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Local Dynamics of Holomorphic Maps
in C2 with a Jordan Fixed Point

Feng Rong

1. Introduction

Many authors have studied the local dynamics of holomorphic maps in Cn around
a fixed point; see, for example, [4; 6] for an introduction to this field and known
results. Most of the results are obtained under the assumption that the linear part
of the map at the fixed point is diagonalizable. There are few results in the non-
diagonalizable case. In [8], Coman and Dabija studied a special map with a Jordan
fixed point and described its stable and unstable manifolds. In [1], Abate provided
a systematic way of diagonalizing a map with a Jordan fixed point and proved
several results under certain assumptions. In [2], Abate showed the existence of
“parabolic curves” for holomorphic maps in C2 with an isolated Jordan fixed point.
In [3], Abate studied a special map with a Jordan fixed point and proved the exis-
tence of an attracting domain under certain conditions. The aim of this paper is to
provide a detailed study of the local dynamics of holomorphic maps in C2 with a
Jordan fixed point.

Let f be a holomorphic map in C2 with a Jordan fixed point. In suitable local
coordinates (z,w), f can be written as

z1 = λ(z + w + p2(z,w) + p3(z,w) + · · · ),
w1 = λ(w + q2(z,w) + q3(z,w) + · · · ) (1.1)

if λ �= 0 and as
z1 = w + p2(z,w) + p3(z,w) + · · · ,
w1 = q2(z,w) + q3(z,w) + · · · (1.2)

if λ = 0. Here pi(z,w) and qi(z,w) are homogeneous polynomials of degree i.

If |λ| �= 1 then we say that f has a hyperbolic Jordan fixed point. If |λ| = 1 and
λ is not a root of unity, then we say that f has an elliptic Jordan fixed point. If
λ is a root of unity, then we say that f has a parabolic Jordan fixed point and we
can consider a suitable iteration of f instead. Thus we will assume that λ = 1 in
the parabolic case.
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In analogy to the one-dimensional case, many authors have studied the exis-
tence of “parabolic curves” in higher dimensions (see Section 2 for the definition).
Our detailed study of the local dynamics of holomorphic maps in C2 with a Jordan
fixed point can be summarized as follows.

Theorem 1.1. Let f be a holomorphic map in C2 with a Jordan fixed point. Then
the following statements hold.

(1) If f has an elliptic Jordan fixed point, then f has no parabolic curves.
(2) If f has a nonisolated parabolic Jordan fixed point, then f may or may not

have parabolic curves and f has no attracting domains.
(3) If f has an isolated parabolic Jordan fixed point, then f always has parabolic

curves but f may or may not have attracting domains.
(4) If f has a hyperbolic Jordan fixed point, then f or f −1 always has an attract-

ing domain.

In Section 2 we recall some basic definitions and results in local holomorphic
dynamics. The hyperbolic case is quite easy and is dealt with in Section 6. The
elliptic case is taken care of in Section 5. The parabolic case is quite involved; we
study that case in Sections 3 and 4, where we also make more precise the state-
ments (2) and (3) in Theorem 1.1.

Remark 1.2. If λ �= 0, then the iteration of f reads as

zn = λn(z + nw + p̃2(z,w) + p̃3(z,w) + · · · ),
wn = λn(w + q̃2(z,w) + q̃3(z,w) + · · · ).

From the linear part it is easy to see that if (zn,wn) goes to (0, 0) then [zn : wn]
goes to [1 : 0]. Thus the “attracting” dynamics of f is concentrated in the direc-
tion [z : w] = [1 : 0]. In particular, this justifies blowing up f in the direction
[1 : 0] in the nonhyperbolic case.

