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Remarks on the Metric Induced
by the Robin Function II

Diganta Borah

1. Introduction

LetD be a C∞-smoothly bounded domain in Cn (n ≥ 2). For p ∈D, letG(z,p)
be the Green function for D with pole at p associated to the standard Laplacian


 = 4
n∑
i=1

∂ 2

∂zi∂z̄i

on Cn ≈ R2n. Then G(z,p) is the unique function of z ∈ D satisfying the con-
ditions that G(z,p) is harmonic on D \ {p}, G(z,p) → 0 as z → ∂D, and
G(z,p)− |z− p|−2n+2 is harmonic near p. Thus


(p) = lim
z→p

(G(z,p)− |z− p|−2n+2)

exists and is called the Robin constant for D at p. The function


 : p → 
(p)

is called the Robin function for D.
The Robin function for D is negative and real-analytic, and it tends to −∞

near ∂D (see [10]). Furthermore, if D is pseudoconvex then, by a result of
Levenberg and Yamaguchi [7], log(−
) is a strongly plurisubharmonic function
on D. Therefore,

ds2 =
n∑

α,β=1

∂ 2 log(−
)
∂zα∂z̄β

dzα ⊗ dz̄β

is a Kähler metric onD, which is called the
-metric. Recall that the holomorphic
sectional curvature of ds2 at z∈D along the direction v ∈ Cn is given by

R(z, v) = Rαβ̄γ δ̄v
αv̄βvγ v̄δ

gαβ̄v
αv̄β

;
here

Rαβ̄γ δ̄ = − ∂ 2gαβ̄

∂zγ ∂z̄δ
+ gνµ̄ ∂gαµ̄

∂zγ

∂gνβ̄

∂z̄δ

are the components of the curvature tensor,
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gαβ̄ = ∂ 2 log(−
)
∂zα∂z̄β

are the components of ds2, and gαβ̄ are the entries of the matrix (gαβ̄)
−1. In the pre-

ceding formulas, we follow the standard convention of summing over all indices
that appear once in the upper and lower position.

Now let v be a vector in Cn. At each point z ∈ ∂D, there is a canonical split-
ting Cn = Hz(∂D)⊕Nz(∂D) along the complex tangential and normal directions
at z and so v can uniquely be written as v = vH (z) + vN(z), where vH (z) ∈
Hz(∂D) and vN(z) ∈ Nz(∂D). Also, the smoothness of ∂D implies that if z ∈ D
is sufficiently close to ∂D then there is a unique point π(z) ∈ ∂D that is closest
to it; that is, d(z, ∂D) = |z− π(z)|. Therefore, v can uniquely be written as v =
vH (π(z)) + vN(π(z)). We will abbreviate vH (π(z)) as vH (z) and vN(π(z)) as
vN(z) and call them, respectively, the horizontal and normal components of v at z.
For a strongly pseudoconvex domainD, the boundary behavior ofR(z, vN(z))was
calculated in [1] in a special case—namely, when z → z0 ∈ ∂D along the inner
normal to ∂D at z0. One goal of this paper is to remove the restriction that z → z0

along the inner normal when obtaining the boundary behavior of R(z, vN(z)).
More generally, we have the following theorem.

Theorem 1.1. Let {Dν} be a sequence of C∞-smoothly bounded pseudoconvex
domains in Cn that converges in the C∞-topology to a C∞-smoothly bounded
strongly pseudoconvex domain D in Cn. If pν ∈ Dν and if {pν} converges to a
point p0 ∈ ∂D then, for any v ∈ Cn with vN(p0) �= 0,

lim
ν→∞Rν(pν , vNν(pν)) = − 1

n− 1
,

where Rν is the holomorphic sectional curvature of the 
-metric on Dν and
vNν(pν) is the normal component of v at pν relative to the domain Dν.

In this theorem and henceforth, the C∞-convergence of the sequence {Dν} to D
has the following standard meaning: there exist C∞-smooth defining functionsψν
forDν and ψ forD such that {ψν} converges in the C∞-toplogy on compact sub-
sets of Cn to ψ. With the same meaning, sometimes it is also said that {Dν} is a
C∞-perturbation of D. An immediate consequence of this theorem is the follow-
ing result.

Corollary 1.2. Let D be a C∞-smoothly bounded strongly pseudoconvex do-
main in Cn. Fix z0 ∈ ∂D and let v ∈ Cn be such that vN(z0) �= 0. Then, for z∈D,

lim
z→z0

R(z, vN(z)) = − 1

n− 1
.

To understand the difficulty in the computation, let us first normalize the data in
Theorem 1.1 as follows.

(a) Since the
-metric is invariant under translation and unitary rotation [1, Lem-
ma 5.1], we will assume without loss of generality that p0 = 0 and that the
normal to ∂D at p0 is along the �zn-axis.
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(b) If ν is sufficiently large, then the distance between pν and ∂Dν , denoted δν , is
realized by a unique point πν(pν)∈ ∂Dν; that is

δν = d(pν , ∂Dν) = |pν − πν(pν)|.
For each such ν, we can apply a translation τν followed by a rotation σν and
thus transform the domain Dν into a new domain θν(D), where θν = σν � τν ,
such thatπν(pν)∈ ∂Dν corresponds to 0 ∈ ∂θν(Dν) and the normal to ∂θν(Dν)
is along the �zn-axis. Note that the point pν ∈ Dν now corresponds to the
point (0, . . . , 0, −δν) ∈ θν(Dν). It is also evident that the sequence {θν(Dν)}
converges in the C∞-topology toD. Therefore, again by the invariance of the

-metric under translations and unitary rotations, we will assume without loss
of generality that 0 ∈ ∂Dν , that the normal to ∂Dν at 0 is along the �zn-axis,
and that pν = (0, . . . , 0, −δν).

With this normalization, we have

Rν(pν , vNν(pν))

= Rν
(
pν , (0, . . . , 0, ∗))

= 1

(gνnn̄(pν))2

(
− ∂ 2gνnn̄

∂zn∂z̄n
(pν)+

n∑
α,β=1

gβᾱν (pν)
∂gνnᾱ

∂zn
(pν)

∂gνβn̄

∂z̄n

)
, (1.1)

where

gναβ̄ = ∂ 2 log(−
ν)
∂zα∂z̄β

(1.2)

are the components of the 
-metric ds2
ν on Dν and gαβ̄ν are the entries of the ma-

trix (gναβ̄)
−1. To compute the limit of the right-hand side of (1.1) as ν → ∞,

we must find the asymptotics of the metric components gναβ̄ and their derivatives
along the sequence {pν}. From (1.2), it is natural to hope that this can be achieved
by computing the asymptotics of 
ν and their derivatives

DAB̄
ν = ∂ |A|+|B|
ν
∂z
α1
1 · · · ∂zαnn ∂z̄β1

1 · · · ∂z̄βnn
for A = (α1, . . . ,αn) and B = (β1, . . . ,βn)∈ Nn

along {pν}. In this regard, we prove the following theorem.

Theorem 1.3. Let {Dν} be a sequence of C∞-smoothly bounded domains in Cn

that converges in the C∞-topology to a C∞-smoothly bounded domain D in Cn.

