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The Space of Generalized G2-Theta
Functions of Level 1

Chloé Grégoire & Christ ian Pauly

1. Introduction

Let C be a smooth projective complex curve of genus g ≥ 2. For a complex semi-
simple Lie group G we denote by M(G) the moduli stack of principal G-bundles
over C. If G is simply connected, then the Picard group of the stack M(G) is infi-
nite cyclic and we denote by L its ample generator. The finite-dimensional vector
spaces of global sections H 0(M(G), L⊗ l), the so-called spaces of generalized
G-theta functions or Verlinde spaces of level l, have been intensively studied from
different perspectives—for example, gauge theory, mathematical theory of con-
formal blocks, and quantization. Note that much of the literature deals with the
vector bundle case G = SL r .

In this paper we study the Verlinde space H 0(M(G2), LG2 ) for the smallest
exceptional Lie group G2 and at level 1. The starting point of our investigation
is the striking numerical relation between the dimensions of the Verlinde spaces
for G2 at level 1 and for SL2 at level 3:

dimH 0(M(G2), LG2 ) = 1

2g
dimH 0(M(SL2), L⊗3

SL2
)

=
(

5 + √
5

2

)g−1

+
(

5 − √
5

2

)g−1

. (1)

These dimensions are computed by the Verlinde formula (see e.g. [B3, Cor. 9.8]).
It turns out that linear maps between these Verlinde spaces arise in a natural way
by restricting to some distinguished substacks in M(G2). The group G2 contains
the subgroups SL3 and SO4 as maximal reductive subgroups of maximal rank.
These group inclusions induce maps

i : M(SL3) → M(G2) and j : M(SL2)× M(SL2) → M(G2)

via the étale double cover SL2 × SL2 → SO4.

Our main results include the following two theorems.

Theorem I. For any smooth curve C of genus g ≥ 2, the linear map obtained
by pull-back by the map j of global sections of LG2 ,

j ∗ : H 0(M(G2), LG2 ) → [H 0(M(SL2), L⊗3
SL2

)⊗H 0(M(SL2), LSL2 )]0,

is an isomorphism.
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Theorem II. For any smooth curve C of genus g ≥ 2 without vanishing theta-
null, the linear map obtained by pull-back by the map i of global sections of LG2 ,

i∗ : H 0(M(G2), LG2 ) → H 0(M(SL3), LSL3)+ ,

is surjective.

The subscripts 0 and + denote subspaces of invariant sections for (respectively)
the group of 2-torsion line bundles over C and for the duality involution.

The first example of isomorphism between Verlinde spaces was given in [B1]
for the embedding C

∗ ⊂ SL2 at level 1. More recently, the rank-level dualities
have yielded series of isomorphisms between Verlinde spaces (and their duals) for
special pairs of structure groups. In this context, Theorem I can be viewed as a
new example.

Most of the constructions presented in this paper are valid for the coarse mod-
uli spaces of semi-stable G-bundles over C. However, the generator LG2 of the
Picard group of the moduli stack M(G2) does not descend [LS] to the moduli
space M(G2) because the Dynkin index of G2 is 2. This forces us to use the mod-
uli stack.

Theorem I has an application to the flat projective connection on the bundle of
conformal blocks associated to the Lie algebra g2 at level 1. Let π : C → S be a
family of smooth projective curves, and consider the vector bundle V

∗
1 (g2) over S

whose fiber over the curve C = π−1(s) equals the conformal block V ∗
1 (g2). Note

that this conformal block is canonically (up to homothety) isomorphic to our space
H 0(M(G2), LG2 ) by the general Verlinde isomorphism [LS]. By [U] the vector
bundle V

∗
1 (g2) is equipped with a flat projective connection, the so-called WZW

(Wess–Zumino–Witten) connection. Then we have the following statement.

Corollary. There exist families of smooth curves of any genus g ≥ 2 for which
the projective monodromy representation of the projective WZW connection on
V

∗
1 (g2) has infinite image.

In Section 2 we review the properties of the exceptional group G2 and of its sub-
groups as well as some results on the Verlinde spaces for SL2 at low levels. In
Section 3 we prove the main results just stated.

