the structure of a mani-
fold with corners. Usually, the questioner also wants to require that the underlying
space is diffeomorphic, as a manifold with corners, to a simple convex polytope.
In this context the answer to the question is affirmative although the proof is not
obvious (see Wiemeler [28, Corollary 5.3] and Corollary 1.3). However, if one
weakens the definition by only requiring the strata to be compact contractible
manifolds, there are counterexamples (cf. Theorem 1.4). The problem is caused
by the four-dimensional strata.

An orbifold Q is reflection type if its local models are finite linear reflection
groups on R

n. (These were called “reflectofolds” in [11].) Since the orbit space of
a finite linear reflection group is the product of a Euclidean space with a simplicial
cone, a smooth orbifold of reflection type naturally has the structure of a smooth
manifold with corners. One can label each codimension two stratum by an integer
m ≥ 2 to indicate that the local dihedral group along the stratum has order 2m. So,
Q is a smooth manifold with corners, and the labeling is such that it determines
a finite Coxeter group of rank k on each codimension k stratum. Conversely, if Q
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is a smooth manifold with corners with such a labeling on its codimension two
strata, then it can be given the structure of a smooth orbifold of reflection type,
and this structure is unique up to isotopy (cf. [9, Section 17]). Let us suppose
that each codimension k stratum of Q is the intersection of k codimension one
strata (rather than, say, a component of such an intersection). There are several
possibilities for when Q should be called a “Coxeter orbifold.” Here are three
successively stronger definitions:

(I) Each stratum of Q is a compact contractible manifold.
(II) Each stratum of Q is homeomorphic to a disk.

(III) As a manifold with corners, Q is isomorphic to a simple convex polytope.

Any Q satisfying (I) is a Coxeter orbifold. It is type (II) or (III) if it satisfies
the corresponding condition. When Q is smooth, note that if a stratum is home-
omorphic to Dk , then, for k �= 4, it is diffeomorphic to Dk , but, for k = 4, this
implication is equivalent to the smooth four-dimensional Poincaré conjecture.

Under any of the above definitions, there is a simplicial complex dual to Q,
called its nerve and denoted N(Q). The vertices of N(Q) are the codimension
one strata of Q. A set of vertices spans a simplex of N(Q) if and only if the
intersection of the corresponding set of codimension one faces is nonempty. For
Q of type (III), N(Q) is the boundary complex of the simplicial polytope that
is dual to Q. For type (II), N(Q) is a triangulation of Sn−1 such that the link of
each k-simplex of N(Q) is homeomorphic to Sn−k−2. For a general Q of type (I),
N(Q) is a generalized homology (n − 1)-sphere (or a GHSn−1 for short), where
this means a polyhedral homology (n − 1)-manifold that has the same homology
as Sn−1 (cf. [10, p. 192]). The labels on the codimension two strata of Q become
labels on the edges of N(Q). A combinatorial equivalence between Coxeter orb-
ifolds Q and Q′ is a label-preserving simplicial isomorphism N(Q) → N(Q′).

The 1-skeleton of a simplicial complex N , together with a labeling of its edges
by integers ≥ 2, determines a Coxeter system (W,S) (cf. [10, Ex. 7.1.6]). The set
of generators S can be identified with the vertex set of N . The labeling is proper
if for each simplex σ of N , the special subgroup WS(σ), generated by the vertices
of σ , is finite. First, there is the question of existence. If N is a GHSn−1 with a
proper labeling of its edges, is there a Coxeter orbifold Q with N(Q) = N? This
was addressed in [9], where the following result was proved.

Theorem 1.1 [9, Theorems 12.2 and 17.1]. Suppose that N is a GHSn−1 with
a proper labeling of its edges. Then there is topological Coxeter orbifold Q with
N(Q) = N . Noting that each three-dimensional link in N is a PL homology 3-
sphere (and, therefore, has a unique smooth structure), we have that the orbifold
Q admits a smooth structure if and only if each three-dimensional link bounds a
smooth contractible 4-manifold.

The proof is based on the fact that every homology sphere of dimension �= 3
has a smooth structure in which it smoothly bounds a contractible manifold (cf.
Lemma 2.3 below).



When Are Two Coxeter Orbifolds Diffeomorphic? 403

This paper concerns the uniqueness question: if two Coxeter orbifolds are com-
binatorially equivalent, are they isomorphic (as orbifolds)? In the topological cat-
egory the answer is yes. This is a consequence of the facts that the Poincaré con-
jecture and the topological h-cobordism theorem hold in all dimensions.

In Section 4 (Definition 4.1) we define what it means for two combinatorially
equivalent, smooth Coxeter orbifolds to have “diffeomorphic four-dimensional
faces.” Our goal is the following theorem.

Theorem 1.2. Suppose that Q and Q′ are combinatorially equivalent, smooth
Coxeter orbifolds with diffeomorphic four-dimensional faces. Then Q and Q′ are
diffeomorphic.

Corollary 1.3 (Wiemeler [28]). Combinatorially equivalent Coxeter orbifolds
of type (III) are diffeomorphic.

On the other hand, according to the following theorem, without the hypothesis of
diffeomorphic four-dimensional faces, Theorem 1.2 is false. As we will explain
in Section 4, this is a consequence of a result of Akbulut [1].

Theorem 1.4. In each dimension n ≥ 4, there are smooth Coxeter orbifolds that
are combinatorially equivalent but not diffeomorphic. Moreover, these orbifolds
can be chosen to be aspherical.

The questions we are dealing with in Theorems 1.1, 1.2, and 1.4 have nothing
to do with the labelings of the codimension two strata of the reflection-type orb-
ifold; rather we are only concerned with its underlying structure as a manifold
with corners – the Coxeter group is extraneous. For this reason, we will reformu-
late our results in what follows in terms of “resolutions” of cones on generalized
homology spheres by “contractible manifolds with contractible faces.”

Sections 5 and 6 give applications of Theorems 1.2 and 1.4 to the theory of re-
flection groups and to the theory of locally standard torus actions. Mikiya Masuda
suggested that I add to the original version of this paper some details in the section
on torus actions concerning smoothness questions. On the basis of his very helpful
comments, I have added Propositions 6.2, 6.4, and 6.8, which address questions
of equivariant diffeomorphism versus equivariant homeomorphism.