2. Preliminaries

Let f(z,w) = (f1(z,w), f2(z,w)) be a holomorphic map tangent to the iden-
tity at the origin O; that is, f1(z,w) = z + p2(z,w) + · · · and f2(z,w) =
w+q2(z,w)+· · · . The order ν of f at O is by definition the minimum of i such
that either pi(z,w) �≡ 0 or qi(z,w) �≡ 0. A direction [z : w] is called a character-
istic direction of f if there exists a λ∈ C such that pν(z,w) = λz and qν(z,w) =
λw. If λ �= 0 then [z : w] is said to be nondegenerate, and otherwise it is said to
be degenerate. If pν(z,w) = zr(z,w) and qν(z,w) = wr(z,w) for some r(z,w)

then f is said to be dicritical at O, and otherwise it is said to be nondicritical.
A parabolic curve for f at O is the image of an injective analytic disc ϕ : � →

C2 (where � is the unit disc in C) such that ϕ is continuous up to the boundary of
�, O = ϕ(1), f(ϕ(�)) ⊂ ϕ(�), and for any p ∈ ϕ(�) we have limn→∞ f n(p) =
O. Moreover, ϕ is said to be tangent to a direction [v] ∈ P1 at O if [ϕ(t)] → [v]
for t → 1. Here [·] denotes the canonical projection of C2 onto P1.
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Theorem 2.1 [9, Thm. 1.3]. Let f be a holomorphic map in C2 tangent to the
identity at O of order ν. If [v] is a nondegenerate characteristic direction of f ,
then there exist at least ν − 1 parabolic curves at O that are tangent to the direc-
tion [v].

Assume that f has a nondegenerate characteristic direction [v]. After a linear trans-
formation, we can assume that [v] = [1 : 0] and f can be written as

z1 = z + Pν(z,w) + O(ν + 1),

w1 = w + Qν(z,w) + O(ν + 1)

with [P(1, 0) : Q(1, 0)] = λ[1 : 0] for some λ �= 0. Under the blow-up {z = u,
w = uv}, the blow-up map is given by

u1 = u + uνPν(1, v) + O(uν+1),

v1 = v + uν−1R(v) + O(uν),

where R(v) = Qν(1, v) − vPν(1, v). The director of f in the direction [v] is de-
fined to be R ′(0)/Pν(1, 0), which is an invariant (cf. [9, Prop. 2.4]).

Write R(v) = ∑ν+1
i=1 aiv

i. Note that ai = 0 for all 1 ≤ i ≤ ν +1 if and only if f
is dicritical at O. If f is nondicritical at O, then the nondicritical order of f at O
is defined to be

µ := min{i − 1 : ai �= 0, 1 ≤ i ≤ ν + 1},
which is also an invariant (cf. [13, Lemma 2.1]).

Theorem 2.2 [9, Thm. 5.1; 13, Thm. 1.5]. Let f be a holomorphic map in C2

tangent to the identity at O, let [v] be a nondegenerate characteristic direction of
f , and let α be the director in the direction [v]. Then f admits an attracting do-
main at O tangent to the direction [v] if and only if Re α > 0 or µ ≥ 1 (in which
case α = 0).

3. Nonisolated Parabolic Jordan Fixed Point

If f has a nonisolated parabolic Jordan fixed point, then under the normal form
(1.1) the curve of fixed points is given by {w + g(z,w) = 0}, where g(z,w) =
O(2), and f can be written as

z1 = z + (w + g(z,w))(1 + p(z,w)),

w1 = w + (w + g(z,w))q(z,w).

Note that the curve of fixed points is nonsingular. Under the transformation w →
w + g(z,w), the curve of fixed points becomes {w = 0} and f can be written in
the following normal form:

z1 = z + w(1 + P(z,w)),

w1 = w + wQ(z,w).
(3.1)
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Under the blow-up {z = u, w = uv}, the blow-up map f̃ is given by

u1 = u + uv(1 + uP̃(u, v)),

v1 = v − v2 + uv(Q̃(u, v) − vR̃(u, v)),
(3.2)

where P̃(u, v) = P(u, uv)/u, Q̃(u, v) = Q(u, uv)/u, and R̃(u, v) = P̃(u, v) +
Q̃(u, v) + uP̃(u, v)Q̃(u, v).