Acknowledgments. Some of the results of this paper are contained in the first-
named author’s Ph.D. thesis. We would like to thank the referee for useful com-
ments on the first version and in particular for drawing our attention to the paper [A].
We also thank Laurent Manivel and Olivier Serman for useful discussions during
the preparation of this paper.

2. Moduli Spaces and Moduli Stacks
of Principal G2-Bundles

In this section we review some results on the exceptional group G2 and on the
moduli of principal G2-bundles over a smooth projective curve C.
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2.1. The Exceptional Group G2 and Its Rank 2 Subgroups

The complex exceptional group G2 is given by one of the following equivalent
definitions (see e.g. [Br, Sec. 2, Thm. 3]):

• as the automorphism group G2 = Aut(O) of the complex 8-dimensional Cay-
ley algebra or algebra of octonions O (see e.g. [Ba]);

• as the connected component of the stabilizer in GL(V ) of a nondegenerate alter-
nating trilinear form ω : �3V → C on a complex 7-dimensional vector spaceV
(see e.g. [SaKi])

We recall the following facts.

(a) For a generic trilinear form ω we have StabGL(V )(ω) = G2 × µ3 and
StabSL(V )(ω) = G2. Note that nondegenerate alternating forms constitute
the unique dense GL(V )-orbit in �3V ∗.

(b) For G2 as Aut(O), there is a natural nondegenerate G2-invariant trilinear form
on the space of purely imaginary octonionsV = Im(O) given by ω(x, y, z) =
Re(xyz) as well as a nondegenerate symmetric G2-invariant bilinear form
given by q(x, y) = Re(xy); this shows that G2 is a subgroup of SO7.

(c) The complex Lie group G2 is both connected and simply connected; also, it
has no center and is of dimension 14.

According to [BoD], the group G2 has (up to conjugation) two maximal Lie sub-
groups of maximal rank—that is, of rank 2—which are of respective types A2 and
A1 × A1. Because we could not find a reference in the literature, for the reader’s
convenience we provide next an explicit realization of these two subgroups in G2.

SL3 ⊂ G2

Consider a nondegenerate alternating trilinear form ω ∈ �3V ∗ and define G2 =
StabSL(V )(ω). We associate to ω the quadratic form

qω : Sym2 V → C, qω(x, y) = Lxω ∧ Lyω ∧ ω ∈�7V ∗ ∼= C,

where Lx : �3V ∗ → �2V ∗ denotes the contraction operator with the vector x ∈V.

Note thatω is nondegenerate if and only if qω is nondegenerate. We now choose
a 3-dimensional subspace W ⊂ V such that W is isotropic for qω and such that
the restriction ω0 = ω|W �= 0. The following proposition describes SL3 as a sub-
group of G2.

Proposition 2.1. With notation as before, we have

SL3 = StabG2(W ) = {g ∈ G2 | g(W ) = W }.
More precisely, the subspace W ⊂ V induces a natural decomposition

V =W ⊕�2W ⊕ C, (2)

which coincides with the decomposition of V as an SL3-module.

Proof. We consider the composite map

ι : �2W ↪→ �2V
Lω−→ V ∗,
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where Lω is contraction with ω ∈ �3V ∗. Composing further with the projection
V ∗ → W ∗, we obtain the isomorphism �2W ∼−→W ∗ induced by the nonzero re-
stricted form ω0. Hence ι is injective and we also denote by �2W ⊂ V its image
in V, which we identify with V ∗ via the nondegenerate quadratic form qω. Next
we observe that W ∩ �2W = {0}, since the composite map W → V ∗ → W ∗ is
zero (because W is isotropic). This shows that W ⊕ �2W is a hyperplane in V.
We then take the orthogonal complement to obtain the decomposition (2). Ob-
serve that any g ∈ StabG2(W ) also preserves the subspace �2W ⊂ V and hence
the decomposition (2) as well. Moreover, since g(ω0) = ω0, it follows that g ∈
SL3 = SL(W ) and so StabG2(W ) ⊂ SL3. The action of G2 on the Grassman-
nian of isotropic subspacesW ⊂ V is of dimension 6; hence dim StabG2(W ) ≥ 8,
which leads to the equality StabG2(W ) = SL3.

