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Remarks on the Metric Induced
by the Robin Function II

DigaANTA BORAH

1. Introduction

Let D be a C*°-smoothly bounded domain in C"* (n > 2). For p € D, let G(z, p)
be the Green function for D with pole at p associated to the standard Laplacian

=4 Z az,az,

on C" ~ R?". Then G(z, p) is the unique function of z € D satisfying the con-
ditions that G(z, p) is harmonic on D \ {p}, G(z,p) — 0 as z — D, and
G(z,p) — |z — p|~?"*? is harmonic near p. Thus

A(p) = 711_[)[]1’(G(Z7p) _ |Z _ p|—2n+2)

exists and is called the Robin constant for D at p. The function
A:p— A(p)

is called the Robin function for D.

The Robin function for D is negative and real-analytic, and it tends to —oo
near oD (see [10]). Furthermore, if D is pseudoconvex then, by a result of
Levenberg and Yamaguchi [7], log(—A) is a strongly plurisubharmonic function
on D. Therefore,

2, 9%log(—A)
ds* = —————dz,®dzZ
oz%::l aZaaZﬂ !

is a Kdhler metric on D, which is called the A-metric. Recall that the holomorphic
sectional curvature of ds? at z € D along the direction v € C” is given by

Roqugvo’l_)ﬂvyl_)‘s
R(z,v) = gﬂv—"‘ﬁf’
o
here )
R °8up ;7 08ai 98up
“Prd T Bz, 0% 0z, 9%

are the components of the curvature tensor,
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~_9%log(—A)

gaﬁ o 3Za32,3

are the components of ds?, and g*# are the entries of the matrix (g,, B)’l. In the pre-
ceding formulas, we follow the standard convention of summing over all indices
that appear once in the upper and lower position.

Now let v be a vector in C”". At each point z € 9D, there is a canonical split-
ting C" = H,(0D) & N_(dD) along the complex tangential and normal directions
at z and so v can uniquely be written as v = vy (z) + vy(z), Where vy (z) €
H,(0D) and vy (z) € N,(dD). Also, the smoothness of D implies that if z € D
is sufficiently close to dD then there is a unique point 7w (z) € dD that is closest
to it; that is, d(z, dD) = |z — w(z)|. Therefore, v can uniquely be written as v =
vy (m(2)) + vy (7 (2)). We will abbreviate vy (7(z)) as vy (z) and vy (7 (z)) as
vy (z) and call them, respectively, the horizontal and normal components of v at z.
For a strongly pseudoconvex domain D, the boundary behavior of R(z, vy (z)) was
calculated in [1] in a special case—namely, when z — zo € 9D along the inner
normal to dD at zy. One goal of this paper is to remove the restriction that z — z
along the inner normal when obtaining the boundary behavior of R(z,vy(2)).
More generally, we have the following theorem.

THEOREM 1.1.  Let {D,} be a sequence of C°°-smoothly bounded pseudoconvex
domains in C" that converges in the C*-topology to a C*-smoothly bounded
strongly pseudoconvex domain D in C". If p, € D, and if {p,} converges to a
point pg € 0D then, for any v € C" with vy (po) # 0,

. 1
lim Rv(p\n UNv(pv)) B
V— 00 n—1
where R, is the holomorphic sectional curvature of the A-metric on D, and
vny(py) is the normal component of v at p,, relative to the domain D,,.

In this theorem and henceforth, the C°°-convergence of the sequence {D,} to D
has the following standard meaning: there exist C *°-smooth defining functions v,
for D, and v for D such that {y,} converges in the C*°-toplogy on compact sub-
sets of C” to . With the same meaning, sometimes it is also said that {D,} is a
C°-perturbation of D. An immediate consequence of this theorem is the follow-
ing result.

COROLLARY 1.2. Let D be a C°°-smoothly bounded strongly pseudoconvex do-
main in C". Fix zo € 0D and let v € C" be such that vy (z9) # 0. Then, forz € D,

. 1
lim R(z,vy(2) = ——.
=20 n—1
To understand the difficulty in the computation, let us first normalize the data in
Theorem 1.1 as follows.

(a) Since the A-metric is invariant under translation and unitary rotation [, Lem-
ma 5.1], we will assume without loss of generality that po = 0 and that the
normal to dD at py is along the )i z,-axis.
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(b) If v is sufficiently large, then the distance between p, and dD,,, denoted §,, is
realized by a unique point 7, (p,) € dD,; that is

8, =d(p,,0D,) = |p, — m,(py)l.

For each such v, we can apply a translation 7, followed by a rotation o, and
thus transform the domain D, into a new domain 6, (D), where 6, = o, o T,,
such thatw, (p,) € dD, corresponds to 0 € 36, (D,) and the normal to 96, (D,)
is along the 9iz,-axis. Note that the point p, € D, now corresponds to the
point (0,...,0,—36,) € 6,(D,). It is also evident that the sequence {6,(D,)}
converges in the C°°-topology to D. Therefore, again by the invariance of the
A-metric under translations and unitary rotations, we will assume without loss
of generality that O € dD,, that the normal to D, at O is along the N z,-axis,
and that p, = (0,...,0,—4,).

With this normalization, we have

Ru(pv’ va(pv))
= R,(pv. (0,...,0,%)

1 a2 8vnin gvnoz gvﬁn
= —(py) + gl (py) (p v) > (1.1)
(gvnr_t(pv))2< Bz a Zn aﬁzl Zn
where 5
d” log(—A,)
_ 1.2
gvotﬁ aZaaZﬁ ( )

are the components of the A-metric ds2 on D, and g“ﬂ are the entries of the ma-
trix (gmﬂ) To compute the limit of the right-hand side of (1.1) as v — o0,
we must find the asymptotics of the metric components g,,,5 and their derivatives
along the sequence { p,,}. From (1.2), it is natural to hope that this can be achieved
by computing the asymptotics of A, and their derivatives

glAIFIBIA

3z - .. 31‘;"35{‘1 o zb
for A = («y,...,0,) and B = (By,...,B8,) e N"

DAEAV _

along { p,}. In this regard, we prove the following theorem.

THEOREM 1.3.  Let {D,} be a sequence of C*°-smoothly bounded domains in C"
that converges in the C*°-topology to a C*°-smoothly bounded domain D in C".
Choose C*°-smooth defining functions v, for D,, and r for D such that {\,,} con-
verges in the C*°-topology on compact subsets of C" to . Let p, € D, be such
that { p,} converges to py € dD. Define the half-space

H= {weC” : 25&(2 Iﬁa(po)wa) —-1< o},

a=1

and let A3 denote the Robin function for H. Then
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(—DAFIBIDABA (5 ) (W, (pu)) 2"~ 2HAFIBL s DABA | (po)

asv — oQ.

We emphasize that v, = 91/9z, in this theorem and should not be confused with
the function y,. We will show in Section 6 that the asymptotics obtained in this
theorem suffice to calculate the limit of the first term of (1.1). However, it turns
out that the second term remains indeterminate by these asymptotics. Hence cal-
culating this term requires finer asymptotics of A, and their derivatives. A similar
situation was handled in [ 1] by using the following result of Levenberg and Yama-
guchi [7]. The function A defined by

Ap)(Y(p)*~% if peD,
Mp) = 2n—2 :
=10y (p)l if pedD

is C? up to D. We will call A the normalized Robin function associated to (D, /).
Thus it is expected that finer asymptotics of A, and their derivatives along { p,}
could be obtained if the functions A, = Avwf”‘z and their derivatives along
{p,} were bounded. Theorem 1.2 shows that A, (p,) converges to A(pg), and in
Theorem 1.4 we establish the convergence of first and second derivatives of A,

along { p, ).

(1.3)

THEOREM 1.4.  Under the hypotheses of Theorem 1.2, we have

A, BN
(1) lim (py) = (po) and
v—>00 9py 0pu
2)\ 2
(2) lim “—(py) = —(Po).
v—00 dpedpp  Opadpp

Here A, and )\ are the normalized Robin functions associated to (D, V) and
(D, V), respectively.

We remark that—unlike the Bergman, Carathéodory, and Kobayashi metrics—the
A-metric is not invariant under biholomorphisms in general (see e.g. [1]). The
only information we have on this score is that any biholomorphism between two
C*°-smoothly bounded strongly pseudoconvex domains is Lipschitz with respect
to the A-metric (this follows from [I, Thm. 1.4]). Despite that drawback, our ex-
ploration of this metric is devoted to identifying which of its various properties are
analogous to those possessed by these invariant metrics.

Another goal of this paper is to study the existence of closed geodesics for
the A-metric of a given homotopy type. In [6] Herbort proved that, on a C°°-
smoothly bounded strongly pseudoconvex domain D in C” that is not simply con-
nected, every nontrivial homotopy class in (D) contains a closed geodesic for
the Bergman metric. By studying the boundary behavior of the A-metric, we prove
the following analogue for the A-metric.

THEOREM 1.5.  Let D be a C*°-smoothly bounded strongly pseudoconvex domain
in C" that is not simply connected. Then every nontrivial homotopy class in (D)
contains a closed geodesic for the A-metric.
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Let D be C*-smoothly bounded strongly pseudoconvex domain in C". Donnelly
and Fefferman [4] proved that D does not admit any square-integrable harmonic
(p, q)-form relative to the Bergman metric except when p + ¢ = n, in which
case the space of such forms is infinite dimensional. A more transparent and ele-
mentary proof of the infinite dimensionality of the L?-cohomology of the middle
dimension was given by Ohsawa [9]. In [3], Donnelly gave an alternative proof of
the vanishing of the L?-cohomology outside the middle dimension via the follow-
ing observation of Gromov [5]. If M is a complete Kihler manifold of complex
dimension n such that the Kéhler form w of M can be written as w = dn, where 1
is bounded in supremum norm, then M does not admit any square-integrable har-
monic i form for i # n. Finally, we observe that these ideas can be applied to the
A-metric to prove the following result.

THEOREM 1.6.  Let D be a C*°-smoothly bounded strongly pseudoconvex domain
in C", and let HY (D) be the space of square-integrable harmonic (p,q)-forms
relative to the A-metric. Then

0O ifp+gqg#n,

dim H29(D :{
2P = i prg=n

ACKNOWLEDGMENTS. The author is indebted to K. Verma for his encourage-
ment, valuable comments, and various helpful clarifications during the course of
this work. Many thanks are also due to the referee for a careful reading of the
manuscript and for making several suggestions that have all been incorporated; in
particular, the calculations in Sections 7 and 8 are based on these suggestions and
significantly simplify our earlier approach.

2. Properties of A

Let D be a C*°-smoothly bounded domain in C” with a C*°-smooth defining func-
tion v defined on all of C”. In this section, we recall some basic properties of the
normalized Robin function X associated to (D, ¥). We start by describing the geo-
metric meaning of A(p). Given p € D, let

T:DxC"—C"

be the map defined by
=D
T(p,z)= : (2.1
RT)
Set
T(p.D) if peD,
D(p) = { [ . (22)
{weCm: 2%(X0_ Ya(p)wy) —1 <0} if peaD.

Thus {D(p) : p € D} is a family of domains in C” each containing the origin.
When p € D, we have that D( p) is the image of D under the affine transformation
T(p,-) and hence by [10, Prop. 5.1] that

App(©0) = A(P)W(p)*" % = A(p).
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If p € dD then D(p) is a half-space for which we have the explicit formula
App(0) = =[3¥(p)*" > = A(p)

(cf. [1, (1.4)]). Thus, for each p € D, A(p) is the Robin constant for D(p) at the
origin. We will denote the Green function for D(p) with pole at p by g(p, w).
To discuss the regularity of the function A(p) on D, we set

D= J(p.D(p)) ={(p,w): pe D, we D(p)}.
peD

The set D can be considered as a variation of domains in C" with parameter
space D—in other words, as a map

D: p— D(p)

that associates to each p € D a domain D(p) C C". Wecall D: p — D(p) the
variation associated to (D, ). The function

n 1
flpow) = zm{ 3 fo (waia(p — Y (p)1w)) dt} -1, 23)
a=1

which was constructed in [7], is jointly smooth on C" x C”. If we take D
D x C", then the following statements hold.

(1) D={(p,w)eD: f(p,w) <0},0D :={(p,w) : pe D,wedD(p)} =
{(p,w)eD: f(p,w) =0}, and Grad, ) f # 0 on 9D.

(ii) For each p € D we have D(p) = {w € C" : f(p,w) < 0}, aD(p)
{fweC": f(p,w) =0}, and Grad,, f(p,w) # 0on dD(p).

