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Transference of Density

P. D. Humke & M. Laczkovich

1. Introduction and Notation

Let H = {(x, y) : y ≥ 0} denote the upper half-plane. This paper concerns var-
ious linear densities of a set E ⊂ H at points of R, which we identify with the
boundary of H.

We shall denote by L(x, θ) the ray {(x+ t cos θ, t sin θ) : t ≥ 0} for every x ∈ R

and θ ∈ (0,π). The segment {(x + t cos θ, t sin θ) : 0 ≤ t ≤ r} will be denoted by
L(x, θ, r). The density of E along the ray L(x, θ) is defined by

d(E, x, θ) = lim
r→0+

λ(E ∩ L(x, θ, r))

r
, (1)

where λ denotes the linear measure (one-dimensional Hausdorff measure) in R2.

Replacing the limit in (1) by lim sup and lim inf, we obtain the respective upper
and lower densities d̄(E, x, θ) and d(E, x, θ). Should E be non-Borel, there are
several additional possibilities defined by replacing λ in (1) with either the linear
outer measure λ∗ or the linear inner measure λ∗ and again replacing the limit by
either lim sup and lim inf. So, for example, the upper inner density of E along the
ray L(x, θ) is defined as

d̄∗(E, x, θ) = lim sup
r→0+

λ∗(E ∩ L(x, θ, r))

r
.

If d# denotes any of these density operators, then the set E is said to have positive
density relative to d# at a point x ∈ R if d#(x) > 0.

In this paper we are interested in whether linear densities in one sense or an-
other are transferable. For example, if we know that a setE has one of these linear
densities in a given direction, can we infer that there are points at which E has a
linear density of the same or different variety in another direction? The strong-
est hypothesis for linear densities would be that a set E has full linear density in
a given direction and at every x ∈ R, and the weakest conclusion is that there is a
point x0 ∈ R and a direction θ0 at which d̄ ∗(E, x0, θ0) > 0.

If E ⊂ H is Borel, then we denote by D(E, x) the two-dimensional density of
E at the point (x, 0) relative to H. That is,

D(E, x) = lim
h→0+

λ2(E ∩ B(x,h))

λ2(H ∩ B(x,h))
,
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where λ2 is the two-dimensional Lebesgue measure and B(x,h) is the ball with
center (x, 0) and radius h. The vertical and horizontal sections of the set E ⊂ R2

will be denoted, respectively, by

Ex = {y : (x, y)∈E} and Ey = {x : (x, y)∈E}
for every x, y ∈ R.

2. The Terrain

In this section we examine what sort of density transfer might be expected, first
in the case of Borel subsets of H and then for arbitrary subsets of H. Our starting
point is an example due to Goffman and Sledd [3, Exm. 3].

Theorem 1 (Goffman and Sledd). There exists an open (or closed ) set E ⊂ H
such that :

(i) d̄(E, x,π/2) = 1 for every x ∈ R; and
(ii) d(E, x, θ) = 0 for every x ∈ R and θ �= π/2.

This theorem shows that one can expect no transfer whatsoever of upper density.
Also, by considering the complement of the set constructed in Theorem 1 and then
applying an affine transformation, one obtains the following corollary.

Corollary 2. Let θ �= π/2 be fixed. Then there exists an open (or closed ) set
E ⊂ H such that :

(i) d(E, x,π/2) = 1 for every x ∈ R; and
(ii) d(E, x, θ) = 0 for every x ∈ R.

Expanding on the techniques employed by Goffman and Sledd in their proof, we
extend this latter example to show that one cannot expect to transfer full density
even for Borel sets under quite stringent assumptions.

Theorem 3. There exists an open set G ⊂ H such that :

(i) d(G, x,π/2) = 1 for every x ∈ R;
(ii) d(G, x, θ) = 0 for every x ∈ R and every θ �= π/2; and

(iii) D(G, x) = 1 for every x ∈ R.

The proofs of this theorem, and of the next several examples, are given in Sec-
tion 7.

As a consequence of the preceding examples, the strongest result we might
expect when E is Borel would entail the transfer of full density in a given direc-
tion, say π/2, to full upper density in some other directions. Yet we cannot expect
to transfer to every direction θ �= π/2, as the following example shows. This ex-
ample makes use of a Besicovitch-type set discovered by Kinney [5, Exm. 1]: a
two-dimensional null set contained in H that contains a ray emanating from each
point of the x-axis.
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Theorem 4. There exists an Fσ (or a Gδ) set E ⊂ R2 such that :

(i) Ex is of full linear measure for every x ∈ R; and
(ii) for every x ∈ R there is an angle θ ∈ (0,π)\{π/2} such that L(x, θ, 1) ∩ E

is null.

Moreover, we cannot expect to transfer density to every x ∈ R, as the following
simple example shows. Let C denote the Cantor ternary set, and take

E = {(x, y) : x ∈ [0,1], 0 ≤ y ≤ dist(x,C)2} ∪ (C × R+) ∪ ((R\[0,1])× R+).

Then we have d(E, x,π/2) = 1 for every x but d(E, x, θ) = 0 for every x ∈C and
θ �= π/2.

In light of these examples, we have the following two candidate theorems.

Theorem 5. Suppose E ⊂ H is Borel and d(E, x,π/2) = 1 for every x ∈ R.

Let θ �= π/2 be fixed. Then, for almost every x ∈ R, d̄(E, x, θ) = 1.

Theorem 6. Suppose E ⊂ H is Borel and d(E, x,π/2) = 1 for every x ∈ R.

Then, for almost every x ∈ R, d̄(E, x, θ) = 1 for almost every θ ∈ (0,π).

Theorem 5 follows immediately from [3, Lemma 1], and Theorem 6 is an easy con-
sequence of Theorem 5. Indeed, supposeE ⊂ H is Borel and d(E, x,π/2) = 1for
every x ∈ R. Let C be the set of pairs (x, θ)∈ R × (0,π) such that d̄(E, x, θ)= 1.
One can check that C is a Borel subset of R2. For every fixed θ, the section Cθ is
of full measure by Theorem 5. Hence, by Fubini’s theorem, C is of full measure
in R × [0,π]. We can then apply Fubini’s theorem again to find that, for a.e. x,
the section Cx is of full measure in (0,π); this is the statement of the theorem. (In
Section 6 we give another proof.)

Our main objective is to investigate the transfer of density for arbitrary sets.
However, in the nonmeasurable case we immediately stumble upon the following
obstacles.

Theorem 7. There exists a set E ⊂ H such that :

(i) d ∗(E, x,π/2) = 1 for every x ∈ R; and
(ii) d ∗(E, x, θ) = 0 for every x ∈ R and θ �= π/2.

Theorem 8. There exists a set E ⊂ H such that :

(i) d∗(E, x,π/2) = 1 for every x ∈ R; and
(ii) d∗(E, x, θ) = 0 for every x ∈ R and θ �= π/2.

In fact, the set E in Theorem 7 can have full outer measure on every vertical line
even as |E ∩ L(x, θ)| ≤ 2 for every x ∈ R and every θ �= π/2. The set E in The-
orem 8 can be the complement of a singleton on every vertical line, yet the inner
linear measure is 0 on every nonvertical line. These theorems are proved in Sec-
tion 7.3.
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This leaves only the possibility of transferring inner density to upper outer den-
sity. However, even this cannot be proved in Zermelo–Fraenkel set theory with
the axiom of choice (ZFC), as the following example shows.

Theorem 9. Assuming the continuum hypothesis (CH ), there exists a setE ⊂H
such that :

(i) d∗(E, x,π/2) = 1 for every x ∈ R; and
(ii) d ∗(E, x, θ) = 0 for every x ∈ R and θ �= π/2.

This example is a special case of the following theorem of Erdős [1]: If we de-
compose the set of all lines in the plane into two arbitrary disjoint sets L1 and L2,
then there exists a decomposition of the plane into two sets S1 and S2 such that
each line of Li intersects Si (i = 1, 2) in a set of power less than 2ℵ0. Assuming
CH, this means that each line ofLi intersects Si (i = 1, 2) in a countable set. IfL1

and L2 consist of the vertical lines and the nonvertical lines, respectively, then the
set E = S2 is co-countable in every vertical line and countable in every nonverti-
cal line. We can see that, in order to obtain Theorem 9, we may assume nonN =
2ℵ0 instead of CH. (Here nonN is the smallest cardinal of subsets of R having
positive outer measure.) Additional or higher-dimensional examples of this sort
can be formulated using the ideas and techniques found in [2].

3. Transference of Density for Arbitrary Sets

According to Section 2, the strongest results we can expect are as follows.

