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Weighted Multilinear Square Function Bounds

Lucas Chaffee, Jarod Hart, & Lucas Oliveira

Abstract. We study the boundedness of Littlewood–Paley–Stein
square functions associated to multilinear operators. We prove weight-
ed Lebesgue space bounds for square functions under relaxed regular-
ity and cancellation conditions that are independent of weights, which
is a new result even in the linear case. For a class of multilinear con-
volution operators, we prove necessary and sufficient conditions for
weighted Lebesgue space bounds. Using extrapolation theory, we ex-
tend weighted bounds in the multilinear setting for Lebesgue spaces
with index smaller than one.

1. Introduction

Given a function ψ : Rn → C, define ψt(x) = t−nψ(t−1x) and the associated
Littlewood–Paley–Stein-type square function

gψ(f ) =
(∫ ∞

0
|ψt ∗ f |2 dt

t

)1/2

. (1.1)

These convolution-type square functions were introduced by Stein in the 1960s,
see for example [32] or [33], and have been studied extensively since then, in-
cluding classical works by Stein [32], Kurtz [24], Duoandikoetxea and Rubio de
Francia [11], and more recent works by Duoandikoetxea and Seijo [12], Cheng
[4], Sato [30], Duoandikoetxea [10], Wilson [35], Lerner [25], and Cruz-Uribe,
Martell, and Perez [8]. Of particular relevance to this work are [24; 12; 30; 35; 8]
and [25], which prove bounds for gψ on weighted Lebesgue spaces under various
conditions on ψ . Nonconvolution variants of (1.1) were studied by Carleson [3],
David, Journé, and Semmes [9], Christ and Journé [5], Semmes [31], Hofmann
[22; 21], and Auscher [2], where they replaced the convolution ψt ∗ f (x) with

�tf (x) =
∫
Rn

θt (x, y)f (y) dy.

In [9] and [31], the authors proved Lp bounds for Littlewood–Paley–Stein square
functions associated to �t when �t(b) = 0 for some para-accretive function b.
In [22; 21], this type of mean zero assumption is replaced by a local cancellation
testing condition on dyadic cubes. In [3; 5] and [2], the authors replace the mean
zero assumption with a Carleson measure condition for θt to prove L2 bounds for
the square function. The work of Carleson [3] was phrased as a characterization
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of BMO in terms of Carleson measures, but nonconvolution-type square function
bounds are implicit in his work.

In all of the works studying gψ cited above, the authors assume that ψ has
mean zero. In fact, if gψ is bounded on L2, then ψ must have mean zero, but in
the nonconvolution setting, the mean zero condition is no longer a strictly nec-
essary one, as demonstrated in [3; 22; 21], and [2]. This phenomenon persists in
the multilinear square function setting, and in this work, we explore subtle can-
cellation conditions for multilinear convolution and nonconvolution-type square
functions and their connection with weighted Lebesgue space estimates.

The nonconvolution form of the kernel θt (x, y) allows for a natural extension
to the multilinear setting. Define, for appropriate θt : R(m+1)n → C,

S(f1, . . . , fm)(x) =
(∫ ∞

0
|�t(f1, . . . , fm)(x)|2 dt

t

)1/2

, where (1.2)

�t(f1, . . . , fm)(x) =
∫
Rmn

θt (x, y1, . . . , ym)

m∏
i=1

fi(yi) dy, (1.3)

and we use the notation dy = dy1 · · ·dym. When m = 1, that is, in the linear
setting, this is the operator �t mentioned above, so we use the same notation for it.
We wish to find cancellation conditions on θt that imply boundedness properties
for S, given that θt also satisfies some size and regularity estimates. In particular,
we assume that θt satisfies

|θt (x, y1, . . . , ym)| �
m∏

i=1

t−n

(1 + t−1|x − yi |)N , (1.4)

|θt (x, y1, . . . , ym) − θt (x, y1, . . . , y
′
i , . . . , ym)| � t−mn(t−1|yi − y′

i |)γ (1.5)

for all x, y1, . . . , ym, y′
1, . . . , y

′
m ∈ R

n and i = 1, . . . ,m and some N > n and 0 <

γ ≤ 1. Note that we do not require any regularity for θt (x, y1, . . . , ym) in the x

variable. Square functions associated to this type of operators have been studied in
a number of recent works. In Maldonado [26] and Maldonado and Naibo [27], the
authors introduce the operators (1.3), and make a natural extension of Semmes’s
point of view in [31] to prove bounds for a Besov-type relative of the square
function S in (1.2), which they define by

(f1, . . . , fm) �→
(∫ ∞

0
‖�t(f1, . . . , fm)‖2

Lp

dt

t

)1/2

.

When p = 2, this Besov-type square function agrees with the square function
in (1.2). Hart [19; 20], Grafakos and Oliveira [17], and Grafakos, Liu, Maldon-
ado, and Yang [15] proved boundedness results for discretized versions of the
square function S in Lebesgue spaces under various cancellation and regularity
conditions on θt . Strictly speaking, the discrete- and continuous-parameter square
functions are different operators, but typically their boundedness properties and
proof techniques are similar. That is, in each of these works, the authors proved



Weighted Multilinear Square Function Bounds 373

bounds of the form ‖S(f1, . . . , fm)‖Lp � ‖f1‖Lp1 · · · ‖fm‖Lpm for minor modifi-
cations of S in various ranges of indices p,p1, . . . , pm. The first goal of this work
includes proving a weighted version of these results,

‖S(f1, . . . , fm)‖Lp(wp) �
m∏

i=1

‖f ‖
Lpi (w

pi
i )

(1.6)

for appropriate 1 < p1, . . . , pm < ∞, w
pi

i ∈ Api
, and w = w1 · · ·wm. We use Lp

to denote Lp(Rn, dx) and Lp(w) = Lp(Rn,w(x)dx), where dx is the Lebesgue
measure on R

n, and w ≥ 0 is a locally integrable function. Our main result is the
following theorem.

Theorem 1.1. Assume that θt satisfies (1.4) and (1.5). Then the following can-
cellation conditions are equivalent:

i. �t satisfies the strong Carleson condition,
ii. �t satisfies the Carleson and two-cube testing conditions.

Furthermore, if the equivalent conditions (i) and (ii) hold, then S satisfies (1.6) for
all w

pi

i ∈ Api
where w = w1 · · ·wm, 1 < p1, . . . , pm < ∞ satisfy 1/p = 1/p1 +

· · · + 1/pm, and fi ∈ Lpi (w
pi

i ).

We denote by Ap the class of Muckenhoupt weights, which will be precisely
defined in the next section. For the definitions of the Carleson, strong Carleson,
and two-cube testing conditions, see Section 3. For now, we only note that these
conditions quantify some cancellation of θt and that �t(1, . . . ,1) = 0 for all t > 0
implies all three of these conditions. It is of interest to note that there is no mention
of weighted estimates in the hypotheses of Theorem 1.1, but we conclude the
boundedness of S in weighted Lebesgue spaces. Also this is the first result for
multilinear square functions of this type where S is bounded for 1/m < p < 2
and �t(1, . . . ,1) is not necessarily zero for all t .

An approach that has been used to prove bounds for S with 1/m < p ≤ 1 is to
view {�t }t>0 as a Calderón–Zygmund operator taking values in L2(R+, dt

t
), re-

produce the classical Calderón–Zygmund theory to prove a weak endpoint bound,
and interpolate with bounds for p > 1. But in order for {�t }t>0 to be a Calderón–
Zygmund operator, one must require a regularity condition in the first variable
of θt . In this paper, we prove estimates for 1/m < p ≤ 1 without assuming any
regularity for θt in the x variable. We use almost orthogonality estimates and
Carleson-type bounds adapted to a weighted setting and extend bounds to indices
p < 1 by the weight extrapolation of Grafakos and Martell [16].

We also prove a stronger result for square functions associated to a certain
class of multiconvolution operators. We prove necessary and sufficient cancella-
tion conditions for boundedness properties of S when �t is given by convolution
for each t > 0. We state these results precisely in the following theorem.

Theorem 1.2. Suppose that θt (x, y1, . . . , ym) = t−mn�t(t−1(x − y1), . . . ,

t−1(x −y1)) satisfies (1.4) and (1.5) for some collection of functions �t : Rmn →
C depending on t > 0. Then the following are equivalent:
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i. �t satisfies the Carleson condition.
ii. S satisfies the unweighted version of (1.6) for some 1 < p1, . . . , pm < ∞

and 2 ≤ p < ∞ that satisfy 1/p = 1/p1 + · · · + 1/pm, that is, (1.6) with
w1 = · · · = wm = w = 1.

iii. S satisfies (1.6) for all 1 < p1, . . . , pm < ∞ that satisfy 1/p = 1/p1 + · · · +
1/pm, w

pi

i ∈ Api
, where w = w1 · · ·wm, and fi ∈ Lpi (w

pi

i ).
iv. �t satisfies the strong Carleson condition.

Furthermore, if �t = � is constant in t , then conditions (i)–(iv) are equivalent to
�t(1, . . . ,1) = 0 as well.