Therefore, we say that the variation D: p — D(p) is smooth and is defined by

f(p,w). Itis evident that the variation

DUID: p — D(p) UdD(p) = D(p)

is diffeomorphically equivalent to the trivial variation D x D. It follows that
g(p,w) has a C* extension to a neighborhood of D \ D x {0}. Now fix a point
po € D and let B(0,r) C D( Ppo). Then there exists a neighborhood U of pg in
D such that B(0,r) C D(p) forall p € U. Because g(p, w) — |w|~2"*2 is a har-
monic function of w € D(p) and is equal to A(p) when w = 0, we can use the
mean value property of harmonic functions to obtain

1 —2n
AMp) = T/ (g(p.w) — [w|7>"*?) dS,
r O2n J3B(O,r)

1 1
==t / g(p,w)dSy, (2.4)
r AB(O0,r)

,‘2'1710-2”

where by dS we denote the surface area measure on a smooth surface in R** and
by 02, the surface area of dB(0, 1). It follows that A(p) is smooth on U and thus
on D.
Now let 1 < y < n. Observe that, for each p € D, the functions
2
a—g(p, w), —
ap, op,0p,

(p,w)
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are harmonic in all of D(p) and that

9%g LR
—(p.0) = —.
apy3pg apy 9Py

To find the boundary values of these functions in terms of f, consider the quanti-
ties k] and k7 :

ag I
op, op,

0
k{(p.w) = %(1), w9, £ (p, w)| ™,
Y

(2.5)
K(p,w) = LYf(p,w)dy f(p,w)| 7
here
92 f < of 32 af |?
L'f = /. 10w £I? — 2zvt(—f > f —f> + ‘—f Auf (2.6)
op,0p, ap, o 0wy 0w, dp, ap,

is defined wherever d,, f(p, w) # 0 and thus in particular on

oD = [ J(p.aD(p)).

peD

Observe that, on 3D, the quantities k| and k) are independent of the defining
function f for D. Since g(p,w) > 0on D, g(p,w) = 0 on D, and

1 og
[0wg(p,w)| = —=——(p,w) >0 on 3D,
2 ony,

it follows that we can use —g(p,w) as a defining function for D. Thus, for all
(p,w) € 9D, we have

0
SL(pow) = k] (p. w3y (pw)
Dy
and
L7g(p,w) = —kJ(p, w)|dug(p, w)|>.
Since g(p, w) is of class C* up to dD( p), we have A, g(p,w) = 0 for w € dD(p)
and hence, by (2.6),
82g
op, 0Py

38/0py x— 0g/dw,  0?
=_kg|awg|+2z)'t< 8/0py 5~ 38/0%, 08 )

10w gl 10wg| dwsdp,

a=1

0g/0w,  9%g
=_kg|awg|—2m<kf2 el weis
P w8 0Py

for w € dD(p). We summarize this result as follows.

PROPOSITION 2.1 The function g(p,w) is smoothupto DU D = {(p,w) : p€D,
weD(p)}.If 1 <y <nand p e D, then:
(1) (0g/9p,)(p) is a harmonic function of w € D(p) with

oA

g
—(p,0) = —(p)
op, op,
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and with boundary values
ag
Py
2) (82g/8py8ﬁy)(p) is a harmonic function of w € D(p) with

82g 2
—(p,0) = —(p)
op,0p, op,0p,
and with boundary values
82g
—(p,w)
op,dp,

= —ky(p, w)]d,g(p, w)|

ol " (9g/0wa)(p,w)  0%g >
zm(kl(p,w)z o Ty (W) WD)

a=1

Towa{d this end, it was proved in [7] that g(p, w) is C? up to {(p,w) : p € D,
w € D(p)} by deriving the following estimates. There exists a constant C, inde-
pendent of p € dD, such that

|k (p, w)| < Clwl%,

|y (p,w)| < Clwl?,

2.7)
10wg(p, w)| < Clw| 2",

19%g/0Wadp, | < Clw| "2

for all w € D with |[w| > 1. Moreover, the derivatives dg/dp, and 82g/8py op,
are given by the following proposition.

PrROPOSITION 2.2. Let 1 <y <n. Then, for p € Dandac D(p),

g 984(p, w)
—(p,a) = —/ k{(p,w)|0wg(p, w)|————=4dS, (2.8)
opy 2(n — 1)o2, Jap(p) ! w8 on,, v
and
82g
—(p,a)
op,dp,
1 / 0ga(p, w)
= K (p,w)|0wg(p, w)|———"—=dS,
2(n — Do Japy n,
1 n
4+ —FFN
(I’l - I)UZn ;
(3g/0wy)(p,w)  0%g dg
f ki (p,w) —(p,w)—(w)dS,. (2.9)
aD(p) [0wg(p,w)| Jdw,dp, ony

Here g,(p,w) is the Green function for D(p) with pole at a.
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We note that, for p € D, the preceding formulas are consequences of Proposi-
tion 2.1. For p € dD, these formulas were obtained in [ 7] by finding

2

. g .
lim —(g,a) and lim

,a).
D3gq—p 0p, D3q—p dp,0p, (g.a)
A particular case of this proposition is the following.
PROPOSITION 2.3. Let 1 <y <nand p € D. Then
I 1 ag(p,w)
Dy / K, 0lug(p, 01 22 g5, 2.10)
apy 2(n — 1)o2, Jap(p) on,,
and
3%
—(p)
op,0p,
- ;/ K (p, w) 100 (p, 0 dS
- ’ w ’ w
2(n — D)oo Janp -
1 n
+ —N
(n = Doa, ;
(0g/0wy)(p,w) 92 0
/ K (o) 2800 P g (pow) B (pow)dS,. (211)
aD(p) |3wg(P, U))| 8wa8p)/ 8nw

We now consider a sequence {D,} of C*°-smoothly bounded domains in C” that
converges in C *°-topology to D. We choose C **-smooth defining functions v, for
the domains D, such that {1, } converges in the C *°-topology on compact subsets
of C" to ¢. This implies, in particular, that D, converges in the Hausdorff sense
to D. For each v > 1, consider the scaling map 7,,: D, x C* — C”" defined by

i-p
T,(p,z) =
and the family of domains {D,(p) : p € D,} defined by
T,(p, Dy) if peD,,

Dulp) = { {weC"  2%(X7L, Yu(p)wi) =1 <0} if pedD,.

The normalized Robin function A, (p) for (D,, ¥,) is then the Robin constant for
D, (p) at 0. We will denote the Green function for D, with pole at 0 by g,(p, w).
Also, let

D, = |J (. Du(p)) = {(p,w) : p€ Dy, we Dy(p)}
peED,

be the variation associated to (D,, ¥,,) and let

nooal
fv(pv w) = 2%{2/(; (wa(l/fv)ot(p - IPV(P)“U)) dt} -1 (212)
a=1



590 DiGaNnTA BORAH
Then f,(p,w) is a smooth function on C" x C”" that defines the variation D,,. It

is evident that the functions f,(p, w) converge in the C°°-topology on compact
subsets of C" x C” to the function

n 1
flpow) = zm{ 3 fo (waia(p — Y (p)1w)) dt} -1,
a=1

which defines the variation D associated to (D, ).
Now let p, € D, be such that { p,,} converges to py € dD. For brevity, we let

Z— Py
T - Tv Vs = T
(Z) (p Z) _WV(pu)
D" = D\(py) =T"(D,), and (2.13)

gv(w) = g(pv, w).

Thus g"(w) is the Green function for D" with pole at 0. Let1 < y < n. By Propo-
sition 2.1, (dg,/dp,)(py, w) is a harmonic function of w € D" with boundary
values

=k (w)[0, 8" (w)1; (2.14)

here of
ke (w) = ki, (w) = ap” (Pvs )13y fo (pv, w)| 7. (2.15)

Y

Similarly, (3%g,/dp,3p,)(py, w) is a harmonic function of w € D" with bound-
ary values

3%g, _
—(Py, W
op,dp,
= —ky (w)[9,, 8" (w)]
y  (9g"/0we)(w)  9%g,
— 20 &)Y (w) —(py,w)|, weaD", (2.16)
<1 Z:; 008" (W) dw,dpy
where

Ky (W) = LYfo(pos )3y fo(po, w)] > (2.17)

and L” is defined by (2.6).

We shall conclude this section by finding uniform bounds for the functions
k;”(w) and k5" (w) near the boundary of dD", which will be required to estimate
the boundary values (2.14) and (2.16) in Sections 4 and 5. For 0 < r < 1, let £(r)
be the collar about 9DV defined by

EV(r) = U {weD":|w—wy| < r|lwpl}.
woeIDY
Note that £¥(r) lies in D" and that £"(r) does not contain the origin. Similarly, let
&, (r) be the collar around aD, defined by

£ = |J (zeDy: 1z =zl <rlzo— pul}.
z0€dD,,
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Here &, (r) lies in D, and does not contain the point p,. Note also that
Eu(r) = (T")7H(E' (). (2.18)

LEMMA 2.4. There exist a constant m > 0, a number 0 < r < 1, and an integer 1
such that

10 fo (pv, w)| > m
forallv > I and w € £"(r).

Proof. Choose a é-neighborhood U of 0D, that is,
U={zeC":d(z,0D) < 8},

and a constant m > 0 such that [0y/(p)| > 2m for p € U. Since 9y, converges
uniformly on U to 9, there exists an integer / such that

[0y (p)| > m (2.19)

for v > I and p € U. Modify the integer / so that D, C N(§/2) forallv > [.
Since p, — po € D, we can assume without loss of generality that p, € U for

all v > I. Now define 5

" T 35+ 2diam(D)’
Then it is evident that
E(rcCU (2.20)

forv > I. Now fixv > [ andw € £'(r). If we define z = T,"'w = p, — ¥, (py)w
then, by (2.18),
ze&,(r) CU.

From (2.12) it follows that

[0y fu(pv, w)| = [0¢,(2)| > m
by (2.19). O

We now modify Step 4 of [7, Chap. 4] to obtain the following estimates.

LEMMA 2.5. Letr and I be as in Lemma 2.4. Then there exists a constant M > 0
such that

(1) 1(8fy/0we) (pv, w)| < M,

(i) [(3f,/3py)(py, w)| < M1+ |w|™"|w|?,

(i) [(3%f,/0wedwp) (pyv, w)| < Mw| ™,

(iv) [(82£,/0py dwe)(py, w)| < M1 + [w|™)|wl|, and

) 10%£,/8py 3p) (P, w)| < M(1 + |w|™" + [w| ) |w|?
forallv > I and w € £"(r).

Proof. Let U be as in the proof of Lemma 2.4, and choose R > 0 such that U C
B(0, R). Since {¥,} converges in the C*°-topology on compact subsets of C" to
¥, we can find a constant M; > 0 such that v, ¥, (v > 1), and their derivatives of
order < 2 are bounded in absolute value by M; on B(0, R).
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Now let v > I and let w € £V(r). Then
pv—¥(p)tweBO,R), 0<t<L (2.21)

Before proving this, note that it implies in particular that v, and its derivatives of
order < 2 are bounded in absolute value by M, at the points p, — ¥, (p,)tw for
all0 <t < 1. Now to prove (2.21), we let 0 <t < 1. Set

z=T,"'w=p,— ¥(p)w.
Then z € £, (r) by (2.18) and hence z € U by (2.20). Now

pv=Vu(p)tw = py, +1(z = py) = =1)p, +12€ B(O, R)

since p,,z € U C B(0, R).
(i) Differentiating (2.3) with respect to w,, under the integral sign, we have

9
8—f(p, w) = Yu(p —¥(p)w), p,weC"
We

Hence, forv > I and w € £¥(r),

’ 3fy

3 (pv,w)‘ = [Yva(py — Yu(pr)w)| < M.
We

(i1) Differentiating (2.3) with respect to p, under the integral sign, we have
af “rhoa
——(pw) = f ——(wa¥a(p — ¥ (p)tw)
apy ; 0 9py ( )

9
+ — (Wa¥a(p — Y(p)tw))dt, p,weC".

opy
Observe that
d
5= (Watha(p = Y(P)1w)) = weya (p = Y(p)1w)
Dy R
=209, (PR Y wiwaia (p — Y(p)tw).
i=1
Therefore,
af ot _
=3 /0 (watbyap — Y(PY1W) + o rya(p — Y(p)w)) dr
a=1

n 1
— 2 (0 Y /0 (wiwaWia(p — Y(p)tw)

i,a=l
+ wiWaia(p — Y(p)tw))rde.  (2.22)

Hence, for v > I and w € £V(r),
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afy
op,

(pu,w)‘
n 1

< Z/O [We | Yoy (Py — Yo (po)tw)| + [Well¥yya(Py — Yo (po)tw)| dt
a=1

n 1
+2|I//vy(pv)| Z /(; |wi||wa||l/fvia(pu - 1/fv(pv)tw)l

i,a=1

+ |wil|wel | Yvia(py — Yo (py)tw) |t dt
1 n 1
S-/ 2|w|\/ﬁM1dt+2M12/ 2|w,-||w|\/ﬁM1tdt
0 = Jo

< 2/nMj|w| + 213 (M) w|?
< My(1 + |w|™Hwl%,

where M, = 2n%?(M;)~
(iii) Differentiating (2.3) with respect to w,, under the integral sign, we have
of
oWy

Differentiating this equation with respect to wg yields

(p,w) =V (p—¥(pw), p,weC"

2

5 (p,w) = (=¥ (PN Vup(p — ¥(p)w), p,weC".
WEIWg

Letv > I and w € £¥(r). Let
z=T,"w=p,— ¥ (p)w.
Then, by (2.21), z € B(0, R). Now
K
dwgoWgy

< |Z - pvl
|w
where M3 = 2RM,. Finally, by differentiating (2.22) we obtain (iv) and (v). [J

[Vvap (2] < 2RMiw| ™" = Ms|w| ™,

(pv,w)

PROPOSITION 2.6.  There exist 0 < r < 1, a constant C, and an integer I such that
(D) k")l < C(1 + [w|™H|w|* and

@) [k (w)] < CU + |w|™ + (w2 |w|?

forallv > I and w e EV(r).