Theorem 10. The following statement is consistent with ZFC. Suppose E ⊂ H

is such that d∗(E, x,π/2) = 1 for every x ∈ R; then, for every fixed θ �= π/2 and
almost every x ∈ R, d̄ ∗(E, x, θ) = 1.

Theorem 11. The following statement is consistent with ZFC. Suppose E ⊂ H

is such that d∗(E, x,π/2) = 1 for every x ∈ R; then, for almost every x ∈ R,
d̄ ∗(E, x, θ) = 1 for almost every θ.

Note that, since these statements are concerned with nonmeasurable sets, neither
implies the other. Our aim is to prove them both. In fact, we rank the “consis-
tency strength” of these statements in terms of the nonexistence of certain sets
with paradoxical properties. We denote I = [0,1]. A set H ⊂ I × I is a 0-1 set if
λ(Hx) = 1 for every x ∈ I and λ(Hy) = 0 for every y ∈ I. Such sets were intro-
duced by Sierpiński in [7].

We will be mainly interested in the following weaker version of this property.
A set H ⊂ I × I is a weak 0-1 set if λ(Hx) = 1 for every x ∈ I and

λ∗({y ∈ I : λ(Hy) = 0}) > 0.

It is known that the existence of weak 0-1 sets is independent of ZFC. Indeed,
CH or Martin’s axiom implies the existence of weak 0-1 sets. In the random real
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model, however, there are no weak 0-1 sets (see [6, p. 673]). Our main results are
expressed in the next two theorems.

Theorem 12. The following statements are equivalent.

(i) There is no weak 0-1 set.
(ii) If E ⊂ H is such that d∗(E, x,π/2) = 1 for every x ∈ R then, for every fixed

θ �= π/2 and almost every x ∈ R, d̄ ∗(E, x, θ) = 1.

Theorem 13. If there is no weak 0-1 set, then the following statement holds.

(iii) If E ⊂ H is such that d∗(E, x,π/2) = 1 for every x ∈ R then, for almost
every x ∈ R, d̄ ∗(E, x, θ) = 1 for almost every θ.

Because the existence of a weak 0-1 set is independent of ZFC, Theorem 12 im-
plies Theorem 10; similarly, Theorem 13 implies Theorem 11. However:

We do not know whether the negation of (iii) is actually equivalent to
the existence of a weak 0-1 set.

Statement (iii) is certainly false under various set-theoretic hypotheses—for ex-
ample, CH or nonN = 2ℵ0. Another condition, which does not involve the value
of the continuum, is that add N = cof N. Yet another sufficient condition for (iii)
to be false is if R can be linearly ordered in such a way that each initial segment
has (1/2)-dimensional Hausdorff measure 0.

Now we turn to the proofs. Theorem 12 will be proved in the next section. Sec-
tion 5 will be devoted to the preliminaries of the proof of Theorem 13, which will
be proved in Section 6. The constructions of the examples (Theorems 3, 4, 7,
and 8) are given in the Section 7.

4. No Weak 0-1 Set Is Equivalent to Fixed
Directional Transfer of Density a.e.

First we prove the implication (ii) ⇒ (i) of Theorem 12. Suppose S is a weak 0-1
set, and let S̄ = ⋃

n,m∈Z(S + (n,m)). Then S̄x is of full measure in R for every
x ∈ R, and there is a set Y such that λ∗(Y ) > 0 and λ(S̄y) = 0 for every y ∈ Y.
Rotating S̄ about the origin with angle π/4, we obtain the set T. Then we have
d(T, x, 3π/4) = 1 for every x and d̄ ∗(T, x,π/4) = 0 for every x ∈ −√

2 · Y.
It is easy to see that, for every 0 < θ < π/2, the affine transformationL(x, y) =

(x + y, 2y tan θ) maps the directions π/4 and 3π/4 to the directions θ and π/2.
Then the set E = L(T ) has the property that d(E, x,π/2) = 1 for every x and
d̄ ∗(E, x, θ) = 0 for every x ∈ −√

2 · Y. Therefore, Theorem 12(ii) is false for
every 0 < θ < π/2. (By reflecting the set E about the y-axis, we can see that
Theorem 12 is false for every π/2 < θ < π as well.)

In order to prove (i) ⇒ (ii) we first need to establish some notation and to prove
a preliminary lemma.

If (X, A ,µ) is a measure space, then we shall denote by µ∗ the outer measure
generated by µ. That is, for each H ⊂ X, µ∗(H ) = inf{µ(A) : H ⊂ A, A∈ A}.
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Let A ⊂ X be measurable and let R̄ = R ∪ {−∞, ∞} denote the extended real
line. If f : A → R̄ then we shall define the lower integral of f ,

∫
A f dµ(x), as

the supremum of the integrals
∫
A
g dµ(x); here g : A→ R̄ is an arbitrary summa-

ble function such that g ≤ f everywhere on A. If there is no such g then we put∫
A f dµ(x) = −∞. The upper integral

∫
A
f dµ(x) is defined analogously. When

integrating over I = [0,1], we shall omit the subscript I ; that is,
∫

,
∫

, and
∫

de-
note (respectively)

∫
I
,
∫
I
, and

∫
I
.

The next three lemmas were proved in [4] and are restated here for completeness.

Lemma 14. If
∫
A f dµ(x) is finite, then there is a summable function g : A→ R̄

such that : g ≤ f on A; ∫
A
g dµ(x) = ∫

A f dµ(x); and, for every ε > 0,
µ∗({x ∈A : f(x) < g(x)+ ε}) = µ(A).
Lemma 15. For every f : A→ R̄ and g : A→ R̄, we have

(i)
∫
A(f + g) dµ(x) ≥ ∫

A f dµ(x)+
∫
A g dµ(x) and

(ii)
∫
A
(f + g) dµ(x) ≤ ∫

A
f dµ(x)+ ∫

A
g dµ(x)

whenever the right-hand sides make sense.

Lemma 16. For every sequence of nonnegative functions fn : A → [0, ∞], we
have ∫

A

lim inf
n

fn dµ(x) ≤ lim inf
n

∫
A

fn dµ(x).

We shall also need the following change-of-variable formula for lower and upper
integrals.

Lemma 17. If φ is a strictly monotonic C1 map from the interval [a, b] onto the
interval [c, d ] with nonvanishing derivative, then

∫ d
c
f dλ = ∫ b

a
(f � φ) · |φ ′| dλ

for every f : [c, d ] → R̄. A similar statement holds for the upper integral.

Proof. Let ψ denote the inverse of φ. The statement involving lower integrals
follows from the observations that if g is summable and g ≤ f on [c, d ] then
(g � φ) · |φ ′| ≤ (f � φ) · |φ ′| on [a, b] and if h is summable and h ≤ (f � φ) · |φ ′|
on [a, b] then (h � ψ) · |ψ ′| ≤ f on [c, d ].

The formula involving upper integrals is proved similarly.

Our next lemma is a generalization of [4, Thm. 6].

Lemma 18. The following statements are equivalent.

(i) There is no weak 0-1 set.
(ii) Whenever fn : (I × I )→ [0, ∞] is a sequence of nonnegative functions such

that supy∈I supn
∫
fn(x, y) dx <∞, we have∫ (

lim inf
n

∫
fn(x, y) dy

)
dx ≤

∫ (
lim sup

n

∫
fn(x, y) dx

)
dy. (2)
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Proof. Suppose S is a weak 0-1 set. Let Y = {y ∈ I : λ(Sy) = 0}, so λ∗(Y ) > 0.
Let fn = χS for every n. Then

∫
fn(x, y) dx ≤ 1 for every y ∈ I and every n.Also,

the left-hand side of (2) equals 1 while the right-hand side is at most 1− λ∗(Y ) < 1,
and thus (ii) fails.

Now suppose that there is no weak 0-1 set. Let fn be a sequence of functions
as in (ii), and suppose that (2) is false. Then, multiplying the functions fn by a
suitable positive constant, we may assume that∫ (

lim sup
n

∫
fn(x, y) dx

)
dy < 1 − 3ε

< 1<
∫ (

lim inf
n

∫
fn(x, y) dy

)
dx (3)

for some ε > 0. The last inequality of (3) implies that there is a nonnegative sum-
mable function φ on I such that

∫
φ dx ≥ 1 and

lim inf
n

∫
fn(x, y) dy > φ(x) for every x ∈ I.