After completing the first version of this paper, I learned of the recent work
[28] by M. Wiemeler on torus manifolds, with which this paper has substantial
overlap. In particular, Wiemeler proves the result for simple polytopes (Corol-
lary 1.3), as well as its application in Section 6 to quasitoric manifolds of type
(III) (Theorem 6.6). My thanks also go to the referee for finding some minor er-
rors.
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2. Existence

Manifolds with Faces

A topological n-manifold with boundary is smooth manifold with corners if
it is locally differentiably modeled on the simplicial cone, [0,∞)n ⊂ R

n. If
(x1, . . . , xn) : U → [0,∞)n are local coordinates in a neighborhood of a point
x, then the number c(x) of indices i with xi = 0 is independent of the chart.
A component of {x | c(x) = m} is a pure stratum of codimension m; a stratum
is the closure of a pure stratum. One also can define the notion of a topological
manifold with corners by requiring the overlap maps to be strata-preserving (cf.
[10, p. 180]). A manifold with corners is nice if each stratum of codimension two
is contained in the closure of exactly two strata of codimension one. Niceness im-
plies that the closure of a codimension k-stratum is also a manifold with corners.

A nice manifold with corners P will be called a manifold with faces. A face
is an intersection of codimension one strata. The k-skeleton of P is the union
of faces of dimension ≤ k. Two manifolds with faces P and P ′ are topolog-
ically isomorphic if there is a strata-preserving homeomorphism P → P ′. (Of
course, a diffeomorphism of smooth manifolds with corners is automatically
strata-preserving.) Parallel to our earlier definitions in the Introduction, consider
the following conditions on a manifold with faces P :

(I) Each face of P is a compact contractible manifold.
(II) Each face of P is homeomorphic to a disk.

(III) As a manifold with corners, P is isomorphic to a simple convex polytope.

In case (I), P is a contractible manifold with contractible faces. In case (II),
it is a cell with cellular faces. If we replace the word “contractible” by “acyclic,”
we get the notion of an acyclic manifold with acyclic faces.

One defines N(P ), the nerve of P , as before: it is the simplicial complex with
vertex set the set of codimension one faces and with a (k − 1)-simplex for each
face of codimension k. Two manifolds with faces P and P ′ are combinatorially
equivalent if there is a simplicial isomorphism N(P ) → N(P ′). If P is an acyclic
n-manifold with acyclic faces, then N(P ) is a GHSn−1.

Example 2.1. A simple convex polytope is naturally a smooth cell with cel-
lular faces. More generally, if N is a triangulation of Sn−1 and if the link of
each k-simplex is homeomorphic to Sn−k−2 (e.g., if the triangulation is PL), then
Cone(N) has a dual cell structure giving it the structure of a (topological) cell
with cellular faces.

Resolutions

Suppose that N is a GHSn−1. A resolution of Cone(N) is a contractible manifold
with contractible faces P such that N(P ) = N . To define acyclic resolution, re-
place the word “contractible” by “acyclic.” A resolution is smooth if P is a smooth
manifold with corners. (The use of the term “resolution” will be discussed in Re-
mark 2.4 below.)
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The following existence result essentially was proved in [9]. It implies Theo-
rem 1.1 of the Introduction.

Theorem 2.2 (cf. [9, Thm. 17.2]). Suppose that N is a GHSn−1. Then the follow-
ing statements are true.

(1) Cone(N) has a topological resolution.
(2) Cone(N) has a smooth acyclic resolution.
(3) Cone(N) has a smooth resolution if and only if each of its three-dimensional

links bounds a smooth (or PL) contractible 4-manifold.

We will recall the proof of this theorem at the end of this section since it is based
on the same obstruction theory that we will need for the uniqueness result.

Homology Spheres and Homotopy Spheres

Let �k be the Kervaire–Milnor group of h-cobordism classes of smooth structures
on Sk (cf. [17]). Let �H

k be the group of homology cobordism classes of smooth
homology k-spheres. The next lemma is well known.

Lemma 2.3. (1) Any homology k-sphere is the boundary of a topological con-
tractible (k + 1)-manifold.

(2) For k �= 3, any PL homology k-sphere is the boundary of a PL contractible
(k + 1)-manifold.

(3) Suppose that Mk is a smooth homology k-sphere. For k ≥ 4, there is a smooth
homotopy k-sphere �k , possibly with an exotic smooth structure, such that
Mk#�k bounds a smooth contractible (k + 1)-manifold. (Here # is used for
the connected sum operation.)

Statement (2) is not true for every homology 3-sphere because of Rokhlin’s theo-
rem.

Sketch of proof of Lemma 2.3. We note that special arguments are needed to
prove (1) when k = 3 or 4. We first prove (3). Suppose that k > 4 and that Mk

is smooth. As in [16, Theorem 5.6], one can add 1- and 2-handles to Mk × [0,1]
to get a simply connected, homology cobordism W from Mk to a smooth ho-
motopy k-sphere. If �k denotes this homotopy sphere with orientation reversed,
then Mk#�k bounds a contractible manifold. When k = 4, one argues that M4

bounds a framed manifold W 5 (since it represents 0 in framed bordism) and then
that one can do surgery to make W 5 contractible. This proves (3). Since every PL
homology sphere is smoothable, it also proves (2).

As for (1), when k = 4, it is not known if M4 admits a PL structure. However,
since we can do simply connected topological surgery, we can add 1- and 2-
handles to M4 × [0,1] as before to get a simply connected homology cobordism
W from M4 to a homotopy 4-sphere, and by Freedman’s proof of the Poincaré
conjecture in [13] this is homeomorphic to the standard S4. Gluing on D5 gives
the desired contractible 5-manifold. When k = 3, Freedman [13] proved that (1)
holds in the topological category. �
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Remark 2.4 (on resolutions). A polyhedral homology m-manifold means a sim-
plicial complex N such that the link of any k-simplex has the same homology as
Sm−k−1. The “dual cell” of such a k-simplex in N is the cone on its link, that is, it
is a contractible polyhedral homology (m − k)-manifold with boundary. General
resolutions for polyhedral homology manifolds (rather than just for generalized
homology spheres) were considered by Cohen [6] and Sullivan [27] in the early
1970s. They developed an obstruction theory for finding a resolution of N by
a manifold by replacing each dual cell by an acyclic manifold with boundary.
One proceeds by induction on the dimension of the dual cell. By Lemma 2.3 (2),
the only obstruction to finding a PL acyclic resolution of a polyhedral homol-
ogy manifold N lies in H 4(N;�H

3 ). A version of this obstruction theory is used
in the proof of Theorem 2.2, which we sketch in what follows. In the topological
category, it follows from Lemma 2.3 (1) that contractible resolutions always exist.

Sketch of proof of Theorem 2.2. We build the faces of P by induction on dimen-
sion. Start with a zero-dimensional face for each (n − 1)-simplex of N . Assume
by induction that we have constructed a face Fτ for each simplex τ of codimen-
sion < k and let σ be a simplex of codimension k. Define ∂Fσ := ⋃

τ>σ Fτ where
the union is over all τ > σ of codimension (k − 1) in N . Then ∂Fσ is a homology
(k − 1)-sphere, and the problem is to fill it in with a k-dimensional contractible
face. By Lemma 2.3 (1) we can always do this in the topological category; hence,
statement (1).