Proof. Let0) <r < 1,letm > 0, and let I be as in Lemma 2.4. Choose M as in
Lemma 2.5. Then, by (2.15),

afy
Py

|kj(w)| = ‘8

M
<pv,w)‘wm(m,wn1 < —(l+ lw| ™ wl]?

forv > I and w € £V(r). Also, since 0 ¢ EV(r), the function
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Ky )| (1 + [w]| ™) w2
is continuous up to EV(r) and hence (1) follows.
Similarly, from (2.17) it follows that
M1+ [w|™ + [w] ) w’M?
+2nM1 + |lw| Y wPPMM 1 + |w| ™ w
+ M+ w| ) w)nMw|™)
< CA+|w|™ + [w[ ) |w|?

|y (w)| < ﬁ(

for some constant C whenever v > I and w € £"(r). Again the function
ks )| (14 [w]| ™ + [w] 7)™ |w| ™

is continuous up to E¥(r) and so (2) follows. O

3. Asymptotics of A,

In this section we prove Theorem 1.3. First we recall the following stability result
from [1].

PROPOSITION 3.1.  Let D be a domain in C" with C*-smooth boundary, and let
{D;} be a C2-perturbation of D. Let G(z, p) be the Green function for D with
pole at p, and let A(p) be the Robin function for D. Similarly, let G;(z, p) be
the Green function for D; with pole at p and let A;(p) the Robin function for D;.
Then

lim G;(z,p) = G(z,p)
]
uniformly on compact subsets of D \ { p}, and
lim DA2A,(p) = DBA(p)
]—>
uniformly on compact subsets of D.

For aproof see [ 1, Prop. 7.1, Prop. 7.2]. Proposition 3.1, together with [ 7, Prop. 5.1],
yields the following boundary behavior of the functions G;(z, p).

COROLLARY 3.2. Let D be a domain in C" _with C*®-smooth boundary, and let
{D;} be a C*®-perturbation of D. Let z; € D; be such that {z;} converges to a
point zo € dD. Then, for any p € D,

jll)rglo Gj(zj, p) = G(z0, p);

identifying 7 = (z1,...,2,) € C" with x = (x1,...,X2,) € R*, we have
tim 29y = 25 (o)
m — 5 = )
j—o0 Xy LGP Xy 0. p

forl1 <k <2n.
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Proof. Since the Green function is invariant under translation and rotation, we as-
sume without loss of generality that zo = 0 and that the normal to dD at z is
along the x;,-axis. By the implicit function theorem, we can find a ball B(0,r),
a C*-smooth function ¢ defined on B(0’,r) C R?>"~!, and a sequence {¢;} of
C*°-smooth functions defined on B(0’, r) that converges in C *°-topology on com-
pact subsets of B(0',r) to ¢ such that

B(0,r)NaD = {(x,¢(x")) : x' € B(O',r)},
B(0,r) N aD; = {(x,¢;(x")) : x" € B(0',r)}.

Now let p € D. Shrinking r if necessary, let us assume that 2r < |p|. Then, for
z€ B(0,r)N Dy,

3.1

GJ(Z,P) < |Z _ p|72n+2 < r72n+2_ (32)
Consider the dilation z
Z=87=-
r
and set
Q = S(B(0,r) N D), Q; = S(B(0,r) N Dj).
Define
w(Z)=r""2G(z,p), Ze9,
and

ui(Z) =r*’Gj(z.p). ZeQ;.

Then, by (3.1) and (3.2) and in view of Proposition 3.1, the sequence {u;} on {€2;}
satisfies the hypothesis of [7, Prop. 5.1]. Therefore,

lim u;(Z;) = u(0),
j*)OO
ou; ou
lim —£(Z;) = —(0),
Jim o5, @0 = 55, ©

where Z; = Sz;. This implies that

lim G;(z;, p) = G(0, p),
]

9G; G
lim —(z;, p) = —(0, p). O
j—oo 0xf 0xy

Proof of Theorem 1.3. Consider the affine maps T": C" — C”" defined by
Z— Py
—% (pv)

as well as the scaled domains D" = TV(D,). Recall from Section 2 that a defining
function for DV is given by

T'(z) =

n 1
fv(pw w) = 29{{2](] (wawva(pv - %(Pv)tw)) dt} -1
a=1

It is clear that { f,,(p.,-)} converges in the C*>°-topology on compact subsets of
C"to
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J(po,w) = 29{(2 Iﬂa(po)wa) -1,
a=1

which implies that { DV} is a C*-perturbation of the half-space

H= {w : 2m<2¢a(p0)wa) —1< o}.

a=1
Therefore, by Proposition 3.1,

lim DBA 1 (0) = DABA4,(0). (3.3)
Now, by [1, (1.1)], we have

Apr(p) = Av(py = pY(p) (W ()" 2
Differentiating this expression yields
D*PAp (0) = (=DM HPIDASA, (p) (3, ()" 24P,

Hence from (3.3) it follows that

lim DAB(—1)AHBIDABA (b)), (p,)2"~2HAFIBL = DABAL (0),

V=00

which completes the proof. U

4. Estimates on the First Derivatives

Let1 < y < n. By Proposition 2.1, (dg,/3p,)(p,,w) is a harmonic function of
we D,

B (e 0) = 22 ()
Pvs = DPv),
op, op,
and g
8gu (pv,w) = —k"(w)[8,g"(w)|, wedD". 4.1)
Dy
Therefore,
8)W( ) / kY (w)[0,8"( )Iagv( )dS 4.2)
v) = o W)[0y w w we .
op, 7 T 2= Do Jype ! & o,

So to find the limit of these integrals, we must estimate the boundary values (4.1).
For this we modify Step 3 of [7, Chap. 4].

LEmMA 4.1.  There exist a number 0 < p < 1 and an integer I such that, for
v > I and wy € dD", we can find a ball of radius p|wy| that is externally tangent
to DY at wy.

Proof. Since D is bounded, we can find a ball B(0, R) that contains D. Since {D,}
converges in C2-topology to D, there exists an integer I such that D, C B(0, R)
for all v > I. By the implicit function theorem there exists a number p such that,
by modifying 7, we can find a ball of radius p that is externally tangent to aD, at
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zo foreach v > I and zy € dD,. Now let v > I and wo € dD". Since D" is ob-
tained from D,, by means of a translation followed by dilation of factor —y»,(p,),
we can find a ball of radius p/(—,(p,)) that is externally tangent to dD" at wy.
Furthermore, there exists a zg € 0D, such that

20 — Pv
wo = ———;
_‘/fv(pv)
this implies that
2 plwol )2
= > ~—|wol.
=vv(py)  lzo—pul ~ 2R

Thus, by taking p = p/2R, we can find a ball of radius p|wy| that is tangent to D"
at wy. O

PROPOSITION 4.2.  There exist an integer I and a constant C > 0 such that
8ug"(w)| < Clw|~>"*!

forallv > I and w € dD".

Proof. Choose0 < p < lalongwithaninteger / and aconstant C asin Lemma4.1.
Let v > I and wy € dD". Let B be the ball of radius p|wy| that is externally tan-
gent to dD" at wy, and let E be the ball centred at wy and of radius p|wg|. Then
w € E implies that

lw| > wo| — plwol = (1 — p)wol.
Hence, for w € E N D",
0 < g"(w) < [w| ™" < (1 = p)lwo) >"*2
By Step 2 of [7, Chap. 4], we have
188" (wo)| < c((1 = p)|wol) 2" (plwol) ™,
where ¢ does not depend on g"(w) or D". Therefore,
188" (wo)| < Cluwo| 7",

where C = cp'(1 — p)~2"*2 is independent of v and wg € dD". O

PROPOSITION 4.3.  There exist a constant C > 0 and an integer I such that

‘ gy
op Y

forallv > 1.

(P, w)‘ = |k (W)[19,g"(w)| < C(1 + [w|[ H|w|>"*3, wedD,

Proof. By Proposition 2.6, there exist a constant C and an integer / such that
k" (w)| = €A+ |w™H[wl’, wedD",

for all v > [. In view of Proposition 4.2, we can modify the constant C and the
integer [ so that
0wg"(w)| < Clw| ™", weaD",
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for all v > I. Thus, from (4.1) it follows that

8v v v — —2n+43
op w)‘ = k)" (w)]|8wg"(w)| < C>(1 + [w| H|w|™>"*", weadD,
Y
forallv > I. 0
PROPOSITION 4.4.
oA (po).
. \Po
V—00 8py 8py

Proof. In view of Proposition 2.3, we have to prove that
. 1 vy
lim —— k1 (w)|0yg

v—>00 2(n — 1)oy,
—1 ag
= k)/ S 8 . _— S dS s 43

2(n — ooy, /BH 1(Po, w)[9g(po w)|8nw (po,w)dS,, (4.3)

where H = D(pg). Let R > 1. Then the boundary surfaces B(0, R) N D" con-
verge to B(0, R) N H continuously in the sense that the unit normal vectors

dug'w)  3g(po,w)

108" (w)| 10w &(po, w)
uniformly on compact sets, except at the corners B(0, R) NaD". Also, if w’ € 0D"
and {w"} converges to w’ € 3, then by definition we have

lim k" (w") =k} (po, w®) (4.4)
V—>00
and, by Corollary 3.2,
lim (w") = w?) 4.5)
V—00 awa oWy

for1 < o < n. Hence
1

lim —f kw(w)|3w8
v—>00 2(n — 1)o2, JB(0, Rynap» '

1 ag
/ k{(po, w)|9g(po, w)la—(po, w)dS,. (4.6)
B(0,R)NIH Ny

w

21 = D)oo,

To estimate these integrals outside the ball B(0, R), note that by Proposition 4.3
there exist a constant C and an integer / such that

k" ()19, g"(w)] < Clw| ™"+, wedD’, |w| > 1,
for all v > I. Therefore,

1
2(n — 1oy,

/ Uy(w)l‘f?wg“(w)l (w) dSy
B<(0,R)NaDY 0Ny

—2n+3 1 ag"
<CR _— Sw &7
2(n — 1oy, 3B<(0, R)NADY 3”;

forall v > I. Since
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9g" 5g"
f (— g (w)) ds, < / (— g (w)) dSy = (2n — 2o,
aBe(0, Rynapv\  Ong apv\ Oy

it follows from (4.7) that

1 / v ag”
— ky"(w)]8, 8" (w)| == (w) dS,,
’2(’1 — Doon Jeo,mynape ony,

uniformly for all v > [. By (2.7), we can modify the constant C so that

= O(R™¥3)  (4.8)

|k (po, w)||3wg(po, w)| < Clw|™>"*>, wedH, |w| > 1;
then, much as before, we obtain

g
ony,

(w) dS,

: /
P —r— k{(po, w)|0wg(po, w)|
‘2(n — Do Jeeo.mnon

= O(R™"). (4.9)
Now (4.3) follows from (4.6), (4.8), and (4.9). O

REMARK 4.5. The arguments of this section also imply that, for any a € H,

lim 28 (py.a) = lim ——— / K7 ()18 ()] 25 (pyyw) dS
V=00 apy v—>00 2(” - 1)0211 oDV 8i’lw
1 0g
=— | K(w)d,g° L (pv,w)dS,
TOET /(m {088 25 ()
g

= _(Po’a)-
apy

Moreover, by Proposition 4.3, the functions (dg,/dp,)(p,, w) are uniformly
bounded on compact subsets of H for all large v. Indeed, let B(0,r) C H. Then
B(0,r) C DV for all large v. It follows that

<Cr2"31 +r7h

0g
‘ ~(pvsw)

op,

for w € dDY and hence, by the maximum principle, for w € D”. We may thus
conclude that {(dg,/dp, )(pv,a)} converges uniformly on compact subsets of H
to (3g/dpy)(po.a).