SO4 ⊂ G2

We need to recall some basic facts on quarternions and octonions. First, the com-
plex octonion algebra O is generated as a C-vector space by the eight basis vectors
e0 = 1, e1, . . . , e7 that satisfy the relations given by the Fano plane (see e.g. [Ba]).
Then the algebra O contains as a subalgebra the complex quaternion algebra H =
C1 ⊕ Ce1 ⊕ Ce2 ⊕ Ce3, and we have the vector space decomposition

O = H ⊕ He4. (3)

Recall that the subgroup U = {p ∈ H | pp̄ = 1} of unit quarternions can be
identified with the complex Lie group SL2 and that there is a surjective group
homomorphism

ϕ : U × U → SO(H) = SO4, ϕ(p, q) = [x �→ pxq̄],

with kernel Z/2 generated by (−1, −1). Using the decomposition (3), we consider
the map

ψ : U × U → SO(O), ψ(p, q) = (ϕ(p,p),ϕ(p, q)).

One easily checks that imψ ⊂ G2 and kerψ = kerϕ, which gives a realization
of SO4 as a subgroup of G2. We also note that the center Z(SO4) is generated
by ϕ(−1, 1) = −IdH and that SO4 is the centralizer of the element ψ(−1, 1) =
(IdH, −IdH)∈ G2 of order 2 (see [BoD]).

2.2. The Moduli Space M(G2) and the Moduli Stack M(G2)

Given the equality StabSL(V )(ω) = G2, a principal G2-bundle EG2 is equivalent to
a rank-7 vector bundle V with trivial determinant equipped with a nondegenerate
alternating trilinear from η : �3V → OC. If we put V = EG2(V ), then the cor-
respondence is given by sending EG2 to (V, η) via the embedding G2 ⊂ SL(V ).

Moreover, it is shown in [Su] thatEG2 is semi-stable if and only if V is semi-stable.
We therefore obtain a map, M(G2) → M(SL7), between coarse moduli spaces of
semi-stable bundles.

Although the embeddings of SL3 and SO4 in G2 are defined only up to conju-
gation, the induced maps between coarse moduli spaces of semi-stable principal
bundles,
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i : M(SL3) → M(G2) and j : M(SL2)× M(SL2) → M(SO4) → M(G2),

are well-defined. We find it more convenient to work with the simply connected
group SL2 × SL2, which is a double cover of the subgroup SO4. Abusing nota-
tion, we also denote by i and j their composites with the map M(G2) → M(SL7).

It follows from our previous description of the subgroups SL3 and SO4 that

i(E) = E ⊕ E∗ ⊕ OC and j(F,G) = End0(F )⊕ F ⊗G. (4)

Here E is an SL3-bundle and F,G are SL2-bundles. Note that i(E) and j(F,G)
are semi-stable if E, F, and G are semi-stable.

Remark. It is shown in [G] that the singular locus of the moduli space M(G2)

coincides with the union of the images i(M(SL3)) ∪ j(M(SO4)).

We also denote by i and j the maps between the corresponding moduli stacks.
Let LG denote the ample generator of the Picard group Pic(M(G)) when G is a
simply connected group.

Lemma 2.2. With notation as before, we have

i∗LG2 = LSL3 and j ∗LG2 = L⊗3
SL2

� LSL2 .

Proof. The lemma follows in a straightforward way from a Dynkin index compu-
tation using the tables in [LS].

We consider the involution σ : M(SL3) → M(SL3) given by taking the dual
σ(E) = E∗. Then the line bundle LSL3 is invariant under the involution σ. We
next consider the linearization σ ∗LSL3

∼−→ LSL3 , which restricts to the identity
over the fixed points of σ, and denote by H 0(M(SL3), LSL3)+ the subspace of
invariant sections.

The group of 2-torsion line bundles JC [2] acts on M(SL2) by tensor product,
and the Mumford group G(LSL2 ) (a central extension of JC [2]) acts linearly on
H 0(M(SL2), LSL2 ) with level 1. The G(LSL2 )-representation

H 0(M(SL2), L⊗3
SL2

)⊗H 0(M(SL2), LSL2 )

is of level 4 and therefore admits a linear JC [2]-action.

Proposition 2.3. The induced maps between Verlinde spaces,

i∗ : H 0(M(G2), LG2 ) → H 0(M(SL3), LSL3)+ and

j ∗ : H 0(M(G2), LG2 ) → [H 0(M(SL2), L⊗3
SL2

)⊗H 0(M(SL2), LSL2 )]0,

take values in the subspace that are invariant under (respectively) the involution
σ and the JC [2]-action.