Let Q(z,w) = q1(z,w) + q2(z,w) + · · · be the homogeneous expansion of
Q(z,w) and write qi(z,w) = αiz

i + · · · , i ≥ 1. If αi = 0 for i < k and αk �=
0 for some k ≥ 1, then we can blow up k times and the blow-up map f̃ takes the
form

u1 = u + uk−1v(u + O(2)),

v1 = v + uk−1v(−kv + αku + O(2)).
(3.3)

Equations (3.3) have one admissible characteristic direction [(k + 1) : αk], which
is nondegenerate. Thus (by Theorem 2.1) f admits a parabolic curve if αk �= 0
for some k, which is the case if and only if w � Q(z,w).

Remark 3.1. If w | Q(z,w) then we blow up only once and the blow-up map f̃

can be written as
u1 = u + vu(1 + O(u)),

v1 = v + v2(−1 + O(u)).
(3.4)

Thus f̃ is tangential along S := {v = 0} (cf. [5]). Obviously f̃ admits a para-
bolic curve contained in the exceptional divisor {u = 0}, which is the parabolic
curve predicted by [5, Prop. 7.7] (since the “residual index” Ind(f̃ , S,O) is −1).
However, such a parabolic curve is not a parabolic curve for f.

In (3.1), write P(z,w) = p(z)+wP1(z,w) and Q(z,w) = q(z)+wQ1(z,w).

Then, under the transformation z → z − z0, f becomes

z1 = z + w(1 + p(z0) + O(1)),

w1 = w(1 + q(z0) + O(1)).

Thus (z0, 0) is also a parabolic Jordan fixed point of f for all z0 near 0 if and only
if q(z) ≡ 0—that is, w | Q(z,w) or in other words f̃ is tangential along S.

If w � Q(z,w) then we can write f̃ as in (3.3) and so it is nontangential along S.

By the previous paragraph, a result similar to [5, Prop. 7.8] does not even make
sense in our case. This is essentially due to the fact that in [5] a map is nontan-
gential along S if and only if µ = ν ≥ 2 (cf. [5] for the notation), whereas in our
case we have µ = ν = 1.

Assume that αi = 0 for i < k and that αk �= 0 for some k ≥ 1. Then one readily
checks that the director of f̃ in the direction [(k+1) : αk] is −(k+1). Therefore,
by Theorem 2.2, f̃ does not admit attracting domains in the direction [(k + 1) :
αk]; hence f has no attracting domains tangent to the direction [1 : 0] with fi-
nite order. (Here “finite order” means that, after finitely many blow-ups, the strict
transform of an attracting domain or a parabolic curve is no longer tangent to the
direction [1 : 0].)
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Assume now that αi = 0 for all i ≥ 1. Then f̃ can be written as (3.4). Assume
that there exists a parabolic curve or an attracting domain tangent to the direction
[1 : 0] with infinite order. For (un, vn) in the parabolic curve or the attracting do-
main, we have vn = o(un) and un = o(1); hence the dynamics of f̃ is essentially
the same as

u1 = u + vu,

v1 = v − v2.

Thus we have |vn| ∼ 1/n, but then |un+1| ∼ |un||1 + 1/n| > |un|, a contradiction.
In short, we have the following result.

Proposition 3.2. Let f be a holomorphic map in C2 with a nonisolated para-
bolic Jordan fixed point. Then the following statements hold.

(1) The curve of fixed points S is always nonsingular, and f can be written in the
normal form (3.1).

(2) Let f̃ be the blow-up map and denote the strict transform of S by S̃. Then S

is a curve of parabolic Jordan fixed points of f if and only if f̃ is tangential
along S̃.

(3) If f̃ is tangential along S̃, then f has no parabolic curves; if f̃ is nontangen-
tial along S̃, then f has a parabolic curve. In either case, f has no attracting
domains.

4. Isolated Parabolic Jordan Fixed Point

The first part of Theorem 1.1(3) is exactly [2, Cor. 3.2], so in this section we will
focus on the study of attracting domains. In particular, we recover the attracting
domain found by Abate in [3] (see Remark 4.6).