5. Estimates on the Second Derivatives

By Proposition 2.1, (82gv/3py8ﬁy)(pv, w) is a harmonic function of w € DY,

2 2

T8 = ()
—(Dv, = —\(Pv)
op,0p, op,dp,

and
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82
apya- (pl)» )
= —ky ()]0, 8" (w)]
v  (3g"/0we)(w)  37%g,
— 2% & , aD”. (5.1
‘(1('”); Bug )| Bwndp, M) M€ G-
Therefore,
3%x, ()
—(p
ap,dp, "
1 ag" 1 -
O — kl) 8w w m
2(n—1)02,1/u 2w g (Ol 7 = n— oo, ;

v 2
f kvy( ) (88 /awa)(w) 0 gv_ ( Py, W w-
v |8wgu(w)| awaa 8nw

Using arguments similar to those in the previous section, we obtain

5.2)

[ Ewme©was,
_ 1 ag
= 5o | el i) ds,. 63

where H = D(po). Hence we need only find the limit of the second integrals,
which requires that we estimate the functions

im —
v—o00 2(n — 1)oy,

20
8wa8_

on dD". Since (9g,/dp, )(py, w) is a harmonic function of w € D" with boundary
values

(pv,w) (54

(3fv/3l7y)(17v, w)
[0 fu(pv, w)|
it follows that estimating (5.4) requires that we estimate the derivatives of F"(w).
This will be done by modifying Steps 2 and 3 of [7, Chap. 5].
In what follows we will identify the point z = (z1, ..., z,) in C" with the point
x = (x1,...,X2,) in R?. Similarly, w = (wy,...,w,) and W = (W,,..., W,)
in C" will be identified with y = (y1,...,y2,) and ¥ = (¥1,..., Y»,) in R*", re-
spectively. We begin by giving a version of a tubular neighborhood theorem.

F'(w) = —k"(w)[3,,8"(w)| = — 10w g"(w)l, (5.5)

PROPOSITION 5.1.  There exist 0 < r < 1 and M > 1 and an integer I such that,
forv = I and any zo = (x, X02,) in the neighborhood

U{z—l—tnz:—r<t<r}
z€dD,

of dD,, B(zg,r) N dD, can be represented—after a rotation and translation of
coordinates—in the form x,, = ¢(x'), where:
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(a) ¢(x') is smooth in B(x},r) C R*" " with ¢(x) = xoon — t, where t is such
that zo = z{, + tny for some zi € 0D"; and

(b) all partial derivatives of ¢ of order < 6 are bounded in absolute value on
B(xy,r) by M.

Now fix r, M, and I as in Proposition 5.1. Modifying the integer / if necessary,
we may assume that
d(p,,dD) <r

and
oD, C {z:d(z,0D) < r}

for all v > I. This implies that
|z, — py| < diam(D) 4+ 2r (5.6)
forv > [ and z, € aD,. Now choose 0 < n < 1 such that

1L(diam(1)) +2r) <r (5.7)
—7

LEMMA 5.2. Let v > I, and let w” € DV \ {0} be such that
fweC":|lw—w"| <nlw’|}NoD" £ @.
Let SV: C" — C" be the affine map defined by
W=S"w) =
nw"|
and set
Q'=S"(weC":|lw—w’ <nw’|[}ND")={W| <1}NS"(D").
Then we can find a ®* € C¥{Y’ : |Y'| < 1}) with
1) (W] <1}NaRY = {Y,, = ®(Y')} and
(2) |0%®Y/0Y*| < M for a = (ay,...,a,) and |a| < 6if |[Y'| < 1.
Proof. Let
2o = (T)7' ") = py — Yu(pr)ws,
and let
by =T ({w: lw—w"| < nlw, ) ={z€C": |z = z.] < nlzy = pul}-
Then b, N dD, # @, so there is a point Z, € dD,, such that
1Zv — 2ol < nlzy — ol < n(lzy — 2ol + 120 — pol)-

Therefore, by (5.6) and (5.7),
Bmal < pI = pl S o dam(D) +20) <ri (58)
hence
Zy € LJ{z+tnZ T—r<t<rl
z€dD,



602 DiGANTA BORAH

By Proposition 5.1, B(z,,7) N dD, can be represented—after a rotation and trans-
lation of coordinates—in the form x,, = ¢,(x"), where ¢, (x") is C* on B(x/, r),

$u(x}) = x,0 — 1, (5.9)
for
—t, =d(z,,0D,) < nlz, — pul, (5.10)

and all partial derivatives of ¢, of order < 6 are bounded in absolute value by M.
The surface

(X, x20) 2 x20 = 0 (X)), |x" — x| <7}
is mapped by S” o T onto the surface

(Y, Y2,) 1 Yo = @(Y"), [Y'| < R"},
where

dv(py, — Y ()Y — Y (p)nw’|Y") Y (pu)ys, — Puzn
—Kl’u(Pu)U|w”| —1/fu(l7v)77|w”|

r r

YY) =

and
v

=y (ponlw’l  nlzy — pl

for w” = (y",y3,) and p, = (p,, pv2n)-
Yet from (5.8) we have

nlzy — pul < nzy — 20| + |Zy — Dpol)

no. . N
Sn( |Zv_pv|+|zv_pv|>=_|Zv_pu|<r
I—n 1—n

and so R” > 1. This implies that

{(IW| <1}NaQ” C{(Y,Ya) : Yo, = O'(Y'), |Y'| < R"}.
From the properties of ¢, and the explicit formula for ®" just given, it follows that

{IW] <1} NI’ = {Y,, = ¢"(Y)}.

Here @ e C®°({Y' : |Y'| < 1}), and ®" also satisfies:
(a) 0 < ®"(0) < 1,by (5.9) and (5.10); and
(b) |0%®Y/ Y% < M forall @ = (ay,...,a,) with |a] < 6if |Y'| < 1. O
Now we modify Step 2 of [7, Chap. 5] to obtain the following uniform estimates.
PROPOSITION 5.3.  There exist a constant C > 0 and an integer I such that, for
1<i,j,k<2n,

(1) 1(8g"/dy)(w)| < Clw|~2"+,

(2) 1(3%g"/8y:dy;)(w)| < Clw|™>", and
(3) 1(3%"/dy;dy;dyi)(w)| < Clw| ="~
forallv > I and w € D \ {0}.
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Proof. The proofs of (1), (2), and (3) are similar, so we prove only (1). Fix 1 <
i < 2n. Suppose that (1) is not true. Then there exists a sequence {w"} such that
w" € DV \ {0} and
ag”
(w")
ayi
We claim that, for all but finitely many v,

lim lw”|?" ! = 0. (5.11)
V—> 00

Bw")={weC":|lw—w"|l <nw"|}

intersects dD". Indeed, suppose that B(w"”) NdD" = @ for some v. Then B(w") C
D" and so

gv(w) < |w|—2n+2 < (1 _ n)—2n+2|wv|—2n+2, we aB(u)\))'

Now, by the Poisson integral formula, there exists a constant ¢, > 0 indepen-
dent of v such that

|w\) |—21‘l+1.

’ % W) = o

w < —
dyi (L—mn)>=2p
Yet by (5.11) this can be true for only finitely many v, from which the claim fol-
lows. Hence if

Q' =S"(Bw")ND") ={|W| <1} NS"(D")

then, by Lemma 5.2, for all large v we can find functions ®” € C*({Y’ : |Y’| < 1})
such that

QU={(W<Jn{Y =, Y2) : Y| <1, V2, < ®"(Y")}
and
*PY
Yy«
Since M is independent of v, it follows from the Arzela—Ascoli theorem that, after
passing to a subsequence if necessary, {®"} together with all partial derivatives of
order < 6 converge uniformly on compact subsets of {Y’ : |Y’| < 1} to a function
deCO{Y’:|Y'| <1}). Set

Q={Wl<n{Y =¥ Vo) : Y| <L Y2, < (¥}

<M forall || <N if |Y'| <.

Now define the function ©#" on 2" by
W(W) = [w, [ 21 = > %g"(w)

for W = (w — w,)/(n|w,|). Then u” is harmonic on 2" and continuous up to
0", and u,(W) =0on {|W| < 1} N dR". Since

0 < g"(w) < [w|"*2 < (1 ="' "2 we Bw") N D",

we have
0<u'(W)<l1, WeQ"

By Harnack’s theorem (and passing to a subsequence), {u"} converges uniformly
on compact subsets of €2 to a harmonic function # on Q2. From [7, Prop. 5.1] it
follows that
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lim
V—> 00

P~ (0)

3y,
which is finite. So by the definition of u” we have

|w |2n 1 < 00,

hm ‘— (w")
which is a contradiction. Therefore, (1) must hold. O

We now want to modify Step 3 of [7, Chap. 4]. Recall that
Er) = U {weD":|w—wy| < rlwl}
woedDY
is a collar about dD" lying in D" whose closure does not contain the origin.
Similarly,
£ =T E) = |J zeDy: 1z - 20l < rolzo - pul}
z0€dD,

is a collar about dD,, lying in D, whose closure does not contain the point p,,.

LEMMA 5.4. Thereexist 0 < ro < 1,a constant C > 0, and an integer I such that

2. v
’ g (w)’lawg%w)r‘sawr‘, w € E(ro), (5.12)
0y;0y;

forallv > 1.

Proof. By the relations
8'w) = Yu(p)*"*Gu(z,py) and z=p, = Yu(py)w,

we observe that (5.12) is equivalent to

10.G,(z, p)I™' < Clz— pul™", z€&(ro). (5.13)

2
‘ (Z pv)

0x;0x;

We shall prove (5.13) by contradiction. So suppose there do not exist 0 <
ro < 1, C > 0, and integer [ such that (5.13) holds for all v > I. Then there exist
a sequence {z,} with z¢, € dD, and also a sequence {z,} with

zy€D, and |z, — zoy| < %IZOV—pVL v>1, (5.14)
such that
392G,
0x;0x;

By passing to a subsequence if necessary, we may assume that

10.Gy(zv, p)I ™ = vlzy — pol™, v > L (5.15)

-(2v, Pv)

lim zo, =29 €0D.

V—>00

Then, by (5.14),

lim z, = zo.
V—>00
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Next we claim that py = zo. Suppose that this is not true. Then we can find
an ¢ > 0 such that B(pyg,2¢) N B(z9,¢&) = @. Taking ¢ sufficiently small and v
sufficiently large, by the implicit function theorem we can find a C *°-smooth func-
tion ¢ on B(x, ¢) and a sequence {¢,} of C*-smooth functions on B(x, ) that
converges in C*°-topology on compact subsets of B(x, €) to ¢ such that

B(z0,€) NdD = {(x,¢(x")) : x" € B(x(, &)},

, , , , (5.16)
B(z0,€) NOD, = {(x,¢,(x7)) : x" € B(x,¢)}.
We assume without loss of generality that all p, lie in B(py, ). Then
Gy(z,pv) < |z = p|2"*? < e™"*% z€ B(z0,6) N Dy (5.17)

Now consider the affine map

and set
Q = 8§(B(z0,¢/2) N D), Q, = S(B(z0,&/2) N D,).
Define
ho(Z) =e*2G(z,py), ZeQ,.
Then A, is harmonic on ©,; &, = 0 on B(0, 1) N d2,; and, by (5.17),
0<h(Z2)<1, ZeQ,.

Therefore, by Harnack’s principle (and after passing to a subsequence if neces-
sary), {h,} converges uniformly on compact subsets of €2 to a positive harmonic
function A. In view of (5.16), the sequence {h,} on {2, } satisfies the hypothesis
of [7, Prop. 5.1] and so

lim [9zh,(Z,)| = |9zh(0)],
V—00

.| 9%m, 8h (5.18)
Iim |——(Z,)| = |——=—(0)| < oc;
V=00 3XI3XJ E)X,BXJ
here Z, = Sz,. By the Hopf lemma,
|0zh(0)] > 0.
Therefore,
[(02G,/0x:0x;)(zv, pu) (0%, /0X;0X;)(Z,)]
1m |Zv_pv|:8hm | v V|
V=00 |aZGl)(ZV’ pv)l V=00 |aZhv(Zv)|
[(821/3X;0X;)(0)] | |
= Z0 — Pol <00,
[0zh(0)]

which contradicts (5.15). Hence we must have py = z¢, and the claim follows.
Now we define

ky, =1py — 2ovl.
Consider the affine maps S, : C" — C" defined by
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_ 2=y
k,

7= SU(Z)

and let ]5U = S,(D,). A defining function for [)V is given by
¥y 0 8,1(2) = Yu(py + ku2)

=wxpn+2mm(§:wwdp»a)+kﬁxn

a=1

for Z on a compact subset of C”. Since {y,} converges in the C°°-topology on
compact subsets of C” to v, we note that O(1) is independent of v. Now

VoS3 _ ()

% (Z) = k, k,

+ 2>)t<Z(wv)a(pu)Za> +k,O(1)
a=1

is again a defining function for l~),,. Note that we can find a ball B, centered at py,
as well as positive smooth functions ¢, on B such that

—¥v(p) = ¢»(p)d(p,dD,), peB.