It should be noted that parts of Theorem 1.1 are already known. It was proved
by Carleson [3] (with minor modifications to adapt to the multilinear setting) that
if �t satisfies the Carleson condition, then S satisfies the unweighted version of
(1.6) with p = 2, where w1 = · · · = wm = w = 1. If regularity in the x variable
is assumed as well, then square function estimates for p ≥ 2 can be obtained, see
Corollary 4.2 of [18]. We do not assume this regularity in x, so the interpolation
result from [18] cannot be applied here. We obtain the same estimates and more
without assuming regularity in the x variable. Prior to this work, there do not
seem to be any bounds for square functions when p �= 2, and the kernel θt does
not satisfy regularity estimates in x.

If θt (x, y1, . . . , ym) = �t(x − y1, . . . , x − ym), then some of the estimates in
Theorem 1.2 are known as well. Note that in this convolution situation, (1.5) im-
plies a regularity estimate in the x variable as well and �t(1, . . . ,1) = 0. With
these conditions satisfied, all linear results have been shown in [32; 33; 24; 11; 12;
4; 30; 35; 25; 8; 10], and the multilinear unweighted estimates in (1.6) were shown
in [27; 19; 20; 17; 15]. The contribution of Theorem 1.2 is largely in the multi-
linear weighted setting and when θt (x, y1, . . . , ym) = �t(x − y1, . . . , x − ym).
Theorem 1.2 also provides evidence that the strong Carleson condition is not too
restrictive since when �t is a multiconvolution operator, the strong Carleson con-
dition is equivalent to the Carleson condition.

We organize the article in the following way. In Section 2, we prove some
convergence and boundedness results for S when �t(1, . . . ,1) = 0. In Section 3,
we prove various properties relating the Carleson, strong Carleson, and two-cube
testing conditions to each other and some bounds for S. Finally in Section 4, we
prove Theorems 1.1 and 1.2.

2. A Reduced T1 Theorem for Square Functions on Weighted Spaces

It is well known that (1.4) implies that |�t(f1, . . . ,fm)(x)| � Mf1(x) · · ·Mfm(x),
where M is the Hardy–Littlewood maximal function, and hence

sup
t>0

‖�t(f1, . . . , fm)‖Lp �
m∏

i=1

‖fi‖Lpi
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when 1 < p1, . . . , pm < ∞ satisfy the Hölder-type relationship

1

p
=

m∑
i=1

1

pi

. (2.1)

So it is natural to expect that p1, . . . , pm satisfy this relationship for square func-
tion bounds of the form (1.6). For the remainder of this work, we assume that
1 < p1, . . . , pm < ∞ and p is defined by (2.1).

When we are in the linear setting, with a convolution operator θt (x, y) =
ψt(x − y) = t−nψ(t−1(x − y)), we use the gψ notation from (1.1) to avoid con-
fusion with the square function S and to emphasize that we are using the known
Littlewood–Paley–Stein theory.

Definition 2.1. Let w be a nonnegative locally integrable function. For p > 1,
we say that w is an Ap = Ap(Rn) weight, written w ∈ Ap , if

[w]Ap = sup
Q

(
1

|Q|
∫

Q

w(x)dx

)(
1

|Q|
∫

Q

w(x)1−p′
dx

)p−1

< ∞,

where the supremum is taken over all cubes Q ⊂ R
n with sides parallel to the

coordinate axes.

Also define the Fourier transform of a function f : Rn → C by

f̂ (ξ) =
∫
Rn

f (x)e−ix·ξ dx for ξ ∈ R
n.

The following lemma says that approximation to the identity operators have es-
sentially the same convergence properties in weighted Lp spaces as in unweighted
spaces. This result is well known (an explicit proof is available, for example, in
the work of Wilson [35]), but for the reader’s convenience, we state the result
precisely and give a short proof.

Lemma 2.2. Let Ptf = φt ∗ f where |φ(x)| � 1/(1 + |x|)N for some N > n with
φ̂(0) = 1 and w ∈ Ap for some 1 < p < ∞.

i. If f ∈ Lp(w), then Ptf → f in Lp(w) as t → 0.
ii. If f ∈ Lp(w) and there exists a 1 ≤ q < ∞ such that f ∈ Lq , then Ptf → 0

in Lp(w) as t → ∞.

Proof. We first prove (i) by estimating

‖Ptf − f ‖Lp(w) ≤
∫
Rn

|φ(y)|‖f (· − ty) − f (·)‖Lp(w) dy.

The integrand |φ(y)|‖f (· − ty) − f (·)‖Lp(w) is controlled by 2‖f ‖Lp(w)|φ(y)|,
which is an integrable function. So, by dominated convergence,

lim
t→0

‖Ptf − f ‖Lp(w) ≤
∫
Rn

|φ(y)| lim
t→0

‖f (· − ty) − f (·)‖Lp(w) dy = 0.
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Therefore (i) holds. Now for (ii), suppose that f ∈ Lp(w) ∩ Lq(Rn) for some
1 ≤ q < ∞. Then it follows that, for all x ∈R

n,

|Ptf (x)| ≤ ‖φt‖Lq′ ‖f ‖Lq

� t−n/q

(∫
Rn

dx

(1 + |x|)Nq ′

)1/q ′

‖f ‖Lq

� t−n/q‖f ‖Lq ,

which tends to 0 as t → ∞. So Ptf → 0 a.e. in R
n. Furthermore, |Ptf (x)| �

Mf (x), where M is the Hardy–Littlewood maximal operator, and Mf ∈ Lp(w)

since f ∈ Lp(w) and 1 < p < ∞. Then by dominated convergence we have

lim
t→∞

∫
Rn

|Ptf (x)|pw(x)dx =
∫
Rn

lim
t→∞|Ptf (x)|pw(x)dx = 0.

So it follows that Ptf → 0 in Lp(w) as t → ∞. �

Lemma 2.3. Suppose that θt satisfies (1.4), Ptf = φt ∗ f where φ ∈ C∞
0 with

φ̂(0) = 1, and w
pi

i ∈ Api
for 1 < p,p1, . . . , pm < ∞ satisfying (2.1). Define w =

w1 · · ·wm. Then, for fi ∈ Lpi (w
pi

i ) ∩ Lpi ,

�t(f1, . . . , fm) =
m∑

j=1

∫ ∞

0
�t	j,s(f1, . . . , fm)

ds

s
, (2.2)

where the convergence holds in Lp(wp), and for j = 1, . . . ,m, 	j,s is defined by

	j,t (f1, . . . , fm) = P 2
t f1 ⊗ · · · ⊗ P 2

t fj−1 ⊗ Qtfj ⊗ P 2
t fj+1 ⊗ · · · ⊗ P 2

t fm,

Qtf = ψt ∗ f , and ψt = −t d
dt

(φt ∗ φt ). Furthermore, there exist Q
i,k
t f = ψ

i,k
t ∗

f where ψi,k ∈ C∞
0 have mean zero for i = 1,2 and k = 1, . . . , n and

Qt =
n∑

k=1

Q
1,k
t Q

2,k
t .

Proof. We note that since fi ∈ Lpi (w
pi

i ) ∩ Lpi , by Lemma 2.2, P 2
t fi → fi as

t → 0 and P 2
t fi → 0 as t → ∞ in Lpi (w

pi

i ). Then it follows that∥∥∥∥�t(f1, . . . , fm) −
m∑

j=1

∫ 1/ε

ε

�t	j,s(f1, . . . , fm)
ds

s

∥∥∥∥
Lp(wp)

=
∥∥∥∥�t(f1, . . . , fm) +

∫ 1/ε

ε

s
d

ds
�t(P

2
s f1, . . . ,P

2
s fm)

ds

s

∥∥∥∥
Lp(wp)

≤ ‖�t(f1, . . . , fm) − �t(P
2
ε f1, . . . ,P

2
ε fm)‖Lp(wp)

+ ‖�t(P
2
1/εf1, . . . ,P

2
1/εfm)‖Lp(wp)

≤
m∑

j=1

‖�t(P
2
ε f1, . . . ,P

2
ε fj−1, fj − P 2

ε fj , fj+1, . . . , fm)‖Lp(wp)
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+ ‖�t(P
2
1/εf1, . . . ,P

2
1/εfm)‖Lp(wp)

�
m∑

j=1

‖Mf1 · · ·Mfj−1M(fj − Pεfj )fj+1 · · ·fm‖Lp(wp)

+ ‖MP 2
1/εf1 · · ·MP 2

1/εfm‖Lp(wp)

�
m∑

j=1

‖fj − Pεfj‖L
pj (w

pj
j )

∏
i �=j

‖fi‖Lpi (w
pi
i )

+
m∏

i=1

‖P 2
1/εfi‖Lpi (w

pi
i )

.

As ε → 0, the above expression tends to zero. Therefore, (2.2) holds, where
the convergence is in the topology of Lp(wp). One can verify that ψ1,k(x) =
−2∂xk

φ(x) and ψ2,k(x) = xkφ(x) satisfy the conditions given above. For details,
this decomposition of Qt was done in the linear one-dimensional case by Coifman
and Meyer [6]; the n-dimensional version can be found, for example, in Grafakos
[14]. �

Lemma 2.4. Let Pt , Qt , Q
i,j
t , and 	j,s be as in Lemma 2.3. If θt satisfies (1.4)–

(1.5) and �t(1,1) = 0 for all t > 0, then for all fi ∈ Lpi (w
pi

i ) ∩ Lpi , s > 0,
j = 1, . . . ,m, and x ∈R

n,

|�t	j,s(f1, . . . , fm)(x)| �
(

s

t
∧ t

s

)γ ′ n∑
k=1

MQ2,k
s fj (x)

∏
i �=j

Mfi(x)

for some 0 < γ ′ ≤ γ , where u ∧ v = min(u, v) for u,v > 0.