Let f be a holomorphic map in C2 with a parabolic Jordan fixed point. In suit-
able local coordinates (z,w), f can be written as

z1 = z + w + p2(z,w) + p3(z,w) + · · · ,
w1 = w + q2(z,w) + q3(z,w) + · · · . (4.1)

Write p2(z,w) = a11z
2 + a12zw + a22w

2, q2(z,w) = b11z
2 + b12zw + b22w

2,
and

pi(z,w) = αiz
i + δiz

i−1w + ηiz
i−2w2 + · · · ,

qi(z,w) = γiz
i + βiz

i−1w + ρiz
i−2w2 + σiz

i−3w3 + · · · (4.2)

for i ≥ 3.
Under the blow-up {z = u, w = uv}, the blow-up map is given by

u1 = u + uv + u2p2(1, v) + O(u3),

v1 = v − v2 + ur2(v) + u2r3(v) + O(u3),
(4.3)

where ri(v) = (1 − v)qi(1, v) − vpi(1, v) for i ≥ 2.
If b11 �= 0 then, under an additional blow-up {u = st, v = s} and the scaling

t → t/b11, the blow-up map is given by



848 Feng Rong

s1 = s − s2 + st + O(3),

t1 = t − t 2 + 2st + O(3).
(4.4)

Besides [1 : 0] and [0 : 1], (4.4) has one more characteristic direction, [2 : 3],
which is nondegenerate. One readily checks that the director of (4.4) in the di-
rection [2 : 3] is −6. Therefore, by Theorem 2.2, there is no attracting domain
along the only admissible direction [2 : 3] and so (4.4) does not admit attracting
domains.

From now on, we assume that b11 = 0. Then (4.3) is a map tangent to the iden-
tity of the form

u1 = u + uv + a11u
2 + O(3),

v1 = v − v2 + (b12 − a11)uv + γ3u
2 + O(3).

(4.5)

Case a11 = 0
In this case, (4.5) takes the form

u1 = u + uv + O(3),

v1 = v − v2 + b12uv + γ3u
2 + O(3).

(4.6)

Subcase b12 = γ3 = 0
In this subcase, (4.6) takes the form

u1 = u + uv + O(3),

v1 = v − v2 + O(3).
(4.7)

Besides [1 : 0] and [0 : 1], (4.7) has no other characteristic directions.
The only admissible direction [1 : 0] is degenerate, and our next result is obvious.

Lemma 4.1. (4.1) admits an attracting domain when a11 = b11 = b12 = γ3 = 0
if and only if (4.7) admits an attracting domain in the direction [1 : 0].

The following result shows that the statement of Lemma 4.1 is not empty.

Lemma 4.2. Write (4.7) as

u1 = u + uv − p(u) + vO(2),

v1 = v − v(v + q(u)) + v2O(1) + O(uk),
(4.8)

where p(u) = αum +O(um+1) for m ≥ 3, q(u) = βum−1 +O(um), and k ≥ 2m.

If Re α > 0 and Re(β − (m − 1)α) > 0, then (4.8) admits an attracting domain
tangent to the direction [1 : 0].

Proof. Blowing up (4.8) m − 1 times yields

s1 = s − αsm + O(m + 1),

t1 = t − (β − (m − 1)α)sm−1t + O(m + 1).
(4.9)

The lemma then follows from Theorem 2.2.
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Subcase b12 �= 0, γ3 = 0
In this subcase, (4.6) takes the form (after scaling u → u/b12)

u1 = u + uv + O(3),

v1 = v − v2 + uv + O(3).
(4.10)

Besides [1 : 0] and [0 : 1], (4.10) has one more characteristic direction, [2 : 1],
which is nondegenerate. One readily checks that the director of (4.10) in the di-
rection [2 : 1] is −2. Therefore, by Theorem 2.2, there is no attracting domain
along [2 : 1].

The other admissible direction, [1 : 0], is degenerate. Under the linear transfor-
mation {x = v − u, y = v}, (4.10) is transformed as

x1 = x − y2 + O(3),

y1 = y − xy + O(3).
(4.11)

Our next statement follows from the preceding paragraph.