ChooseC∞-smooth defining functionsψν forDν and ψ forD such that {ψν} con-
verges in the C∞-topology on compact subsets of Cn to ψ. Let pν ∈Dν be such
that {pν} converges to p0 ∈ ∂D. Define the half-space

H =
{
w ∈ Cn : 2�

( n∑
α=1

ψα(p0)wα

)
− 1< 0

}
,

and let 
H denote the Robin function for H. Then
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(−1)|A|+|B|DAB̄
ν(pν)(ψν(pν))
2n−2+|A|+|B| → DAB̄
H(p0)

as ν → ∞.

We emphasize thatψα = ∂ψ/∂zα in this theorem and should not be confused with
the function ψν. We will show in Section 6 that the asymptotics obtained in this
theorem suffice to calculate the limit of the first term of (1.1). However, it turns
out that the second term remains indeterminate by these asymptotics. Hence cal-
culating this term requires finer asymptotics of
ν and their derivatives. A similar
situation was handled in [1] by using the following result of Levenberg andYama-
guchi [7]. The function λ defined by

λ(p) =
{

(p)(ψ(p))2n−2 if p ∈D,

−|∂ψ(p)|2n−2 if p ∈ ∂D (1.3)

is C2 up to D̄. We will call λ the normalized Robin function associated to (D,ψ).
Thus it is expected that finer asymptotics of 
ν and their derivatives along {pν}
could be obtained if the functions λν = 
νψ

2n−2
ν and their derivatives along

{pν} were bounded. Theorem 1.2 shows that λν(pν) converges to λ(p0), and in
Theorem 1.4 we establish the convergence of first and second derivatives of λν
along {pν}.
Theorem 1.4. Under the hypotheses of Theorem 1.2, we have

(1) lim
ν→∞

∂λν

∂pα
(pν) = ∂λ

∂pα
(p0) and

(2) lim
ν→∞

∂ 2λν

∂pα∂p̄β
(pν) = ∂ 2λ

∂pα∂p̄β
(p0).

Here λν and λ are the normalized Robin functions associated to (Dν ,ψν) and
(D,ψ), respectively.

We remark that—unlike the Bergman, Carathéodory, and Kobayashi metrics—the

-metric is not invariant under biholomorphisms in general (see e.g. [1]). The
only information we have on this score is that any biholomorphism between two
C∞-smoothly bounded strongly pseudoconvex domains is Lipschitz with respect
to the 
-metric (this follows from [1, Thm. 1.4]). Despite that drawback, our ex-
ploration of this metric is devoted to identifying which of its various properties are
analogous to those possessed by these invariant metrics.

Another goal of this paper is to study the existence of closed geodesics for
the 
-metric of a given homotopy type. In [6] Herbort proved that, on a C∞-
smoothly bounded strongly pseudoconvex domainD in Cn that is not simply con-
nected, every nontrivial homotopy class in π1(D) contains a closed geodesic for
the Bergman metric. By studying the boundary behavior of the
-metric, we prove
the following analogue for the 
-metric.

Theorem 1.5. LetD be aC∞-smoothly bounded strongly pseudoconvex domain
in Cn that is not simply connected. Then every nontrivial homotopy class in π1(D)

contains a closed geodesic for the 
-metric.
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LetD be C∞-smoothly bounded strongly pseudoconvex domain in Cn. Donnelly
and Fefferman [4] proved that D does not admit any square-integrable harmonic
(p, q)-form relative to the Bergman metric except when p + q = n, in which
case the space of such forms is infinite dimensional. A more transparent and ele-
mentary proof of the infinite dimensionality of the L2-cohomology of the middle
dimension was given by Ohsawa [9]. In [3], Donnelly gave an alternative proof of
the vanishing of the L2-cohomology outside the middle dimension via the follow-
ing observation of Gromov [5]. If M is a complete Kähler manifold of complex
dimension n such that the Kähler form ω ofM can be written as ω = dη, where η
is bounded in supremum norm, thenM does not admit any square-integrable har-
monic i form for i �= n. Finally, we observe that these ideas can be applied to the

-metric to prove the following result.

Theorem 1.6. LetD be aC∞-smoothly bounded strongly pseudoconvex domain
in Cn, and let Hp,q

2 (D) be the space of square-integrable harmonic (p, q)-forms
relative to the 
-metric. Then

dim Hp,q

2 (D) =
{

0 if p + q �= n,

∞ if p + q = n.

Acknowledgments. The author is indebted to K. Verma for his encourage-
ment, valuable comments, and various helpful clarifications during the course of
this work. Many thanks are also due to the referee for a careful reading of the
manuscript and for making several suggestions that have all been incorporated; in
particular, the calculations in Sections 7 and 8 are based on these suggestions and
significantly simplify our earlier approach.

2. Properties of λ

LetD be aC∞-smoothly bounded domain in Cn with aC∞-smooth defining func-
tion ψ defined on all of Cn. In this section, we recall some basic properties of the
normalized Robin function λ associated to (D,ψ). We start by describing the geo-
metric meaning of λ(p). Given p ∈D, let

T : D × Cn → Cn

be the map defined by

T(p, z) = z− p
−ψ(p) . (2.1)

Set

D(p) =
{
T(p,D) if p ∈D,{
w ∈ Cn : 2�(∑n

α=1ψα(p)wα
) − 1< 0

}
if p ∈ ∂D. (2.2)

Thus {D(p) : p ∈ D̄} is a family of domains in Cn each containing the origin.
When p ∈D, we have thatD(p) is the image ofD under the affine transformation
T(p, ·) and hence by [10, Prop. 5.1] that


D(p)(0) = 
(p)(ψ(p))2n−2 = λ(p).
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If p ∈ ∂D then D(p) is a half-space for which we have the explicit formula


D(p)(0) = −|∂ψ(p)|2n−2 = λ(p)

(cf. [1, (1.4)]). Thus, for each p ∈ D̄, λ(p) is the Robin constant for D(p) at the
origin. We will denote the Green function for D(p) with pole at p by g(p,w).

To discuss the regularity of the function λ(p) on D̄, we set

D =
⋃
p∈D

(p,D(p)) = {(p,w) : p ∈D, w ∈D(p)}.

The set D can be considered as a variation of domains in Cn with parameter
space D—in other words, as a map

D : p → D(p)

that associates to each p ∈D a domain D(p) ⊂ Cn. We call D : p → D(p) the
variation associated to (D,ψ). The function

f(p,w) = 2�
{ n∑
α=1

∫ 1

0

(
wαψα(p − ψ(p)tw)) dt

}
− 1, (2.3)

which was constructed in [7], is jointly smooth on Cn × Cn. If we take D̃ =
D × Cn, then the following statements hold.

(i) D = {(p,w) ∈ D̃ : f(p,w) < 0}, ∂D := {(p,w) : p ∈ D,w ∈ ∂D(p)} =
{(p,w)∈ D̃ : f(p,w) = 0}, and Grad(p,w) f �= 0 on ∂D.

(ii) For each p ∈ D we have D(p) = {w ∈ Cn : f(p,w) < 0}, ∂D(p) =
{w ∈ Cn : f(p,w) = 0}, and Gradw f(p,w) �= 0 on ∂D(p).