This lemma is a pointwise result that was proved in the discrete bilinear setting in
[19]. We make the appropriate modifications here to prove this multilinear con-
tinuous version.

Proof of Lemma 2.4. For this proof, we define, for M, t > 0 and x ∈R
n,

�M
t (x) = t−n

(1 + t−1|x|)M . (2.3)

It follows immediately that �M+d
t ≤ �M

t for any d ≥ 0, and there is a well-known
almost orthogonality result, for any M,L > n and s, t > 0,∫

Rn

�M
t (x − u)�L

s (u − y)du � �M∧L
s (x − y) + �M∧L

t (x − y). (2.4)

It is not entirely clear who first formulated this estimate as stated here, but a proof
can be a found in the appendix of [14]. Note also that if we take η = N−n

2(N+γ )
,

γ ′ = ηγ , and N ′ = (1 − η)N − γ ′, then using a geometric mean with weights
1 − η and η of estimates (1.4) and (1.5), it follows that

|θt (x, y1, . . . , ym) − θt (x, y′
1, y2, . . . , ym)|

� t−ηmn(t−1|y1 − y′
1|)ηγ

( m∏
j=2

�N
t (x − yj )

)1−η
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× (�N
t (x − y1) + �N

t (x − y′
1))

1−η

≤ (t−1|y1 − y′
1|)γ

′
(�

N ′+γ ′
t (x − y1) + �

N ′+γ ′
t (x − y′

1))

×
m∏

j=2

�
N ′+γ ′
t (x − yj ).

It is a direct computation to show that 0 < γ ′ = γ N−n
2(N+γ )

< γ and n < N ′ =
N+n

2 ≤ N − γ ′. We will first look at the kernel of �t(Q
1,k
s ·,Ps ·, . . . ,Ps ·) for

k = 1, . . . ,m, which is

n∑
k=1

∫
Rmn

θt (x,u1, . . . , um)ψ1,k
s (u1 − y1)

m∏
i=2

φs(ui − yi) du.

Our goal here is to bound this kernel by a product of �N ′
s (x − yj )+�N ′

t (x − yj ).
So in the following computations, whenever possible, we pull out terms of this
form. There will also appear terms of the form �N ′

t (x −uj ) and �N ′
s (u− yj ), for

which we will use (2.4) and bound by appropriate functions � depending on s, t ,
N ′, and x − yj . We estimate the kernel for a fixed k = 1, . . . ,m and simplify the
notation; define

λs(y1, . . . , ym) = ψ1,k
s (y1)

m∏
i=2

φs(yi).

Then for s < t , using that λs(y1, . . . , ym) has mean zero in y1 (since ψ
1,k
s has

mean zero), ψ1,k, φ ∈ C∞
0 , and θt satisfies (1.4) and (1.5), it follows that∣∣∣∣

∫
Rmn

θt (x,u1, . . . , um)λs(u1 − y1, . . . , um − ym)du

∣∣∣∣
�

∫
Rmn

|θt (x,u1, . . . , um) − θt (x, y1, u2, . . . , um)|

×
( m∏

j=1

�
N ′+γ ′
s (uj − yj )

)
du

�
∫
Rmn

(t−1|u1 − y1|)γ ′
�

N ′+γ ′
t (x − y1)�

N ′+γ ′
s (u1 − y1)

×
m∏

j=2

(�
N ′+γ ′
t (x − uj )�

N ′+γ ′
s (uj − yj )) du

+
∫
Rmn

(t−1|u1 − y1|)γ ′
m∏

j=1

(�
N ′+γ ′
t (x − uj )�

N ′+γ ′
s (uj − yj )) du

≤ sγ ′

tγ
′ �

N ′+γ ′
t (x − y1)
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×
∫
Rmn

�N ′
s (u1 − y1)

m∏
j=2

(�
N ′+γ ′
t (x − uj )�

N ′+γ ′
s (uj − yj )) du

+ sγ ′

tγ
′

∫
Rmn

m∏
j=1

(�
N ′+γ ′
t (x − uj )�

N ′
s (uj − yj )) du

� sγ ′

tγ
′

m∏
j=1

(�N ′
s (x − yj ) + �N ′

t (x − yj )). (2.5)

We use that (t−1|u1 − y1|)γ ′
�

N ′+γ ′
s (u1 − y1) ≤ (sγ ′

/tγ
′
)�N ′

s (u1 − y1). Now for
s > t , we use the assumption �t(1, . . . ,1) = 0 and that θt satisfies (1.4) for the
following estimate:∣∣∣∣

∫
Rmn

θt (x,u1, . . . , um)λs(u1 − y1, . . . , um − ym)du

∣∣∣∣
�

∫
Rmn

m∏
j=1

�
N ′+γ ′
t (x − uj )

× |λs(u1 − y1, . . . , um − ym) − λs(x − y1, . . . , x − ym)|du. (2.6)

Next, we work to control the second term in the integrand on the right-hand side
of (2.6). Adding and subtracting successive terms, we get

|λs(u1 − y1, . . . , um − ym) − λs(x − y1, . . . , x − ym)|

≤
m∑

�=1

|λs(u1 − y1, . . . , u�−1 − y�−1, x − y�, . . . , x − ym)

− λs(u1 − y1, . . . , u� − y�, x − y�+1, . . . , x − ym)|

�
m∑

�=1

(s−1|x − u�|)γ ′
(�−1∏

r=1

�
N ′+γ ′
s (ur − yr)

)

× (�
N ′+γ ′
s (u� − y�) + �

N ′+γ ′
s (x − y�))

×
( m∏

r=�+1

�
N ′+γ ′
s (x − yr)

)
.

Here we use the convention that
∏0

j=1 Aj = ∏m
j=m+1 Aj = 1 to simplify the no-

tation. Then (2.6) is bounded by a constant times

m∑
�=1

∫
Rmn

( m∏
j=1

�
N ′+γ ′
t (x − uj )

)
(s−1|x − u�|)γ ′

(�−1∏
r=1

�
N ′+γ ′
s (ur − yr)

)

× (�
N ′+γ ′
s (u� − y�) + �

N ′+γ ′
s (x − y�))

( m∏
r=�+1

�
N ′+γ ′
s (x − yr)

)
du
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≤ tγ
′

sγ ′

m∑
�=1

∫
Rmn

( m∏
j=1

�N ′
t (x − uj )

)(�−1∏
r=1

�
N ′+γ ′
s (ur − yr)

)

× (�
N ′+γ ′
s (u� − y�) + �

N ′+γ ′
s (x − y�))

( m∏
r=�+1

�
N ′+γ ′
s (x − yr)

)
du

≤ tγ
′

sγ ′

m∑
�=1

(�−1∏
r=1

∫
Rn

�N ′
t (x − ur)�

N ′+γ ′
s (ur − yr) dur

)

×
(∫

Rn

�N ′
t (x − u�)(�

N ′+γ ′
s (u� − y�) + �

N ′+γ ′
s (x − y�)) du�

)

×
( m∏

r=�+1

∫
Rn

�N ′
t (x − ur)�

N ′+γ ′
s (x − yr) dur

)

� tγ
′

sγ ′

m∏
r=1

(�N ′
s (x − yr) + �N ′

t (x − yr)). (2.7)

The following estimate easily follows from (2.5) and (2.7):∣∣∣∣
∫
Rmn

θt (x,u1, . . . , um)ψ1,k
s (u1 − y1)

m∏
i=2

φs(ui − yi) du

∣∣∣∣
�

(
s

t
∧ t

s

)γ ′ m∏
j=1

(�N ′
s (x − yj ) + �N ′

t (x − yj )).

Since |�N ′
t ∗ f (x)| � Mf (x) uniformly in t and �t	s,1 = ∑n

k=1 �(Q
1,k
s Q

2,k
s ,

P 2
s , . . . ,P 2

s ), it follows that

|�t	s,1(f1, . . . , fm)(x)| �
(

s

t
∧ t

s

)γ ′ n∑
k=1

MQ2,k
s f1(x)

m∏
j=2

Mfj(x).

By symmetry, this completes the proof. �

Next, we work to set the square function results of [19; 20; 17] and [15] in
weighted Lebesgue spaces. This is a type of reduced T1 theorem for L2(R+, dt

t
)-

valued singular integral operators, where we assume that �t(1, . . . ,1) = 0 for all
t > 0. We refer to Theorem 2.5 as a reduced T1 theorem since it applies to oper-
ators that satisfy the relatively strong cancellation condition �t(1, . . . ,1) = 0 for
t > 0. Also, to prove the more general Theorem 1.1, we reduce the boundedness
of operators with Carleson-type cancellation to those with �t(1, . . . ,1) = 0 can-
cellation, as in Theorem 2.5 We now state and prove a reduced T(1) theorem for
square functions on weighted spaces.

Theorem 2.5. Let �t and S be defined as in (1.3) and (1.2), where θt satis-
fies (1.4) and (1.5). If �t(1, . . . ,1) = 0 for all t > 0, then S satisfies (1.6) for
all w

pi

i ∈ Api
, 1 < p,p1, . . . , pm < ∞ satisfying (2.1), where w = ∏m

i=1 wi , and
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fi ∈ Lpi (w
pi

i ) ∩ Lpi . Furthermore, the constant for this bound is at most a con-
stant independent of w1, . . . ,wm times

m∏
i=1

(1 + [wpi

i ]max(1,p′
i /pi )+max(1/2,p′

i /pi )

Api
).