Lemma 4.3. (4.1) admits an attracting domain when a11 = b11 = γ3 = 0 and
b12 �= 0 if and only if (4.10), or equivalently (4.11), admits an attracting domain
in the direction [1 : 0].

The next result shows that the statement of Lemma 3 is not empty.

Lemma 4.4. Write (4.11) as

x1 = x − y2 − p(x) + yO(m),

y1 = y − xy − q(x) + yO(m),
(4.12)

where p(x) = αxm+1 + O(xm+1) and q(x) = βxm+1 + O(xm+2), m ≥ 2. If
Re α > 0, then (4.12) admits an attracting domain tangent to the direction [1 : 0].

Proof. By scaling x → x/a with a = m
√
mα , (4.12) becomes

x1 = x − y2 − 1

m
xm+1 + O(xm+2) + yO(m),

y1 = y − 1

a
xy − β

am+1
xm+1 + O(xm+2) + yO(m).

(4.13)

For 0 < δ � ε small enough, set Vε,δ = {t ∈ C : 0 < |t | < ε, |arg t | < δ}.
Denote by D the open set {(x, y)∈ C2 : x ∈Vε,δ , |y| < |x|(m+1)/2}. We first show
that f̃ (D) ⊂ D, where f̃ is as in (4.13).

From (4.13) we have

xm+1
1 = xm+1

(
1 − m + 1

m
xm − (m + 1)

y2

x
+ O(xm+1) + y

x
O(m)

)
(4.14)

and

y2
1 = y2

(
1 − 2

a
x − 2β

am+1

xm+1

y
+ 1

y
O(xm+2) + O(m)

)
. (4.15)

For (x, y)∈D we can write |y| = |x|γ for some γ = γ (x, y) > (m + 1)/2. If
γ < m then xm+1 = o(xy) and so it follows from (4.14), (4.15), and Re a > 0 that
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|y1|2
|x1|m+1

= |y|2
|x|m+1

∣∣∣∣1 − 2

a
x + m + 1

m
xm + o(xm)

∣∣∣∣ < |y|2
|x|m+1

< 1.

If |y| = |x|γ for some m + 1 > γ ≥ m, then from (4.14) and (4.15) we obtain

|y1|2
|x1|m+1

= |y|2
|x|m+1

|1 + o(1)| = |x|2γ−m−1|1 + o(1)| < 1.

If |y| = |x|γ for some γ ≥ m + 1 then, by (4.14) and (4.15),

|y1|2
|x1|m+1

= |O(y)||1 + o(1)| < 1.

Write x = ε(x)e iδ(x) with 0 < ε(x) < ε and |δ(x)| < δ. Put

z = 1 − xm

(
1

m
+ o(1)

)
.

Then it is easy to see that |z| < 1 and that arg z and δ(x) are of different signs,
where |arg z| < |δ(x)|. For (x, y)∈D, from (4.13) we have

|x1| = ε(x)|z| < ε(x) < ε, |arg x1| = |δ(x) + arg z| < |δ(x)| < δ.

Thus we have shown that f̃ (D) ⊂ D.

By (4.13),

1

xm
1

= 1

xm
+ 1 + m

y2

xm+1
+ O(x) + y

xm+1
O(m),

which for (x, y)∈D yields

xn ∼ 1

n1/m
. (4.16)

For the estimation of |yn|, we rewrite y1 as

y1 = y

(
1 − 1

a
x + O(m)

)
+ dx s + O(x s+1), (4.17)

where s = m + 1 and d = −β/am+1 if β �= 0 (otherwise s ≥ m + 2). Set c :=
Re(1/a).