Therefore, we say that the variation D : p → D(p) is smooth and is defined by
f(p,w). It is evident that the variation

D ∪ ∂D : p → D(p) ∪ ∂D(p) = D̄(p)

is diffeomorphically equivalent to the trivial variation D × D̄. It follows that
g(p,w) has a C 4 extension to a neighborhood of D \ D × {0}. Now fix a point
p0 ∈ D and let B̄(0, r) ⊂ D(p0). Then there exists a neighborhood U of p0 in
D such that B̄(0, r) ⊂ D(p) for all p ∈U. Because g(p,w)− |w|−2n+2 is a har-
monic function of w ∈ D(p) and is equal to λ(p) when w = 0, we can use the
mean value property of harmonic functions to obtain

λ(p) = 1

r 2n−1σ2n

∫
∂B(0,r)

(g(p,w)− |w|−2n+2) dSw

= − 1

r 2n−2
+ 1

r 2n−1σ2n

∫
∂B(0,r)

g(p,w) dSw, (2.4)

where by dS we denote the surface area measure on a smooth surface in R2n and
by σ2n the surface area of ∂B(0, 1). It follows that λ(p) is smooth on U and thus
on D.

Now let 1 ≤ γ ≤ n. Observe that, for each p ∈D, the functions

∂g

∂pγ
(p,w),

∂ 2g

∂pγ ∂p̄γ
(p,w)
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are harmonic in all of D(p) and that

∂g

∂pγ
(p, 0) = ∂λ

∂pγ
(p),

∂ 2g

∂pγ ∂p̄β
(p, 0) = ∂ 2λ

∂pγ ∂p̄γ
.

To find the boundary values of these functions in terms of f , consider the quanti-
ties kγ1 and kγ2 :

k
γ

1(p,w) = ∂f

∂pγ
(p,w)|∂wf(p,w)|−1,

k
γ

2(p,w) = Lγf(p,w)|∂wf(p,w)|−3;
(2.5)

here

Lγf = ∂ 2f

∂pγ ∂p̄γ
|∂wf |2 − 2�

(
∂f

∂pγ

n∑
α=1

∂f

∂w̄α

∂ 2f

∂wα∂p̄γ

)
+

∣∣∣∣ ∂f∂pγ
∣∣∣∣

2


wf (2.6)

is defined wherever ∂wf(p,w) �= 0 and thus in particular on

∂D =
⋃
p∈D

(p, ∂D(p)).

Observe that, on ∂D, the quantities kγ1 and kγ2 are independent of the defining
function f for D. Since g(p,w) > 0 on D, g(p,w) = 0 on ∂D, and

|∂wg(p,w)| = −1

2

∂g

∂nw
(p,w) > 0 on ∂D,

it follows that we can use −g(p,w) as a defining function for D. Thus, for all
(p,w)∈ ∂D, we have

∂g

∂pγ
(p,w) = −kγ1(p,w)|∂wg(p,w)|

and
Lγg(p,w) = −kγ2(p,w)|∂wg(p,w)|3.

Since g(p,w) is of classC 4 up to ∂D(p), we have
wg(p,w) = 0 forw ∈ ∂D(p)
and hence, by (2.6),

∂ 2g

∂pγ ∂p̄γ
= −kγ2 |∂wg| + 2�

(
∂g/∂pγ

|∂wg|
n∑
α=1

∂g/∂w̄α

|∂wg|
∂ 2g

∂wα∂p̄γ

)

= −kγ2 |∂wg| − 2�
(
k
γ

1

n∑
i=1

∂g/∂w̄α

|∂wg|
∂ 2g

∂wα∂p̄γ

)

for w ∈ ∂D(p). We summarize this result as follows.

Proposition 2.1. The function g(p,w) is smooth up to D ∪ ∂D = {(p,w) : p∈D,
w ∈ D̄(p)}. If 1 ≤ γ ≤ n and p ∈D, then:

(1) (∂g/∂pγ )(p) is a harmonic function of w ∈D(p) with

∂g

∂pγ
(p, 0) = ∂λ

∂pγ
(p)
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and with boundary values

∂g

∂pγ
(p,w) = −k1(p,w)|∂wg(p,w)|, w ∈ ∂D(p);

(2) (∂ 2g/∂pγ ∂p̄γ )(p) is a harmonic function of w ∈D(p) with

∂ 2g

∂pγ ∂p̄γ
(p, 0) = ∂ 2λ

∂pγ ∂p̄γ
(p)

and with boundary values

∂ 2g

∂pγ ∂p̄γ
(p,w)

= −kγ2(p,w)|∂wg(p,w)|

− 2�
(
k
γ

1(p,w)
n∑
α=1

(∂g/∂w̄α)(p,w)

|∂wg(p,w)|
∂ 2g

∂wα∂p̄γ
(p,w)

)
, w ∈ ∂D(p).

Toward this end, it was proved in [7] that g(p,w) is C2 up to {(p,w) : p ∈ D̄,
w ∈ D̄(p)} by deriving the following estimates. There exists a constant C, inde-
pendent of p ∈ ∂D, such that

|kγ1(p,w)| ≤ C|w|2,
|kγ2(p,w)| ≤ C|w|3,

|∂wg(p,w)| ≤ C|w|−2n+1,

|∂ 2g/∂w̄α∂pγ | ≤ C|w|−2n+2

(2.7)

for all w ∈ ∂D with |w| ≥ 1. Moreover, the derivatives ∂g/∂pγ and ∂ 2g/∂pγ ∂p̄γ
are given by the following proposition.

Proposition 2.2. Let 1 ≤ γ ≤ n. Then, for p ∈ D̄ and a ∈D(p),
∂g

∂pγ
(p, a) = 1

2(n− 1)σ2n

∫
∂D(p)

k
γ

1(p,w)|∂wg(p,w)|∂ga(p,w)

∂nw
dSw (2.8)

and

∂ 2g

∂pγ ∂p̄γ
(p, a)

= 1

2(n− 1)σ2n

∫
∂D(p)

k
γ

2(p,w)|∂wg(p,w)|∂ga(p,w)

∂nw
dSw

+ 1

(n− 1)σ2n
�

n∑
α=1∫

∂D(p)

k
γ

1(p,w)
(∂g/∂w̄α)(p,w)

|∂wg(p,w)|
∂ 2g

∂wα∂p̄γ
(p,w)

∂g

∂nw
(w) dSw. (2.9)

Here ga(p,w) is the Green function for D(p) with pole at a.
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We note that, for p ∈ D, the preceding formulas are consequences of Proposi-
tion 2.1. For p ∈ ∂D, these formulas were obtained in [7] by finding

lim
D�q→p

∂g

∂pγ
(q, a) and lim

D�q→p

∂ 2g

∂pγ ∂p̄γ
(q, a).

A particular case of this proposition is the following.