Proof. Let Pt , Qt , et cetera be defined as in Lemma 2.3, fi ∈ Lpi (w
pi

i ) ∩ Lpi for

i = 1, . . . ,m and ht ∈ Lp′
for all t > 0 such that∥∥∥∥

(∫ ∞

0
|ht |2 dt

t

)1/2∥∥∥∥
Lp′

(wp)

≤ 1.

Recall that the dual of Lp(wp) can be realized as Lp′
(wp) if we take the measure

space (Rn,w(x)p dx). We estimate (1.6) by duality, making use of Lemmas 2.3
and 2.4:∣∣∣∣
∫
Rn

∫ ∞

0
�t(f1, . . . , fm)(x)ht (x)

dt

t
w(x)p dx

∣∣∣∣
≤

∫
Rn

∫ ∞

0

m∑
j=1

∫ ∞

0
|�t	j,s(f1, . . . , fm)(x)|

× w(x)|ht (x)|w(x)p/p′ ds

s

dt

t
dx

≤
m∑

j=1

∥∥∥∥
(∫

(0,∞)2

(
s

t
∧ t

s

)−γ ′

|�t	j,s(f1, . . . , fm)(x)|2 ds

s

dt

t

)1/2∥∥∥∥
Lp(wp)

×
∥∥∥∥
(∫

(0,∞)2

(
s

t
∧ t

s

)γ ′

|ht |2 ds

s

dt

t

)1/2∥∥∥∥
Lp′

(wp)

�
m∑

j=1

n∑
k=1

∥∥∥∥
(∫

[0,∞)2

(
s

t
∧ t

s

)γ ′(
MQ2,k

s fj

∏
i �=j

Mfi

)2
dt

t

ds

s

)1/2∥∥∥∥
Lp(wp)

�
m∑

j=1

n∑
k=1

∥∥∥∥
(∫ ∞

0
(MQ2,k

s fj )
2 ds

s

)1/2 ∏
i �=j

Mfi

∥∥∥∥
Lp(wp)

�
m∑

j=1

n∑
k=1

[wpj

j ]max(1/2,p′
j /pj )

Apj
‖gψ2,k (fj )‖L

pj (w
pj
j )

∏
i �=j

‖Mfi‖Lpi (w
pi
i )

�
m∑

j=1

[wpj

j ]max(1,p′
j /pj )+max(1/2,p′

j /pj )

Apj

× ‖fj‖L
pj (w

pj
j )

∏
i �=j

[wpi

i ]p′
i /pi

Api
‖fi‖Lpi (w

pi
i )

�
m∏

i=1

(1 + [wpj

j ]max(1,p′
j /pj )+max(1/2,p′

j /pj )

Apj
)‖fi‖Lpi (w

pi
i )

.
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Here we have used the weighted bound for the Hardy–Littlewood maximal
function, the Fefferman–Stein vector-valued maximal function bound proved
originally by Andersen–John [1] and proved with the sharp dependence on
the weight constant by Cruz-Uribe, Martell, and Perez [8]. We also used the
weighted square function estimate for gψ2,k for k = 1, . . . ,m originally proved by
Kurtz [24] and proved with sharp dependence on the weight constant by Lerner
[25]. �

Although we use sharp estimates to track the weight constant dependence, we do
not claim that this bound for S is sharp. In the above argument, once we have
bounded the dual pairing by products of maximal functions and gψ functions, the
estimates may be sharp, but there is no evidence provided here that the estimates
up to that point are sharp. We track the constant so that we can explicitly apply
the extrapolation theorem of Grafakos and Martell [16].

3. Carleson and Strong Carleson Measures

This section is dedicated to defining the cancellation conditions that we will use
for θt and proving some properties about them. We start with a discussion to
motivate these definitions and describe the role that they will play in this work.

As discussed in the introduction, in the linear convolution operator setting with
convolutions kernel ψt , if gψ is bounded, then necessarily ψt ∗1 = 0 for all t > 0.
So when working with the square function gψ with ψt(x) = t−nψ(t−1x), it is
not useful to consider Carleson measure type cancellation conditions like (i) from
Theorem 1.1. But if one does not require the convolution kernels ψt to be the dila-
tions of a single function ψ or allows for the nonconvolution operators, then mean
zero is not a necessary condition for square function bounds. From the classical
theory of Carleson measures [3] we know that, in the linear setting, S is bounded
on L2 if and only if |�t(1)(x)|2 dt dx

t
is a Carleson measure, although this may

not in general be sufficient for S to be bounded for all 1 < p < ∞. We will define
the strong Carleson condition for �t and prove that it does imply bounds for all
1 < p < ∞.

There is a stronger notion of Carleson measure defined in terms of A2 weights
by Journé [23] that is related to some of the Carleson conditions in this work. For
more information, see Chapter 6, Section II, in [23]. We will discuss this in a little
more depth in Section 4.

Definition 3.1. A nonnegative measure dμ(x, t) on R
n+1+ = {(x, t) : x ∈ R

n,

t > 0} is a Carleson measure if

‖dμ‖C = sup
Q

1

|Q| dμ(T (Q)) < ∞, (3.1)

where the supremum is taken over all cubes Q ⊂ R
n, |Q| denotes the Lebesgue

measure of a cube Q, T (Q) = Q × (0, �(Q)] denotes the Carleson box over Q,
and �(Q) is the side length of Q.
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Suppose that dμ is a nonnegative measure on R
n+1+ defined by

dμ(x, t) = F(x, t) dτ(t) dx (3.2)

for some F ∈ L1
loc(R

n+1+ , dτ (t) dx). We say that dμ is a strong Carleson measure
if

‖dμ‖SC = sup
Q

sup
x∈Q

∫ �(Q)

0
F(x, t) dτ(t) < ∞. (3.3)

Given an operator �t with kernel satisfying (1.4), we say that �t satisfies the Car-
leson condition, respectively strong Carleson condition, if |�t(1, . . . ,1)(x)|2 dt

t
dx

is a Carleson measure, respectively a strong Carleson measure.

There are a few related notions of Carleson measures that appear to be very similar
to the strong Carleson condition defined here, but there are subtle differences
between them. For example, Fefferman and Stein [13] verify weighted estimates
for measures dμ and weights w that satisfy

sup
Q�x

dμ(T (Q))

|Q| ≤ Cw(x).

This estimate has a weight on the right-hand side of the inequality, but no weight
on the left-hand side. On the other hand, our estimate (3.3) involves no weights
at all. These two conditions are related somehow, but they differ in the way that
they interact with weight functions and weighted estimates. The measures studied
by Fefferman and Stein [13] are generalized to a sort of Ap weight condition for
measures by Ruiz [28] and Ruiz and Torrea [29], although they differ from our
Carleson measures in the same way that the measures of Fefferman and Stein
[13] do.

We use these Carleson conditions for �t to quantify weaker cancellation con-
ditions on the kernels θt . The situation �t(1, . . . ,1) = 0 for t > 0 is, in a way,
“perfect” cancellation for �t since the integral of θt (x, y1, . . . , ym) in the dy van-
ishes. These Carleson conditions relax this cancellation condition by requiring
that �t(1, . . . ,1) is small, rather than 0, in the sense that |�t(1, . . . ,1)(x)| dt dx

t

defines a Carleson or strong Carleson measure. Using Carleson measure estimates
for |�t(1, . . . ,1)(x)|2 dt dx

t
to derive boundedness properties for �t and S is a

very common technique. In the language Christ and Journé [5] and Auscher [2],
a Carleson function is a function G : Rn+1+ → C such that |G(x, t)|2 dt

t
dx is a

Carleson measure. So our definition of the Carleson condition for �t is exactly
that G(x, t) = �t(1, . . . ,1)(x) is a Carleson function.

We define strong Carleson measures with a general measure dτ(t) instead of
just dt

t
because this allows us to apply results in Section 4 to the discrete relative

of �t and S by letting dτ(t) = ∑
k∈Z δ2−k (t), like the ones in [11; 27; 19] and

[15], among many others.
It is trivial to see that if a nonnegative measure dμ(x, t) = F(x, t) dτ(t) dx is

a strong Carleson measure, then it is a Carleson measure, and ‖μ‖C ≤ ‖μ‖SC , but
we can also prove a partial converse to this for nonnegative measures of the form



384 L. Chaffee, J . Hart, & L. Oliveira

|�t(1, . . . ,1)|2 dt dx
t

for θt satisfying (1.4) and (1.5). In Propositions 3.4 and 3.5,
we prove that �t satisfies what we call the two-cube and Carleson conditions if
and only if it satisfies the strong Carleson condition. We first define the two-cube
testing condition.

Definition 3.2. Let θt satisfy (1.4) and �t be defined as in (1.3). We say that �t

satisfies the two-cube testing condition if

sup
R⊂Q

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ(2R)c , . . . , χ(2R)c )(x)

− �t(χ(2Q)c , . . . , χ(2Q)c )(x)|2 dt

t
dx < ∞, (3.4)

where the supremum is taken over all cubes R and Q with R ⊂ Q.

In the linear case, the two-cube condition for �t becomes

sup
R⊂Q

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ2Q\2R)(x)|2 dt

t
dx < ∞.