Set bk = 1 − (1/a)xk + O(m). Then we have

yn = y

n−1∏
k=0

bk + d

n−1∑
l=0

x s
l

n−1∏
j=l+1

bj + higher-order terms. (4.18)

For (x, y)∈D, we have

n−1∏
j=l+1

bj = exp

{ n−1∑
j=l+1

log bj

}
∼ exp

{
−1

a

n−1∑
j=l+1

xj

}
. (4.19)

From (4.16) and (4.19) it follows that

n−1∏
j=l+1

|bj | ∼ exp

{
−c

n−1∑
j=l+1

j−1/m

}
∼ exp{−c(n1/m − l1/m)}. (4.20)
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Therefore
n−1∑
l=0

|xl|s
n−1∏

j=l+1

|bj | ∼
n−1∑
l=1

l−s/m exp{−c(n1/m − l1/m)}

= exp{−cn1/m}
n−1∑
l=1

l−s/m exp{cl1/m}. (4.21)

For n large, we have
n−1∑
l=1

l−s/m exp{cl1/m} ∼
∫ n

1
t−s/m exp{ct1/m} dt ∼ exp{cn1/m}n−(s−1)/m. (4.22)

From (4.18), (4.20), (4.21), and (4.22), we finally obtain the estimate

|yn| ∼ 1

n(s−1)/m
(s < ∞); |yn| ∼ exp{−cn(m−1)/m} (s = ∞). (4.23)

Since s ≥ m + 1, from (4.16) and (4.23) we have [xn : yn] → [1 : 0] as n → ∞.

Subcase γ3 �= 0
In this subcase, (4.6) takes the form

(
after scaling u → u/

√
2γ3

)
u1 = u + uv + O(3),

v1 = v − v2 + cuv + 1
2u

2 + O(3),
(4.24)

where c = b12/
√

2γ3. Besides [0 : 1], (4.24) has two more characteristic direc-
tions, [c± : 1], which are nondegenerate; here c± = −c ±

√
c2 + 4. One readily

checks that the director of (4.24) in the direction [c± : 1] is cc± − 4. If cc± − 4 =
0, then it is easy to check that c is equal to ±2i or ±√

3i and that the nondicritical
order is 1. Therefore, by Theorem 2.2, there is an attracting domain along the ad-
missible direction [c± : 1] if and only if Re(cc± − 4) > 0 or c is equal to ±2i or
±√

3i. In particular, if b12 = 0 then cc± − 4 = −4 and so (4.24) does not admit
attracting domains.

Case a11 �= 0
In this case, (4.5) takes the form (after scaling u → u/a11)

u1 = u + u2 + uv + O(3),

v1 = v − v2 + auv + bu2 + O(3),
(4.25)

where a = b12/a11 − 1 and b = γ3/a
2
11.

Subcase γ3 = 0
In this subcase, (4.25) takes the form

u1 = u + u2 + uv + O(3),

v1 = v − v2 + auv + O(3).
(4.26)

Besides [1 : 0] and [0 : 1], (4.26) has one more characteristic direction, [2 : a − 1]
for a �= 1, which is nondegenerate if a �= −1 and is degenerate if a = −1.
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The admissible direction [1 : 0] is nondegenerate. One readily checks that the
director of (4.26) in the direction [1 : 0] is a − 1 and that when a = 1, the non-
dicritical order is 1. Hence by Theorem 2.2 there is an attracting domain along
[1 : 0] if and only if Re(a − 1) > 0 or a = 1.

So assume for now that a �= 1. Under the linear transformation
{
x = u + 2

1−a
v,

y = v
}
, (4.26) is transformed as

x1 = x + x 2 + 3−a
a−1xy + O(3),

y1 = y + a+1
a−1y

2 + axy + O(3).
(4.27)

If a �= −1, then the director of (4.26) in the direction [2 : a − 1] is 2−2a
a+1 .

Therefore, by Theorem 2.2, there is an attracting domain along the admissible di-
rection [2 : a − 1] if and only if Re

(
2−2a
a+1

)
> 0. In particular, if b12 = a11 then

2−2a
a+1 = 2 and so (4.26) admits an attracting domain.

If a = −1, then (4.27) takes the form

x1 = x + x 2 − 2xy + O(3),

y1 = y − xy + O(3).
(4.28)

Note that, under the linear transformation {u = −2y, v = −x}, (4.28) becomes
(4.10). Our next lemma is a consequence of the foregoing discussion.

Lemma 4.5. (4.1) admits an attracting domain when b11 = b12 = γ3 = 0 and
a11 �= 0 if and only if (4.10), or equivalently (4.11), admits an attracting domain
in the direction [1 : 0].