To get a smooth resolution one encounters a problem when trying to con-
struct the four-dimensional faces. If each face of dimension ≤ 3 is a disk, then
the boundary of a potential four-dimensional face is dual to the corresponding
three-dimensional link. So, the condition that this homology 3-sphere smoothly
bounds a contractible manifold is sufficient for constructing the four-dimensional
face. A priori, this condition might not be necessary since the homology 3-sphere
would be indeterminate if three-dimensional faces could be fake 3-disks. How-
ever, since the three-dimensional Poincaré conjecture is true, fake 3-disks do not
exist. Therefore, a smooth four-dimensional face exists if and only if the homol-
ogy 3-sphere bounds a contractible 4-manifold. For k ≥ 4, the obstruction to fill-
ing in the smooth (k + 1)-dimensional strata lies in Hk+1(Cone(N);�k). This
group is 0 since Cone(N) is acyclic. This proves (3).

What about (2)? As explained in [9, pp. 322–323], there is an obstruction co-
cycle to filling in the boundaries of potential four-dimensional strata with smooth
acyclic 4-manifolds. This cocycle takes values in �H

3 . However, this cocycle is
indeterminate since we can alter our construction of three-dimensional faces by
taking connected sum with elements of �H

3 . In other words, the cocycle can varied
by a coboundary giving us a well-defined obstruction in H 4(Cone(N);�H

3 ) = 0.
After filling in the four-dimensional faces, we can continue as in the proof of (3)
to fill in the faces of higher dimension. �
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Uniqueness in the Topological Category

The next lemma follows from the Poincaré conjecture and the h-cobordism theo-
rem.

Lemma 2.5. Suppose that C and C′ are compact contractible k-manifolds and
that φ : ∂C → ∂C′ is a homeomorphism. Then φ extends to a homeomorphism
� : C → C′.

Suppose that P and P ′ are topological contractible n-manifolds with contractible
faces and N(P ) = N(P ′) = N . It follows from Lemma 2.5 that P and P ′ are
topologically isomorphic as manifolds with corners. In other words, the topolog-
ical resolution of Cone(N) is unique.

3. More Facts about Homology Spheres and Contractible Manifolds

Pseudoisotopies on Sn

Given a smooth manifolds M and M ′, denote by Diff(M,M ′) the set of diffeo-
morphisms from M to M ′. Let Diff(M) := Diff(M,M), be the topological group
of self-diffeomorphisms of M . If M is oriented, Diff+(M) denotes the subgroup
of orientation-preserving self-diffeomorphisms. If M is a manifold with bound-
ary, then Diff∂ (M) is the subgroup of self-diffeomorphisms that are the identity
on ∂M .

Let 	n+1 denote the group of pseudoisotopy classes of orientation preserving,
self-diffeomorphisms of Sn. Let ι : Diff(Dn+1) → Diff(Sn) be the natural ho-
momorphism that takes φ ∈ Diff(Dn+1) to φ|Sn . Here are three other equivalent
definitions of 	n+1:

(i) 	n+1 = Diff(Sn)/ι(Diff(Dn+1)). In other words, a diffeomorphism φ ∈
Diff(Sn) represents 0 in 	n+1 if and only if it extends to a self-diffeomor-
phism of Dn+1.

(ii) 	n+1 = π0(Diff+(Sn)), the group of isotopy classes of orientation preserv-
ing diffeomorphisms of Sn.

(iii) 	n+1 = �n+1, the abelian group (under connected sum) of h-cobordism
classes of smooth structures on Sn+1. (It is a coincidence that �4 = 0 = 	4.)

Version (i) is obvious. As for (ii), in dimension 4, Cerf [2] proved that 	4 = 0,
and then Hatcher [14] showed that π0(Diff+(S3)) is also 0. Cerf [3] also showed
that for simply connected manifolds of dimension ≥ 5, pseudoisotopic diffeo-
morphisms are isotopic. Hence, for n ≥ 5, 	n+1 = π0(Diff+(Sn)). It follows that
	n+1 is a finite abelian group.

The next lemma is well known and not difficult to prove.

Lemma 3.1. Let f ∈ Diff+(Sn). Let D′ be a closed, smooth n-disk in Sn, and
let Dn be the closure of complementary n-disk. Then f is isotopic to a dif-
feomorphism f ′ ∈ Diff+(Sn) such that f ′(D′) = D′ and f ′|∂D′ is the identity.
Consequently, any element of 	n+1 can be represented by a diffeomorphism in
Diff∂ (Dn).
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Contractible Manifolds and Homology Spheres

The next two lemmas are well-known consequences of the smooth h-cobordism
theorem.

Lemma 3.2 (cf. [18, Theorem on p. 183]). Suppose that C and C′ are smooth,
compact contractible (n + 1)-manifolds with homeomorphic boundaries. If n �= 3
or 4, then C and C′ are diffeomorphic. In particular, if n �= 4, then ∂C and ∂C′
are diffeomorphic.

Proof. Suppose that φ : ∂C → ∂C′ is a homeomorphism. Then C ∪φ C′ is home-
omorphic to Sn+1. Hence, it has a smooth structure in which it is diffeomorphic
to Sn+1. The union of a collared neighborhood of ∂C in C with a collared neigh-
borhood of ∂C′ in C′ gives a smooth h-cobordism from ∂C to ∂C′; hence, for
n �= 4, they are diffeomorphic. Filling in C ∪φ C′ with Dn+2, we get a smooth
h-cobordism from C to C′ that restricts to the given one from ∂C to ∂C′. �

Lemma 3.3. Suppose that n > 4. Let M be a homology n-sphere, and let �n(M)

be the set of oriented diffeomorphism classes of smooth structures on M . Then
the action of �n on �n(M) by connected sum is simply transitive. In particular, if
M0 denotes the “standard” smooth structure on M induced from the contractible
manifold which it bounds, then there is a bijection �n → �n(M) defined by � �→
M0#�.

Proof. The induced action of �n on �H
n is simply transitive (cf. [18, p. 183]). �

Suppose that M and M ′ are smooth, closed n-manifolds, that Dn ⊂ M and Dn ⊂
M ′ are embedded disks, and that g ∈ Diff(M,M ′) is such that g|Dn = idDn . Given
f ∈ Diff∂ (Dn), let f · g : M → M ′ be the diffeomorphism defined by extending
f via g|M−Dn . When M ′ = M and g = idM , this gives a homomorphism f �→
f · id from Diff∂ (Dn) to Diff(M) that descends to a homomorphism λ : 	n+1 →
π0(Diff(M)).