The two-cube testing condition is a technical condition that arises in a number of
estimates for �t(1, . . . ,1); however, it is analogous to certain cancellation con-
ditions that appear in singular integral operator theory. See Remark 3.9 and the
discussion preceding it for more details of this analogy. Before we verify the
equivalence between these conditions in Theorem 1.1, we prove a lemma.

Lemma 3.3. Suppose that θt satisfies (1.4). Then we have the following:

i. If E1, . . . ,Em ⊂ R
n, then

sup
x∈Rn

|�t(χE1 , . . . , χEm)(x)| � t−n min(|E1|, . . . , |Em|). (3.5)

ii. If E1, . . . ,Em ⊂ R
n and 2Q ⊂ R

n\Ei for some i and cube Q (here 2Q is the
double of Q with the same center), then

sup
x∈Q

|�t(χE1 , . . . , χEm)(x)| � tN−n�(Q)−(N−n). (3.6)

Proof. For E1, . . . ,Em ⊂ R
n and x ∈R

n, using (1.4), we have

|�t(χE1 , . . . , χEm)(x)| �
m∏

j=1

∫
Rn

t−n

(1 + t−1|x − yj |)N χEj
(yj ) dyj � t−n|Ei |

for each i = 1, . . . ,m. For (ii), for x ∈ Q ⊂ 2Q ⊂ R
n\Ei , it follows that |x−yi | >

�(Q) for all yi ∈ Ei . Then, using (1.4), it follows that

|�t(χE1 , . . . , χEm)(x)| �
m∏

j=1

∫
Rn

t−n

(1 + t−1|x − yj |)N χEj
(yj ) dyj

�
∫

Ei

t−n

(t−1|x − yi |)N dyi
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� tN−n

∫
|x−yi |>�(Q)

1

|x − yi |N dyi

� tN−n�(Q)−(N−n). �

Proposition 3.4. Suppose that θt satisfies (1.4) and (1.5). If �t(x) satisfies the
Carleson and two-cube testing conditions, then �t satisfies the strong Carleson
condition.

Proof. We first prove a multilinear analog of the result of Carleson [3] and
Christ and Journé [5] mentioned above; if �t satisfies the Carleson condition,
then S satisfies the unweighted bound (1.6) for p = 2. That is, if dμ(x, t) =
|�t(1, . . . ,1)(x)|2 dt dx

t
is a Carleson measure, then S is bounded from Lp1 ×

· · · × Lpm into L2 for all 1 < p1, . . . , pm < ∞ satisfying (2.1) with p = 2. To
prove this, we adapt a familiar technique of Coifman and Meyer, see for exam-
ple [6] or [7]. Decompose �t = (�t − M�t(1,...,1)Pt ) − M�t(1,...,1)Pt = Rt + Ut ,
where

Pt (f1, . . . , fm) =
m∏

i=1

Ptfi, (3.7)

and Pt is a smooth compactly supported approximation to the identity. The oper-
ator Rt satisfies the conditions of Theorem 2.5, and hence the square function as-
sociated to Rt is bounded on the appropriate spaces. The second term is bounded
as well, using the following Carleson measure bound:∥∥∥∥

(∫ ∞

0
|Ut(f1, . . . , fm)|2 dt

t

)1/2∥∥∥∥
L2

≤
m∏

i=1

(∫
R

n+1+
|Ptfi(x)|pi dμ(x, t)

)1/pi

�
m∏

i=1

‖fi‖Lpi .

We use a bound proved by Carleson [3] which is that {Pt }t>0 defines a bounded
operator from Lq(Rn) into Lq(Rn+1+ , dμ(x, t)) for all 1 < q < ∞ whenever
dμ(x, t) is a Carleson measure. We now move on to estimate (3.3), so take a
cube Q ⊂ R

n and define

GQ(x) = χQ(x)

∫ �(Q)

0
dμ(x, t).

To prove that μ is a strong Carleson measure, it is sufficient to show that
‖GQ‖L∞ � 1 where the constant is independent of Q ⊂ R

n. Since dμ is locally
integrable in R

n+1+ and dμ is a Carleson measure, it follows that GQ ∈ L1(Rn).
Then GQ(x) ≤ MGQ(x) for almost every x ∈ R

n. So we estimate ‖MGQ‖L∞ :

MGQ(x) = sup
R�x

1

|R|
∫

R

∫ �(Q)

0
|�t(1, . . . ,1)(y)|2χQ(y)

dt

t
dy

= sup
R�x:R⊂Q

1

|R|
∫

R

∫ �(Q)

0
|�t(1, . . . ,1)(y)|2 dt

t
dy
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≤ sup
R�x:R⊂Q

1

|R|
∫

R

∫ �(Q)

0
|�t(χ2R, . . . , χ2R)(y)|2 dt

t
dy

+ sup
R�x:R⊂Q

∑
F∈�

1

|R|
∫

R

∫ �(R)

0
|�t(χF1 , . . . , χFm)(y)|2 dt

t
dy

+ sup
R�x:R⊂Q

∑
F∈�

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χF1 , . . . , χFm)(y)|2 dt

t
dy

= I + II + III,

where

� = {F = (F1, . . . ,Fm) : Fi = 2R or Fi = (2R)c}\{(2R, . . . ,2R)}.
Note that we may make the reduction to cubes R ⊂ Q since supp(GQ) ⊂ Q and
GQ ≥ 0. For each cube R ⊂ Q ⊂ R

n, the boundedness of S gives

1

|R|
∫

R

∫ �(Q)

0
|�t(χ2R, . . . , χ2R)(y)|2χR(y)

dt

t
dy

≤ 1

|R|
∫
Rn

∫ ∞

0
|�t(χ2R, . . . , χ2R)(y)|2 dt

t
dy

� 1

|R|
m∏

i=1

‖χ2R‖2
Lpi � 1.

Therefore, I is bounded independent of x and Q. In each of the terms in the sum
defining II, there is at least one Fi such that Fi = (2R)c . Then using (3.6) from
Lemma 3.3, it follows that

1

|R|
∫

R

∫ �(R)

0
|�t(χF1 , . . . , χFm)(y)|2 dt

t
dy � 1

|R|
∫

R

∫ �(R)

0

t2(N−n)

�(R)2(N−n)

dt

t
dy

� 1.

Since |�| = 2m − 1, this is sufficient to bound II. Now for the third term III, we
first take F ∈ � such that at least one component Fi = 2R. Then it follows from
(3.5) in Lemma 3.3 that

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χF1 , . . . , χFm)(y)|2 dt

t
dy � 1

|R|
∫

R

∫ ∞

�(R)

t−2n|2R|2 dt

t
dy

� 1.

This bounds all but one term for III. It remains to bound the term where F =
((2R)c, . . . , (2R)c). We do so using (3.6) from Lemma 3.3 and the two-cube con-
dition (3.4):

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ(2R)c , . . . , χ(2R)c )(y)|2 dt

t
dy

≤ 1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ(2Q)c , . . . , χ(2Q)c )(y)|2 dt

t
dy



Weighted Multilinear Square Function Bounds 387

+ 1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ(2Q)c , . . . , χ(2Q)c )(y)

− �t(χ(2R)c , . . . , χ(2R)c )(y)|2 dt

t
dy

� 1

|R|
∫

R

∫ �(Q)

0
t2(N−n)�(Q)−2(N−n) dt

t
dy + 1 � 1.

Therefore, ‖MGQ‖L∞ ≤ I + II + III � 1 for all Q ⊂ R
n, where the constant is

independent of Q. Now we can easily verify that dμ satisfies the strong Carleson
condition:

sup
Q⊂Rn

sup
x∈Q

∫ �(Q)

0
|�t(1, . . . ,1)(x)|2 dt

t
≤ sup

Q⊂Rn

‖GQ‖L∞ ≤ sup
Q⊂Rn

‖MGQ‖L∞

� 1.

This completes the proof. �

Proposition 3.5. If θt satisfies (1.4), (1.5) and �t satisfies the strong Carleson
condition, then �t satisfies the two-cube condition (3.4).

Proof. We estimate (3.4) for R ⊂ Q ⊂ R
n:

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ(2R)c , . . . , χ(2R)c )(x) − �t(χ(2Q)c , . . . , χ(2Q)c )(x)|2 dt

t
dx

≤
m∑

j=1

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ(2R)c , . . . , χ(2R)c

− χ(2Q)c , . . . , χ(2Q)c )(x)|2 dt

t
dx

≤ 1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ(2R)c , . . . , χ(2R)c , χ2Q\2R)(x)|2 dt

t
dx

+
m−1∑
j=1

1

|R|
∫

R

∫ �(Q)

0
|�t(χ(2R)c , . . . , χ2Q\2R, . . . , χ(2Q)c )(x)|2 dt

t
dx

≤ 1

|R|
∫

R

∫ �(Q)

�(R)

|�t(1, . . . ,1)(x)

− �t(χ(2R)c , . . . , χ(2R)c , χ2Q\2R)(x)|2 dt

t
dx

+ 1

|R|
∫

R

∫ �(Q)

�(R)

|�t(1, . . . ,1)(x)|2 dt

t
dx

+
m−1∑
j=1

1

|R|
∫

R

∫ �(Q)

0
t2(N−n)�(Q)−2(N−n) dt

t
dx
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� 1

|R|
∫

R

∫ �(Q)

�(R)

|�t(1, . . . ,1)(x)

− �t(χ(2R)c , . . . , χ(2R)c , χ2Q\2R)(x)|2 dt

t
dx + 1.