Then, for every x ∈ I, there exists an index n0(x) such that, for n ≥ n0(x),∫
fn(x, y) dy > φ(x). (4)

SetK = supy∈I supn
∫
fn(x, y) dx and put gn(y) = ∫

fn(x, y) dx (y ∈ I ). Then
K <∞ by assumption, and gn ≤ K on I for every n. Let g(y) = lim supn gn(y)
(y ∈ I ). Then

∫
g dy < 1 − 3ε by (3) and so, by Lemma 14, there is a nonnega-

tive summable function h such that
∫
h dy < 1 − 3ε and λ∗(B) = 1, where B =

{y ∈ I : g(y) < h(y) + ε}. Let Bk = {y ∈ B : gn(y) < h(y) + ε (n ≥ k)}.
Since g = lim supn gn, it follows that B1 ⊂ B2 ⊂ · · · and

⋃
k Bk = B. Hence

limk→∞ λ∗(Bk) = λ∗(B) = 1 and we can therefore find a k such that λ∗(Bk) >
1− (ε/K). Fix such a k and select a measurable set C ⊂ I \Bk such that λ(C) <
ε/K and λ∗(C ∪ Bk) = 1. Define

h1(y) =
{
h(y)+ ε if y ∈ I \ C,

K if y ∈C;
note that h1 is summable and that

∫
h1 dy < 1 − ε. Put D = C ∪ Bk. Then

λ∗(D)= 1, and if n ≥ k then∫
fn(x, y) dx = gn(y) ≤ h1(y) for every y ∈D. (5)

In the rest of this proof we take advantage of the preceding information to show
the existence of a weak 0-1 set. To facilitate this demonstration we alter our venue
somewhat. Let / denote the measure space IN = I × I × · · · with the product
measure ν. The generic element of/ will be denoted by ω = (ω1,ω2, . . . ), where
each ωi belongs to I. Note that the measure space (/, ν) is isomorphic to (I, λ).
The outer measure generated by ν is denoted by ν∗. We define
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Fn(x,ω) = lim inf
m

1

m
·
m∑
j=1

fn(x,ωj) (x ∈ I, ω ∈/)

and put
Hn = {(x,ω) : Fn(x,ω) ≥ φ(x)}.

Since φ is summable, there is an η > 0 such that
∫
H
φ dx < ε for every measur-

able set H ⊂ I with λ(H ) < η. We claim that the sets Hn have the following
properties:

for every x ∈ I we have ν(/ \ (Hn)x) = 0 if n ≥ n0(x) (6)

and there is a set E ⊂ / such that ν∗(E) = 1; and

λ∗((Hn)ω) < 1 − η for every n ≥ k and ω ∈E. (7)

Indeed, if x ∈ I and n ≥ n0(x) then, by (4) and the strong law of large numbers,

Fn(x,ω) = lim inf
m

1

m
·
m∑
j=1

fn(x,ωj) ≥
∫
fn(x, y) dy ≥ φ(x)

for ν-almost every ω; that is, (6) holds. Applying the strong law of large numbers
again, we find that the set

U =
{
ω ∈/ : lim

m

1

m
·
m∑
j=1

h1(ωj ) =
∫
h1 dy < 1 − ε

}

is a measurable set of full measure in /. Let DN = D × D × · · · . Then DN is
of full outer measure in /, and the same is true for E = U ∩ DN. If ω ∈ E and
n ≥ k are fixed then, by (5) and Lemmas 15 and 16, we have

∫
Fn(x,ω) dx =

∫ (
lim inf
m

1

m
·
m∑
j=1

fn(x,ωj)

)
dx

≤ lim inf
m

∫ (
1

m
·
m∑
j=1

fn(x,ωj)

)
dx

≤ lim inf
m

1

m
·
m∑
j=1

∫
fn(x,ωj) dx

≤ lim inf
m

1

m
·
m∑
j=1

h1(ωj ) < 1 − ε. (8)

Let A ⊂ I be a measurable hull of (Hn)ω. Since Fn(x,ω) ≥ φ(x) for every x ∈
(Hn)

ω, it follows that
∫
A
φ dx ≤ ∫

Fn(x,ω) dx and thus
∫
A
φ dx < 1 − ε by (8).

Therefore,
∫
I\A φ dx > ε and hence λ(I \ A) > η by the choice of η. We obtain

λ∗((Hn)ω) = λ(A) < 1 − η, proving (7).
It is an easy matter to see that (6) and (7) imply the existence of a weak 0-1 set.

Since / is isomorphic to I, we can find sets Tn ⊂ I × I such that
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for every x ∈ I we have λ(I \ (Tn)x) = 0 if n ≥ n0(x) (9)

and there is a setM ⊂ I such that λ∗(M) = 1; and

λ∗((Tn)y) < 1 − η for every n ≥ k and y ∈M. (10)

Now defineT m = ⋂∞
n=m Tn andT = ⋃∞

m=1T
m. It is clear from (9) thatλ(I\Tx) =

0 for every x ∈ I. Let y ∈M. Then, by (10), λ∗((T m)y) < 1−η for everym. Since
T 1 ⊂ T 2 ⊂ · · · , it follows that λ∗(T y) ≤ 1 − η for every y ∈M.

We define S = {(x, y) : (x + r, y) ∈ T for every r ∈ [−x,1 − x] ∩ Q}. Then
λ(I \ Sx) = 0 for every x ∈ I and λ(Sy) = 0 for every y ∈A (since λ∗(T y) < 1).
Thus S is a weak 0-1 set. However, this contradicts our assumption, which com-
pletes the proof of (2).

Remark. The statement of Lemma 18 is not true without the assumption that

sup
y∈I

sup
n

∫
fn(x, y) dx <∞.

Indeed, let fn(x, y) = 1/(ny) if y > 0 and let fn(x, y) = 0 if y = 0. Then the
left-hand side of (2) is infinity while the right-hand side is zero.

Now we resume our proof of (i) ⇒ (ii) for Theorem 12. Suppose there is no
weak 0-1 set and suppose d∗(E, x,π/2) = 1 for every x ∈ R. (See Section 1 for
the definitions of these density operators.) Again we transform the set E by rotat-
ing and applying an affine transformation to obtain a set A such that d∗(Ax , x) =
limh→0+ λ∗(Ax ∩ [x − h, x + h])/(2h) = 1 for every x ∈ R. We will show that
d̄ ∗(Ay, y) = lim supr→0+ λ∗(Ay ∩ [y − h, y + h]))/(2h) = 1 for almost every
y ∈ R. It is enough to prove this for a.e. y ∈ I.

Put An = A ∩ {(x, y) : |y − x| ≤ 1/n} and fn(x, y) = (n/2) · χAn for every
n = 1, 2, . . . . We can apply Lemma 18(ii) with our sequence fn. If x ∈ (0, 1),
then x is a density point of Ax and so limn

∫
fn(x, y) dy = 1. Hence the left-hand

side of (2) equals 1, in which case the right-hand side must be at least 1. Since∫
fn(x, y) dx ≤ 1 for every y, it follows that lim supn

∫
fn(x, y) dx = 1 for a.e. y.

Given ∫
fn(x, y) dx =

(
n

2

)
· λ∗

(
Ay ∩

[
y −

(
1

n

)
, y +

(
1

n

)])
,

we conclude that d̄ ∗(Ay, y)= 1 for a.e. y. This completes the proof of Theorem 12.

5. The Sierpiński Coefficient of Measure Spaces

Let (X, A ,µ) be a finite measure space. By the Sierpiński coefficient of X we
mean the supremum of the numbers

∫
X

∫
g(x, y) dy dµ(x)−

∫ ∫
X

g(x, y) dµ(x) dy, (11)
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where g runs through all functions mapping X × I into I. In other words, the
Sierpiński coefficient of X is the smallest real number s such that∫

X

∫
g(x, y) dy dµ(x) ≤

∫ ∫
X

g(x, y) dµ(x) dy + s (12)

for every g : (X × I ) → I. We denote the Sierpiński coefficient of X by s(X).
Clearly, 0 ≤ s(X) ≤ µ(X) for every finite measure spaceX, and s(X) = 0 if and
only if ∫

X

∫
g(x, y) dy dµ(x) ≤

∫ ∫
X

g(x, y) dµ(x) dy

for every bounded function g : (X × I )→ R.

Lemma 19. Let (X, A ,µ) be a finite measure space, and let b andM be positive
numbers. Then, for every function f : (X × [0, b])→ [0,M ],∫

X

∫ b

0
f(x, y) dy dµ(x) ≤

∫ b

0

∫
X

f(x, y) dµ(x) dy +Mb · s(X). (13)

Proof. Let g(x, y) = (1/M)f(x, by) for (x, y)∈X × I. The values of g are in I
and so (12) follows. Applying the substitution z = by (and Lemma 17) and then
multiplying byMb, we obtain (13).

We shall now establish the basic properties of the Sierpiński coefficient. These
results will be used in Section 6 to prove Theorem 13.