Differentiating this relation shows that, for all large v, the functions ¢, are uni-
formly bounded above by a constant ¢ > 0 on a possibly smaller ball B’ that is
also centered at py. This implies that, for all large v,

Yo (py) < cd,(py,0D,) <
k, |[7v — Zowl

therefore, after passing to a subsequence, {¥,(p,)/k,} converges to a number
¢ < 0. Thus the functions i, converge in the C*°-topology on compact subsets of
C" to the function

&(Z) =c + 2%(2 I/hx(Po)Za)

a=1

This implies that the domains D, are C°-perturbation of the half-space

H= {zeC" : 5+29%(Z wpo)za) < o}.
a=1

Since ¢ < 0, it is evident that B
0Oe?. (5.19)

We will now derive a contradiction by proving that (5.19) is false. First, ob-
serve that 0 = S, (p,) € D,. Let £,(2) be the Green function for D, with pole
at 0. Then

2 () =Gz, pk)" > (5.20)

Now let Zo, = Su(z0v). Then Zg, € 9D, and

Zov — Pv
k,

1Zovl = =1
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Therefore, after passing to a subsequence, {Z¢,} converges to a point Z( with
2ol = L.

Evidently, Zo € 3H. If we let Z, = S,(z,), then

= = %y 2Zov 1
|Zv — Zowl = I e
by (5.14). Therefore,
VILTEOZU = Zo.

Now we derive the contradiction by considering two cases as follows.

Case I: 0 € H. Let 3(Z) be the Green function for H with pole at 0. Then, by
Corollary 3.2,

lim 19:8,(2))] = 19z8(Z0)| > 0,

2~ 82
lim (Zv) = == (Zo) # 00.
v—>00 JX;0X;

By (5.20), we have

2
lim (2us P|18:G (20, p)| M2 — pol
V—>00 8X,‘8Xj
2~
= vll)rglo‘ 3 (Zu) |8 gu(Zv)| |Zv| < o0,

which contradicts (5.15) and so 0 ¢ 7.

CaseIl: 0 € 9H. By the implicit function theorem, we can find aball B(Zy, ¢),a
C>-smooth function ¢ on B(xy, €), and a sequence {¢, } of C**-smooth functions
on B(Xx,¢) that converges in the C*°-topology on compact subsets of B(Xy, €)
to ¢ such that

B(%o,€) NOH = ((F,¢(X)) : ¥’ € B(X}, ¢)},

- (5.21)
B(Xg,&) N 3D, = (¥, ¢,(3")) : &’ € B(%y, ¢)}.
We assume without loss of generality that ¢ < 1/2. Then, since |Zo| =1,
g (%) < 7|72 <2272, Z€B(Z0,6) N D,. (5.22)
Now consider the affine map
7=8:=2"22
€
and set ~ ~
Q=S8(B(zo,e)NH),  Q,=S8(B(Z9,¢) N Dy).
Define
WZ)=2""2g(%), Zeg, (5.23)

ho(Z) =27""2¢,(3), ZeQ,. (5.24)
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Then h, is a positive harmonic funtion on €2, and satisfies 4, = O on B(0, 1)N9<2,,.
Moreover, by (5.22), . ~

0<h,(Z2)<l1, ZeQ,.
After passing to a subsequence if necessary, it follows from Harnack’s principle
that {h,} converges uniformly on compact subsets of €2 to a positive harmonic
function % satisfying 2 = 0 on B(0, 1) N 9K2. In view of (5.21), the sequence {4}
satisfies the hypothesis of [7, Prop. 5.1]; therefore, by (5.20) and (5.24),

2
. G _
lim (2, P|18:G (20, P Mz0 — Pol
v—00| dx;0x;
2 8
=¢ lim‘ _ Iz =8|l —— (0)‘|8 h(0) 7,
V—00 aXian .

where Z, = SZ,. Now, by the reflection principle, / extends as a harmonic func-
tion to a neighborhood of 0; hence the quantity on the extreme right of the previ-
ously displayed equation is finite. This contradicts (5.15), so it follows that O ¢ dH..

By Case I and Case II we have 0 ¢ 7-:1, which contradicts (5.19). Thus (5.13) holds,
completing the proof of Lemma 5.4. UJ

Recall that if » > 0 and I are as in Lemma 2.4, then the function FV(w) is defined
and smooth on the collar £V(r).

PROPOSITION 5.5.  There exist 0 < r < 1, a constant C > 0, and an integer |
such that

(1) [Fw)| < CA + [w|™)|w| ="+,

(2) 1(dFY/dy)(w)| < C(1 + |w|™H|w|>"*2, and

(3) 1(82F/dy;dy;)(w)| < C(A + [w| " |w| =2+

forallv > I and w € £°(r).

Proof. Choose m > 0,0 < r < 1, and I as in Lemma 2.4. Choose M > 0 as
in Lemma 2.5. Modify / and choose a constant C so that Proposition 5.3 holds.
Modify r and I so that Lemma 5.4 holds. Now fix v > [.
(1) Let w € £¥(r), |lw| > 1. Then, by Lemma 2.4, Lemma 2.5, and Proposi-
tion 5.3,
Py < QAP (P w)
104 fo (P, w)I

—1 2
2 MA A+ w7 w
- m

10w g" (W)

Clw| 7" = Co(1 + [w| ™) w] "+,

where C; = M C/m is independent of v and w.
(2) Differentiating F"(w) with respect to y; yields

O _ =02l Opyts L O, il 1 B0/ (87, /3yidy0)
dyi [0 fol 4 9p, [0 £ 3
1af, 1 Ziil(agv/am(azgv/aykayi)

4ap, 10w fl EH

0w g"|

(5.25)
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Thus, for w € £Y(r) with |w| > 1, it follows from Lemma 2.4, Lemma 2.5, Propo-
sition 5.3, and the relation

08"/ 0y <
[0wg”|
that
AF" MQ -1
‘ (w)' < qurzﬂﬂ
ay,» m
1 2nMM|w|™!
T I st LT
4 m

1 -1 2 1 —21
+ -M( + |w| ) |w|"—2n2C|w|™ "
4 m

< Co(1 + |w|™Hw| "2,

(3) In order to prove this estimate, we differentiate (5.25) with respect to y; and
then estimate as before. All terms, except for those of the form

3fs/0py (0°8,/dykdy:) (078, /dyi1dy;)

[0w fol [0 &l
or
afv/0py (agv/ayk)(8gu/8yl)(azgv/8yk8yi)(8zgv/ayla)7j)
[0w ful 108 '

are bounded by a constant times (1 + |w|™)|w|~2"*! for w € £"(r). Also by
Lemma 5.4, the above terms are bounded by a constant times (1 + |w| ™) |w|~2"+!
for w € EV(rg). O

We now modify Steps 4 and 5 of [7, Chap. 5] to derive an upper bound for
(32gv/3@aapy)(l?u, w).

PROPOSITION 5.6. There exist 0 < r < 1 and an integer I such that, for v > I
and wy € D", we can find a function F*(w) (depending on the parameters v
and wy) of class C* on

E={weD":|w—wy <r|lwyl}
such that

0g,
He F*(w) = ag

(py,w), wekE.
Py

Moreover, there exists a constant C > 0, independent of v, and a wy € 0D"
such that:

(1) |F*(w)| < C(1 + [wo|™)wo| 72" in E;

(2) 1(dF*/dy:)(wo)| < C(1 + [wo|™Hwol "2 i =1,...,n;

3) (A F*w)| < CA + |lwol™Hlwol ™" in E.

Proof. Choose 0 < r < 1, a constant C, and an integer [ as in Proposition 5.5.
Now fix v > I and w( € dD" and let

B ={w:|w —wy| < rlwyl}.
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Then E = B N D". Since

gy y
(pv,w) = HpvF'(w)
op,
on D", the function (dg,/dp,)(p,, w) is harmonic on E with boundary values
agy F(w) if we BNaDY,
(pv,w) = ; . ; (5.26)
opy HpyF'(w) if wedB N D"
Let u be the harmonic function on E with boundary values
0 if we BNaD",
u(w) = .
HpvF' — F'(w) if wedBN DY,
and set
F*(w) = F'(w) + u(w), weeE.
Then

is a harmonic function on E with boundary values (5.26), whence

agy
HyF*(w) = ag

(pv,w)
Y

on E. This proves the first part of the proposition.
We prove the second part by observing that Proposition 5.5, together with the
continuity of the function

|FY )|+ Jw] ™) w]> 2
up to £'(r), implies that
|F*w)| < C(1+ [w] w3, wel(r).

In particular, this expression holds for w € E. Also, since (1 4 |w|™")|w|~2*+3 is
superharmonic on C”, it also implies that

|Hp F'(w)| < C(1 + |w|™Hw| "3, weD". (5.27)

Therefore,
|HpvF (w) — F'(w)| <2C0 + |w| ™ Hw|™>"*3, wedBN D,
which implies that
lu(w)| < 2C(1 + |w|™Hjw|™>"3, wekE.
Since E C {w : |[w — wy| < r|wpl}, it follows that
|F*w)| < [Fy(w)] + [uw)] < 3C1A + |w|™)|w| 7"+
<3C(1 =721 4 [wol ™Hwo| >, wekE.

This proves (1).
To prove (2), observe that the preceding calculation yields

lu(w)| < 2C(1 —r) ™" T2(1 + lwol ™) wo| "3, wekE.
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Also, u(w) = 0 for w € B N aD". By Lemma 4.1, we can modify the integer [/ if
necessary to find a p > 0, independent of v and wy, such that there exists a ball
of radius p|wp| that is externally tangent to dD" at wy. Hence, by taking R =
min(p|wgl, r|we|) in Step 2 of [7, Chap. 4], we can find a constant ¢ independent
of D" and u such that

2¢C(1 = )" 2 (1 4 [wo| ) |wo| 7>+

min(r|wol, plwol)

[0u(wo)| <

= C(1 + lwol ™ |wol "%

here C is independent of v, and wy € dD". This, together with Proposition 5.5,
implies that

8F* 3Fv ou ~ —1 —2n42
(wo)| =< (wo)| + | 7—(wo)| = (C + C)(1 + [wo| ) |wol ,
ayi dyi ayi
which proves (2).

Finally, since u is harmonic we obtain from Proposition 5.5 that
|ALF*(w)| = [Ay F'(w)| < nC(1 + [w| ™ [w| 2!
<nC(1 =721+ [wo| MHlwo| ™", wekE,

and this proves (3). O

PROPOSITION 5.7.  There exist a constant C > 0 and an integer I such that

3%g,
'—(pu,u» < C(1 + [w| ™ H|w|~2"+2 (5.28)

Iy 0p,

forallv > 1T and w € D",

Proof. Let0 <r < 1,C > 0, and I be as in Proposition 5.6, and fix v > I. By
the maximum principle, it suffices to prove (5.28) for wy € dD". Given such wy,
we let F* be a C2-smooth function on

E={weD":|w—wy <rlwyl}
satisfying the estimates of Proposition 5.6. Now consider the affine map

W= Sw) =2+

rlwol
and let Q = S(E). Define the functions # and % on 2 by setting

98y
ap,

u(W) = —2(p,,w) and h(W)= F*(w).

Then u = Hgh on 2 and, by Proposition 5.6:

(1) [h(W)] < C(1 + |wo| ™) |wo| ™" in
oh oF* -1 —2n+3

Q) | (0] = rlwol < Cr(1 + [wol ™) wol ;
aY; ay;

(wo)
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3) [Awh(W)] = | Ay F*(w)|r?wol* < Cr2(1 + Jwo| ™) wo| " <
Cr(1 + |wo| ™) |wo| 72"+ in Q.