Here the middle term is bounded by the assumption that |�t(1, . . . ,1)(x)|2 dt
t

dx

is a strong Carleson measure and the third by direction computation. Now we
bound the reaming term in the following way:

|�t(1, . . . ,1)(x) − �t(χ(2R)c , . . . , χ(2R)c , χ2Q\2R)(x)|

≤
m−1∑
j=1

|�t(χ2R, . . . , χ2R,1, . . . ,1)(x)|

+ |�t(χ(2R)c , . . . , χ(2R)c ,1 − χ2Q\2R)(x)|

�
m−1∑
j=1

t−n|R| + |�t(χ(2R)c , . . . , χ(2R)c ,1 − χ2Q\2R)(x)|

� t−n|R| + |�t(χ(2R)c , . . . , χ(2R)c , χ(2Q)c )(x)|
+ |�t(χ(2R)c , . . . , χ(2R)c , χ2R)(x)|

� t−n|R| + tN−n�(Q)−(N−n).

In the second-to-last line, we bound the last term by t−n|R| and absorb it into the
first term of the last line. Therefore, we have that

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(1, . . . ,1)(x) − �t(χ(2R)c , . . . , χ(2R)c , χ2Q\2R)(x)|2 dt

t
dx

� 1

|R|
∫

R

∫ ∞

�(R)

t−2n|R|2 dt

t
dx + 1

|R|
∫

R

∫ �(Q)

0
t2(N−n)�(Q)−2(N−n) dt

t
dx

� 1,

and hence �t satisfies the two-cube condition (3.4). �

We also prove that if S is bounded from Lp1 × · · · × Lpm into Lp for some
1 < p1, . . . , pm < ∞ and 2 ≤ p < ∞ satisfying (2.1), then �t satisfies the
Carleson condition. A partial converse to this was proved within the proof of
Proposition 3.4: if �t satisfies the Carleson condition, then S is bounded from
Lp1 × · · · × Lpm into L2 for all 1 < p1, . . . , pm < ∞.

Proposition 3.6. Assume that θt satisfies (1.4) and S is bounded from Lp1 ×
· · ·×Lpm into Lp for some 1 < p1, . . . , pm < ∞ and 2 ≤ p < ∞ satisfying (2.1).
Then �t satisfies the Carleson condition.

Proof. We fix a cube Q ⊂ R
n and estimate

1

|Q|
∫

Q

∫ �(Q)

0
|�t(1, . . . ,1)(x)|2 dt

t
dx
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≤ 1

|Q|
∫

Q

∫ �(Q)

0
|�t(χ2Q, . . . , χ2Q)(x)|2 dt

t
dx

+
∑
F∈�

1

|Q|
∫

Q

∫ �(Q)

0
|�t(χF1 , . . . , χFm)(x)|2 dt

t
dx

= I + II, (3.8)

where again we define

� = {F = (F1, . . . ,Fm) : Fi = 2Q or Fi = (2Q)c}\{(2Q, . . . ,2Q)}.
For each cube Q ⊂ R

n, we estimate I :

1

|Q|
∫

Q

∫ �(Q)

0
|�t(χ2Q, . . . , χ2Q)(x)|2 dt

t
dx

≤ 1

|Q|
∫

Q

S(χ2Q, . . . , χ2Q)(x)2 dx

≤
(

1

|Q|
∫
Rn

S(χ2Q, . . . , χ2Q)(x)p dx

)2/p

� |Q|−2/p
m∏

i=1

‖χ2Q‖2
Lpi � 1.

Now for the second term II, we fix F ∈ �, which has at least one component
Fi = (2Q)c . Then by (3.6) from Lemma 3.3 we have

1

|Q|
∫

Q

∫ �(Q)

0
|�t(χF1 , . . . , χFm)(x)|2 dt

t
dx

� 1

|Q|
∫

Q

∫ �(Q)

0
t2(N−n)�(Q)−2(N−n) dt

t
dx � 1.

Then II � 1 as well, and �t satisfies the Carleson condition. �

In fact, this proves that if θt satisfies (1.4)–(1.5) and �t satisfies the Carleson
condition, then �t satisfies the strong Carleson condition if and only if �t sat-
isfies the two-cube testing condition (3.4). We conclude this section with a few
examples of Carleson measures obtained from operators �t and a discussion of
the two-cube condition.

In Example 3.7, we define operators that give rise to strong Carleson measures,
and in Example 3.8, we define operators that give rise to Carleson measures, but
not to strong Carleson measures. For the examples, let Pt be a smooth compactly
supported approximation to the identity, and Pt be as defined in (3.7).

Example 3.7. Suppose that ψ ∈ L1 with integral zero satisfying |ψ(x)| �
1/(1 + |x|)N for some N > n and

sup
ξ �=0

∫ ∞

0
|ψ̂(tξ)|2 dt

t
< ∞. (3.9)
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Define Qtf = ψt ∗ f . Let b ∈ Lq for some 1 ≤ q < ∞ with |b(x) − b(x′)| ≤
L|x − x′|α where 0 < α < N − n and β ∈ L∞(Rn+1+ ), and define

�t(f1, . . . , fm)(x) = β(x, t)Qtb(x)Pt (f1, . . . , fm)(x).

It follows that the kernels of �t , which are

θt (x, y1, . . . , ym) = β(x, t)Qtb(x)

m∏
i=1

φt (x − yi)

for t > 0, satisfy (1.4) and (1.5). We also have that �t(1, . . . ,1) = β(x, t)Qtb, so
we estimate

|Qtb(x)| =
∣∣∣∣
∫
Rn

ψt (x − y)(b(y) − b(x)) dy

∣∣∣∣ ≤ L

∫
Rn

|ψt(x − y)||x − y|α dy

� tα
∫
Rn

t−n

(1 + t−1|x − y|)N−α
dy � tα.

Also, we have that

|Qtb(x)| ≤ ‖ψt‖Lq′ ‖b‖Lq � t−n/q .

Then it follows that∫ �(Q)

0
|�t(1, . . . ,1)(x)|2 dt

t

� ‖β‖2
L∞(Rn+1+ )

∫ 1

0
t2α dt

t
+ ‖β‖2

L∞(Rn+1+ )

∫ ∞

1
t−2n/q dt

t
� 1.

Therefore, with this selection of b and β , it follows that �t satisfies the strong
Carleson condition. By Theorem 1.1 it follows that∥∥∥∥

(∫ ∞

0
|�t(f1, . . . , fm)|2 dt

t

)1/2∥∥∥∥
Lp(wp)

�
m∏

i=1

‖fi‖Lpi (w
pi
i )

for all 1 < p1, . . . , pm < ∞ and w
pi

i ∈ Api
, where w = w1 · · ·wm, and p is de-

fined by (2.1), which allows for 1/m < p < ∞. Note that with an appropriate se-
lection of βt , the kernels θt (x, y) are not be smooth in the x variable. The previous
results can be applied to this operator to prove (1.6) when w1 = · · · = wm = 1 and
p ≥ 2, although we can now apply Theorem 1.1 to prove (1.6) for all w

pi

i ∈ Api

and 1 < p1, . . . , pm < ∞ satisfying (2.1). This is an operator to which one could
not apply the previous results. Even in the linear case, this provides new results
for Littlewood–Paley–Stein square functions whose kernels lack regularity in x.

Example 3.8. The purpose of this example is to construct an operator �t satisfy-
ing (1.4) and (1.5) such that �t satisfies the Carleson condition, but not the strong
Carleson condition. Define ψ(x) = χ(0,1)(x)−χ(−1,0)(x), Qtf = ψt ∗f , b(x) =
χ(0,1)(x), and like above, �t(f1, . . . , fm)(x) = Qtb(x)Pt (f1, . . . , fm)(x). As
above, we have that �t(1, . . . ,1) = Qtb. It is a quick computation to show that

ψ̂(ξ) = 2
1 − cos(ξ)

iξ
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with the appropriate modification when ξ = 0. It follows that |ψ̂(ξ)| � min(|ξ |,
|ξ |−1) and that

|�t(1, . . . ,1)(x)|2 dt

t
dx = |ψt ∗ b(x)|2 dt

t
dx

is a Carleson measure since b ∈ L∞ ⊂ BMO. Now we show that �t does not
satisfy the strong Carleson condition. Let Q = [−1,0], x ∈ [−1,0) ⊂ Q, and we
estimate (3.3) with the following computation:∫ �(Q)

0
|�t1(x)|2 dt

t
=

∫ 1

0

∣∣∣∣
∫
R

ψt(y)χ(0,1)(x − y)dy

∣∣∣∣2
dt

t

≥
∫ 1

−x

∣∣∣∣
∫ x

−t

ψt (y) dy

∣∣∣∣2
dt

t

=
∫ 1

−x

(x + t)2

t2

dt

t

= x2
∫ 1

−x

dt

t3
+ 2x

∫ 1

−x

dt

t2
+

∫ 1

−x

dt

t

≥ x2
∫ 1

0
dt − 2x − 2 − log(−x)

≥ − log(−x) − 2.

Therefore,

sup
x∈[−1,0]

∫ �(Q)

0
|�t1(x)|2 dt

t
≥ sup

x∈[−1,0)

− log(−x) − 2 = ∞,

and hence �t satisfies the Carleson condition, but not the strong Carleson condi-
tion.