Following the successive transformations from (4.1) to (4.11), the corresponding
(4.13) takes the form

x1 = x − y2 − d/8x3 + O(x4) + yO(2),

y1 = y − xy + e/8x3 + O(x4) + yO(2),

where

d = b22

a11
− α3 + β3

a2
11

+ γ4

a3
11

, e = b22 − 2a12

a11
+ α3 − β3

a2
11

+ γ4

a3
11

. (4.29)

By Lemma 4.4, f admits an attracting domain in this subcase if Re d > 0.

Remark 4.6. In [3], Abate found an attracting domain for the map

z1 = z + w + αz2 + βw2,

w1 = w + w2,
(4.30)

under the condition Re α > 0. Observe first that (4.30) is an instance of the cur-
rent subcase, since b11 = γ3 = 0 and a11 = α �= 0. Second, in (4.30), α3 =
β3 = γ4 = 0 and b22 = 1. Thus the criterion we obtained previously becomes
Re(1/α) > 0, which is equivalent to Re α > 0. A more detailed analysis shows
that the attracting domain we obtain is indeed the same as Abate’s.
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Subcase γ3 �= 0
Assume first that γ3 = a11b12 (i.e., b = a + 1). Then besides [0 : 1], (4.25) has
one more characteristic direction, [2 : b], which is nondegenerate if b �= −2 and
is degenerate if b = −2.

Under the linear transformation {x = u − (2/b)v, y = v}, (4.25) is trans-
formed as

x1 = x − x 2 − b+2
b
xy + O(3),

y1 = y + b+2
b
y2 + (b + 3)xy + bx 2 + O(3).

(4.31)

If b �= −2, then the director of (4.25) in the direction [2 : b] is −2. Therefore,
by Theorem 2.2, there is no attracting domain along the only admissible direction
[2 : b] and so (4.25) does not admit attracting domains.

If b = −2, then (4.31) takes the form

x1 = x − x 2 + O(3),

y1 = y + xy − 2x 2 + O(3).
(4.32)

Note that, under the linear transformation {u = y − x, v = x}, (4.32) becomes
(4.7). As a consequence we have the following result.

Lemma 4.7. (4.1) admits an attracting domain when b11 = 0, a11 �= 0, b12 =
−2a11, and γ3 = −2a11 if and only if (4.7) admits an attracting domain in the
direction [1 : 0].

Assume now that γ3 �= a11b12 (i.e., b �= a+1). Then besides [0 : 1], (4.25) has two
more characteristic directions, [e± : d±], which are nondegenerate. Here e± =
−(a+3)±

√
(a − 1)2 + 8b and d± = 2(b−a−1)−e±. One readily checks that the

director of (4.25) in the direction [e± : d±] is −4 + (a+3)e±
2(b−a−1) . If −4 + (a+3)e±

2(b−a−1) =
0 then the nondicritical order is either 1 or 2. Hence, by Theorem 2.2, there is
an attracting domain along [e± : d±] if and only if Re

(−4 + (a+3)e±
2(b−a−1)

)
> 0 or

−4 + (a+3)e±
2(b−a−1) = 0.

The previous discussion shows that, in degenerate directions, the map can al-
ways be transformed into either (4.7) or (4.11). If a map can have attracting do-
mains only in degenerate directions, then we say the map is of degenerate type I
(resp. II ) if the map in that direction can be transformed into (4.7) (resp. (4.11)).

We summarize this section in the following formal proposition.

Proposition 4.8. Let f be a holomorphic map in C2 with an isolated par-
abolic Jordan fixed point as in (4.1). Set a = b12/a11 − 1, b = γ3/a

2
11, c =

b12/
√

2γ3, d = b22/a11 − (α3 +β3)/a
2
11 +γ4/a

3
11, c± = −c±

√
c2 + 4, and e± =

−(a + 3) ±
√
(a − 1)2 + 8b. Then the following statements hold.