We say that a subset S ⊂ X×I is a weak 0-1 set inX×I if Sx is of full measure
for every x ∈ X and if λ∗({y ∈ I : µ(Hy) = 0}) > 0. In Corollary 21 we prove
that s(X) = µ(X) if and only if there is a weak 0-1 set in X × I. This implies
that, for some measure spaces (including the standard measure space (I, L, λ)),
the value of s(X) cannot be determined in ZFC. We begin by characterizing the
Sierpiński coefficient.

Theorem 20. For every finite measure space X, the Sierpiński coefficient s(X)
is the largest real number s for which (a) there exists a set U ⊂ X × I such that
Ux is of full measure for every x ∈ X and (b) µ∗(Uy) ≤ µ(X) − s for a set of
points y that is of full outer measure.

Proof. Let s be a real number and let U be a set as in the statement of the the-
orem. If f = χU then the value of the difference of integrals in (11) is at least
µ(X)− (µ(X)− s) = s, from which it follows that s(X) ≥ s.

In order to prove s(X) ≤ s, we must construct a set U ⊂ X× I such that Ux is
of full measure for every x ∈ X and µ∗(Uy) ≤ µ(X) − s(X) for a set of y’s of
full outer measure.

Let ε > 0 be arbitrary, and fix a function f : (X × I ) → I such that L− R >
s(X)− ε; here L = ∫

X

∫
f(x, y) dy dµ(x) and R = ∫ ∫

X
f(x, y) dµ(x) dy. Then

there is a measurable function h : X → I such that (a) h(x) ≤ ∫
f(x, y) dy for

every x ∈ X and (b)
∫
X
h dµ(x) = L. Similarly, there is a measurable function
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k : I → [0,µ(X)] such that (a) k(y) ≤ ∫
X
f(x, y) dµ(x) for every y ∈ I and

(b)
∫
k dy = R. Furthermore, the setD = {

y ∈ I :
∫
X
f(x, y) dµ(x) < k(y)+ε}

is of full outer measure.
We define F : (X ×/)→ I by

F(x,ω) = lim inf
n→∞

1

n
·
n∑
i=1

f(x,ωi)

and put
U = {(x,ω)∈X ×/ : F(x,ω) ≥ h(x)}.

For every x ∈X we have
∫
f(x, y) dy ≥ h(x) and thus, by the strong law of large

numbers, F(x,ω) ≥ h(x) for a.e. ω ∈ /. Therefore, Ux is of full measure in /
for every x ∈X.

Applying the strong law of large numbers again, we find that the set

E =
{
ω ∈/ : lim

n

1

n
·
n∑
i=1

k(ωi) =
∫
k dy < R + ε

}

is a set of full measure in /. Since D is of full outer measure in I, it follows that
DN = D×D× · · · is of full outer measure in/, so the same is true for E ∩DN.

If ω ∈E ∩DN then, by Lemmas 15 and 16,
∫
X

F(x,ω) dµ(x) =
∫
X

(
lim inf

n

1

n
·
n∑
i=1

f(x,ωi)

)
dµ(x)

≤ lim inf
n

∫
X

(
1

n
·
n∑
i=1

f(x,ωi)

)
dµ(x)

≤ lim inf
n

1

n
·
n∑
i=1

∫
X

f(x,ωi) dµ(x)

≤ lim inf
n

1

n
·
n∑
i=1

(k(ωi)+ ε)

< R + 2ε. (14)

Let ω ∈ E ∩ DN be fixed, and let A be a measurable hull of Uω. (That is, let
A∈ A be such that Uω ⊂ A and µ∗(Uω) = µ(A).) Then, by (14),

R + 2ε >
∫
X

F(x,ω) dµ(x) ≥
∫
Uω
F(x,ω) dµ(x) ≥

∫
Uω
h(x) dµ(x)

=
∫
A

h(x) dµ(x) =
∫
X

h dµ(x)−
∫
X\A

h dµ(x)

≥ L− µ(X \ A) = L− µ(X)+ µ(A)
= L− µ(X)+ µ∗(Uω);

we therefore have

µ∗(Uω) ≤ µ(X)+ R − L+ 2ε < µ(X)− s(X)+ 3ε.
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In sum: the set U ⊂ X × / has the properties that Ux is of full measure for
every x ∈ X and that µ∗(Uω) < µ(X) − s(X) + 3ε for a set of ω’s of full
outer measure. Because / is isomorphic to I, there is a subset of X × I with the
same properties. In particular, for every positive integer n, there exists a set Un ⊂
X × I such that (Un)x is of full measure for every x ∈X and such that µ∗(Uyn ) <
µ(X)− s(X)+ (1/n) for every y ∈ Yn, where λ∗(Yn) = 1.

We now construct sets U ∗
n that have similar properties and that satisfy the extra

condition Y1 = Y2 = · · · . Let Y = Y1 × Y2 × · · · ⊂ /; then Y is of full outer
measure in /. We define

U ∗
n = {(x,ω)∈X ×/ : (x,ωn)∈Un}.

It is easy to check that (U ∗
n )x is of full measure for every x ∈ X and that

µ∗((U ∗
n )
ω) = µ∗(Uωnn ) < µ(X) − s(X) + (1/n) for every ω ∈ Y. That is, the

U ∗
n ⊂ Xn ×/ (n = 1, 2, . . . ) have the desired properties.
PutU ∗ = ⋂∞

n=1U
∗
n . ThenU ∗

x is of full measure for everyx∈X andµ∗((U ∗)ω)≤
µ(X)− s(X) for every ω ∈ Y. Given that / is isomorphic to I, there exists a set
U ⊂ X×I such thatUx is of full measure for every x ∈X and such thatµ∗(Uy) ≤
µ(X)− s(X) for a set of y’s of full outer measure.

Corollary 21. The equality s(X) = µ(X) holds if and only if there is a weak
0-1 set in X × I.
Proof. Let S ⊂ X × I be a weak 0-1 set. Then the set

U = {(x, y)∈X × I : (x, y + r)∈ S ∪ (X × (R \ I )) for every r ∈ Q}
has the properties that Ux is of full measure for every x ∈ X and that Uy is null
for a set of y’s of full outer measure. By Theorem 20, s(X) = µ(X). The reverse
implication is an immediate consequence of Theorem 20.

If E ⊂ X, then by the measure space E we mean (E, A|E ,µE); here A|E is the
σ -algebra {E ∩ A : A∈ A}, and µE(B) = µ∗(B) for every B ∈ A|E.
Lemma 22. Suppose that (X, A ,µ) is a finite measure space, and suppose the
subsets A ⊂ X and B ⊂ X can be separated in the sense that there is a measur-
able set C ⊂ A with A ⊂ C and B ∩ C = ∅. Then s(A ∪ B) = s(A)+ s(B).
Proof. First note that, for every bounded function g : (A ∪ B)→ I,

∫
A∪B

g dx =
∫
A

g dx +
∫
B

g dx and
∫
A∪B

g dx =
∫
A

g dx +
∫
B

g dx.

Therefore, if f : ((A ∪ B)× I )→ I is arbitrary then∫
A∪B

∫
f dy dx =

∫
A

∫
f dy dx +

∫
B

∫
f dy dx. (15)

Also, using Lemma 15 yields
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∫ ∫
A∪B

f dx dy =
∫ (∫

A

f dx +
∫
B

f dx

)
dy

≥
∫ ∫

A

f dx dy +
∫ ∫

B

f dx dy. (16)

Now combining (15) and (16), we obtain∫
A∪B

∫
f dy dx −

∫
A∪B

∫
f dx dy

≤
(∫

A

∫
f dy dx −

∫
A

∫
f dx dy

)
+

(∫
B

∫
f dy dx −

∫
B

∫
f dx dy

)

≤ s(A)+ s(B);
therefore, s(A ∪ B) ≤ s(A)+ s(B).

For the reverse inequality, it follows from Theorem 20 that there exists a set S ⊂
A×I such that, for every x ∈A, Sx is of full measure andµ∗(Sy) ≤ µ∗(A)−s(A)
for every y ∈ Y1, where λ̄(Y1) = 1. Similarly, there is a set T ⊂ B × I with Tx of
full measure for every x ∈B and µ∗(T y) ≤ µ∗(B)− s(B) for every y ∈ Y2, where
λ∗(Y2) = 1. Define

S̄ = {(x, y, z)∈A× I 2 : (x, y)∈ S},
T̄ = {(x, y, z)∈B × I 2 : (x, z)∈ T }.

Then S̄x is of full measure in I 2 for every x ∈A and T̄x is of full measure in I 2 for
every x ∈B. Now if (y1, y2)∈ Y1 × Y2, then

µ∗(S̄ (y1,y2 )) = µ∗(Sy1) ≤ µ∗(A)− s(A),
µ∗(T̄ (y1,y2 )) = µ∗(T y2) ≤ µ∗(B)− s(B).