Next suppose that A, A′ are smooth compact, acyclic (n + 1)-manifolds with
boundary with n + 1 > 4 and that ∂A = ∂A′. We want to define a left inverse for
the action of 	n+1 on π0(Diff(∂A, ∂A′)). Suppose that φ : ∂A → ∂A′ is a diffeo-
morphism. Then A ∪φ A′ is a smooth homology (n + 1)-sphere. By Lemma 3.3,
there is an exotic sphere � ∈ �n+1 so that (A∪φ A′)#(−�) bounds a contractible
manifold. Hence, we can find another diffeomorphism φ0 : ∂A → ∂A′ so that
(A ∪φ0 A′) bounds this contractible manifold, that is,

(A ∪φ A′) = (A ∪φ0 A′)#�.

So, for n + 1 > 4, we get a well-defined element γ (φ) in �n+1 = 	n+1,

γ (φ) = �. (3.1)

From its definition, γ is a left inverse for the action of 	n+1 defined by λ. Indeed,
if f ∈ Diff∂ (Dn) and λ(f ) = f · φ0 : ∂A → ∂A, then since λ(f ) is supported on
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an n-disk, (A ∪λ(f ) A′) = (A ∪φ0 A′)#�(f ), where �(f ) ∈ �n+1 is the exotic
sphere corresponding to f , that is, γ (λ(f )) is the class of f in 	n+1.

Remark 3.4. In dimension 3, we have 	3 = 0 = �3 and �H
3 �= 0. In dimension

4, 	4 = �H
4 = 0, and �4 is unknown. So, when n + 1 = 3 or 4, if A and A′ are

contractible, then A ∪φ A′ bounds a contractible manifold, and one can require
γ (φ) to lie in 	n+1 (which is = 0).

We will sometimes identify A ∪φ A′ with the smooth homology sphere:

H(φ) := A ∪ Mφ ∪ A′, (3.2)

where Mφ is the mapping cylinder of the diffeomorphism φ : ∂A → ∂A′.
Since A is acyclic, so is A×[0,1]. Hence, when A′ = A, we have that H(id) =

∂(A×[0,1]) represents 0 in �H
n+1. So, if φ extends to a diffeomorphism � : A →

A′, we get a diffeomorphism from A∪id A to A∪φ A′. In other words, if φ extends
to a diffeomorphism, then γ (φ) = 0. For n+ 1 > 4 and for A and A′ contractible,
the converse is a consequence of the h-cobordism theorem as we show in the next
lemma.

Lemma 3.5. Suppose that C and C′ are smooth, compact contractible (n + 1)-
manifolds and that φ : ∂C → ∂C′ is a diffeomorphism.

(1) C ∪φ C′ smoothly bounds a contractible (n + 2)-manifold if and only if
γ (φ) = 0.

(2) For n + 1 �= 4, φ extends to a diffeomorphism � : C → C′ if and only if
γ (φ) = 0.

Proof. (1) When n + 1 = 3, the three-dimensional Poincaré conjecture (cf. [23])
implies that C ∪φ C′ = S3 = ∂D4. For n + 1 = 4, by Lemma 2.3 (3), any smooth
structure on S4 bounds a contractible 5-manifold. For n + 1 > 4, by Lemma 3.3,
γ (φ) = 0 if and only if C ∪φ C′ bounds a contractible manifold.

(2) As explained in the paragraph preceding this lemma, if φ extends to �, then
γ (φ) = 0. Conversely, suppose that γ (φ) = 0. Then, since H(φ) = Sn+1, we can
fill in H(φ) with an (n + 2)-disk to obtain an h-cobordism W from C to C′. By
the h-cobordism theorem (which is true for n + 1 �= 4), there is a diffeomorphism
� : C × [0,1] → W such that �(C × 0) = C, �(C × 1) = C′, and �(∂C ×
[0,1]) = Mφ . Moreover, �|C×0 = id, and �|∂C×[0,1] is the natural identification
onto Mφ . Thus, �|∂C×1 = φ, and �|C×1 is the desired extension. �

In the next section we will need the following lemma to establish that an obstruc-
tion cochain is a cocycle.

Lemma 3.6. Let E be a smooth, compact contractible (n + 1)-manifold, and let
F1, . . . ,Fm be disjoint compact contractible submanifolds of codimension 0 in
∂E. Let Xn = ∂E − ⋃m

i=1 F ◦
i , where F ◦

i denotes the interior of Fi . Suppose that
f : Xn → Xn is a diffeomorphism that takes each ∂Fi to itself. Let γi ∈ 	n+1 be
the obstruction to extending f |∂Fi

to Fi . Then γ1 + · · · + γm = 0.
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Proof. Choose disjoint embedded paths (“edges”) connecting the ∂Fi so that the
union of the edges with the Fi is simply connected (giving a “tree of contractible
n-manifolds” in ∂E). We can arrange that f restricts to the identity map on a tubu-
lar neighborhood of each edge. Let A denote the complement of these neighbor-
hoods of edges in Xn. In other words, A is the complement of a regular neighbor-
hood of the tree of contractible n-manifolds. It follows that A is a compact acyclic
n-manifold, that ∂A is the connected sum, ∂F1# · · ·#∂Fm, and that f takes A to
itself. The restriction of f to ∂A represents the element γ1 + · · · + γm ∈ 	n+1.
Since f extends over A, the paragraph preceding Lemma 3.5 implies that this
element is 0. �

Remark 3.7. For n + 1 = 4, Lemma 3.5 (2) is unknown even when C and C′ are
both homeomorphic to D4. (This is equivalent to the smooth four-dimensional
Poincaré conjecture.) When ∂C and ∂C′ are allowed to be homology 3-spheres
with nontrivial fundamental groups, Lemma 3.5 (2) does not hold. Indeed, Akbu-
lut [1] has shown that there exist compact contractible smooth 4-manifolds C and
C′ with ∂C = ∂C′ such that C and C′ are not diffeomorphic rel ∂C (cf. Theo-
rem 4.4 below).

4. Uniqueness

A k-dimensional face F of an n-dimensional manifold with faces has a tubular
neighborhood of the form F × [0,∞)n−k , where [0,∞)n−k denotes the standard
simplicial cone in R

n−k . This is an easy consequence of the collared neighbor-
hood theorem for manifolds with boundary. Given a smooth n-dimensional man-
ifold with faces P , let ∂̂P denote its topological boundary. (N.B. We write ∂̂P

instead of ∂P to indicate that the corners have not been rounded.) The tubular
neighborhoods of the faces can be fit together compatibly to give a neighbor-
hood e(P ) of ∂̂P . If P is smooth, we can push ∂̂P into the interior of e(P ) to
get a smooth manifold ∂P (∂P is ∂̂P with corners rounded). The manifold ∂P

separates P into two pieces; one is a neighborhood of ∂̂P , and the other is home-
omorphic to P . It should not cause confusion to continue to denote the second
piece by P .