By Lemma 4.1, we can modify the integer / to find a p > 0 that is indepen-
dent of v and wy such that there exists a ball B of radius p|wy| that is externally
tangent to dD" at wy. Setting T(B) = B, we see that the ball B C C” \ Q has ra-
dius p/r and is tangent to 32 at 0. Let B, be the ball with the same center as B but
with radius p/r + 2. Hence, by [7, Lemma 5.1/, p. 60], there exists a constant M
depending only on p/r such that

|8W”(0)| <MC( + |w0|71)|w0|72n+3.

Since
% 0) = 2By
— = , Wo)r|w
oW, di,0p, P, Wo 0
we have 5
°g, MC _ Zon
———(pyswo)| < —— (1 + Jwol wo| "2,
0w, 0p, r
which proves the proposition. UJ

PROPOSITION 5.8. Let w' € 0DV be such that {w"} converges to w° € 3H =
oD (po). Then
2 82

lim (pv, w\)) =

0
V250 Dibg 3P, dagop, PO

Proof. This follows from standard boundary elliptic regularity arguments and from
the fact that D" is C*°-close to D. O

PROPOSITION 5.9. ) 5

. 0°A, (py)
im —(py) = =
v—>00 dp,, dp, op,0p,

(po)-

Proof. By Proposition 2.3 and (5.3), we need only prove that

v (08", 8%, og"
im [ k) P8I W) ey (08T,
v=>00 Jypy [0wg”(w)|  dwedp, ony,

(9g/0we) (po, w)  3°g dg

= / k{(po, w) —(po, w) ——(po, w)dS,. (5.29)
[0wg(po, w)| Owedp, ony

Let R > 1. Then, by Proposition 5.8 and the arguments in the proof of Proposi-

tion 4.4, we have

(9g"/0ws) (w)  3°gy

lim k7 (w) —(pv,w
v=>00 J g0, RyNIDY [0wg"(w)| Odwedp, ony,
(dg/0Wa) (po,w) 92
= f K (o, w) 0870 (po 8 (po,w> S (po, w) dS,.
B(O,R)NIH [0wg(po,w)] 3waapy ony,

(5.30)
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To estimate these integrals outside B(0, R) we note that, by Corollary 2.6, there
exist a constant C and an integer / such that

kY (w)| < Clw]®, weaD", |w|>1,

for v > I. In view of Proposition 5.7, we can modify C and I so that

82gu

Bindp, (pv,w)

for v > I. Therefore,

< Clw|™"*2, weadD", |w| > 1,

v 92 v (0g"/0wy)(w) ag”
/ k) 28,y GETOBW) 087 g,
BE(0, R)NODY dw,dp, [0, g"(w)|  Ony,
a v
§C2R’2”+4/ (— & (w)) ds, (5.31)
BeO, Rynapv\ 0Ny

for v > I. Again we have

8 v 8 v
/ (— 8 (w)) dS, < / (— 8 (w)) dSy = 2(n — Do,
B¢(0,R)NdDY anw oDV anw

and hence, by (5.31),

b 0% (9g"/0Wa) (w) 3g"
k'(w)a —(py, W) —————
BC(0, R)NADY Wy 0Py [0 g"(w)| Ony

(w) dS,,

= O(R™") (5.32)

uniformly for all v > I. Also, by (2.7) we can modify the constant C so that

2

|k{ (po, w)| < Clw|®> and 2042

(po,w)| < Clw|~

W, dpy
for w € 9H with |w| > 1. As before, we obtain

(9g/01a) (po.w) 8> 9
/ K po, w) 28/ 00a) (Po & (po.w)~2-(po.w) dS,
B<(0, R)NIH [0wg(po, w)l awaapy ony,

= O(R™¥). (5.33)

From (5.30), (5.32), and (5.33) it now follows that (5.29) holds. O
Proof of Theorem 1.4. Given Proposition 4.4, we only need to prove that
3%y 3%
lim —(py) = —(po)-
v—>00 Py dPp 0p.0pg
However, this equality follows from Proposition 5.9 by a unitary change of coor-
dinates. U

6. Holomorphic Sectional Curvature

In this section we prove Theorem 1.1 under the normalization described in the
Introduction; that is, we will compute the right-hand side of equation (1.1). To
avoid confusion, we first recall the following notation.
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(a) {D,} is sequence of smoothly bounded strongly pseudoconvex domains such
that 0 € D, for each v > 1 and the normal to dD, at O is along the N z,-axis.

(b) {D,} converges in the C*-topology to a C*-smoothly bounded strongly
pseudoconvex domain D; thus 0 € 3D, and the normal to dD at 0 is along the
Nz,-axis.

© p,=1(,...,0,8,) € D,, where §, = d(p,,dD,) and p, — po =0€aD.

(d) (8)ap and gug are the components of the A-metrics on D, and D, respec-
tively.

(e) ¥, and ¢ are C°°-smooth defining functions for D, and D, respectively, such
that {y,} converges in the C°°-topology on compact subsets of C" to ¥; we
further assume that dv,,(0) = ay(0) = (0,...,0,1).

LEMMA 6.1. We have

(1) 1My o0 (80)ap (P) (Y (P0)* = (21 — 2)¥ (0)95(0),
(i) im0 (3(80)ap /82 ) (P) (Y0 (pu))? = =220 —2) Y (0)Yr5(0) ¥, (0), and
(iii) 1M, 00 (0 (80)ap/ 02y 825) (PV) (Yo (P))* = 621 = 2) Y (0)95(0)5(0).

Proof. Let H be the half-space

H = {zeC” : 22)’%(2 wa(0)2a> —-1< O} ={zeC":20z, —1 < 0}.

a=1
From [1, (1.4)], the Robin function for # is given by

19y(0)| )2"‘2
20( X Yu(0)z4) — 1

n —2n+2
= —<2m<z wa(0)2a> - 1>
a=1

Ay (z) = —(

so that

* Ay(0) = -1,

* (A3)a(0) = —=(2n = 2)9(0),

* (A)ap(0) = =2n = 2)(2n — D (0)¥,(0),

* (Ayabe(0) = —=2n —2)(2n — 1(2n)a (0)¥5(0)(0), and

* (Arabea(0) = —2n —2)2n — H2n)(2n + Da(0)5(0) e (0)¥a (0);

here the indices a, b, ¢, d refer to either holomorphic or conjugate holomorphic
derivatives. Hence, by Theorem 1.2, we have

* Av(pv)(WV(pv))zn_z - —1,
* AP W (p)* ™ = 2n = 2)9,(0),
* Muap(P) W (pu)* = —(2n —2)2n — D, (0),(0),
* Avabe (P (W (p)" ! = (20 = 2)2n — 1)(2n) Y, (0) ¥, (0) ¥ (0), and
° Avabcd(pv)(wv(pv))211+2 -
—(2n =2)2n — DH2n)2n + D (0) ¥, (0) ¥ (0)$4(0).
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Now

_ Flog(=A) Ay AdAg 6D
Sef = 0%, A A ‘

Multiplying both sides of this equation by /2 yields

RO G O G L
ap sznfz (sznfz)z

It follows that

Jim 8uai (P W (p)) = 2n = 29 (0)5(0),
which is (i).
Differentiating (6.1) with respect to z,,, we obtain
38,5 Agp Ay,  AayA; Az Ao\ 2AgAzZA
8af _ ﬂy_< A P )+ Ay
9z, A A A A AP

6.2)

Multiplying both sides of this equation by /3, we get
0z,
B Aagyw.2n+l
- Ay2n=2
3 O [0 e R O WO TV )
(Ay2n—2)2 (Ayr2n—2)2
(Az 2 (Mg 2™
(AwZn—Z)Z
2(AH D (A
(Aw21172)3 ’

Hence

. 08uap
vlg[.lo #ﬂ(pu)lﬂu(l?u)3 = —2@2n — 2y (0)Yz(p) ¥, (0),

Y

which is (ii).
Differentiating (6.2) with respect to zs yields
8ap  Mapys  (AapyBs L Daiihy Byl Apshe
92,025 A A2 A2 A2 A2
B (AaﬁAyzS L Darbis AasA,sy)

A2 A? A?
+2 AaBAyAS N Aa],ABAg L ABVAO‘AS N AaSABAV
A3 A3 A3 A3
N AﬁSAaAy N AygAaAf; B 6AQA5A,,A(§
A3 A3 A4 :
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If we multiply both sides by 14, then this equation can be written in a form where A
is multiplied by 1//2”_2 and the first-, second-, third-, and fourth-order derivatives
of A are multiplied by v2"~1, ¢, ?"*1 and v 2"*2, respectively. It follows that

080

lim _ﬁ_ (P W (pu)* = 621 — 2)9 (0)¥5(0) ¥, (0)¥5(0),

V—00 8ZyaZ,§
which is (iii). O

To obtain finer asymptotics of the derivatives of A, along {p,}, we need the fol-
lowing lemma.

LEMMA 6.2. Letl <o <n—1. Then
li (W) (py) 1
im —— =

A Wan 0 an 0)).
Jim ST = S Wen(0) + ()
Proof. Fix a v and define the function f on [0, 1] by
f@) =v.@py) = ¥,00,...,0,=8,1). (6.3)

From Taylor’s theorem it follows that

1
f) = fO)+ f'0) + Ef”(S)

for some s € (0, 1). Therefore, by successive application of the chain rule to (6.3),
we obtain

Yu(py) = =6, ((¥)n(0) + (¥,)i(0))

2

8
+ ?V((%)nn({u) + 2(0)nia(80) + (¥0)ii(8)), (6.4)

where ¢, = sp,.
Now fix 1 < o < n — 1 and define the function g on [0, 1] by

8(1) = (Yv)altpy) = (Y)a(0,...,0,=68,1). (6.5)
By Taylor’s theorem, we have
! l "
g(1) =¢0)+5'(0) + 58 (s)
for some s’ € (0, 1). Therefore, by successive application of the chain rule to (6.5),

(wv)a(pv) = _(SV((wv)an(O) + (wv)aﬁ(o))

82
+ Ev((wu)ann(nv) + 200 ani(My) + W)aan(m)),  (6.6)

where 7, = s'p,. It is now evident from (6.4) and (6.6) that

. Wv)a(py) 1
lim ————— = = (Y¥u.(0 «i(0)),
tim 2L 2 () + s O)

so the lemma is proved. UJ
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Using Lemma 6.2 and Theorem 1.3, we obtain the following finer asymptotics of
the first- and second-order derivatives of A, along {p,}.
LEMMA 6.3. Letl <a<n—1landl1 < B <n. Then:

(i) im0 Ava(Py) Wu(Pu)?" ™% = o (0) + 2n — 2)Ca;
(11) ]imv»oo Aaﬁ(pv)(wv(pv))zn_l =
—2n = 2)24(0)Y30) — 2n —2)2n — DY5(0)Co + 2n — 2)Y,5(0),

where Co, = %(Vfan(o) + waﬁ(o))~

Proof. The normalized Robin function
AW ()% if zeD,

M) = { —9v(D)"2 if zeaD

6.7)
associated to (D, ¥) is C?on D. In particular, A(0) = —1. Differentiating A with
respect to z,, we obtain
Aoy =0 — @n =DM Y.
Hence, by Theorems 1.2 and 1.3 and Lemma 6.2,
lim Ava(po) (W (po)™™* = 1a(0) + 21 = 2)Ca,

which is (i). Similarly, differentiating (6.7) with respect to z, followed by zg
yields

Ayt ™ = hop¥ — 2n = 2) (oW + A5V
+ (2n —2)2n — DAY Wahg — 2n — 2)M,5.
Again by Theorems 1.2 and 1.3 and Lemma 6.2, we have

T Az (PO (P = =21 = 20 (0)Y5(0)
— (2n—2)2n — DY(0)Cqo + 2n — 2)9,5(0),
which is (ii). O

LEMMA 6.4. Letl <a <n—1land1 < B <n. Then
. 1
im ,65(Py) (Yo (pv)) = (2n — 2)<§{1/fan(0) + Vi (0)}¥5(0) — 1/fa,s(0)>~
Proof. We have
C 9%log(—A) _ Aup Adh;
gaﬂ N 8Zaazﬁ o A A2 ’
Multiplying both sides of this equation by ¥ yields
Mg~ (AP (A
Aw2n72 (A¢2t172)2
By the proof of Lemma 6.1,

(6.8)

8up¥ =
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Ay(p) (W (py)" % > —1
and
Az (P)Wr(p)*" ™ = (2n = 2)¥5(0).