Proof. First we show that the map i : M(SL3) → M(G2) is σ -invariant. There
is a natural inclusion between Weyl groups W(SL3) ⊂ W(G2). Consider an ele-
ment g ∈ G2 that lifts an element in W(G2) \ W(SL3); then g /∈ SL3. Since the
subalgebra sl3 of g2 corresponds to the long roots and sinceW(G2) preserves the
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Cartan–Killing form, it follows that the inner automorphism C(g) of G2 induced
by g preserves the subgroup SL3. The restriction of C(g) to SL3 is an outer auto-
morphism, which permutes its two fundamental representations. It thus induces
the involution σ on the moduli stack M(SL3). Since any inner automorphism of
G2 induces the identity on the moduli stack M(G2), we obtain that i is σ -invariant.

Because i∗LG2 = LSL3 and i is σ -invariant, the line bundle LSL3 carries a natu-
ral σ -linearization—namely, the one that restricts to the identity over fixed points
of σ. It is now clear that im(i∗) ⊂ H 0(M(SL3), LSL3)+.

The second statement follows immediately from the invariance of j under the
diagonal JC [2]-action on the moduli stack M(SL2)× M(SL2).

2.3. A Family of Divisors in PH 0(M(G2), LG2 )

Let θ(C) and θ+(C) denote, respectively, the set of theta-characteristics and the
set of even theta-characteristics over the curve C. The moduli stack M(SO7) has
two connected components, M+(SO7) and M−(SO7), distinguished by the sec-
ond Stiefel–Whitney class. Since M(G2) is connected, the homomorphism G2 ⊂
SO7 induces a map

ρ : M(G2) → M+(SO7).

For each κ ∈ θ(C) we introduce the Pfaffian line bundle Pκ over M+(SO7) (see
e.g. [BLS, Sec. 5]). We have

ρ∗Pκ = LG2 .

Moreover, for κ ∈ θ+(C) there exists a Cartier divisor ,κ ∈ PH 0(M+(SO7), Pκ)

with support

supp(,κ) = {E ∈ M+(SO7) | dimH 0(C,E(C7)⊗ κ) > 0},
where E(C7) denotes the rank 7 vector bundle associated to E. We also denote
by ,κ ∈ PH 0(M(G2), LG2 ) the pull-back ρ∗(,κ) to M(G2). We will show
later (Corollary 3.2) that the family of divisors {,κ}κ∈θ+(C) spans the linear sys-
tem PH 0(M(G2), LG2 ). Abusing notation, we also use ,κ to denote a section of
H 0(M(G2), LG2 ) vanishing at the divisor ,κ.

2.4. Verlinde Spaces for SL2 at Levels 1, 2, and 3

Let Vn = H 0(M(SL2), L⊗n
SL2

) for n ≥ 1. We shall review some results from [B2]
describing special bases of the vector spaces V1 ⊗V1 and V2.

Recall that the Mumford group G(LSL2 ) acts linearly on the space Vn with
level n; that is, the center C

∗ ⊂ G(LSL2 ) acts via λ �→ λn. For n odd, there exists a
unique (up to isomorphism) irreducible G(LSL2 )-module Hn of level n. Note that
dimHn = 2g. If n is divisible by 4, then any G(LSL2 )-module Z of level n admits
a linear JC [2]-action. We denote by Z0 the JC [2]-invariant subspace of Z.

We now present the results needed for the proof of Theorem II.

Lemma 2.4. We have

dim(V1 ⊗V3)0 = 1

|JC [2]| dimV1 ⊗V3.
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Proof. By the general representation theory of Heisenberg groups, the G(LSL2 )-
module V1 ⊗ V3 decomposes into a direct sum of factors that are all isomorphic
to H1 ⊗ H3. It is then straightforward to show that the space of JC [2]-invariants
(H1 ⊗H3)0 is 1-dimensional.

Proposition 2.5 [B2]. The two G(LSL2 )-modules V1 ⊗ V1 and V2 of level 2
decompose as direct sums of 1-dimensional character spaces for G(LSL2 ):

V1 ⊗V1 =
⊕

κ∈θ(C)
Cξκ , V2 =

⊕
κ∈θ+(C)

Cdκ .