Proposition 2.3. Let 1 ≤ γ ≤ n and p ∈ D̄. Then

∂λ

∂pγ
(p) = 1

2(n− 1)σ2n

∫
∂D(p)

k
γ

1(p, ζ)|∂wg(p, ζ)|∂g(p,w)

∂nw
dSw (2.10)

and

∂ 2λ

∂pγ ∂p̄γ
(p)

= 1

2(n− 1)σ2n

∫
∂D(p)

k
γ

2(p,w)|∂wg(p, ζ)|2 dSw

+ 1

(n− 1)σ2n
�

n∑
α=1∫

∂D(p)

k
γ

1(p,w)
(∂g/∂w̄α)(p,w)

|∂wg(p,w)|
∂ 2g

∂wα∂p̄γ
(p,w)

∂g

∂nw
(p,w) dSw. (2.11)

We now consider a sequence {Dν} of C∞-smoothly bounded domains in Cn that
converges inC∞-topology toD. We chooseC∞-smooth defining functionsψν for
the domainsDν such that {ψν} converges in the C∞-topology on compact subsets
of Cn to ψ. This implies, in particular, that Dν converges in the Hausdorff sense
to D. For each ν ≥ 1, consider the scaling map Tν : Dν × Cn → Cn defined by

Tν(p, z) = z− p
−ψν(p)

and the family of domains {Dν(p) : p ∈ D̄ν} defined by

Dν(p) =
{
Tν(p,Dν) if p ∈Dν ,{
w ∈ Cn : 2�(∑n

i=1ψνi(p)wi
) − 1< 0

}
if p ∈ ∂Dν.

The normalized Robin function λν(p) for (Dν ,ψν) is then the Robin constant for
Dν(p) at 0. We will denote the Green function forDν with pole at 0 by gν(p,w).
Also, let

Dν =
⋃
p∈Dν

(p,Dν(p)) = {(p,w) : p ∈Dν , w ∈Dν(p)}

be the variation associated to (Dν ,ψν) and let

fν(p,w) = 2�
{ n∑
α=1

∫ 1

0

(
wα(ψν)α(p − ψν(p)tw)

)
dt

}
− 1. (2.12)
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Then fν(p,w) is a smooth function on Cn × Cn that defines the variation Dν . It
is evident that the functions fν(p,w) converge in the C∞-topology on compact
subsets of Cn × Cn to the function

f(p,w) = 2�
{ n∑
α=1

∫ 1

0

(
wαψα(p − ψ(p)tw)) dt

}
− 1,

which defines the variation D associated to (D,ψ).
Now let pν ∈Dν be such that {pν} converges to p0 ∈ ∂D. For brevity, we let

T ν(z) = Tν(pν , z) = z− pν
−ψν(pν) ,

Dν = Dν(pν) = T ν(Dν), and (2.13)

gν(w) = gν(pν ,w).

Thus gν(w) is the Green function forDν with pole at 0. Let 1 ≤ γ ≤ n. By Propo-
sition 2.1, (∂gν/∂pγ )(pν ,w) is a harmonic function of w ∈ Dν with boundary
values

−kνγ1 (w)|∂wgν(w)|; (2.14)

here

k
νγ

1 (w) = k
γ

1ν(w) = ∂fν

∂pγ
(pν ,w)|∂wfν(pν ,w)|−1. (2.15)

Similarly, (∂ 2gν/∂pγ ∂p̄γ )(pν ,w) is a harmonic function of w ∈Dν with bound-
ary values

∂ 2gν

∂pγ ∂p̄γ
(pν ,w)

= −kνγ2 (w)|∂wgν(w)|

− 2�
(
k
νγ

1 (w)

n∑
α=1

(∂gν/∂w̄α)(w)

|∂wgν(w)|
∂ 2gν

∂wα∂p̄γ
(pν ,w)

)
, w ∈ ∂Dν, (2.16)

where
k
νγ

2 (w) = Lγfν(pν ,w)|∂wfν(pν ,w)|−3 (2.17)

and Lγ is defined by (2.6).
We shall conclude this section by finding uniform bounds for the functions

k
νγ

1 (w) and kνγ2 (w) near the boundary of ∂Dν, which will be required to estimate
the boundary values (2.14) and (2.16) in Sections 4 and 5. For 0 < r < 1, let E ν(r)
be the collar about ∂Dν defined by

E ν(r) =
⋃

w0∈∂Dν
{w ∈Dν : |w − w0| < r|w0|}.

Note that E ν(r) lies inDν and that Ē ν(r) does not contain the origin. Similarly, let
Eν(r) be the collar around ∂Dν defined by

Eν(r) =
⋃

z0∈∂Dν
{z∈Dν : |z− z0| < r|z0 − pν |}.
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Here Eν(r) lies in Dν and does not contain the point pν. Note also that

Eν(r) = (T ν)−1(E ν(r)). (2.18)

Lemma 2.4. There exist a constantm > 0, a number 0 < r < 1, and an integer I
such that

|∂wfν(pν ,w)| > m
for all ν ≥ I and w ∈ E ν(r).
Proof. Choose a δ-neighborhood U of ∂D, that is,

U = {z∈ Cn : d(z, ∂D) < δ},
and a constant m > 0 such that |∂ψ(p)| > 2m for p ∈ U. Since ∂ψν converges
uniformly on Ū to ∂ψ, there exists an integer I such that

|∂ψν(p)| > m (2.19)

for ν ≥ I and p ∈ U. Modify the integer I so that ∂Dν ⊂ N(δ/2) for all ν ≥ I.

Since pν → p0 ∈ ∂D, we can assume without loss of generality that pν ∈ U for
all ν ≥ I. Now define

r = δ

3δ + 2 diam(D)
.

Then it is evident that
Eν(r) ⊂ U (2.20)

for ν ≥ I. Now fix ν ≥ I andw ∈ E ν(r). If we define z = T −1
ν w = pν−ψν(pν)w

then, by (2.18),
z∈ Eν(r) ⊂ U.

From (2.12) it follows that

|∂wfν(pν ,w)| = |∂ψν(z)| > m
by (2.19).

We now modify Step 4 of [7, Chap. 4] to obtain the following estimates.

Lemma 2.5. Let r and I be as in Lemma 2.4. Then there exists a constantM > 0
such that

(i) |(∂fν/∂wα)(pν ,w)| < M,
(ii) |(∂fν/∂pγ )(pν ,w)| < M(1 + |w|−1)|w|2,

(iii) |(∂ 2fν/∂wα∂wβ)(pν ,w)| < M|w|−1,
(iv) |(∂ 2fν/∂pγ ∂wα)(pν ,w)| < M(1 + |w|−1)|w|, and
(v) |(∂ 2fν/∂pγ ∂pµ)(pν ,w)| < M(1 + |w|−1 + |w|−2)|w|3

for all ν ≥ I and w ∈ E ν(r).
Proof. Let U be as in the proof of Lemma 2.4, and choose R > 0 such that U ⊂
B(0,R). Since {ψν} converges in the C∞-topology on compact subsets of Cn to
ψ, we can find a constantM1 > 0 such that ψ, ψν (ν ≥ 1), and their derivatives of
order ≤ 2 are bounded in absolute value by M1 on B̄(0,R).
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Now let ν ≥ I and let w ∈ E ν(r). Then

pν − ψν(pν)tw ∈B(0,R), 0 ≤ t ≤ 1. (2.21)

Before proving this, note that it implies in particular that ψν and its derivatives of
order ≤ 2 are bounded in absolute value by M1 at the points pν − ψν(pν)tw for
all 0 ≤ t ≤ 1. Now to prove (2.21), we let 0 ≤ t ≤ 1. Set

z = T −1
ν w = pν − ψν(pν)w.

Then z∈ Eν(r) by (2.18) and hence z∈U by (2.20). Now

pν − ψν(pν)tw = pν + t(z− pν) = (1 − t)pν + tz∈B(0,R)

since pν , z∈U ⊂ B(0,R).
(i) Differentiating (2.3) with respect to wα under the integral sign, we have

∂f

∂wα
(p,w) = ψα(p − ψ(p)w), p,w ∈ Cn.