Hence, by using that I and I 2 are isomorphic as measure spaces, we can find sets
S̃ ⊂ A× I, T̃ ⊂ B × I, and Z ⊂ I such that

(i) S̃x is full measure for every x ∈A,
(ii) T̃x is full measure for every x ∈B,

(iii) λ∗(Z) = 1,
(iv) µ∗(S̃ z) ≤ µ∗(A)− s(A) for every z∈Z, and
(v) µ∗(T̃ z) ≤ µ∗(B)− s(B) for every z∈Z.

The setW = S̃ ∪ T̃ ⊂ (A ∪ B)× I has the following properties: Wx is of full
measure for every x ∈A ∪ B and, for every y ∈Z,

µ∗(Wy) ≤ µ∗(A)− s(A)+ µ∗(B)− s(B) = µ∗(A ∪ B)− (s(A)+ s(B)).
By Theorem 20, this implies that s(A ∪ B) ≥ s(A)+ s(B).
Theorem 23. LetX be a finite measure space. IfH1 ⊂H2 ⊂ · · · and

⋃∞
n=1Hn =

X, then s(Hn)→ s(X).

Proof. By Theorem 20, there is a set U ⊂ X × I such that Ux is of full measure
for every x ∈ X and µ∗(Uy) ≤ µ(X) − s(X) for every y ∈ Y, where Y ⊂ I is a
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set of full outer measure. Let H ⊂ X be arbitrary. If V = U ∩ (H × I ), then Vx
is of full measure for every x ∈H and

µ∗
H (V

y) ≤ µ∗(Uy) ≤ µ(X)− s(X) = µH(H )− (s(X)+ µH(H )− µ(X))
for every y ∈ Y. Again by Theorem 20, this inequality implies that

s(H ) ≥ s(X)+ µ∗(H )− µ(X). (17)

If H1 ⊂ Hs ⊂ · · · and
⋃∞
n=1Hn = X, then µ∗(Hn) → µ(X); therefore, by (17),

lim infn→∞ s(Hn) ≥ s(X).
Now we prove that lim supn→∞ s(Hn) ≤ s(X). Suppose this is not true. Then,

by passing to a subsequence if necessary, we may assume that s(Hn) > s(X)+ ε
for every n, where ε > 0. According to Theorem 20, there exist sets Un ⊂ Hn× I
and Yn ⊂ I such that (Un)x is of full measure for every x ∈ Hn and µ∗(Yn) = 1
and such that µ∗((Un)y) ≤ µ∗(Hn)− s(Hn) for every y ∈ Yn.

Let Y = Y1 × Y2 × · · · ⊂ /; then Y is of full outer measure in /. We define

U ∗
n = {(x,ω)∈Hn ×/ : (x,ωn)∈Un}.

Then (U ∗
n )x is of full measure for every x ∈Hn, and

µ∗((U ∗
n )
ω) = µ∗(Uωnn ) ≤ µ∗(Hn)− s(Hn) < µ(X)− s(X)− ε

for every ω ∈ Y.
Now we put U ∗ = ⋃∞

N=1

⋂∞
n=N U ∗

n . It is easy to check that (U ∗)x is of full
measure for every x ∈X and that µ∗((U ∗)ω) ≤ µ(X)− s(X)− ε for every ω ∈ Y.

Since / is isomorphic to I, there exists a set U ⊂ X × I such that (a) Ux is of
full measure for every x ∈ X and (b) µ∗(Uy) ≤ µ(X) − s(X) − ε for a set of
y’s of full outer measure. If f = χU , then the value of (11) is at least s(X) + ε.
However, its value cannot be greater than s(X)—a contradiction. Thus we have
proved that lim supn→∞ s(Hn) ≤ s(X).
Lemma 24. For every H ⊂ I and ε > 0 we have λ∗(H̄ ) ≤ s(H )/ε, where

H̄ = H̄(ε) =
{
x ∈H : lim sup

h→0+
s(H ∩ [x, x + h])

h
> ε

}
.

Proof. For each x ∈ H̄ there exist arbitrarily small numbers h > 0 with h <
s(H ∩ [x, x + h])/ε. We can now apply the Vitali covering theorem to find a se-
quence of disjoint intervals [xi, xi+hi], i = 1, 2, . . . , that cover almost every point
of H̄. Therefore,

λ∗(H̄ ) ≤
∞∑
i=1

hi ≤ 1

ε

∞∑
i=1

s(H ∩ [xi, xi + hi]).

For each n∈ N, by Lemma 22 we have

s(H ) =
n∑
i=1

s(H ∩ [xi, xi + hi])+ s(H ∩ J );

here J = I\ ⋃n
i=1[xi, xi +hi]. Hence

∑n
i=1 s(H ∩ [xi, xi +hi]) ≤ s(H ) for each

n∈ N and so λ∗(H̄ ) ≤ s(H )/ε.
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We conclude by proving some supplementary results that may be of interest in
their own right.

Proposition 25. For every c ∈ [0,1], there exists a probability space X such
that s(X) = c.
Proof. If c = 0, then we may take the one-element probability space. Suppose
0 < c ≤ 1. Let κ = nonN ; that is, let κ be the smallest cardinality of sub-
sets of R having positive outer measure. Then there clearly exists a set A ⊂
[0,1] of cardinality κ such that λ∗(A) = c. Let Ā be a measurable hull of A,
and let p be a point not in A. We define X = A ∪ {p}. The elements of the
σ -algebra A will be sets of the form E ∩A or (E ∩A)∪ {p}, where E ⊂ [0,1] is
Lebesgue measurable. Then the measure µ is defined by µ(E ∩ A) = λ(E ∩ Ā)
and µ((E ∩ A) ∪ {p}) = λ(E ∩ Ā)+ 1 − c for every Lebesgue measurable E ⊂
[0,1]. It is clear that (X, A ,µ) is a probability space.

Let B ⊂ I be a set of cardinality κ with full outer measure, and let A = {aα :
α < κ} and B = {bα : α < κ} be well-orderings of A and B (respectively) that
are of type κ. The set

S = {(aα , bβ) : α < β < κ} ∪ (A× (I \ B)) ∪ ({p} × I )
has the property that Sx is of full measure in I for every x ∈X (because the cardi-
nality of I \Sx is less than κ), andµ(Sy) = 1−c for every y ∈B. By Theorem 20,
these statements imply that s(X) ≥ c. Yet if f : (X × I ) → [0,1] then the value
of the difference of integrals in (11) is clearly no more than c, so s(X) = c.
Note that, in contrast with Proposition 25, there are some measure spaces, includ-
ing the standard measure space (I, L, λ), for which the value of s(X) must be
either 0 or µ(X). Indeed, in Theorem 26 we prove that if X is any finite measure
space supporting an ergodic transformation, then s(X)∈ {0,µ(X)}.
Theorem 26. If (X, A ,µ) is a finite measure space that supports an ergodic
transformation, then s(X)∈ {0,µ(X)}.
Proof. Let F : X → X be ergodic, and suppose that s(X) > 0. We must show
that s(X) = µ(X). By Theorem 20, there exist a set U ⊂ X × I such that Ux is
of full measure in I for every x ∈ X and a set B ⊂ I of full outer measure such
that, for every y ∈B, µ∗(Uy) < µ(X).

Define φ(x, y) = (F(x), y) and put

S =
∞⋃
N=1

∞⋂
n=N

φ−n(U).

Then, for every x ∈ X, Sx has full measure. However, for each y ∈ B, Sy =⋃∞
N=1

⋂∞
n=N F −n(Uy) is of less than full outer measure for every y ∈ B and is

also F -invariant. Since F is ergodic, it follows that µ(Sy) = 0 for every y ∈ B.
Hence S is a weak 0-1 set and so, by Corollary 21, s(X) = µ(X).
Theorem 27. Let (X, A ,µ) be a finite measure space that supports an ergodic
transformation. Then the following statements are equivalent.



646 P. D. Humke & M. Laczkovich

(i) There is no weak 0-1 set in X × I.
(ii) s(X) = 0.

(iii)
∫
X

∫
f(x, y) dy dµ(x) ≤ ∫ ∫

X
f(x, y) dµ(x) dy for every f : (X × I )→ I.

Proof. Suppose that (i) holds. By Corollary 21 we have s(X) < µ(X), and by
Theorem 26 we obtain s(X) = 0. The implications (ii) ⇒ (iii) and (iii) ⇒ (i)
follow directly from the definitions.

We remark that a statement equivalent to (iii) but in arbitrary finite measure spaces
can be found in [4, Thm. 4].

6. No Weak 0-1 Set Implies Almost Complete
Transfer of Density a.e.

The goal of this section is to prove Theorem 13. In Section 4 we proved the impli-
cation (i) ⇒ (ii). Therefore, it would be natural to infer (iii) from (ii) the same
way as Theorem 6 was inferred from Theorem 5.