We can now use Lemma 6.3 and (6.8) to obtain
im g,65(Po) ¥ (Pv)
=(2n =2 0)¢¥50) + 2n —2)2n — DY(0)C
— 2n = 2)Y,500) — {Aa(0) + 2n — 2)Co H(2n — 2)Y5(0)}.
Simplifying the right-hand side, we have

Lim g,65(po)¥(py) = 2n = 2)(Yg(0)Co — Yro5(0))
1
=(2n - 2)<§{1ﬁan(0) + Vi (0)}¥5(0) — %ﬂ(o)) u

Because we have no information about the third-order derivatives of A(p) =
¥ 2"~2A(p) near the boundary of D, the method just described fails to give finer
asymptotics of A By Proposition 2.1, however, the function

g(p,w) = Y(p)*" *G(p,2) (6.9)

for w = (z — p)/(—=¥(p)) is C? up to D U 3D. Also, for each p € D, both
(0g/0py)(p) and (azg/apaaﬁﬂ)(p) are harmonic functions of w € D(p) and
hence can be differentiated infinitely often with respect to w. Moreover,
o 8%g 9%
(p) and —(p,0) = —.
9pa 8paapﬁ 3Pa3]7ﬁ
In what follows, we exploit these properties to calculate finer asymptotics of A
by expressing it in terms of mixed derivatives of g, .

By [7, Prop. 6.1], the functions

vapy-

0
B_g(p’ 0) = (6.10)
Pe

U(Jtﬁ}/

G 3G
Ga(p,z)=< + )(p,Z),

P 0zq
(6.11)
G, BGO,)
G.5(p,2) = + — .2
5(p,2) <ap5 9, (p,2)

are real-analytic and symmetric functions in D x D and are harmonic in z and
in p. By [7, 6.14],

0G5
Agpy(p) =2 (P, p)- (6.12)
0z,
By [7, Prop. 6.2], the functions
| g
go(p,w) =g(p,w) + ] ; wia—wi»

(6.13)

ag -
P» (p,w) — (n — DY (p)(go(prw) + go(p, w))

ga(p,w) =Y¥(p)
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are harmonic functions of w € D(p) foreach p € D. From [7, p. 83] it follows that
G,z
dzy

= —(xp(p))-z"“{

(p D)
2

0 +¥(p)3 8‘

(p, 0)} (6.14)

Combining (6.12) and (6.14) now yields
Ys(p) 9 92

n 7 08 oy~ 28 () 0). (6.15)
¥(p) dw, ow,, dpg

LEMMA 6.5. Letl <o,y <nand1 < B <n—1. Then

Bm Aoz, (p) (W (o)™

Ayp, (D)W (p))™" =4

exists and is finite.

Proof. By (6.15) and Lemma 6.2, we need only prove that

82804
28 (p,,0)

lim gw( »,0) and lim
V—00 8wy V—00 Bwyapﬂ

exist and are finite.

We know that g, (p,, w) is a harmonic function of w € D". To estimate the
boundary values of these functions, note that the first term of g,o(p,,w) (i.e.,
gv(py, w)) is bounded by |w|~2"*2 for all v; by Proposition 5.3, the second term
is bounded by C|w|~%"*2 for all large v. Therefore, by (6.13),

lgvo(py, w)| < Clw|™>""2, weaD", (6.16)

for all large v. From Proposition 4.3 it follows that |(3g,/dps) (py, w)| is bounded
by C(1 + |w|™)|w|~2"+3 for all large v; in addition, v, (p,) and ¥, (p,) are
bounded by a constant C for all large v. Hence, using (6.13) and (6.16) we obtain

|gve(pus w)| < C(1 + [w] ™ Hw| 7", w e dD”, (6.17)

for all large v. B
Chooser > Osuchthat B(0,r) C H. §ince DY converges in the Hausdorff sense
to ‘H, there exists an integer I such that B(0,r) C D" forall v > I. Consequently,

|lw| >r (6.18)
forall v > I and w € dD". Hence by (6.17) we have
Igua(Pos w)| < Cr "3 (1477, weaD,

for all large v and so g,,(py, w) is uniformly bounded on B(0, r) for all large v.
Moreover, by [7, Prop. 6.2] and the equality (dg,/0py)pv,0) = (0A,/0py)(Py),

oA,
&ua(py,0) = l[’v(pv)g(pv) — 2n = 2)Ya(pu)A(py), (6.19)

which converges. It follows from Harnack’s principle that
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a vo
lim 5% (p,,.0)
V=00 W,
exists.
Now differentiating (6.13) with respect to pg, we obtain
9 B 92
Bpwy= 2 Y w (6.20)
opg opg  n—1 P 0pgow;
and
9%
w) = w(p)a a‘ (ps w)

—(n— 1)%(;9)(@(;:, w) + ﬁ(p, w))
opg opp

- (}’l - I)Waﬁ(p)(go(fh U)) +g0(p9 U))), (621)
which are harmonic functions of w € D. As before, |dg,/dpg| is bounded by
C(1 + |w|™Y|w|~2"+3 for all large v; and by Proposition 5.7, |82gu/8ﬁ58w,-| is
bounded by C(1 + |w|™")|w|~2"*?2 for all large v. It follows that

0gy
‘ 80 (s w)| < Clw>"+, wedD”, (6.22)
dpp
for all large v. By Proposition 2.1, for 1 < y <n and p € D we have
82
' —(p.w)| < [kY(p, w)||8wg(p, w)] +2|ky —_ . wedD(p).
op, 0Py ow;dp,

It follows that

0%g,
& (poew)| < CA+ o™ + [w[D)w[ ", weaD”,
ap,0p,
and hence—by a unitary change of coordinates—that
0%g,
‘ S (pow)| < CCA+ |~ + wl D)w >, we oD,
apotapﬂ
for all large v. Thus
0gva -1 -2 “2n+4
—(pv,w)| < C + |w|™ + [w] ) |w]
pp

<Cr A+ +r7%), wedD",

for all large v. Therefore, the sequence {(dg,«/9pg)(py, w)} is uniformly bounded
on B(0,r). Moreover,
52

3gua Ay
( Py, 0) = wu(pu)a ¥re (pv)+wv5(pu) (pu)

—(@2n— 2)¢ua(pu)a—_v(pu) — @n =2)Y,,5(P)Au(po),
Pp
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which converges. It now follows from Harnack’s principle that

92g,,
lim —5_(p,.0)
v—>00 Jw,, dpg

exists. O

LEMMA 6.6. Letl <o,y <nand1 <8 <n—1. Then
. 08uap
lim
v—>00 9z,

(Po) (W (pu))?

exists and is finite.

Proof. From (6.2), we obtain
vap  ,  Duapy V"
9z, " A2
B (Avaglﬁvz"_l)(l\vylﬁfn_l) (Avaytﬁvz")(l\vglﬁf"_z)
(A2 (A2
(O TO i
(A2 —2)?
2(Awa¥ " AU (A Y
(A 2n=2)3 '
Given Theorem 1.2 and Lemma 6.3, we can see that the second and third terms have

finite limits along { p, }; by Lemma 6.5, the first term has a finite limit along { p, }.
O

LEmMMA 6.7.  The limit
lim_ det(g,,5(pu) (Yo (pu)""

exists and is nonzero.
Proof. Let (A ) be the cofactor matrix of (g,5). Then expanding by the nth row
yields
det(gop) = 8,1An1 +++ + &ni Ani

Therefore,

det(g,p) V"™ = (&AW " )+ 4 Q¥ ) (Ami¥" ). (6.23)
Note that

gli “ e gla_—l gl(x_ﬂ PP glﬁ
An&¢n71 — Ip_}’l*l(_l)rH»Ot det

En—11 " 8u—1a=i 8n—tat1 ~°° 8n-la
g o &V &am¥ o &Y
= (=" det S S

GtV - 8uiamiV 8uiamV o &n-uV
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By Lemma 6.4,if 1 <« <n—1land1 < B < n then the term g,,5(p,)¥»(pv)
converges to a finite quantity. It follows thatif | <« <n — 1 then

lim A (po) (¥ ()"

exists and is finite. Also, if 1 < «, 8 < n — 1 then gmg(p],)l/fv(pu) converges to
—2n — 2)1//a/§(0). Hence

van;o Avm—z(pv)(l/fv(pv))n_l = (_])n(zn - 2)n det(l/faﬁ(o))lsa,ﬂfnfb

Finally, by Lemma 6.1, if | < «,8 < n then gvoug(pu)(tpv(p\,))2 converges to
(2n —2)Y4(0)¥5(0). Now it follows from (6.23) that

Tim det(2,u5 (o)W (p)" = (=1)"(2n = 2™ det (W (0120, pn-1 # 0
because D is strongly pseudoconvex at 0. UJ

Proof of Theorem 1.1. We have
1 9%, 1 9%

- _ s
@ OF 2t (g @GR n
By Lemma 6.1,
1 32gvnﬁ

(pv)

o 1
{2n — 2)y,(0)y(0)}?

B (gvnﬁ(pv))z 02,07,

{6(2n — 2)¥,(0) 7 (0) v, (0) ¥ (0)}
3
n—1

To compute the limit of the second term, note that g#* = A, ;/det(g,z). There
are various cases to be considered depending on « and 8.

Case l: @« #nand B # n. Here

1 . 0g.a 08pi 1 <8g ; )(agﬁﬁ )
_ pBa’ona — N na ;2 3 )
P ER S P S T e s S A W R L W E
By Lemma 6.1,

(P W (pu)* — (2n —2).

By Lemma 6.7, det(g,.]f( ), pu)" ! converges to a nonzero finite quantity.
Also,

o en(@), o, —
Aop = E D 5 8250 Bty
o

where the summation runs over all permutations
o {l,...,o—lLa+1,....,n} > {l,....,8—1,8+1,...,n}.

Hence

Aog¥" =) (DO mm¥) (g5 V) - (8,5m V)
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According to Lemma 6.4, if 1 <i <n — 1 then gvim(pv)(llfv(pv)) converges to
a finite quantity. Also,

Eunztn (PO W (P = 21 = 2)¥,(0)¢55(0)
by Lemma 6.1. Thus A,,5(p.) (¥, (py))" converges to a finite quantity.

By Lemma 6.6, (88una/02,)(py) (¥, (py))? converges to a finite quantity; and
by Lemma 6.1,

gvﬂn 8vnp

(pv)ozfv(pu)f ( (pu)wv(pv))*)

= —=22n = 2)(Yun(0) (¥ 5(0)) (¥ (0)) = 0.
Hence

guna gvﬁn

(u)

(pu) (pu) =0.

lim ————g¢;
v=>00 (guai(Pv))
Case2: « =nand B # n. Here
Lgﬂﬁ dgnin 08pn
g,%;, 8Zn azn

_ ! n1<agnn )(aﬁ )
= Gavr@ecgpy o N, Ve V)
By Lemma 6.1,

(P W (p)* — (2n — 2);

also, det(g,,5(Pv))(¥(py)"* has a nonzero limit and A, 5(p,) (¥ (pu)"™"
converges to a finite quantity (these claims follow from Lemma 6.7). Now Lem-
ma 6.1 implies that

a vnn
ag (P Wu(pn)? = =221 — 2)¥,(0) ¥ (0),(0) = —2(2n — 2)
and
8 vpn vn
g il (pu)(I/fu(pu))3 ( ﬂ(pv)(%(pu))3>
— —=2(2n = 2)(Yu(0)) (¥5(0)) (¥,(0)) = 0.
Therefore,

; 08unit gvﬂn
)2gf (P52 (P0)

lim ( ») =0.
V250 (gumi( ) P

Case 3: a # n and B = n. This case is similar to Case 2, and we have

gUI‘lC{ gwm
lim 8y (pv)—=—(py) =0.
v—>00 (gvnn(pv))2 0zn 0Zn
Case 4: « = n and B = n. In this case, we have
1 nn 8gnﬁ 8gnﬁ
28 oo
8ni 9zn 9Zn

_ 1 BN VR Y T
= Gt D2 (et (g g Y )< 92, ¥ )( 9%, )

"*(py)
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By Lemma 6.1,
guni(PV) (W (py)* = 2n —2)
and both
agunn( 3 gnn 3 _9202 2
oz, )W (po)), (Pu)(llfv(Pu)) — —2(2n - 2);
by Lemma 6.7,

A (o) (W (p)" " = (=1)"(2n — 2)" det(¥;7(0))1<i, j<n—1
and

det(g,;; (P W (p)"* = (=1)"2n = 2)"* det(¥,;(0)) 1< j<n1-

Hence
0gunia 08vnii

vli}[glomg:,m( v) 9z, (P) 3z, ( u)— 1

From the various cases we finally obtain

. -3 2 -1
lim R(z,,vn(2))) = + = . O
V—>00 n —

7. Existence of Closed Geodesics

In this section we prove Theorem 1.5. The main tool that we will use is the fol-
lowing theorem of Herbort [6].

THEOREM 7.1. Let G be a bounded domain in R* such that (G) is nontrivial.
Assume that the following conditions are satisfied.