Hence, for ν ≥ I and w ∈ E ν(r),∣∣∣∣ ∂fν∂wα
(pν ,w)

∣∣∣∣ = |ψνα(pν − ψν(pν)w)| ≤ M1.

(ii) Differentiating (2.3) with respect to pγ under the integral sign, we have

∂f

∂pγ
(p,w) =

n∑
α=1

∫ 1

0

∂

∂pγ

(
wαψα(p − ψ(p)tw))

+ ∂

∂pγ

(
w̄αψᾱ(p − ψ(p)tw)) dt, p,w ∈ Cn.

Observe that

∂

∂pγ

(
wαψα(p − ψ(p)tw)) = wαψγα(p − ψ(p)tw)

− 2tψγ(p)�
n∑
i=1

wiwαψiα(p − ψ(p)tw).

Therefore,

∂f

∂pγ
(p,w) =

n∑
α=1

∫ 1

0

(
wαψγα(p − ψ(p)tw)+ w̄αψγ ᾱ(p − ψ(p)tw)) dt

− 2ψγ(p)�
n∑

i,α=1

∫ 1

0

(
wiwαψiα(p − ψ(p)tw)
+ wiw̄αψiᾱ(p − ψ(p)tw))t dt. (2.22)

Hence, for ν ≥ I and w ∈ E ν(r),
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∣∣∣∣ ∂fν∂pγ (pν ,w)
∣∣∣∣

≤
n∑
α=1

∫ 1

0
|wα||ψνγα(pν − ψν(pν)tw)| + |w̄α||ψνγ ᾱ(pν − ψν(pν)tw)| dt

+ 2|ψνγ(pν)|
n∑

i,α=1

∫ 1

0
|wi ||wα||ψνiα(pν − ψν(pν)tw)|

+ |wi ||w̄α||ψνiᾱ(pν − ψν(pν)tw)|t dt

≤
∫ 1

0
2|w|√nM1 dt + 2M1

n∑
i=1

∫ 1

0
2|wi ||w|√nM1t dt

≤ 2
√
nM1|w| + 2n3/2(M1)

2|w|2
≤ M2(1 + |w|−1)|w|2,

where M2 = 2n3/2(M1)
2.

(iii) Differentiating (2.3) with respect to wα under the integral sign, we have

∂f

∂wα
(p,w) = ψα(p − ψ(p)w), p,w ∈ Cn.

Differentiating this equation with respect to wβ yields

∂ 2f

∂wβ∂wα
(p,w) = (−ψ(p))ψαβ(p − ψ(p)w), p,w ∈ Cn.

Let ν ≥ I and w ∈ E ν(r). Let

z = T −1
ν w = pν − ψν(pν)w.

Then, by (2.21), z∈B(0,R). Now∣∣∣∣ ∂ 2fν

∂wβ∂wα
(pν ,w)

∣∣∣∣ ≤ |z− pν |
|w| |ψναβ(z)| ≤ 2RM1|w|−1 = M3|w|−1,

where M3 = 2RM1. Finally, by differentiating (2.22) we obtain (iv) and (v).

Proposition 2.6. There exist 0 < r < 1, a constantC, and an integer I such that

(1) |kνγ1 (w)| ≤ C(1 + |w|−1)|w|2 and

(2) |kνγ2 (w)| ≤ C(1 + |w|−1 + |w|−2)|w|3

for all ν ≥ I and w ∈ Ē ν(r).

Proof. Let 0 < r < 1, let m > 0, and let I be as in Lemma 2.4. Choose M as in
Lemma 2.5. Then, by (2.15),

|kν1(w)| =
∣∣∣∣ ∂fν∂pγ (pν ,w)

∣∣∣∣|∂wfν(pν ,w)|−1 <
M

m
(1 + |w|−1)|w|2

for ν ≥ I and w ∈ E ν(r). Also, since 0 /∈ Ē ν(r), the function
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|kν1(w)|(1 + |w|−1)−1|w|−2

is continuous up to Ē ν(r) and hence (1) follows.
Similarly, from (2.17) it follows that

|kν2(w)| <
1

m3

(
M(1 + |w|−1 + |w|−2)|w|3M 2

+ 2nM(1 + |w|−1)|w|2MM(1 + |w|−1)|w|
+ (M(1 + |w|−1)|w|2)2nM|w|−1

)
≤ C(1 + |w|−1 + |w|−2)|w|3

for some constant C whenever ν ≥ I and w ∈ E ν(r). Again the function

|kν2(w)|(1 + |w|−1 + |w|−2)−1|w|−3

is continuous up to Ē ν(r) and so (2) follows.

3. Asymptotics of �ν

In this section we prove Theorem 1.3. First we recall the following stability result
from [1].

Proposition 3.1. Let D be a domain in Cn with C2-smooth boundary, and let
{Dj} be a C2-perturbation of D. Let G(z,p) be the Green function for D with
pole at p, and let 
(p) be the Robin function for D. Similarly, let Gj(z,p) be
the Green function forDj with pole at p and let
j(p) the Robin function forDj .
Then

lim
j→∞Gj(z,p) = G(z,p)

uniformly on compact subsets of D \ {p}, and

lim
j→∞D

AB̄
j(p) = DAB̄
(p)

uniformly on compact subsets of D.

For a proof see [1, Prop. 7.1, Prop. 7.2]. Proposition 3.1, together with [7, Prop. 5.1],
yields the following boundary behavior of the functions Gj(z,p).

Corollary 3.2. Let D be a domain in Cn with C∞-smooth boundary, and let
{Dj} be a C∞-perturbation of D. Let zj ∈ D̄j be such that {zj} converges to a
point z0 ∈ ∂D. Then, for any p ∈D,

lim
j→∞Gj(zj ,p) = G(z0,p);

identifying z = (z1, . . . , zn)∈ Cn with x = (x1, . . . , x2n)∈ R2n, we have

lim
j→∞

∂Gj

∂xk
(zj ,p) = ∂G

∂xk
(z0,p)

for 1 ≤ k ≤ 2n.
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Proof. Since the Green function is invariant under translation and rotation, we as-
sume without loss of generality that z0 = 0 and that the normal to ∂D at z0 is
along the x2n-axis. By the implicit function theorem, we can find a ball B(0, r),
a C∞-smooth function φ defined on B(0 ′, r) ⊂ R2n−1, and a sequence {φj} of
C∞-smooth functions defined on B(0 ′, r) that converges in C∞-topology on com-
pact subsets of B(0 ′, r) to φ such that

B(0, r) ∩ ∂D = {(x ′,φ(x ′)) : x ′ ∈B(0 ′, r)},
B(0, r) ∩ ∂Dj = {(x ′,φj(x ′)) : x ′ ∈B(0 ′, r)}. (3.1)

Now let p ∈D. Shrinking r if necessary, let us assume that 2r < |p|. Then, for
z∈B(0, r) ∩Dj ,

Gj(z,p) < |z− p|−2n+2 < r−2n+2. (3.2)

Consider the dilation
Z = Sz = z

r
and set

; = S(B(0, r) ∩D), ;j = S(B(0, r) ∩Dj).
Define

u(Z) = r 2n−2G(z,p), Z ∈;,

and
uj(Z) = r 2n−2Gj(z,p), Z ∈;j .