Suppose that N is a GHSn−1 and that P , P ′ are smooth contractible manifolds
with contractible faces with N(P ) = N(P ′) = N . For each σ ∈ N , let Fσ and F ′

σ

be the corresponding faces of P and P ′. We will try to construct a diffeomorphism
φ : P → P ′ one face at a time. Since the faces of dimension ≤ 3 are cells, we can
define φ on a neighborhood of the 3-skeleton of P . It is unique up to isotopy.
Suppose that σ is a simplex of codimension 4. Then we have a diffeomorphism
φ : ∂Fσ → ∂F ′

σ (which we can assume is the identity). The problem is to extend
it. According to Remark 3.7, Lemma 3.5 (2) does not apply. This leads us to the
following.
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Definition 4.1. Suppose, as above, that P and P ′ are smooth contractible man-
ifolds with contractible faces and N(P ) = N(P ′) = N . Then P and P ′ have dif-
feomorphic four-dimensional faces if for each simplex σ of codimension 4 in N ,
Fσ and F ′

σ are diffeomorphic rel boundary.

Our goal is to prove the following, which is equivalent to Theorem 1.2.

Theorem 4.2. Suppose that P and P ′ are smooth contractible manifolds with
contractible faces and N(P ) = N(P ′) = N . Then P and P ′ are diffeomorphic if
and only if they have diffeomorphic four-dimensional faces.

Once we have constructed a φ taking a (k − 1)-face F to the correspond-
ing (k − 1)-face F ′ of P ′, we extend it to a map of tubular neighborhoods,
F × [0,∞)n−k → F ′ × [0,∞)n−k , which is linear on the [0,∞)n−k factors. So,
suppose that φ has been defined on the (k − 1)-skeleton of P and that we want
to extend it to a map on a k-face, F → F ′. Since we have extended to tubu-
lar neighborhoods, we have a diffeomorphism φ : e(F ) → e(F ′) restricting to a
diffeomorphism ∂F → ∂F ′. The problem is to extend this to a diffeomorphism
F → F ′. There might be an obstruction.

Proof of Theorem 4.2. The faces of P and P ′ of dimension ≤ 2 are standard cells.
Since the three-dimensional Poincaré conjecture is true (cf. [23; 22]), the three-
dimensional faces are also standard. It follows that we can define φ on a neighbor-
hood of the 3-skeleton and this definition is unique up to isotopy. The hypothesis
that the four-dimensional faces of P and P ′ are diffeomorphic implies that φ can
be extended over a neighborhood of the 4-skeleton.

Suppose, by induction, that we have constructed φ on a regular neighborhood
of the (k − 1)-skeleton with k − 1 ≥ 4. One needs to choose orientations for
the faces of P in order to define the cellular cochains on P . Let F be an ori-
ented k-face. Then φ|∂F : ∂F → ∂F ′ is defined. As in the paragraph preceding
Lemma 3.5, there is an element c(F ) ∈ 	k+1 defined by

c(F ) = γ (φ) = [F ∪φ F ′] ∈ �k+1 = 	k+1.

By Lemma 3.5 (2), φ|∂F extends across F if and only if c(F ) vanishes. The
assignment F �→ c(F ) is a cellular cochain c ∈ Ck(P ;	k+1). It is the obstruction
to extending φ across the k-skeleton. We have to check two points in order for
this obstruction theory to work:

(1) We are free to vary the construction of φ on the (k − 1)-skeleton. If we fix φ

on the (k − 2)-skeleton and vary its extension over the (k − 1)-faces, then c

should change by a coboundary.
(2) The cochain c should be a cocycle.

To check (1), suppose that G is an oriented (k−1)-face and γ ∈ 	k . Let dG,γ ∈
Ck−1(P ;	k) be the cochain that assigns γ to G and 0 to all other (k − 1)-faces.
Next, we want to alter φ on the (k − 1)-skeleton by changing φ|G by the element
γ (where γ is thought of as a diffeomorphism of Dk−1 that is the identity on
∂Dk−1). Denote the new map on the (k − 1)-skeleton by ψ . So, we have two
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cochains cφ, cψ ∈ Ck(P ;	k). How are they related? Let F be an oriented k-face
such that G occurs in ∂̂F with coefficient ±1. Denote this coefficient by [G : F ]
(and call it the incidence number). Then cφ and cψ are related by the formula

cψ(F ) = cφ(F ) + [G : F ]dG,γ .

That is to say, cψ = cφ + δ(dG,γ ), where δ : Ck−1(P ;	k) → Ck(P ;	k) is the
coboundary map. This establishes (1).

As for (2), we want to check that c (= cφ) is a cocycle. Let E be a (k +1)-face,
and let F1, . . . ,Fm the k-faces of ∂̂E oriented by outward-pointing normals. (This
means that all incidence numbers [Fi : E] are = 1.) Apply Lemma 3.6 with X a
regular neighborhood in E of the (k − 1)-skeleton of E and with γi = c(Fi) to
get

δ(c)(E) = c(∂̂E) =
m∑

i=1

c(Fi) = 0.

Hence, c is a cocycle.
We use (1) and (2) to complete the proof. Suppose that c ∈ Ck−1(P ;	k) is the

obstruction cochain. Since c is a cocycle and P is acyclic, we have c = δ(d) for
some d ∈ Ck−1(P ;	k). If we use −d to alter φ on the (k − 1)-skeleton, then the
new c will be identically 0. Hence, we can extend over the k-skeleton. �

Nonuniqueness

In the language of resolutions, Theorem 1.4 can be restated as follows.

Theorem 4.3. For each n ≥ 4, there is a generalized homology (n− 1)-sphere N

with two distinct smooth resolutions.

This is more or less an immediate consequence of the following important result
of Akbulut [1].

Theorem 4.4 (Akbulut [1]). There exist two smooth, compact contractible 4-
manifolds C and C′ with the same boundary so that C and C′ are not diffeomor-
phic rel boundary.

In Akbulut’s construction, C is the Mazur manifold. (This was the first example
of a compact, contractible 4-manifold whose boundary is a homology sphere that
is not simply connected.)

Here are a few remarks about the proof of Theorem 4.3. First suppose that
n = 4. Let N be a triangulation of the boundary of the Mazur manifold. The dual
cell structure gives a resolution of N . We can get two different smooth resolu-
tions P and P ′ of Cone(N) by filling in C and C′, respectively. Since the dif-
feomorphism ∂P → ∂P ′ is isotopic to the identity, it cannot be extended to a
diffeomorphism P → P ′.

For n > 4, let N be any GHSn−1 that has ∂C as the link of a simplex of codi-
mension 4. For example, one could take N to be the join ∂C ∗ Sn−5 (or any
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subdivision of this). By filling in each four-dimensional face with copy of C or
C′ one obtains distinct resolutions.