(1) f has no attracting domain in case either b11 �= 0 or b11 = 0, a11 �= 0, γ3 �=
0, b = a + 1, and b �= −2.

(2) f has attracting domains in case b11 = a11 = γ3 = 0 and a = 1.
(3) f is of degenerate type I in case either b11 = a11 = γ3 = b12 = 0 or b11 = 0,

a11 �= 0, γ3 �= 0, a = −3, and b = −2.
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(4) f is of degenerate type II in case either b11 = a11 = γ3 = 0 and b12 �= 0 or
b11 = γ3 = b12 = 0 and a11 �= 0; in the latter case, f has attracting domains
if Re d > 0.

(5) f has attracting domains in case b11 = a11 = 0 and γ3 �= 0 if and only if
Re(cc± − 4) > 0 or c is equal to ±2i or ±√

3i.
(6) f has attracting domains in case b11 = γ3 = 0, a11 �= 0, and a �= ±1 if and

only if Re(a − 1) > 0 or Re
(

2−2a
a+1

)
> 0.

(7) f has attracting domains in case b11 = 0, a11 �= 0, γ3 �= 0, and b �= a + 1 if
and only if Re

(−4 + (a+3)e±
2(b−a−1)

)
> 0 or −4 + (a+3)e±

2(b−a−1) = 0.

5. Elliptic Jordan Fixed Point

Let f be a holomorphic map in C2 with an elliptic Jordan fixed point, where the
eigenvalue is λ = ei2πθ, θ ∈ R\Q. In suitable local coordinates (z,w), f can be
written as

z1 = λ(z + w + a11z
2 + a12zw + a22w

2 + O(3)),

w1 = λ(w + b11z
2 + b12zw + b22w

2 + O(3)).
(5.1)

Under the blow-up {z = u, w = uv}, the blow-up map is given by

u1 = λ(u + uv + O(u2)),

v1 = v − v2 + b11u + O(uv, u2).
(5.2)

Observe that (5.2) is a quasi-parabolic map in the direction [u : v] = [0 : 1]. The
local dynamics of such maps has been studied in [7; 10; 11; 12]. Since the direc-
tion [0 : 1] is not admissible and since [1 : 0] is an elliptic direction, we need to
consider the parabolic dynamics in a direction [α : 1] with α �= 0.

Consider an invertible linear transformation {x = v + au, y = bv + cu} with
c − ab �= 0. Then (5.2) becomes

x1 = 1
c−ab

(
(c − b(aλ + b11))x + (a(λ − 1) + b11)y + O(2)

)
,

y1 = 1
c−ab

(
b(c(1 − λ) − bb11)x + (cλ − ab)y + O(2)

)
.

(5.3)

In order for the linear part of (5.3) to be diagonal (so that we can apply the quasi-
parabolic theory or perform blow-ups), it is necessary that

a(λ − 1) + b11 = 0,

c(1 − λ) − bb11 = 0,

from which we get (c − ab)(λ− 1) = 0. Since λ �= 1, we must have c − ab = 0,
a contradiction.

6. Hyperbolic Jordan Fixed Point

Let f be a holomorphic map in C2 with a hyperbolic Jordan fixed point, where
the eigenvalue is λ (|λ| �= 1); if |λ| > 1 then we can consider f −1 instead. So we
will assume that |λ| < 1.
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If λ �= 0 then, in suitable local coordinates (z,w), f can be written as

z1 = λ(z + w + O(2)),

w1 = λ(w + O(2)).
(6.1)

The nth iteration of f reads as

zn = λn(z + nw + O(2)),

wn = λn(w + O(2)).
(6.2)

Since |λ| < 1, it follows that nλn goes to zero as n goes to infinity; hence (zn,wn)

goes to O as n goes to infinity for any (z,w) near O.

If λ = 0 then, in suitable local coordinates (z,w), f can be written as

z1 = w + O(2),

w1 = O(2).
(6.3)

The nth iteration of f reads as

zn = O(2n−1),

wn = O(2n−1).
(6.4)

Therefore, (zn,wn) goes to O as n goes to infinity for any (z,w) near O.
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