Suppose (ii) holds, and let E ⊂ H be such that d∗(E, x,π/2) = 1 for every
x ∈ R. Let C be the set of pairs (x, θ)∈ R × (0,π) such that d̄ ∗(E, x, θ) = 1. We
have to prove that Cx is of full measure for a.e. x. Now, if (ii) is true, then the sec-
tion Cθ is of full measure for every fixed θ. However, since C is not measurable,
this does not imply that Cx is of full measure for a.e. x. Indeed, there exists a set
C ⊂ R2 such that Cy is the complement of a singleton for every y but λ∗(Cx) = 0
for every x. Since the existence of such a set can be proved in ZFC, the preceding
argument cannot prove the implication (ii) ⇒ (iii) of Theorem 12.

We overcome this difficulty by following a different argument proving Theo-
rem 6. We first give a proof of Theorem 6 that is independent of the previous
argument, and then we adapt it to the nonmeasurable case.

Second Proof of Theorem 6. Let E ⊂ H be a Borel set such that d(E, x,π/2) = 1
for every x ∈ R. It is enough to show that, for a.e. x ∈ I, d̄(E, x, θ) = 1 for almost
every θ. Suppose this is not true. Then there exist an ε > 0 and a measurable set
A ⊂ I with λ(A) > ε such that, for every x ∈A, d̄(E, x, θ) < 1− ε for every θ ∈
Bx with λ(Bx) > ε.

It follows that there exist measurable sets B ⊂ A andB′
x ⊂ Bx and also a pos-

itive number h0 such that λ(B) > ε, λ(B′
x) > ε for every x ∈B, and

λ(E ∩ L(x, θ,h))

h
< 1 − ε

for every x ∈B, θ ∈B′
x , and 0 < h < h0. We define Hn as the set of points x ∈ I

such that
λ(Ex ∩ [0,h])

h
> 1 − ε3

4
(18)

for every 0 < h < 1/n. Then Hn is measurable for every n, H1 ⊂ H2 ⊂ · · · , and
it follows (from our assumption on the set E) that

⋃∞
n=1Hn = I. Then λ(Hn)→

1, and we can select an n such that λ(Hn) > 1− ε. Since λ(Hn ∩B) > 0, there is



Transference of Density 647

a point x ∈Hn ∩B such that x is a density point ofHn. For computational conve-
nience we assume that x = 0, and we denote B′

0 simply by B. Since 0 = x ∈B,

λ(E ∩ L(0, θ,h))

h
< 1 − ε (19)

for every θ ∈B and 0 < h < h0. Also, since 0 is a density point of Hn, we can
fix a positive number h such that h < min(h0/2,1/n) and

λ(Hn ∩ [0,h]) >

(
1 − ε3

4

)
· h. (20)

Let f(x, y) = 1 if (x, y) ∈ E ∩ ([0,h] × [0,h]), and let f(x, y) = 0 otherwise.
Applying the change of variable y = x tan θ, we obtain

∫ h

0

∫ h

0
f(x, y) dy dx =

∫ h

0

∫ π/2

0
x · cos−2 θ · f(x, x tan θ) dθ dx

=
∫ π/2

0

∫ h

0
x · cos−2 θ · f(x, x tan θ) dx dθ. (21)

On the one hand, if x ∈Hn ∩ (0,h] is fixed then∫ h

0
f(x, y) dy = λ(Ex ∩ [0,h]) >

(
1 − ε3

4

)
· h

by (18); hence
∫ h

0

∫ h

0
f(x, y) dy dx ≥

(
1 − ε3

4

)2

· h2 >

(
1 − ε3

2

)
· h2. (22)

On the other hand, if 0 < θ < π/2 is fixed then the points (x, x tan θ) (x ≥ 0) run
through the half-line L(0, θ). Since f(x, y) = 0 outside the square [0,h] × [0,h],
the last integral of (21) is equal to

∫ π/2

0

∫ r(θ)

0
t · f(t cos θ, t sin θ) dt dθ,

where r(θ) denotes the length of the segment L(0, θ)∩ ([0,h] × [0,h]). Note that
∫ π/2

0

r 2(θ)

2
dθ = λ2([0,h] × [0,h]) = h2

by the area formula when polar coordinates are used.
If θ ∈B, then it follows from (19) and from r(θ) < 2h ≤ h0 that the measure of

the set {t ∈ [0, r(θ)] : f(t cos θ, t sin θ) = 1} is at most (1 − ε) · r(θ). Therefore,
∫ r(θ)

0
t · f(t cos θ, t sin θ) dt ≤

∫ r(θ)

ε·r(θ)
t dt = r 2(θ)

2
· (1 − ε2).

If θ ∈ (0,π/2) \B, then
∫ r(θ)

0
t · f(t cos θ, t sin θ) dt ≤

∫ r(θ)

0
t dt = r 2(θ)

2
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and so ∫ π/2

0

∫ r(θ)

0
t · f(t cos θ, t sin θ) dt dθ

≤
∫
B

r 2(θ)

2
· (1 − ε2) dθ +

∫
(0,π/2)\B

r 2(θ)

2
dθ

=
∫ π/2

0

r 2(θ)

2
dθ −

∫
B

r 2(θ)

2
ε2 dθ

≤ h2 − h2

2
· ε2 · λ(B)

≤
(

1 − ε3

2

)
· h2 (23)

because λ(B) > ε. This estimate contradicts (22) and (21), which completes the
proof.

Now we turn to the proof of Theorem 13. Suppose that there is no weak 0-1 set.
By Theorem 27, this implies s(I ) = 0.

It is enough to show that if E ⊂ H is such that d∗(E, x,π/2) = 1 for every x ∈
R then, for a.e. x ∈ I, d̄ ∗(E, x, θ) = 1 for almost every θ. Suppose this is not true.
Then there exist an ε > 0 and a set A ⊂ I such that λ∗(A) > ε, and d̄ ∗(E, x, θ) <
1 − ε for every θ ∈Bx with λ∗(Bx) > ε.

It follows that there exist setsB ⊂ A andB′
x ⊂ Bx as well as a positive number

h0 such that λ∗(B) > ε, λ∗(B′
x) > ε for every x ∈B, and

λ∗(E ∩ L(x, θ,h))

h
< 1 − ε

for every x ∈B, θ ∈B′
x , and 0 < h < h0. We define Hn as the set of points x ∈ I

such that
λ∗(Ex ∩ [0,h])

h
> 1 − ε3

16
(24)

for every 0 < h < 1/n. Then H1 ⊂ H2 ⊂ · · · , and it follows from our as-
sumption on the set E that

⋃∞
n=1Hn = I. Hence

⋃∞
n=1(Hn ∩ B) = B and

so limn→∞ λ∗(Hn ∩ B) = λ∗(B) > ε. Moreover, by Theorem 23 we have
limn→∞ s(Hn) = s(I ) = 0. We may therefore fix an n such that λ∗(Hn ∩ B) > ε
and s(Hn) < ε10/213.

Let Z denote the set of points x ∈Hn such that

lim sup
h→0+

s(Hn ∩ [x, x + h])

h
>
ε9

213
.

By Lemma 24, we have λ∗(Z) ≤ ε. Since λ∗(Hn ∩ B) > ε, the set (Hn ∩ B) \ Z
has positive outer measure. Let x ∈ (Hn ∩ B) \ Z be an outer density point of
(Hn ∩B) \Z. For computational convenience we assume that x = 0, and we de-
note B′

0 simply by B.
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Since 0 = x ∈B, we have

λ∗(E ∩ L(0, θ,h))

h
< 1 − ε (25)

for every θ ∈B and 0 < h < h0. Also, since 0 is an outer density point ofHn and
since 0 ∈Hn \ Z, we can fix a positive number h such that h < min(h0/2,1/n),

λ∗(Hn ∩ [0,h]) >

(
1 − ε3

16

)
h, (26)

and
s(Hn ∩ [0,h])

h
<
ε9

212
. (27)

For the remainder of this proof we fix ε, h, and B with the properties (25), (26),
and (27). Note that (24) holds for every x ∈Hn.

Put η = ε3/16, and let f denote the characteristic function of the set E ∩
([ηh,h] × [0,h]). We claim that

∫
A

∫ π/2

0
x · cos−2 θ · f(x, x tan θ) dθ dx

≤
∫ π/2

0

∫
A

x · cos−2 θ · f(x, x tan θ) dx dθ + hπ

η2
· s(A) (28)

for every A ⊂ [0,h]. Indeed, if f(x, x tan θ) �= 0 then x ≥ ηh and x tan θ ≤ h,
whence tan θ ≤ 1/η. Thus cos−2 θ = 1 + tan2 θ ≤ 2/η2 and x cos−2 θ ≤ 2h/η2.