(i) For each p € G, there is an open neighborhood U C R such that the set
G N U is simply connected.
(i1) G is equipped with a complete Riemannian metric g that possesses the fol-
lowing property.
(P) For each S > 0 there is a § > 0 such that, for every point p € G with
d(p,dD) < 8 and every X € R, g(p,X) > SIX|~

Then every nontrivial homotopy class in w1(G) contains a closed geodesic for g.

It is evident that a C*°-smoothly bounded domain D satisfies part (i) of the theo-
rem. To see whether the A-metric satisfies property (P), consider a C *°-smoothly
bounded pseudoconvex domain D in C" and suppose that ¥ is C*°-smooth defin-
ing function for D. Then, differentiating the relation

A= AwZn—Z
with respect to z,, we obtain
dlog(—A
% =y =20 = Dy, 71
Za

Now differentiating this with respect to zg yields
9% log(—A)

=g A A A+ 2(n— DY Y —2(n— DY . (7.2)
0z407p
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Hence, for v € C",

n

8% log(—A
ds*(,v) = 3 I log(=A) agp

opo 022928
= A'Li(z,v) — A2, )+ 2(n — DY 2 (v, dy)?
—2(n — DY 'Ly(z,v). (7.3)

LEMMA 7.2. Let D be a C*°-smoothly bounded pseudoconvex domain in C", and
let  be a C*-smooth defining function for D. Let zo € 0D and v € C" with
|[v| = 1. Then

Jim (=y(2))* ds? (v,0) = 2(n = DI(v, 8¥(z0))I*.

Also, if (v, 9V (z0)) = O then
Z]igl(—l//(z))dszz(v, v) =2(n — 1)L y(z0, V).

Finally, the limits just given are uniform in 7 and v.

Proof. Since A is C2-smooth up to D and since v is C*-smooth, it follows that

the terms _ ~
(Us 8)\(Z)), (U, 8W(Z))’ EK(Z’ U)s and ['l/f(z’ U)

are uniformly bounded for all z € D and all v € C" with |v| = 1. Also, since A =
—|3y|?"~2 on 3D, it is evident that A~ is bounded near dD.
By the foregoing observation it is clear from (7.3) that

lim (¥(2))° ds? (v, v) = 2(n = DI(v, 3Y(20))*

uniformly for z¢ € dD and unit vectors v. This proves the first part of the lemma.
To prove the second part, observe that if (v, 3¥(z¢)) = O then

(v,0¥(2)) = (v,0Y(2)) — (v,0¥(z0)) = (v, 0¥ (2) — IV (20)).
Since

8% (2) — 3V (z0)| S (=¥ (2))

uniformly for z near z, it follows that

[(v, 0y (2))| < (—¥(2))

uniformly for z near z, and for unit vectors v satisfying (v, 3% (z¢)) = 0. Com-
bining this with our previous observation, it now follows from (7.3) that

Zgg)(—W(Z)) ds?(v,v) = 2(n — )Ly(z0,v)

uniformly for z¢ € D and for unit vectors v satisfying (v, 9 (z0)) = 0. Thus the
lemma is proved. O

ProPOSITION 7.3, Let D be a C*°-smoothly bounded strongly pseudoconvex do-
main in C", and let  be a C*°-smooth defining function for D. Then there exist
a neighborhood U of 9D and a constant K > 0, depending only on D, such that
|2

—v¥(2)

ds?(v,v) > K , zeUND, veC™
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Proof. Let zo € 3D and vy € C" with |vg] = 1. If (v, 9V (z0)) # O then, by
Lemma 7.2,

(—=¥(2))* ds2(vo,vo) = (n — 1)[{vo, 3 (z0))I?

for z sufficiently close zo. From this it follows that

-1 _
(D) ds ) = - )\ (w0, 3y (2o

for z sufficiently close z( and for unit vectors v sufficiently close to vy. Hence

-1 _
{z . | (vo, B (2o

ds*(v,v) > _
: (—¥(2))?
(n—=1 - , 1
> 5 [{vo, 0¥ (z0))| —(—W(Z))

for z sufficiently close z¢ and for unit vectors v sufficiently close to vo.
If (v, 0¥ (z0)) = O then L (20, vo) > 0 and, again by Lemma 7.2,

—¥(2) ds?(v9,v9) = (n — 1)Ly (20, v0)
for z sufficiently close z¢; thus

(7.4)

(n—1)

—Y(2)ds?(v,v) >
for z sufficiently close zo and for unit vectors v sufficiently close to vg. Then

(n—1)
2

Ly(z0,v0)

dszz(v, v) >

Ly (z0,v0) (7.5)

1
—v¥(2)
for z sufficiently close z( and for unit vectors v sufficiently close to vg. Since D
and {v € C" : |v| = 1} are compact, (7.4) and (7.5) together imply that there exists

a constant K > 0 such that
lv[*

dszz(v, v) > K

—v¥(2)
for z near dD and for unit vectors v. The proof of the proposition now follows
from the homogeneity of dszz(v, v) in the vector variable. UJ

Proof of Theorem 1.5. By Proposition 7.3, the A-metric is complete on D and sat-
isfies property (P) of Theorem 7.1, from which the proof follows. UJ

8. L2-Cohomology of the A-Metric

In this section we prove Theorem 1.6. Let us first recall the definition of L>-
cohomology. Let M be a complete Kidhler manifold of complex dimension 7.
Let 9’2 be the space of square-integrable i-forms on M. Then the (reduced) L>-
cohomology of the complex

QUM) 2 @l &y . Ll Qi Lo o
is defined by - ?
i erd;
Hy(M) = ———,
Imd,-,l

where the closure is taken in L2 Now, let 7, (M) be the space of square-integrable
harmonic i-forms on M. Then the completeness of the metric implies that
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Hi(M) = Hy(M).

We have the following result from [3] on the vanishing of the L?-cohomology out-
side the middle dimension.

THEOREM 8.1. Let M be a complete Kdihler manifold of complex dimension n.
Suppose that the Kdihler form w of M can be written as w = dn, where 1 is bounded
in supremum norm. Then H5(M) = 0 fori # n.

We also have the following result from [9] on the infinite dimensionality of the
L?-cohomology of the middle dimension.

THEOREM 8.2. Let D be a domain in a connected complex manifold of dimen-
sion n, and let ds® be a Hermitian metric on D. Suppose there exists a nondegen-
erate regular boundary point zo € dD. Also, suppose there exist a neighborhood
U of 29, a local defining function ¢ for D defined on U, and a Hermitian metric
dslzj defined on U such that

Clds? < (=¢)"dsi + (—p)Pdpap < Cds?

on U N D, where a, b, and C are positive numbers with1 < a < b < a+ 3. Then,
for any positive integer p and q with p + q = n, we have

dim H5(D) = o0;
here Hy (D) denotes the L? 3-cohomology group relative to ds>.

REMARK 8.3. If in Theorem 8.2 we assume also that ds? is complete and Kihler,
then for any positive integer p and g with p + g = n we have

dim H#2%(D) = oo,

where H5 (D) is the space of square-integrable harmonic ( p, ¢)-forms on D rel-
ative to ds>.

To apply these results to the A-metric, let D be a C°*-smoothly bounded pseudo-
convex domain in C” and let ds? be the A-metric on D. Then the Kihler form o
of ds? is given by

. Z 9% log(—A)

w=1 — dzy Ndzg = dn,
02407p 4 L

a=1

where
n

dlog(—A
ye 3PN

0Z o

a=1

Now let ¢ be a C*°-smooth defining function for D. Then, using (7.1), for v e C"
we have
- dlog(—A) - o
D) = =i Y e = =i 0,83 = 21 = Dy 0, 5y)
a=1 La

and
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In()I* = A2[{v, ) — 4(n — DAy "R ((v, Ir) (v, 3Y))
+4(n — D>y 2| (v, 0y)|> (8.1)

LEMMA 8.4. Let D be a C*°-smoothly bounded pseudoconvex domain in C", and
let ¥ be a C*°-smooth defining function for D. Let zo € 0D and v € C" with
|[v] = 1. Then

lim (=9 (2)*n: () = 401 = D*|(v, 9 (z0)*

Also, if (v, 0Y/(z0)) = O then
zlgrzlo(_l/f(z))'nz(vﬂz =0.

Finally, the limits are uniform in 7o and v.

Proof. Since A is C2-smooth up to D and since ¥ is C®-smooth, the terms
(v,0A(2)) and (v,0¥(2))

are uniformly bounded for all z € D and all v € C" with |v| = 1. Also, since A =
—[3y|?"~2 on 3D, it follows that 2! is bounded near 3D.
By the preceding observation it is evident from (8.1) that

lim (=y(2)%[n: @) = 4(n = D*|(v, 9 (z0))I*

uniformly for z¢ € dD and unit vectors v. This proves the first part of the lemma.
To prove the second part we observe that, as in the proof of Lemma 7.2,

(v, 0y (2))| < (—¥(2))

uniformly for z near z and for unit vectors v satisfying (v, dy/(zo)) = 0. Com-
bining this with our previous observation, it now follows from (8.1) that

Jim =y @)l )* =0

uniformly for z¢ € D and for unit vectors v satisfying (v, 6_)1//(10)) = 0. Thus the
lemma is proved. O

PropoSITION 8.5.  Let D be a C*°-smoothly bounded strongly pseudoconvex do-
main in C". Then the ratio 5
In-(v)

ds*(v,v)
is uniformly bounded for z € D and for vectors v € C" with v # 0.

8.2)

Proof. Let zg € 9D and v € C" with |vg| = 1. By Lemma 7.2 and Lemma 8.4,
for (vg, 0¥ (z0)) # 0 we have

In:(vo)?
——— =2(n—-1);
720 dsf(vo,vo) o )

for (vo, 9y (z0)) =0,
o) _
=20 dsg(vo, U())
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since Ly (z0,vo) > 0 at the strongly pseudoconvex boundary point zq. It follows
that the ratio
() >
ds?(v,v)
is uniformly bounded for all z near z and for unit vectors v near vg. Since dD and
{v e C" : |v| = 1} are compact, this ratio is uniformly bounded for all z near D
and for all unit vectors v. It is clear that this ratio is uniformly bounded for all z
on a compact subset of D and for all unit vectors v. Now, by the homogeneity of
n.(v) and dszz(v, v) in the vector variable v, it follows that the ratio is uniformly
bounded above for all z € D and for vectors v € C" with v # 0. This proves the
proposition. UJ

We also note the following result.

PROPOSITION 8.6.  Let D be a C*°-smoothly bounded strongly pseudoconvex do-
main in C", and let ds* be the A-metric on D. Suppose that ¥ is a C*°-smooth
defining function for D. Then

ds? ~ (=) 7 dsg + (=¥) 2y dy
uniformly near 3D, where ds} is the Euclidean metric on C".

Proof. Let us denote the tensor on the right-hand side by # so that, for z € D and
veCn,

hy(v,v) = (=(2) " v* + (=¥ (2) v, I ()%
Let zg € 9D and vy € C" with |vg| = 1. Then

Tim (—y/(2))*ha (vo, v0) = (vo, 3 (z0) -

Hence if (v, 3¥(z0)) # O then, by Lemma 7.2,

ds2(vy,
ds; (vo,vo) _ 21— 1). (8.3)
z=z0 h;(vo, Vo)

If (vo, 3Y(z0)) = O then, as in Lemma 7.2,
[(vo, 3y (2))| < (—¥(2))

and so
Jlim (=) h-(vo, v0) = ol = 1;

therefore, by Lemma 7.2,

ds?(vo,vo)

L T =2(n-=-DL , 0 8.4

=20 hz(v(), UQ) (n ) x//(ZO UO) g ( )

because D is strongly pseudoconvex. It follows from (8.3) and (8.4) that the ratio
dszz(v, v)

h,(v,v)
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is uniformly bounded above and below by positive constants for all z near zy and
for unit vectors v near vy. Since dD and {v € C" : |v| = 1} are compact, this
ratio is uniformly bounded above and below by positive constants for all z near dD
and for unit vectors v. The proposition now follows from the homogeneity of both
dszz(v, v) and A, (v, v) in the vector variable v. O

Proof of Theorem 1.6. Let ds* be the A-metric on D. By Proposition 7.3, ds?
is complete. By Proposition 8.5, ds? satisfies the hypotheses of Theorem 8.1.
Therefore,

H5(D) =0
for i # n and hence

HYUD) =0
for p + g # n. Also, by Proposition 8.6, ds? satisfies the hypotheses of Theo-
rem 8.2. Therefore, by Remark 8.3,

dimH59(D) = o0

for any positive integers p and g with p + g = n. Moreover, it is evident that
’H,Z’O(D) and ’Hg’”(D) are infinite dimensional. This completes the proof. O
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