The supports of the zero divisors Z(dκ) and Z(ξκ) may be written as follows:

suppZ(dκ) = {E ∈ M(SL2) | dimH 0(C, End0(E)⊗ κ) > 0};
suppZ(ξκ) = {(E,F )∈ M(SL2)× M(SL2) | dimH 0(C,E ⊗ F ⊗ κ) > 0}.

Moreover, if C has no vanishing theta-null then ξκ is mapped to dκ by the multi-
plication map V1 ⊗V1 → V2.

Proposition 2.6 [A]. For a general curve, the multiplication map of global
sections

µ : V1 ⊗V2 → V3

is surjective.

3. Proof of the Main Results

In this section we give the proof of the two theorems and of the corollary stated in
the Introduction.

3.1. Proof of Theorem I

The first step is to show that the two spaces appearing at either end of the map j ∗
have the same dimension. The dimension of the space on the right-hand side is
computed by means of Lemma 2.4. The statement then follows from (1) and the
equalities dimV1 = 2g and |JC [2]| = 22g.

The next step is to show that j ∗ is surjective for a general curve, which will
imply (by the first step) that j ∗ is an isomorphism for a general curve. Consider
the map

α : V1 ⊗V1 ⊗ V2 → V1 ⊗V3, u⊗ v ⊗ w �→ u⊗ µ(v ⊗ w),

where µ is the multiplication map introduced in Proposition 2.6. By that propo-
sition, α is surjective for a general curve; hence its restriction to the subspace of
JC [2]-invariant sections, α0 : (V1 ⊗V1 ⊗V2)0 → (V1 ⊗V3)0, remains surjective.
It is then easy to deduce that the family of tensors {ξκ ⊗ dκ}κ∈θ+(C) forms a basis
of (V1 ⊗V1 ⊗V2)0.

We will use the family of divisors {,κ}κ∈θ+(C) introduced in Section 2.3.
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Lemma 3.1. For all κ ∈ θ+(C) we have the equality (up to a scalar )

j ∗(,κ) = α0(ξκ ⊗ dκ).

Proof. Using the description of j given in (4) together with the description of
divisors Z(dκ) and Z(ξκ) given in Proposition 2.5, we obtain the following de-
composition as a divisor in M(SL2)× M(SL2):

j ∗(,κ) = pr∗
1 Z(dκ)+ Z(ξκ);

here pr1 is the projection onto the first factor. This equality establishes the lemma.

We can now derive surjectivity (for a general curve). Since {ξκ ⊗ dκ}κ∈θ+(C) forms
a basis of (V1 ⊗ V1 ⊗ V2)0 and since α0 is surjective, by Lemma 3.1 the family
{j ∗(,κ)}κ∈θ+(C) generates (V1 ⊗V3)0.

We complete the proof by showing that j ∗ is an isomorphism for every smooth
curve. We follow [LS] and identify any semi-simple, simply connected complex
Lie group G of the Verlinde space H 0(M(G), L⊗ l

G ) with the space of conformal
blocks V ∗

l (g) at level l, where g is the Lie algebra of G, for the two cases G = G2

and G = SL2 × SL2. Then [Be, Prop. 5.2] shows functoriality of the above iso-
morphism under group extensions. So in our case of SL2 × SL2 → G2, the linear
map j ∗ can be identified with the natural map

βC : V ∗
1 (g2) → V ∗

3(sl2)⊗ V ∗
1 (sl2).

We can define this linear map for a family of smooth curves π : C → S as fol-
lows. By [U], there exist vector bundles of conformal blocks over the base S and
a homomorphism β that specializes over a point s ∈ S to the linear map βπ−1(s).

These vector bundles are equipped with flat projective connections (the WZW
connections).

Now observe that, by direct computation, the Lie algebra embedding sl2⊕sl2 ⊂
g2 is conformal. We can then use [Be, Prop. 5.8] to show that the map β is pro-
jectively flat for the two WZW connections, so its rank is constant in the family
π : C → S. Because the previous step established that βC is injective for a gen-
eral curve C (note that we do not take JC [2]-invariants on the conformal blocks),
we conclude that β is injective for any smooth curve. Hence j ∗ is an isomorphism
for any curve, which completes the proof of Theorem I.