The two-cube condition in (3.4) can be viewed as a cancellation condition simi-
lar to the T 1-type cancellation conditions defined for singular integral operators.
For example, T 1-type conditions for a linear operator T with kernel K can be
expressed as estimates for ∣∣∣∣

∫
a<|x−y|<b

K(x, y) dy

∣∣∣∣
that are uniform in 0 < a < b < ∞. For a precise formulation of this type of condi-
tion, see [34], where Stein proves that such an estimate is necessary and sufficient
for certain boundedness properties. In the following remark, we construct an esti-
mate of this type for θt that implies the two-cube condition for �t . We only work
in the linear setting here to demonstrate the parallel with cancellation conditions
in singular integral operator theory. One can formulate a cancellation condition
for multilinear operators as well, but the notation becomes cumbersome.
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Remark 3.9. Assume that θt (x, y) satisfies (1.4) with m = 1 and that there exists
γ > 0 such that, for all 0 < a < b < ∞ and a ≤ t ≤ b,∣∣∣∣
∫

a≤|x−y|≤b

θt (x, y) dy

∣∣∣∣ ≤ ωa,b(t), where A = sup
0<a<b<∞

∫ b

a

ωa,b(t)
2 dt

t
< ∞.

Then �t satisfies the two-cube condition.

Proof. Let R ⊂ Q be cubes, and let x ∈ R. Define BR = B(x, �(R)) and BQ =
B(x,4

√
n�(Q)). Note that 2Q ⊂ BQ and BR ⊂ BQ. Then

|�t(χ2Q\2R)(x)| ≤ |�t(χBQ\BR
)(x)| + |�t(χBQ\2Q)(x)|

+ |�t(χBR
)(x)| + |�t(χ2R)(x)|

� |�t(χBQ\BR
)(x)| +

(
t

�(Q)

)N−n

+
(

�(R)

t

)n

.

We use Lemma 3.3 to bound the last three terms above. Therefore,

1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χ2Q\2R)(x)|2 dt

t
dx

� 1

|R|
∫

R

∫ �(Q)

�(R)

|�t(χBQ\BR
)(x)|2 dt

t
dx

+ 1

|R|
∫

R

∫ �(Q)

�(R)

(
t

�(Q)

)2(N−n)
dt

t
dx

+ 1

|R|
∫

R

∫ �(Q)

�(R)

(
�(R)

t

)2n
dt

t
dx

� 1

|R|
∫

R

∫ �(Q)

�(R)

∣∣∣∣
∫

�(R)≤|x−y|≤4
√

n�(Q)

θt (x, y) dy

∣∣∣∣2
dt

t
dx + 1

≤ 1

|R|
∫

R

∫ 4
√

n�(Q)

�(R)

ω�(R),4
√

n�(Q)(t)
2 dt

t
dx + 1 ≤ A + 1.

In the last line of this string of inequalities, we apply the integral estimate above
with a = �(R) and b = 4

√
n�(Q). Hence, the two-cube condition is verified. �

4. A Full Weighted T1 Theorem for Square Functions on L2

In this section, we develop some classical Carleson measure results in a weighted
setting with strong Carleson measures. With these new tools, we can apply some
familiar arguments to complete the proofs of Theorems 1.1 and 1.2. More pre-
cisely, Lemmas 4.1 and 4.2 and Proposition 4.3 are weighted versions of results
proved by Carleson [3], where we use assume strong Carleson in place of Car-
leson conditions.
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Lemma 4.1. If dμ is a strong Carleson measure, then for any locally integrable
function w ≥ 0 and E ⊂ R

n,

dμw(Ê) ≤ ‖dμ‖SCw(E), (4.1)

where dμw(x, t) = w(x)dμ(x, t) and Ê = {(x, t) ∈R
n+1+ : B(x, t) ⊂ E}.

In [23], Journé says that dμw is a Carleson measure with respect to w ∈ A2 if there
is a constant C > 0 such that dμw(T (Q)) ≤ Cw(Q) for all cubes Q. He uses
this definition to prove that measures satisfying this estimate also verify weighted
analogs of Carleson measure bounds. By Lemma 4.1, if dμ is a strong Carleson
measure, then dμ is a Carleson measure with respect to w for all w ∈ A2. It is
not clear if the converse of this statement is true, but this may be an interesting
question for further exploration.

Proof of Lemma 4.1. Let Qj be the Calderón–Zygmund decomposition of χE at
height 1

2 . This means that Qj is a collection of disjoint dyadic cubes such that

|χE(x)| ≤ 1

2
for a.e. x /∈

⋃
j

Qj ,

∣∣∣∣⋃
j

Qj

∣∣∣∣ ≤ 2‖χE‖L1 = |E|,

and

1

2
<

1

|Qj |
∫

Qj

χE(x)dx ≤ 2n−1.

The Calderón–Zygmund decomposition is a well-known result in the literature,
see for example [14] for the construction. Then it follows that

E ⊂
⋃
j

Qj and |E| ≤
∑
j

|Qj | ≤ 2|E|.

Let Q∗
j be the dyadic cube with double the side length of Qj containing Qj

and take (x, t) ∈ Ê. Since B(x, t) ⊂ E and Q∗
j �⊂ E, it follows that B(x, t) ⊂

B(x,2
√

n�(Qj )). Then

Ê ⊂
⋃
j

Qj × (
0,2

√
n�(Qj )

]
.

Now dμ(x, t) = F(x, t) dτ(t) dx for some nonnegative F ∈ L1
loc(R

n+1+ ). Using
that dμ is a strong Carleson measure, it follows that

dμw(Ê) ≤
∑
j

dμw

(
(E ∩ Qj) × (

0,2
√

n�(Qj )
])

=
∑
j

∫
E∩Qj

∫ 2
√

n�(Qj )

0
F(x, t) dτ(t)w(x)χQj

(x) dx



394 L. Chaffee, J . Hart, & L. Oliveira

≤ ‖dμ‖SC
∑
j

∫
E∩Qj

w(x)dx

≤ ‖dμ‖SCw(E).

In the last line, we use that E ∩ Qj are disjoint since Qj are disjoint. �

Lemma 4.2. Suppose that dμ(x, t) = F(x, t) dτ(t) dx is a strong Carleson mea-
sure and |φ(x)| � 1/(1 + |x|)N for some N > n. Then for all w ∈ Ap for
1 < p < ∞,(∫

R
n+1+

|φt ∗ f (x)|pw(x)dμ(x, t)

)1/p

� ‖μ‖1/p

SC [w]1/(p−1)
Ap

‖f ‖Lp(w). (4.2)

It is worth noting that this lemma has additional interest outside the scope of our
application since it reproduces a part of the classical characterization of a Car-
leson measure in [3]. The characterization says a nonnegative measure dμ(x, t)

is a Carleson measure if and only if the map f �→ φt ∗ f defines a bounded op-
erator from Lp into Lp(Rn+1+ , dμ(x, t)). It would be interesting to explore if the
converse of Lemma 4.2 as well, but for the purposes of this work, Lemma 4.2
suffices; so we leave it at that.

Proof of Lemma 4.2. Define the nontangential maximal function

Mφf (x) = sup
t>0

sup
|x−y|<t

|φt ∗ f (t)|.

For λ > 0, define

Eλ = {x ∈R
n : Mφf (x) > λ} and Êλ = {(x, t) ∈R

n+1+ : B(x, t) ⊂ Eλ}.
It follows from Lemma 4.1 that μw(Êλ) ≤ ‖μ‖SCw(Eλ), where again dμw(x,

t) = w(x)dμ(x, t). Therefore,∫
R

n+1+
|φt ∗ f (x)|pw(x)dμ(x, t)

= p

∫ ∞

0
λpμw({(x, t) ∈ R

n+1+ : |φt ∗ f (x)| > λ}) dλ

λ

≤ p

∫ ∞

0
λpμw(Êλ)

dλ

λ

≤ p‖μ‖SC
∫ ∞

0
λpw(Eλ)

dλ

λ

= ‖μ‖SC
∫
Rn

Mφf (x)pw(x)dx

� ‖μ‖SC[w]p/(p−1)
Ap

‖f ‖p

Lp(w).

Here we use as before that |φt ∗ f (x)| � Mf (x) and ‖Mf ‖Lp(w) � [w]1/(p−1)
Ap

×
‖f ‖Lp(w). �
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Proposition 4.3. Suppose that θt satisfies (1.4) and (1.5). If �t satisfies the
strong Carleson condition, then S satisfies (1.6) for all w

pi

i ∈ Api
and 1 <

p1, . . . , pm < ∞ satisfying (2.1) with p = 2, where w = w1 · · ·wm. Furthermore,
the constant for this bound is at most a constant independent of w1, . . . ,wm times

Cm,w1,...,wm,p1,...,pm =
m∏

i=1

(1 + [wpi

i ]max(1,p′
i /pi )+max(1/2,p′

i /pi )

Api
)

+ ‖dμ‖m/2
SC

m∏
i=1

[wpi

i ]p′
i /pi

Api
. (4.3)

Proof. Define Rt = �t − M�t(1,...,1)Pt and Ut = M�t(1,...,1)Pt . Then Rt satisfies
(1.4), (1.5), and in addition Rt(1, . . . ,1) = 0 for all t > 0. Then by Theorem 2.5
it follows that∥∥∥∥

(∫ ∞

0
|Rt(f1, . . . , fm)|2 dt

t

)1/2∥∥∥∥
Lp(wp)

�
m∏

i=1

‖fi‖Lpi (w
pi
i )

.