5. Reflection Groups

Smooth Equivariant Rigidity of Reflection Groups

Associated to a Coxeter orbifold Q, there is a Coxeter system (W,S), where the
set of generators S corresponds to the set of codimension one faces of Q. The
group W is the orbifold fundamental group of Q. If L(W,S) denotes the nerve of
the Coxeter system, then properness of the labeling means that N(Q) ⊂ L(W,S).
If L(W,S) = N(Q), then the universal cover Q̃ of Q is contractible (cf. [9] or
[10]), that is, Q is aspherical. Since each face of a Coxeter orbifold is contractible,
it follows that Q̃ = EW , the universal space for proper W -actions, and hence that
the fixed point set of any spherical special subgroup is a contractible submanifold
of Q̃.

Now suppose that Q′ is another aspherical Coxeter orbifold with associated
Coxeter system (W ′, S′) and with W ∼= W ′. By the universal properties of EW

and EW ′, there is a W -homotopy equivalence Q̃ → Q̃′. It is proved in [4] that
L(W,S) and L(W ′, S′) are isomorphic, that is, that Q and Q′ are combinatorially
equivalent. From this we get the rigidity theorem of Prassidis and Spieler [24]: Q̃

and Q̃′ are W -equivariantly homeomorphic. When combined with Theorem 1.2,
this gives the following.

Theorem 5.1 (cf. Prassidis and Spieler [24]). Suppose that Q and Q′ are as-
pherical Coxeter orbifolds with isomorphic Coxeter groups. Then Q̃ and Q̃′ are
equivariantly diffeomorphic if and only if corresponding four-dimensional faces
of Q and Q′ are diffeomorphic.

In other words, the equivariant, smooth version of the Borel conjecture holds for
aspherical Coxeter orbifolds if and only if their four-dimensional faces are diffeo-
morphic.

Remark 5.2. If we only assume that the orbifold Q′′ is the quotient of a cocom-
pact W -action on a contractible manifold, then Q′′ will still be a manifold with
faces; however, the proper faces need only be acyclic. If at least one face is not
contractible, then Q′′ will not be homeomorphic to Q. (There is an equivariant
map Q̃′′ → EW that is a homotopy equivalence; however, it will not be a W -
homotopy equivalence.)

Theorem 1.4 yields the following.

Theorem 5.3. For each n ≥ 4, there are n-dimensional Coxeter orbifolds Q and
Q′ that are combinatorially equivalent but not diffeomorphic (hence, Q̃ and Q̃′
are not equivariantly diffeomorphic).
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There is no problem in arranging for Q and Q′ to be aspherical. For example, if
N is a GHSn−1 discussed in the last two paragraphs of the previous section, we
can insure asphericity by replacing N by its barycentric subdivision and labeling
all edges 2.

The following question remains open.

Question. Are there fake smooth closed aspherical 4-manifolds?

If Q and Q′ are aspherical four-dimensional orbifolds as in Theorem 5.3, then
by passing to a subgroup of finite index in the Coxeter group, we obtain smooth
aspherical 4-manifolds M and M ′ with the same fundamental group. They might
or might not be diffeomorphic. A variation of this would be to change only one
chamber of M from C to C′. It seems plausible that some such construction could
yield homeomorphic but not diffeomorphic aspherical manifolds.

6. Torus Actions

The Moment-Angle Manifold

There is a standard linear action of the m-torus T m on Cm. The orbit space
is R

m+, where R+ = [0,∞). The orbit map p : Cm → R
m+ can be defined by

p(z1, . . . , zm) = (|z1|2, . . . , |zm|2).
Suppose that P is an n-dimensional smooth manifold with m faces of codimen-

sion one (“facets”), F1, . . . ,Fm. Let f : P → R
m+ be a map such that the inverse

image of the coordinate hyperplane xi = 0 is Fi . Moreover, f is required to be
transverse to each of these hyperplanes. Next, we will construct a smooth (n+m)-
manifold ZP with a smooth T m-action and with orbit space P . The moment-angle
manifold ZP corresponding to P is defined by the pullback diagram

ZP −−−−→ C
m

⏐⏐�
⏐⏐�p

P
f−−−−→ R

m+

(6.1)

In other words, ZP = f ∗(Cm) := {(x, z) ∈ P × C
m | f (x) = p(z)}. By the

transersality hypothesis, ZP inherits the structure, as a subset of P × C
m, of a

smooth (n + m)-manifold. Moreover, the T m-action on the second factor induces
a smooth T m-action on ZP . As we will see in Proposition 6.2, up to an equi-
variant diffeomorphism inducing the identity on P , the moment-angle polytope is
independent of the choice of f .

The T m-action on ZP is modeled on the standard representation in the sense
that its orbit types and normal representations occur among those of T m on C

m.
The principal orbits (i.e., the maximal orbits) are isomorphic to T m. The principal
orbit bundle is trivial (since it is the pullback of the principal orbit bundle for T m

on C
m).
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Remarks 6.1. For G a compact Lie group, the question of pulling back smooth
G-manifolds, which are modeled on certain types of representations, from their
linear models was the topic of my Ph.D. thesis (cf. [7] and [8]). (In these papers,
I was mainly concerned with cases such as G = O(n), U(n), or Sp(n) where
the linear model was a multiple of the standard representation.) The case of the
standard T m-action on C

m is probably the simplest special case of the general
theory developed in [8]. Here are a few remarks concerning the general theory.

a) Suppose that a smooth G-manifold M is modeled on a linear represen-
tation of G on a vector space V . An equivariant map between G-manifolds
is isovariant if it preserves isotropy subgroups and transverse isovariant if its
differential induces isomorphisms between normal representations to the strata.
A transverse isovariant map F : M → V induces a map f : M/G → V/G of
orbit spaces and an equivariant diffeomorphism M ∼= f ∗(V ), where f ∗(V ) is de-
fined as in (6.1). Thus, M is a pullback of its linear model if and only if it admits
a transverse isovariant map to its linear model.

b) For B = M/G, consider maps B → V/G that are strata-preserving and
“transverse” to the strata in some obvious sense (for short, stratified maps). Let f0

and f1 be two maps from B to V/G that are homotopic through stratified maps. It
is a consequence of Schwarz’s covering homotopy theorem that f ∗

0 (V ) ∼= f ∗
1 (V )

(cf. [25]).
c) Suppose that α is the “normal orbit type” corresponding to (H,E), where

H is an isotropy subgroup, and E is the normal representation to the stratum of
G/H orbits. The normal bundle to this stratum is a bundle over the correspond-
ing stratum Bα in the orbit space. The fiber of this bundle over Bα is G ×H E.
After choosing a metric on the normal bundle, the structure group reduces to the
group Sα := NH (G × O(E))/H (where O(E) is the orthogonal group of E and
NH (G × O(E)) is the normalizer of H in G × O(E)). Let Sprin be the structure
group for the principal orbit bundle. For some linear models, Sα is a subgroup of
Sprin. If the principal orbit bundle of M is trivial, we get a map Bα → Sprin/Sα

called the α-twist invariant of M . If, as in the situations of interest in [8], the α-
stratum of M/G is homotopy equivalent to Sprin/Sα , the twist invariants can be
used to provide a transverse isovariant map M → V .