Then, by (3.1) and (3.2) and in view of Proposition 3.1, the sequence {uj} on {;j}
satisfies the hypothesis of [7, Prop. 5.1]. Therefore,

lim
j→∞ uj(Zj ) = u(0),

lim
j→∞

∂uj

∂x̃k
(Zj ) = ∂u

∂x̃k
(0),

where Zj = Szj . This implies that

lim
j→∞Gj(zj ,p) = G(0,p),

lim
j→∞

∂Gj

∂xk
(zj ,p) = ∂G

∂xk
(0,p).

Proof of Theorem 1.3. Consider the affine maps T ν : Cn → Cn defined by

T ν(z) = z− pν
−ψν(pν)

as well as the scaled domainsDν = T ν(Dν). Recall from Section 2 that a defining
function for Dν is given by

fν(pν ,w) = 2�
{ n∑
α=1

∫ 1

0

(
wαψνα(pν − ψν(pν)tw)

)
dt

}
− 1.

It is clear that {fν(pν , ·)} converges in the C∞-topology on compact subsets of
Cn to
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f(p0,w) = 2�
( n∑
α=1

ψα(p0)wα

)
− 1,

which implies that {Dν} is a C∞-perturbation of the half-space

H =
{
w : 2�

( n∑
α=1

ψα(p0)wα

)
− 1< 0

}
.

Therefore, by Proposition 3.1,

lim
ν→∞D

AB̄
Dν (0) = DAB̄
H(0). (3.3)

Now, by [1, (1.1)], we have


Dν (p) = 
ν(pν − pψν(pν))(ψν(p))2n−2.

Differentiating this expression yields

DAB̄
Dν (0) = (−1)|A|+|B|DAB̄
ν(pν)(ψν(pν))
2n−2+|A|+|B|.

Hence from (3.3) it follows that

lim
ν→∞D

AB̄(−1)|A|+|B|DAB̄
ν(pν)(ψν(pν))
2n−2+|A|+|B| = DAB̄
H(0),

which completes the proof.

4. Estimates on the First Derivatives

Let 1 ≤ γ ≤ n. By Proposition 2.1, (∂gν/∂pγ )(pν ,w) is a harmonic function of
w ∈Dν,

∂gν

∂pγ
(pν , 0) = ∂λν

∂pγ
(pν),

and
∂gν

∂pγ
(pν ,w) = −kνγ1 (w)|∂wgν(w)|, w ∈ ∂Dν. (4.1)

Therefore,

∂λν

∂pγ
(pν) = 1

2(n− 1)σ2n

∫
∂Dν
k
νγ

1 (w)|∂wgν(w)|
∂gν

∂nw
(w) dSw. (4.2)

So to find the limit of these integrals, we must estimate the boundary values (4.1).
For this we modify Step 3 of [7, Chap. 4].

Lemma 4.1. There exist a number 0 < ρ < 1 and an integer I such that, for
ν ≥ I and w0 ∈ ∂Dν, we can find a ball of radius ρ|w0| that is externally tangent
to ∂Dν at w0.

Proof. SinceD is bounded, we can find a ballB(0,R) that containsD. Since {Dν}
converges in C2-topology to D, there exists an integer I such that Dν ⊂ B(0,R)
for all ν ≥ I. By the implicit function theorem there exists a number ρ̃ such that,
by modifying I, we can find a ball of radius ρ̃ that is externally tangent to ∂Dν at
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z0 for each ν ≥ I and z0 ∈ ∂Dν. Now let ν ≥ I and w0 ∈ ∂Dν. Since Dν is ob-
tained fromDν by means of a translation followed by dilation of factor −ψν(pν),
we can find a ball of radius ρ̃/(−ψν(pν)) that is externally tangent to ∂Dν at w0.

Furthermore, there exists a z0 ∈ ∂Dν such that

w0 = z0 − pν
−ψν(pν) ;

this implies that
ρ̃

−ψν(pν) = ρ̃|w0|
|z0 − pν | ≥ ρ̃

2R
|w0|.

Thus, by taking ρ = ρ̃/2R, we can find a ball of radius ρ|w0| that is tangent to ∂Dν

at w0.

Proposition 4.2. There exist an integer I and a constant C > 0 such that

|∂wgν(w)| ≤ C|w|−2n+1

for all ν ≥ I and w ∈ ∂Dν.

Proof. Choose 0 < ρ < 1along with an integer I and a constantC as in Lemma 4.1.
Let ν ≥ I and w0 ∈ ∂Dν. Let B be the ball of radius ρ|w0| that is externally tan-
gent to ∂Dν at w0, and let E be the ball centred at w0 and of radius ρ|w0|. Then
w ∈E implies that

|w| > |w0| − ρ|w0| = (1 − ρ)|w0|.
Hence, for w ∈E ∩Dν,

0 < gν(w) ≤ |w|−2n+2 < ((1 − ρ)|w0|)−2n+2.

By Step 2 of [7, Chap. 4], we have

|∂wgν(w0)| ≤ c((1 − ρ)|w0|)−2n+2(ρ|w0|)−1,

where c does not depend on gν(w) or Dν. Therefore,

|∂wgν(w0)| ≤ C|w0|−2n+1,

where C = cρ−1(1 − ρ)−2n+2 is independent of ν and w0 ∈ ∂Dν.

Proposition 4.3. There exist a constant C > 0 and an integer I such that∣∣∣∣ ∂gν∂pγ
(pν ,w)

∣∣∣∣ = |kνγ1 (w)||∂wgν(w)| ≤ C(1 + |w|−1)|w|−2n+3, w ∈ ∂Dν,

for all ν ≥ I.

Proof. By Proposition 2.6, there exist a constant C and an integer I such that

|kνγ1 (w)| ≤ C(1 + |w|−1)|w|2, w ∈ ∂Dν,

for all ν ≥ I. In view of Proposition 4.2, we can modify the constant C and the
integer I so that

|∂wgν(w)| ≤ C|w|−2n+1, w ∈ ∂Dν,
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for all ν ≥ I. Thus, from (4.1) it follows that∣∣∣∣ ∂gν∂pγ
(pν ,w)

∣∣∣∣ = |kνγ1 (w)||∂wgν(w)| ≤ C2(1 + |w|−1)|w|−2n+3, w ∈ ∂Dν,

for all ν ≥ I.

Proposition 4.4.

lim
ν→∞

∂λν

∂pγ
(pν) = ∂λ

∂pγ
(p0).