The foregoing proof leads immediately to our next result.

Corollary 3.2. For a general curve, the family {,κ}κ∈θ+(C) linearly spans
PH 0(M(G2), LG2 ).

Remark. Note that Hitchin’s connection [H] is defined only on the vector bun-
dle with fiber H 0(M(G2), L⊗2

G2
). Thus we obtain a connection for G2 at level 1

only by virtue of the isomorphism with the bundle of conformal blocks.

3.2. Proof of Theorem II

We consider the family of divisors {,κ}κ∈θ+(C) of PH 0(M(G2), LG2 ) introduced
in Section 2.3. A straightforward computation shows that i∗(,κ) = Hκ , where
Hκ ∈ PH 0(M(SL3), L)+ is the divisor with support
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supp(Hκ) = {E ∈ M(SL3) | dimH 0(C,E ⊗ κ) > 0}.
Therefore, to show surjectivity of i∗ it is enough to show that the family {Hκ}κ∈θ+(C)
linearly spans PH 0(M(SL3), L)+. This is done as follows.

We introduce the Riemann Theta divisor

7 = {L∈ Picg−1(C) | dimH 0(C,L) > 0}
in the Picard variety Picg−1(C) parameterizing degree g − 1 line bundles over C.
Recall from [BNR] that there is a canonical isomorphism

H 0(Picg−1(C), 37)∗ ∼−→H 0(M(SL3), L), (5)

which is invariant for the two involutions—respectively, L �→ KC ⊗ L−1 on
Picg−1(C) and σ on M(SL3). We thus obtain an isomorphism between subspaces
of invariant divisors |37|∗+ ∼= PH 0(M(SL3), L)+. It is easy to check that Hκ =
ϕ37(κ) via this isomorphism, where

ϕ37 : Picg−1(C) ��� |37|∗+
is the rational map given by the linear system |37|+. In order to show that the fam-
ily of points {ϕ37(κ)}κ∈θ+(C) linearly spans |37|∗+ , we factorize the map ϕ37 as

ϕ47 : Picg−1(C) ��� |47|∗+ ��� |37|∗+;
here the first map is the rational map given by the linear system |47|∗+ and the

second is the projection induced by the inclusion H 0(37)+
+7−−→ H 0(47)+.

The result then follows from the main statement in [KPSe], according to which
{ϕ47(κ)}κ∈θ+(C) is a projective basis of |47|∗+ provided C has no vanishing theta-
null. This completes the proof of Theorem II.

Remark. For a curve of genus 2, we observe that both spaces have the same di-
mension. So in that case, i∗ is an isomorphism (note that any genus 2 curve is
without vanishing theta-null).

3.3. Proof of Corollary

The statement of the corollary is proved in [LPS] for the conformal block
V ∗

3(sl2) = H 0(M(SL2), L⊗3
SL2

). We observed in the proof of Theorem I that
the vector bundle map β is projectively flat for the WZW connections; hence it
suffices to prove the statement for the JC [2]-invariants of V ∗

3(sl2) ⊗ V ∗
1 (sl2),

which follows from [Be, Cor. 4.2].

4. Remarks

In this section we collect some additional computations.

4.1. Verlinde Formula for l = 2 and g = 2. Here we simply record compu-
tation of the Verlinde number dimH 0(M(G2), L2) = 30. Since the line bundle
L2 descends to the coarse moduli space M(G2), we obtain a rational θ -map
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θ : M(G2) → |L2|∗ = P
29.

See [B4] for results concerning the θ -map on a genus 2 curve for vector bundles
of small rank.

4.2. Analogue for the Exceptional Group F4. There is a similar coinci-
dence for the conformal embedding of Lie algebras sl(2) ⊕ sp(6) ⊂ f4. In
fact, we observe that dimH 0(M(F4), LF4) = dimH 0(M(G2), LG2 ) and that
dimH 0(M(Sp6), LSp6) = dimH 0(M(SL2), L⊗3

SL2
); this is known as the sym-

plectic strange duality. Moreover, ker(SL2 × Sp6 → F4) = Z/2. These facts
suggest a similar isomorphism for the Verlinde space H 0(M(F4), LF4), but the
method presented in this paper does not apply to that case.
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