Proposition 6.2. Suppose that Ym+n is a smooth T m-manifold, modeled on the
standard representation, and that the bundle of principal orbits is trivial. Let P =
Y/T m, and let Fi be the codimension one face of P whose isotropy subgroup is
the coordinate circle Ti . Then Y is the pullback of the linear model via a stratified
map f : P → R

m+ that takes Fi into the hyperplane xi = 0. Hence, Y is T m-
equivariantly diffeomorphic to the moment-angle manifold ZP defined in (6.1).

Sketch of proof. In the case at hand, each Sα = T m = Sprin, so the range of each
twist invariant is a point. Since each stratum of Rm+ is contractible, the twist invari-
ants can be used to construct a map Y → C

m inducing P → R
m+ (cf. Remark 6.1

c)). For the same reason, any two maps to R
m+ are homotopic through stratified
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maps; so, by Remark 6.1 b), any two pullbacks of Cm are equivariantly diffeo-
morphic. Hence, Y ∼= ZP . �

Corollary 6.3. Suppose that Y and Y ′ are smooth T m-manifolds that are mod-
eled on the standard representation and have trivial bundles of principal orbits.
Then Y is equivariantly diffeomorphic to Y ′ if and only if Y/T m and Y ′/T m

are diffeomorphic as manifolds with corners (via a strata-preserving diffeomor-
phism).

Quasitoric Manifolds

A T n-action on a manifold M2n is locally standard if it is locally modeled on
the standard representation (Cn, T n), up to automorphisms of T n. (N.B. Because
we are allowing ourselves to vary the local actions by automorphisms of T n, a
locally standard action is usually not modeled on the standard representation. For
example, in the standard representation, only the coordinate circles T1, . . . , Tn

occur as isotropy subgroups, whereas in a locally standard action, it is possible to
have more isotropy subgroups isomorphic to S1.) The orbit space P of a locally
standard action on M2n is a smooth n-manifold with corners. Masuda and Panov
[20] impose the following additional requirement:

(∗) P is an acyclic manifold with acyclic faces.

(Such a P is called a “homology polytope” in [20].) From now on we suppose that
P satisfies (∗). M2n is a quasitoric manifold if P is a simple convex polytope (cf.
[12]). Let F1, . . . ,Fm be the codimension one faces of P . The isotropy subgroup
at an interior point of Fi is a subgroup �i isomorphic to S1. If Fi1 ∩ · · ·∩Fik �= ∅,
then �i1, . . . ,�ik span a k-dimensional subtorus of T n. The subgroup �i is deter-
mined by a vector λi ∈ Hom(S1, T m) ∼= Z

m, well defined up to sign. This defines
an epimorphism λ = (λ1, . . . , λm) : T m → T n called the characteristic function.
We will sometimes also view λ as a homomorphism Z

m → Z
n.) It is observed in

[20] that, as in [12], M2n is determined up to equivariant homeomorphism by P

and the characteristic function λ. In fact, as we will see in Proposition 6.4, we can
replace “equivariant homeomorphism” by “equivariant diffeomorphism.”

Put T = T n and let MT := ET ×T M be the Borel construction. So, MT is
a bundle over BT with fiber M . Masuda and Panov prove in [20, Theorem 1]
that when (∗) holds, the cohomology of M vanishes in odd degrees and that its
cohomology is generated by degree two classes. It follows that the Serre spectral
sequence for MT → BT degenerates at E2 and that we have an isomorphism of
H ∗(BT )-modules:

H ∗(MT ) ∼= H ∗(BT ) ⊗ H ∗(M).

In particular, there is a short exact sequence

0 → H 2(BT ) → H 2(MT ) → H 2(M) → 0. (6.2)

Given P , an acyclic manifold with acyclic faces, and a characteristic function
λ : T m → T , we construct a smooth T -manifold M(P,λ) as follows. Put H =
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Kerλ. Then H ∼= T m−n, and λ induces an isomorphism λ : T m/H → T . The
subgroup H acts freely on the moment-angle manifold ZP . So, the quotient

M(P,λ) = ZP /H (6.3)

is a smooth manifold with a smooth action of T m/H . After using λ
−1

to identify
T with T m/H , we get a locally standard T -action on M(P,λ) with orbit space P .
Moreover, the isotropy subgroup corresponding to the codimension one face Fi is
the circle �i .

I am grateful to Mikiya Masuda for suggesting the proof of the following
proposition in some e-mail correspondence.

Proposition 6.4. For T = T n, suppose that M2n has a locally standard, smooth
T -action with orbit space P , where P is an acyclic manifold with acyclic faces,
with codimension one faces F1, . . . ,Fm. Let λ : T m → T be its characteristic
function and put H = Kerλ. There is a smooth principal H -bundle π : Yn+m →
M2n with H1(Y ) = 0. Moreover, there is a lift of the T -action to Y giving a smooth
(T × H)-action on Y and an isomorphism L : T m → T × H such that

(i) If p1 : T × H → T denotes projection onto the first factor, then p1 ◦ L =
λ : T m → T and L(H) = H .

(ii) After using L−1 to get a T m-action on Y , the T m-action is modeled on the
standard representation (Cm,T m).

(iii) The manifold Y is T m-equivariantly diffeomorphic to ZP , and M2n is T -
equivariantly diffeomorphic to M(P,λ) defined by (6.3).

We begin with some notation that will be used in the proof. Principal H -bundles
over M are classified by homotopy classes of maps from M to BH , that is, by
[M,BH ]. According to a theorem of Hattori and Yoshida [15] (also see [26]),
given a principal H -bundle Y → M , the T -action on M lifts to a (T × H)-
action on Y if and only if Y is the pullback of a bundle over MT . Since
H ∼= T m−n, [M,BH ] is the product of (m − n) copies of [M,BS1], that is,
[M,BH ] ∼= ⊕m−n

i=1 H 2(M). By (6.2), H 2(MT ) → H 2(M) is onto, and hence, so
is [MT ,BH ] → [M,BH ]. Therefore, any principal H -bundle over M is the pull-
back of a principal H -bundle over MT . So, the Hattori–Yoshida theorem applies.
Let Li < (T ×H) be the isotropy subgroup at a point in the relative interior of Fi .
The group T ×H is an m-dimensional torus. To get a T m-action on Y that is mod-
eled on the standard representation, we need the homomorphism T m → T × H

that takes the coordinate circle Ti to Li to be an isomorphism. (Given a collection
of L1, . . . ,Lm of circle subgroups in T × H , we say that the Li span T × H if
the homomorphism T m → T × H that takes Ti to Li is an isomorphism.)