Now we turn to the Ut term. Define dμ(x, t) = |�t(1, . . . ,1)|2 dt dx
t

, and let
w

pi

i ∈ Api
with 1 < p1, . . . , pm < ∞ satisfying (2.1) and p = 2, Then it follows

that ∥∥∥∥
(∫ ∞

0
|Ut(f1, . . . , fm)|2 dt

t

)1/2∥∥∥∥2

L2(w2)

=
∫
R

n+1+

( m∏
i=1

|Ptfi(x)|wi(x)

)2

dμ(x, t)

≤
m∏

i=1

(∫
R

n+1+
|Ptfi(x)|pi wi(x)pi dμ(x, t)

)2/pi

� ‖dμ‖m
SC

m∏
i=1

[wpi

i ]2/(pi−1)
Api

‖fi‖2
Lpi (w

pi
i )

.

The final inequality holds by Lemma 4.2. The first term in the constant (4.3) is
from the bound of Rt by Theorem 2.5, and the second term is from the bound of
Ut above. �

These results almost complete the proof of Theorem 1.1, except for a minor issue
with fi ∈ Lpi (w

pi

i )∩Lpi and applying weight extrapolation. Propositions 3.4 and
3.5 verify the equivalence of (i) and (ii) from Theorem 1.1. By Proposition 3.4,
(i) implies that S satisfies (1.6) for all w

pi

i ∈ Api
with 1 < p1, . . . , pm and p = 2

for fi ∈ Lpi (w
pi

i ) ∩ Lpi . In order to conclude boundedness for all Lpi (w
pi

i ), we
make a short density argument and apply the extrapolation theorem of Grafakos
and Martell [16] to complete the proof of Theorem 1.1. We will use a lemma to
prove this.



396 L. Chaffee, J . Hart, & L. Oliveira

Lemma 4.4. If w ∈ Ap and 1 < p < ∞, then 1/(d + |x0 − ·|)n ∈ Lp(w) for any
x0 ∈R

n and d > 0.

Proof. We start by noting that, for any x ∈R
n,

MχB(x0,d)(x) ≥ 1

|B(x, |x − x0| + d)|
∫

B(x,|x−x0|+d)

χB(0,d)(x) dx

= |χB(x0,d)(x)|
|B(x, |x − x0| + d)| = dn

(d + |x − x0|)n .

Then it follows that(∫
Rn

1

(d + |x − x0|)np w(x)dx

)1/p

≤ d−n‖MχB(x0,d)‖Lp(w) � ‖χB(x0,d)‖Lp(w)

< ∞.

Here we use the Hardy–Littlewood maximal operator bound on Lp(w) and that
w ∈ L1

loc. �

Proof of Theorem 1.1. First, we restrict to the case p = 2 and take fi ∈ Lpi (w
pi

i )

and fi,k ∈ Lpi (w
pi

i ) ∩ Lpi with fi,k → fi in Lpi (w
pi

i ) as k → ∞. It follows that
f1,k ⊗ · · · ⊗ fm,k → f1 ⊗ · · · ⊗ fm as k → ∞ in the weighted product Lebesgue
space Lp1(w

p1
1 ) · · ·Lpm(w

pm
m ). For all x ∈R

n,

|�t(f1, . . . , fm)(x) − �t(f1,k, . . . , fm,k)(x)|
≤

∫
Rmn

|θt (x, y1, . . . , ym)||f1(y1) · · ·fm(ym) − f1,k(y1) · · ·fm,k(ym)|dy

≤
m∏

i=1

tN−n

(∫
Rn

wi(yi)
−p′

i dyi

(t + |x − yi |)p′
iN

)1/p′
i

× ‖f1 ⊗ · · · ⊗ fm − f1,k ⊗ · · · ⊗ fm,k‖Lp1 (w
p1
1 )···Lpm(w

pm
1 )

,

which tends to zero as k → ∞ almost everywhere since w
pi

i ∈ Api
implies that

w
−p′

i

i ∈ Ap′
i

and so the first term is finite almost everywhere by Lemma 4.4. There-
fore, �t(f1,k, . . . , fm,k) → �t(f1, . . . , fm) pointwise as k → ∞ for a.e. x ∈ R

n

and t > 0. Then by Fatou’s lemma

‖S(f1, . . . , fm)‖2
L2(w2)

=
∫
Rn

∫ ∞

0
lim

k→∞|�t(f1,k, . . . , fm,k)(x)|2 dt

t
w(x)2 dx

≤ lim inf
k→∞

∫
Rn

∫ ∞

0
|�t(f1,k, . . . , fm,k)(x)|2 dt

t
w(x)2 dx

≤ Cn,m,w1,...,wm,p1,...,pm lim inf
k→∞

m∏
i=1

‖fi,k‖2
Lpi (w

pi
i )

= Cn,m,w1,...,wm,p1,...,pm

m∏
i=1

‖fi‖2
Lpi (w

pi
i )

.
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Therefore, S satisfies (1.6) for all 1 < p1, . . . , pm < ∞ satisfying (2.1) with p =
2, for all w

pi

i ∈ Api
, and for all fi ∈ Lpi (w

pi

i ). We complete the proof by applying
the multilinear extrapolation theorem of Grafakos and Martell [16], which we
state now.

Theorem 4.5 (Grafakos–Martell [16]). Let 1 ≤ q1, . . . , qm < ∞ and 1/m ≤ q <

∞ be fixed indices that satisfy (2.1), and T be an operator defined on Lq1(w
q1
1 )×

· · ·×Lqm(w
qm
m ) for all tuples of weights w

qi

i ∈ Aqi
. We suppose that for all B > 1,

there is a constant C0 = C0(B) > 0 such that for all tuples of weights w
qi

i ∈ Aqi

with [wqi

i ]Aqi
≤ B and all functions fi ∈ Lqi (w

qi

i ), T satisfies

‖T (f1, . . . , fm)‖Lq(wq) ≤ C0

m∏
i=1

‖fi‖Lqi (w
qi
i )

.

Then for all indices 1 < p1, . . . , pm < ∞ and 1/m < p < ∞ that satisfy (2.1),
all B > 1, and all weights w

pi

i ∈ Api
with [wpi

i ]Api
< B , there is a constant

C = C(B) such that for all fi ∈ Lpi (w
pi

i ),

‖T (f1, . . . , fm)‖Lp(wp) ≤ C

m∏
i=1

‖fi‖Lpi (w
pi
i )

.

Fix q1 = · · · = qm = 2m and q = 2. Then we have just proved that for all B > 1
and w

qi

i ∈ Aqi
with [wqi

i ]Aqi
≤ B ,

‖S(f1, . . . , fm)‖L2(w2) ≤ Cn,m,q1,...,qmCm,n,p1,...,pm,w1,...,wm

m∏
i=1

‖fi‖Lqi (w
qi
i )

,

where Cm,n,w1,...,wm,q1,...,qm is defined in (4.3). Since Cm,n,w1,...,wm,q1,...,qm is an
increasing sum of power functions of [wqi

i ]Aqi
, one can define C0(B) by replacing

the weight constants with B in (4.3) times a constant independent of the weights:

C0(B) = Cn,m,q1,...,qm

[ m∏
i=1

2Bmax(1,1/(qi−1))+max(1/2,1/(qi−1))

+ ‖μ‖m/2
SC

m∏
i=1

B1/(qi−1)

]
,

which verifies the hypotheses of Theorem 4.5 for S. Therefore, for all B > 1,
there exists C depending on B,n,m,q1, . . . , qm such that

‖S(f1, . . . , fm)‖Lp(wp) ≤ C

m∏
i=1

‖fi‖Lpi (w
pi
i )

for all 1 < p1, . . . , pm < ∞, w
pi

i ∈ Awi
with [wpi

i ]Api
≤ B , and fi ∈ Lpi (w

pi

i ).
�

We now prove Theorem 1.2.



398 L. Chaffee, J . Hart, & L. Oliveira

Proof of Theorem 1.2. The implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) have already
been proved in a more general context. So it is sufficient to show that (i) ⇒ (iv).
Since θt (x, y1, . . . , ym) = t−mn�t(t−1(x − y1), . . . , t

−1(x − ym)), it follows that
�t(1, . . . ,1)(x) is constant in x: for all x ∈R

n,

�t(1, . . . ,1)(x) =
∫
Rmn

t−mn�t(t−1(x − y1), . . . , t
−1(x − ym)) dy

=
∫
Rmn

�t (y1, . . . , ym)dy = F(t),

where we take the last line here as the definition of F . But we have assumed
that �t satisfies the Carleson condition, and hence |F(t)|2 dt

t
dx is a Carleson

measure. The strong Carleson condition follows: for all cubes Q ⊂ R
n,∫ �(Q)

0
|�t(1, . . . ,1)(x)|2 dt

t
= 1

|Q|
∫

Q

∫ �(Q)

0
|F(t)|2 dt

t
dx � 1.

If we assume also that �t = � is constant in t , then it follows that F(t) = c0 is a
constant function. But then |c0|2 dt

t
dx is a Carleson measure and hence integrable

on Q × (0, �(Q)] for all cubes Q ⊂ R
n. This forces c0 = 0 when �t is constant

in t , which completes the proof. �
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