Therefore, (28) follows from Lemma 19.
We now apply (28) with A = Hn ∩ [0,h]. By (27) we have s(Hn ∩ [0,h]) <

(ε9/212) · h, so

∫
Hn∩ [0,h]

∫ π/2

0
x · cos−2 θ · f(x, x tan θ) dθ dx

<

∫ π/2

0

∫
Hn∩ [0,h]

x · cos−2 θ · f(x, x tan θ) dx dθ + ε3

4
· h2. (29)

Next we estimate the left-hand side of (29) from below. Let x ∈Hn ∩ [ηh,h] be
fixed. Since f(x, x tan θ) = 0 unless x tan θ ≤ h, we do not change the value of
the inner integral when changing the limits of integration to

∫ (arctanh)/x
0 . Applying

the change of variable y = x tan θ (and Lemma 17), by (24) we obtain

∫ π/2

0
x · cos−2 θ · f(x, x tan θ) dθ =

∫ h

0
f(x, y) dy = λ∗(Ex ∩ [0,h])

>

(
1 − ε3

16

)
h.

Therefore,
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∫
Hn∩ [0,h]

∫ π/2

0
x · cos−2θ · f(x, x tan θ) dθ dx

≥
∫
Hn∩ [ηh,h]

∫ π/2

0
x · cos−2 θ · f(x, x tan θ) dθ dx

≥
(

1 − ε3

8

)2

· h2 >

(
1 − ε3

4

)
· h2

by (26). Observe that the first integral is over the measure space Hn ∩ [0,h] of
total measureµ(Hn∩ [0,h]) = λ∗(Hn∩ [0,h]) and that the second integral is over
a µ-measurable subset of that measure space. Also, we have

λ∗(Hn ∩ [ηh,h]) ≥ λ∗(Hn ∩ [0,h])− ηh ≥
(

1 − ε3

8

)
h.

Finally, we estimate the right-hand side of (29) from above. We begin by giving
an upper estimate for the integral on the right-hand side of (29). We have∫ π/2

0

∫
Hn∩ [0,h]

x · cos−2 θ · f(x, x tan θ) dx dθ

≤
∫ π/2

0

∫
[0,h]

x · cos−2 θ · f(x, x tan θ) dx dθ

=
∫ π/2

0

∫ r(θ)

0
t · f(t cos θ, t sin θ) dt dθ,

where the last equality uses the linear substitution x = t cos θ in the inner inte-
gral. Note that r(θ) denotes the length of the segment L(0, θ) ∩ ([0,h] × [0,h]).
Let

V(θ) =
∫ r(θ)

0
t · f(t cos θ, t sin θ) dt

for every θ ∈ [0,π/2). Then, arguing much as in the proof of Theorem 6, we find

V(θ) ≤
∫ r(θ)

ε·r(θ)
t dt = r 2(θ)

2
· (1 − ε2)

for every θ ∈ B. If U : [0,π/2) → R is measurable and if U ≤ V on [0,π/2),
then U(θ) ≤ r 2(θ) · (1 − ε2)/2 on a measurable set containingB. Therefore, the
computation in (23) gives

∫ π/2

0

∫ r(θ)

0
t · f(t cos θ, t sin θ) dt dθ ≤

(
1 − ε3

2

)
· h2.

Hence the right-hand side of (29) is not greater than(
1 − ε3

2

)
h2 + ε3

4
· h2 =

(
1 − ε3

4

)
h2.

This estimate contradicts (29) and (30), which completes the proof.
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7. Construction of the Examples

7.1. Proof of Theorem 3

We begin by constructing the following preliminary example.

Theorem 28. There exists a closed set E ⊂ H such that :

(i) D(E, x) = 0 for every x ∈ R; and
(ii) d̄(E, x, θ) = 1 for every x ∈ R and θ ∈ (0,π).

Proof. This construction is a refinement of [3, Exm. 3]. Let [αk ,βk] ⊂ (0,π)
be a closed interval for every k = 1, 2, . . . , let (mk)∞k=1 be a sequence of positive
integers, and let (an)∞n=0 be a strictly decreasing sequence of positive real numbers
converging to zero.

We define a trapezoid Tn,i for every positive integer n and for every i ∈ Z as
follows. Put n1 = 0 and nk = m1 + · · · + mk−1 for every k ≥ 2. Then there is a
unique k such that nk ≤ n < nk+1. Let Tn,i be the trapezoid bounded by the lines
L((i − 1)ank+1,βk), L(iank+1,αk), y = an−1, and y = an. For n = nk + r we de-
fine An = ⋃{Tn,i : i ∈ Z , i ≡ r (modmk)}. Then An is a closed subset of the
strip Sn = {(x, y) : an ≤ y ≤ an−1} for every n. Let E = ⋃∞

n=1An ∪ {(x, y) :
y = 0}, in which case E is a closed subset of H.

First we will show that—under suitable conditions imposed on the sequences
([αk ,βk]), (mk), and (an)—the set E satisfies the requirements of the theorem.
Suppose that

(A) every θ ∈ (0,π) belongs to infinitely many intervals [αk ,βk] and
(B) an/an−1 → 0 as n→ ∞.
Then (ii) is satisfied. Indeed, let x ∈ R and θ ∈ (0,π) be arbitrary, and let θ ∈
[αk ,βk]. Choose an integer i such that x ∈ [(i − 1)ank+1, iank+1] and suppose that
i = q · mk + r, where 0 ≤ r < mk. If n = nk + r, then nk ≤ n < nk+1 and it
follows (from the definitions of Tn,i, An, and E) that

L(x, θ) ∩ E ⊃ L(x, θ) ∩ Tn,i = L(x, θ) ∩ Sn. (31)

Therefore, putting hn−1 = an−1/sin θ, we obtain

λ(L(x, θ,hn−1) ∩ E)
hn−1

≥ an−1 − an
an−1

.

Since there are infinitely many such n, from (B) it follows that d̄(E, x, θ) = 1.
Now suppose that

(C) mk → ∞ as k → ∞,
(D) mk · ank+1 < ank+1−1 for every k ≥ k0, and
(E) (ank−1/ank+1) · εk → 0 as k → ∞;
here εk = cotαk − cotβk. We prove that these conditions imply (i). If nk ≤ n <
nk+1 and an < y < an−1 then, for every i, the length of the segment (Tn,i )y is
at most
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ank+1 + an−1 · εk ≤ ank+1 + ank−1 · εk.
It follows from the definition of An that if an < y < an−1 then the set (An)y is
periodic with period pk = mk · ank+1. By (D), we have pk < ank+1−1 for every k ≥
k0. We also have Ey = (An)y because Am ⊂ Sm for every m �= n. Therefore, the
measure of Ey in every interval of length pk is at most ank+1 + ank−1 · εk; hence
the relative density of Ey in every interval of length ≥ pk is at most

2 · ank+1 + ank−1 · εk
mk · ank+1

≤ 2

mk
+ 2 · ank−1

ank+1

· εk = bk.

Thus, by (C) and (E), limk→∞ bk = 0.
Let K ≥ k0, x ∈ R, and 0 < h < anK be arbitrary. We can estimate the relative

density ofE in [x, x+h] × [0,h] as follows. Suppose 0 < y < h is such that y �=
ai for every i. If an < y < an−1, where nk ≤ n < nk+1, then k ≥ K ≥ k0 and
we have h > an ≥ ank+1−1 > pk. Hence the relative density of Ey in [x, x + h]
is at most bk. The relative density of Ey in [x, x + h] is therefore at most cK =
maxk≥K bk for every 0 < y < h satisfying y �= ai (i = 1, 2, . . . ), and so the rel-
ative density of E in [x, x + h] × [0,h] is at most cK as well. Since cK → 0 as
K → ∞, this implies (i).

In order to complete the proof, we must construct the sequences ([αk ,βk]),
(mk), and (an) such that conditions (A)–(E) are satisfied.

It is easy to see, from the divergence of the series
∑∞

k=11/k, that there are inter-
vals Ik (k = 1, 2, . . . ) with |Ik| = 1/k for every k and such that every real number
belongs to infinitely many of the intervals Ik. Let αk ,βk ∈ (0,π) be such that
[cotβk , cotαk] = Ik. The cot x function establishes a strictly decreasing bijection
between (0,π) and R, so clearly (A) is true. Note that εk = cotαk − cotβk = 1/k
for every k.