Lemma 6.5. Suppose that M is as above and that Y is a principal H -bundle
over M . Then the Li span T × H if and only if H1(Y ) = 0.

Proof. Let q : M → P be the orbit map, and π : Y → M be the bundle pro-
jection. Choose a point p in the interior of P . Let Ii be a line segment join-
ing p to a point in the relative interior of Fi . Put A = ⋃

Ii , U = q−1(A), and
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V = π−1(U). Then q−1(p) = T , and q−1(Ii) is a D2-bundle over T/�i . We have
π1(T ) ∼= Z

n and π1(H) ∼= Z
m−n. Hence, π1(q

−1(Ii)) = Z
n/〈λi〉, where 〈λi〉 is

the Z-submodule determined by �i , and π1(U) = Zn/
∑〈λi〉. Since the 〈λi〉 span

Z
n, π1(U) is trivial. Similarly, π−1(q−1(p)) = T ×H , and π−1(q−1(Ii)) is a D2-

bundle over (T × H)/Li . Hence, π1(π
−1(q−1(Ii))) = (Zn ⊕ Z

m−n)/〈li〉, where
〈li〉 is the Z-submodule determined by Li . So, π1(V ) ∼= (Zn ⊕Z

m−n)/
∑〈li〉.

A spectral sequence argument can be used to prove the following.

Claim. The inclusion V ↪→ Y induces an isomorphism H1(V ) ∼= H1(Y ).

Assuming this claim, we have H1(Y ) ∼= H1(V ) ∼= (Zn ⊕Z
m−n)/

∑〈li〉, and since
the quotient is trivial if and only if the Li span T × H , we get the lemma.

To prove the claim, note that MT and UT are the Davis–Januszkiewicz spaces
for the simple polyhedral complexes P and A, respectively [12, Section 4]. By
[12, Theorem 4.8], H ∗(MT ) and H ∗(UT ) are the face rings of the simplicial
complexes N(P ) and N(A) that are dual to P and A. Such face rings are gener-
ated by H 2, and H 2 is free abelian on the vertex set of the simplicial complex.
Since N(P ) and N(A) have the same vertex set (namely, m points), the inclu-
sion induces an isomorphism H 2(MT )

∼=−→ H 2(UT ) ∼= Z
m and hence, also an

isomorphism on homology, H2(UT )
∼=−→ H2(MT ). Since P is acyclic, it follows

from [20] that H1(M) = 0 = H1(U). Comparing the Serre spectral sequences
in homology for UT → BT and MT → BT , we see that H2(U)

∼=−→ H2(M).
Then comparing the spectral sequences for the principal H -bundles V → U and
Y → M , we see that H2(V )

∼=−→ H2(Y ). Finally, if d2 : E2
2,0 → E2

0,1 denotes the

E2-differential, then

H1(V ) = Coker(d2 : H2(U) → H1(H) ∼= Z
m−n),

H1(Y ) = Coker(d2 : H2(M) → H1(H) ∼= Z
m−n).

(6.4)

So, H1(V ) ∼= H1(Y ), establishing the claim and consequently, the lemma. �

Proof of Proposition 6.4. The characteristic class c(Y ) = (c1, . . . , cm−n) of a
principal H -bundle Y → M lies in

⊕m−n
i=1 H 2(M), where H 2(M) ∼= Zm−n. Ac-

cording to Lemma 6.5, we want H1(Y ) = 0. To achieve this, choose c1, . . . , cm−n

to be a basis for H 2(M). We will then have that d2 : H2(M) → H1(H) is onto and
by (6.4) that H1(Y ) = 0. By Lemma 6.5, the Li span T ×H . Let L : T m → T ×H

be an isomorphism that sends Ti to Li . From the definitions of Li and �i we
see that p1 : T × H → T takes Li to �i ; so, p1 ◦ L = λ : Tm → T . Hence,
L(H) = L(Kerλ) = Kerp1 = H . So, Properties (i) and (ii) hold. By Proposi-
tion 6.2, Y is T m-equivariantly diffeomorphic to ZP . Hence, M = Y/H is T -
equivariantly diffeomorphic to M(P,λ), establishing Property (iii). �

By definition, the equivariant cohomology of M is the cohomology of MT . It is an
algebra over H ∗(BT ). Masuda [19] shows that if quasitoric manifolds have iso-
morphic equivariant cohomology as algebras over H ∗(BT ), then they are equiv-
ariantly homeomorphic [19, Theorem 4]. (Also, compare Metaftsis and Prassidis
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[21].) Using Proposition 6.4 and Corollary 1.3, we can upgrade Masuda’s rigid-
ity result from equivariant homeomorphism to equivariant diffeomorphism, as in
Theorem 6.6. (A different proof of this, using the theory of “normal systems,” is
given by Wiemeler [28].)

Theorem 6.6 (cf. Masuda [19], Wiemeler [28, Corollary 5.7]). Quasitoric man-
ifolds have isomorphic equivariant cohomology as algebras over H ∗(BT ) if and
only if they are equivariantly diffeomorphic.

On the other hand, from Theorem 1.4 we get the following.

Theorem 6.7. For each n ≥ 4, there are locally standard T n-manifolds over con-
tractible manifolds with contractible faces (i.e., Coxeter orbifolds of type (I)) that
are equivariantly homeomorphic but not equivariantly diffeomorphic.

Toric Varieties

A nonsingular, compact toric variety is determined by a nonsingular, complete
simplicial fan in R

n. The intersection of such a fan with the unit sphere Sn−1

is a totally geodesic triangulation N of Sn−1. Such a geodesic triangulation of
Sn−1 need not be simplicially isomorphic to the boundary complex of a simplicial
polytope; for example, see [29, p. 194]. (We were not cognizant of this fact when
we wrote [12].) The rays of the fan are rational and determine a characteristic
function λ. So, the fan determines a locally standard T -action on M2n. The orbit
space P n = M2n/T has the structure of a smooth manifold with faces. Since N

is a PL triangulation of Sn−1, P is a Coxeter orbifold of type (II). When the toric
variety is projective, one can use the moment map to identify P n with a simple
polytope. In particular, the faces of P are diffeomorphic to disks. As we will see
below, this holds in general (it is not automatic since the smooth four-dimensional
Poincaré conjecture is not known).

Proposition 6.8. Suppose that M2n is nonsingular, compact toric variety and
P = M2n/T . Then each face of P is diffeomorphic to a disk.

Proof. Each top-dimensional simplex of N corresponds to a T -action on (D2)n

with orbit space the n-cube [0,1]n. The manifold with faces P is obtained by
gluing together these n-cubes via linear isomorphisms of faces. This defines a PL
structure on P so that ∂P is N with its dual PL cell structure. Therefore, each
face of P (and in particular, each four-dimensional face) is PL homeomorphic to
a disk. Theorem 1.2 completes the proof. �
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