Proof. In view of Proposition 2.3, we have to prove that

lim
ν→∞

1

2(n− 1)σ2n

∫
∂Dν
k
νγ

1 (w)|∂wgν(w)|
∂gν

∂nw
(w) dSw

= 1

2(n− 1)σ2n

∫
∂H
k
γ

1(p0,w)|∂g(p0,w)| ∂g
∂nw

(p0,w) dSw, (4.3)

where H = D(p0). Let R > 1. Then the boundary surfaces B(0,R) ∩ ∂Dν con-
verge to B(0,R) ∩ H continuously in the sense that the unit normal vectors

∂wg
ν(w)

|∂wgν(w)| → ∂g(p0,w)

|∂wg(p0,w)|
uniformly on compact sets, except at the corners B(0,R)∩∂Dν. Also, ifwν ∈ ∂Dν

and {wν} converges to w0 ∈ ∂H, then by definition we have

lim
ν→∞ k

νγ

1 (w
ν) = k

γ

1(p0,w0) (4.4)

and, by Corollary 3.2,

lim
ν→∞

∂gν

∂wα
(wν) = ∂g

∂wα
(p0,w0) (4.5)

for 1 ≤ α ≤ n. Hence

lim
ν→∞

1

2(n− 1)σ2n

∫
B(0,R)∩∂Dν

k
νγ

1 (w)|∂wgν(w)|
∂gν

∂nw
(w) dSw

= 1

2(n− 1)σ2n

∫
B(0,R)∩∂H

k
γ

1(p0,w)|∂g(p0,w)| ∂g
∂nw

(p0,w) dSw. (4.6)

To estimate these integrals outside the ball B(0,R), note that by Proposition 4.3
there exist a constant C and an integer I such that

|kνγ1 (w)||∂wgν(w)| ≤ C|w|−2n+3, w ∈ ∂Dν, |w| > 1,

for all ν ≥ I. Therefore,∣∣∣∣ 1

2(n− 1)σ2n

∫
Bc(0,R)∩∂Dν

k
νγ

1 (w)|∂wgν(w)|
∂gν

∂nw
(w) dSw

∣∣∣∣
≤ CR−2n+3 1

2(n− 1)σ2n

∫
∂Bc(0,R)∩∂Dν

(
−∂g

ν

∂nζ
(w)

)
dSw (4.7)

for all ν ≥ I. Since
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∫
∂Bc(0,R)∩∂Dν

(
−∂g

ν

∂nζ
(w)

)
dSw ≤

∫
∂Dν

(
− ∂g

ν

∂nw
(w)

)
dSw = (2n− 2)σ2n,

it follows from (4.7) that∣∣∣∣ 1

2(n− 1)σ2n

∫
Bc(0,R)∩∂Dν

k
νγ

1 (w)|∂wgν(w)|
∂gν

∂nw
(w) dSw

∣∣∣∣ = O(R−2n+3) (4.8)

uniformly for all ν ≥ I. By (2.7), we can modify the constant C so that

|kγ1(p0,w)||∂wg(p0,w)| ≤ C|w|−2n+3, w ∈ ∂H, |w| > 1;
then, much as before, we obtain∣∣∣∣ 1

2(n− 1)σ2n

∫
Bc(0,R)∩∂H

k
γ

1(p0,w)|∂wg(p0,w)| ∂g
∂nw

(w) dSw

∣∣∣∣
= O(R−2n+3). (4.9)

Now (4.3) follows from (4.6), (4.8), and (4.9).

Remark 4.5. The arguments of this section also imply that, for any a ∈ H,

lim
ν→∞

∂gν

∂pγ
(pν , a) = lim

ν→∞
1

2(n− 1)σ2n

∫
∂Dν
k
νγ

1 (w)|∂wgν(w)|
∂gνa

∂nw
(pν ,w) dSw

= 1

2(n− 1)σ2n

∫
∂H
k
γ

1(w)|∂wg0(w)| ∂ga
∂nw

(pν ,w) dSw

= ∂g

∂pγ
(p0, a).

Moreover, by Proposition 4.3, the functions (∂gν/∂pγ )(pν ,w) are uniformly
bounded on compact subsets of H for all large ν. Indeed, let B̄(0, r) ⊂ H. Then
B̄(0, r) ⊂ Dν for all large ν. It follows that∣∣∣∣ ∂gν∂pγ

(pν ,w)

∣∣∣∣ ≤ Cr−2n+3(1 + r−1)

for w ∈ ∂Dν and hence, by the maximum principle, for w ∈ Dν. We may thus
conclude that {(∂gν/∂pγ )(pν , a)} converges uniformly on compact subsets of H
to (∂g/∂pγ )(p0, a).

5. Estimates on the Second Derivatives

By Proposition 2.1, (∂ 2gν/∂pγ ∂p̄γ )(pν ,w) is a harmonic function of w ∈Dν,

∂ 2gν

∂pγ ∂p̄γ
(pν , 0) = ∂ 2λν

∂pγ ∂p̄γ
(pν),

and
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∂ 2gν

∂pγ ∂p̄γ
(pν ,w)

= −kνγ2 (w)|∂wgν(w)|

− 2�
(
k
νγ

1 (w)

n∑
α=1

(∂gν/∂w̄α)(w)

|∂wgν(w)|
∂ 2gν

∂wα∂p̄γ
(pν ,w)

)
, w ∈ ∂Dν. (5.1)

Therefore,

∂ 2λν

∂pγ ∂p̄γ
(pν)

= 1

2(n− 1)σ2n

∫
∂Dν
kν2(w)|∂wgν(ζ)|

∂gν

∂nw
(w) dSw + 1

(n− 1)σ2n
�

n∑
α=1∫

∂Dν
k
νγ

1 (w)
(∂gν/∂w̄α)(w)

|∂wgν(w)|
∂ 2gν

∂wα∂p̄γ
(pν ,w)

∂gν

∂nw
(w) dSw. (5.2)

Using arguments similar to those in the previous section, we obtain

lim
ν→∞

1

2(n− 1)σ2n

∫
∂Dν
kν2(w)|∂wgν(ζ)|

∂gν

∂nw
(w) dSw

= 1

2(n− 1)σ2n

∫
∂H
k2(p0,w)|∂wg(p0,w)| ∂g

∂nw
(w) dSw, (5.3)

where H = D(p0). Hence we need only find the limit of the second integrals,
which requires that we estimate the functions

∂ 2gν

∂wα∂p̄γ
(pν ,w) (5.4)

on ∂Dν. Since (∂gν/∂pγ )(pν ,w) is a harmonic function ofw ∈Dν with boundary
values

F ν(w) = −kνγ1 (w)|∂wgν(w)| = − (∂fν/∂pγ )(pν ,w)|∂wfν(pν ,w)| |∂wgν(w)|, (5.5)

it follows that estimating (5.4) requires that we estimate the derivatives of F ν(w).
This will be done by modifying Steps 2 and 3 of [7, Chap. 5].

In what follows we will identify the point z = (z1, . . . , zn) in Cn with the point
x = (x1, . . . , x2n) in R2n. Similarly, w = (w1, . . . ,wn) and W = (W1, . . . ,Wn)

in Cn will be identified with y = (y1, . . . , y2n) and Y = (Y1, . . . ,Y2n) in R2n, re-
spectively. We begin by giving a version of a tubular neighborhood theorem.

Proposition 5.1. There exist 0 < r < 1 and M > 1 and an integer I such that,
for ν ≥ I and any z0 = (x ′

0, x02n) in the neighborhood⋃
z∈∂Dν

{z+ tnz : −r < t < r}

of ∂Dν , B(z0, r) ∩ ∂Dν can be represented—after a rotation and translation of
coordinates—in the form x2n = φ(x ′), where:
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(a) φ(x ′) is smooth in B(x ′
0, r) ⊂ R2n−1 with φ(x ′

0) = x02n − t, where t is such
that z0 = z∗0 + tnz∗0 for some z∗0 ∈ ∂Dν; and

(b) all partial derivatives of φ of order ≤ 6 are bounded in absolute value on
B(x ′

0, r) by M.