We define mk = 1 for k ≤ 20 and mk = [log log k] for k > 20. Then (mk) is a
sequence of positive integers satisfying (C). Put n1 = 0 and nk = m1 +· · ·+mk−1

for every k ≥ 2. We shall define the numbers an inductively. First put a0 = 1.
If k ≥ 1 and ank has been defined, then we put an = ank/max(2, log 2k)n−nk for
every nk < n ≤ nk+1. It should be clear that the sequence (an) defined in this way
is strictly decreasing and satisfies (B).

We have ank+1−1/ank+1 = max(2, log 2k) ≥ mk if k ≥ k0, so (D) must hold.
Finally, if k is large enough then

ank−1

ank+1

= ank−1

ank
· ank
ank+1

= log 2(k − 1) · (log 2k)mk

< e(1+mk)·log log 2k ≤ e(1+log log k)·log log 2k

< e(log k)/2 = k1/2.

Therefore,
ank−1

ank+1

· εk < 1

k1/2
→ 0,

which proves (E).
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Proof of Theorem 3. We use notation from the proof of Theorem 28. Put ck =
maxj≥k bj for every k ≥ 1. Then clearly (ck) is a decreasing sequence that con-
verges to zero.

We shall construct an open set Gn for every n as follows. Suppose nk ≤ n <

nk+1. As shown in the proof of Theorem 28,

λ((An)
y ∩ [0,pk]) ≤ bk · pk ≤ ck · pk

for every an < y < an−1; hence

λ2(An ∩ ([0,pk] × R)) ≤ ck · pk · (an−1 − an). (32)

If we set Bn = {x ∈ (0,pk) : λ((An)x) >
√
ck · (an−1 − an)}, then (32) implies

that λ(Bn) < pk · √
ck. Let Cn be an open subset of R such that Cn is periodic

modulo pk , Bn ⊂ Cn, and λ(Cn ∩ [0,pk]) < pk · √
ck. We define

dn = min
(
max

(
an, 4

√
ck · an−1

)
, an−1

)
and

Gn = (R × (an, dn)) ∪ (Cn × (an, an−1)).

Let F = E \ ⋃∞
n=1Gn andG = (intH ) \ F. We prove that the setG satisfies the

requirements of the theorem. Clearly, G is an open set. For every x ∈ R and n =
1, 2. . . , we have Fx ∩ (an, an−1) = ∅ if x ∈Cn and λ((An)x) ≤ √

ck · (an−1−an) if
x /∈Cn. This implies that λ(Fx∩ [an, an−1]) ≤ √

ck ·(an−1−an) for every n and so
λ(Fx ∩ [0, an]) ≤ √

ck · an for every n, where k is determined by nk ≤ n < nk+1.

On the one hand, if an ≤ h ≤ dn then we thereby obtain

λ(Fx ∩ [0,h])

h
≤ λ(Fx ∩ [0, an])

an
≤ √

ck;

on the other hand, if dn < h < an−1 then

λ(Fx ∩ [0,h])

h
≤ λ(Fx ∩ [0, an])+ λ(Fx ∩ [an, an−1])

h

≤ λ(Fx ∩ [0, an])

an
+

√
ck · an−1

dn

≤ √
ck + 4

√
ck.

Since
√
ck + 4

√
ck → 0 as k → ∞, it follows that d(F, x,π/2) = 0 and that

d(G, x,π/2) = 1 for every x ∈ R.

Let x ∈ R and θ �= π/2 be fixed. We put hn = an/sin θ for every n. In the proof
of Theorem 28 we saw that (31) holds for infinitely many n. For every such n
we have

λ(L(x, θ,hn−1) ∩ F )
hn−1

≥ an−1 − an
an−1

− λ(L(x, θ,hn−1) ∩Gn)
hn−1

;
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therefore, to show d̄(F, x, θ) = 1 it is enough to prove that

lim
n→∞

λ(L(x, θ,hn−1) ∩Gn)
hn−1

= 0. (33)

We have L(x, θ,hn−1)∩Gn = Un∪Vn, whereUn = L(x, θ,hn−1)∩ (R× (an, dn))
and Vn = L(x, θ,hn−1) ∩ (Cn × (an, an−1)).

It is easy to see that λ(Un)/hn−1 ≤ dn/an−1 ≤ 4
√
ck → 0 as n → ∞. Indeed,

for large nwe have dn = max
(
an, 4

√
ck ·an−1

)
, in which case the statement follows

from an/an−1 → 0 and 4
√
ck → 0.

Now observe that λ(Vn)/hn−1 equals the relative density of Cn in the interval J,
where J is the projection of L(x, θ) ∩ (R × (an, an−1)) onto R. The length of J
is equal to |cot θ | · (an−1 − an) ≥ |cot θ | · an−1/2. Hence, for n large enough,

an−1 ≥ ank+1−2 = log 2k · ank+1−1 ≥ log 2k · pk
by (D) and so |J | ≥ pk for n ≥ n0. Since the relative density of Cn in every inter-
val of length ≥ pk is at most 2 · √

ck , it follows that λ(Vn)/hn−1 → 0 if n→ ∞.
This proves (33). Consequently, d̄(F, x, θ) = 1 and d(G, x, θ) = 0, completing
the proof of the theorem.

7.2. Proof of Theorem 4

For x ∈ R and −π < θ < π, let L(x, θ, ∗) denote the line segment of direction θ
extending between the x-axis and the line y = 1. In [5, Exm. 1], Kinney constructs
the following example.

Kinney’s Set. There is a closed null set K ⊂ [0,1]2 such that, for every x ∈
[0,1], there exists an αx ∈ [π/2, cos−1(−1/3)] with L(x,αx , ∗) ⊂ K.

Let T1 and T2 be the affine transformations T1(x, y) = (x/2 + y/2, y) and
T2(x, y) = (x/2 − y/2 + 1/2, y), and define B0 = T1(K) ∪ T2(K). Then B0 ⊂
[0,1]2 is again a closed null set and, by the nature of K, for every x ∈ [0,1] there
is a θx ∈ (−π,π)\{π/2} with L(x, θx , ∗) ⊂ B0. Finally, for each n ∈ Z let Bn =
B0 + (n, 0) and set B = ⋃

n∈Z Bn.

Since B ⊂ H is closed and null, it is easy to see that A = {x ∈ R : Bx is not
null} is a linear Fσ null set. Let A∗ be a Gδ null set containing A, and define

E = (R2\B) ∪ (A× R), E∗ = (R2\B) ∪ (A∗ × R).

In summary, we have the following statements.

1. E ∈Fσ and E∗ ∈Gδ.
2. For every x ∈ R, L(x, θx , ∗) ∩ E and L(x, θx , ∗) ∩ E∗ are of linear measure 0.
3. For every x ∈ R, Ex and E∗

x are of full linear measure.

This completes the proof of Theorem 4.
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7.3. Proofs of Theorems 7 and 8

Proof of Theorem 7. We use transfinite induction to construct a set E ⊂ R2 that
contains a point from every nonempty vertical perfect set but contains at most two
points from every nonvertical line. The conclusion of Theorem 7 follows imme-
diately from these properties.

Let P consist of the nonempty vertical perfect sets in R2—in other words, per-
fect sets that are situated on some vertical line. Then card(P) = 2ω and we enu-
merate P = {Sα : α < 2ω}. To begin the induction, select a point s0 ∈ S0 and put
s0 ∈E.

Now suppose that α < 2ω and that sβ has been selected for every β < α. Since
pairs of distinct points from Eα = {sβ : β < α} determine card(E 2

α) lines and
since card(Eα) ≤ card(α) < 2ω = card(Sα), it follows that Sα contains a point
that is not on any of those lines. Select such a point, sα , and assign it to E. This
completes the induction.

Next suppose that {sα , sβ , sγ} ⊂ E, where α < β < γ and no two of these points
lie on the same vertical line. Then sγ is not on the line determined by sα and sβ , so
these three points are not collinear. However, E does contain a point from every
vertical perfect set; hence E has full outer measure on every vertical line.

Proof of Theorem 8. Here we construct a set F that contains a point from every
nonvertical linear perfect set but has at most one point from every vertical line.
The complement of F will have linear inner measure 0 on every nonvertical line
yet will be missing at most one point from every vertical line. This R2 \ F, then,
is the set E of Theorem 8.

To construct F, we enumerate the nonvertical and nonempty linear perfect sets
as {Pα : α < 2ω}, and we start the induction by selecting a point p0 ∈P0.

Suppose now that α < 2ω and that a point pβ has been selected for every β < α.
Because Pα is a nonvertical and nonempty perfect set, it is not covered by fewer
than 2ω vertical lines. But card(α) < 2ω and so there is a point pα ∈ Pα such
that L(pα ,π/2) ∩ {pβ : β < α} = ∅. In this way, a point pα is defined for
every α < 2ω. If we set F = {pα : α < 2ω}, then it is clear that F satisfies the
requirements.
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