Now fix r, M, and I as in Proposition 5.1. Modifying the integer I if necessary,
we may assume that

d(pν , ∂D) < r

and
∂Dν ⊂ {z : d(z, ∂D) < r}

for all ν ≥ I. This implies that

|z̃ν − pν | < diam(D)+ 2r (5.6)

for ν ≥ I and z̃ν ∈ ∂Dν. Now choose 0 < η < 1 such that
η

1 − η (diam(D)+ 2r) < r. (5.7)

Lemma 5.2. Let ν ≥ I, and let wν ∈Dν \ {0} be such that

{w ∈ Cn : |w − wν | < η|wν |} ∩ ∂Dν �= ∅.
Let Sν : Cn → Cn be the affine map defined by

W = Sν(w) = w − wν
η|wν | ,

and set

;ν = Sν({w ∈ Cn : |w − wν | < η|wν |} ∩Dν) = {|W | < 1} ∩ Sν(Dν).

Then we can find a Eν ∈C∞({Y ′ : |Y ′| < 1}) with

(1) {|W | < 1} ∩ ∂;ν = {Y2n = Eν(Y ′)} and
(2) |∂ αEν/∂Y α| ≤ M for α = (α1, . . . ,αn) and |α| ≤ 6 if |Y ′| < 1.

Proof. Let
zν = (T ν)−1(wν) = pν − ψν(pν)wν ,

and let

bν = (T ν)−1({w : |w − wν | < η|wν |}) = {z∈ Cn : |z− zν | < η|zν − pν |}.
Then bν ∩ ∂Dν �= ∅, so there is a point z̃ν ∈ ∂Dν such that

|z̃ν − zν | < η|zν − pν | ≤ η(|zν − z̃ν | + |z̃ν − pν |).
Therefore, by (5.6) and (5.7),

|z̃ν − zν | < η

1 − η |z̃ν − pν | ≤ η

1 − η (diam(D)+ 2r) < r; (5.8)

hence
zν ∈

⋃
z∈∂Dν

{z+ tnz : −r < t < r}.
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By Proposition 5.1, B(zν , r)∩ ∂Dν can be represented—after a rotation and trans-
lation of coordinates—in the form x2n = φν(x

′), where φν(x ′) isC∞ onB(x ′
ν , r),

φν(x
′
ν) = xν0 − tν (5.9)

for
−tν = d(zν , ∂Dν) < η|zν − pν |, (5.10)

and all partial derivatives of φν of order ≤ 6 are bounded in absolute value byM.
The surface

{(x ′, x2n) : x2n = φν(x
′), |x ′ − x ′

ν | < r}
is mapped by Sν � T ν onto the surface

{(Y ′,Y2n) : Y2n = Eν(Y ′), |Y ′| < Rν},
where

Eν(Y ′) = φν(p
′
ν − ψν(pν)yν ′ − ψν(pν)η|wν |Y ′)

−ψν(pν)η|wν | + ψν(pν)y
ν
2n − pν2n

−ψν(pν)η|wν |
and

Rν = r

−ψν(pν)η|wν | = r

η|zν − pν |
for wν = (yν ′, yν2n) and pν = (p ′

ν ,pν2n).

Yet from (5.8) we have

η|zν − pν | ≤ η(|zν − z̃ν | + |z̃ν − pν |)
≤ η

(
η

1 − η |z̃ν − pν | + |z̃ν − pν |
)

= η

1 − η |z̃ν − pν | < r

and so Rν > 1. This implies that

{|W | < 1} ∩ ∂;ν ⊂ {(Y ′,Y2n) : Y2n = Eν(Y ′), |Y ′| < Rν}.
From the properties of φν and the explicit formula forEν just given, it follows that

{|W | < 1} ∩ ∂;ν = {Y2n = Eν(Y ′)}.
Here Eν ∈C∞({Y ′ : |Y ′| < 1}), and Eν also satisfies:

(a) 0 < Eν(0) < 1, by (5.9) and (5.10); and
(b) |∂ αEν/∂Y α| < M for all α = (α1, . . . ,αn) with |α| ≤ 6 if |Y ′| < 1.

Now we modify Step 2 of [7, Chap. 5] to obtain the following uniform estimates.

Proposition 5.3. There exist a constant C > 0 and an integer I such that, for
1 ≤ i, j, k ≤ 2n,

(1) |(∂gν/∂yi)(w)| ≤ C|w|−2n+1,
(2) |(∂ 2gν/∂yi∂yj )(w)| ≤ C|w|−2n, and
(3) |(∂ 3gν/∂yi∂yj∂yk)(w)| ≤ C|w|−2n−1

for all ν ≥ I and w ∈ D̄ν \ {0}.
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Proof. The proofs of (1), (2), and (3) are similar, so we prove only (1). Fix 1 ≤
i ≤ 2n. Suppose that (1) is not true. Then there exists a sequence {wν} such that
wν ∈Dν \ {0} and

lim
ν→∞

∣∣∣∣∂g
ν

∂yi
(wν)

∣∣∣∣|wν |2n−1 = ∞. (5.11)

We claim that, for all but finitely many ν,

B(wν) = {w ∈ Cn : |w − wν | < η|wν |}
intersects ∂Dν. Indeed, suppose thatB(wν)∩∂Dν = ∅ for some ν. ThenB(wν) ⊂
Dν and so

gν(w) ≤ |w|−2n+2 ≤ (1 − η)−2n+2|wν |−2n+2, w ∈ ∂B(wν).
Now, by the Poisson integral formula, there exists a constant cn > 0 indepen-

dent of ν such that ∣∣∣∣∂g
ν

∂yi
(wν)

∣∣∣∣ ≤ cn

(1 − η)2n−2η
|wν |−2n+1.

Yet by (5.11) this can be true for only finitely many ν, from which the claim fol-
lows. Hence if

;ν = Sν(B(wν) ∩Dν) = {|W | < 1} ∩ Sν(Dν)

then, by Lemma 5.2, for all large ν we can find functionsEν ∈C∞({Y ′ : |Y ′|< 1})
such that

;ν = {|W | < 1} ∩ {Y = (Y ′,Y2n) : |Y ′| < 1, Y2n < E
ν(Y ′)}

and ∣∣∣∣∂
αEν

∂Y α

∣∣∣∣ < M for all |α| ≤ N if |Y ′| < 1.

SinceM is independent of ν, it follows from the Arzela–Ascoli theorem that, after
passing to a subsequence if necessary, {Eν} together with all partial derivatives of
order ≤ 6 converge uniformly on compact subsets of {Y ′ : |Y ′| < 1} to a function
E∈C 6({Y ′ : |Y ′| < 1}). Set

; = {|W | < 1} ∩ {Y = (Y ′,Y2n) : |Y ′| < 1, Y2n < E(Y
′)}.

Now define the function uν on ;ν by

uν(W ) = |wν |2n−2(1 − η)2n−2gν(w)

for W = (w − wν)/(η|wν |). Then uν is harmonic on ;ν and continuous up to
∂;ν, and uν(W ) = 0 on {|W | < 1} ∩ ∂;ν. Since

0 < gν(w) < |w|−2n+2 < (1 − η)−2n+2|wν |−2n+2, w ∈B(wν) ∩Dν,

we have
0 < uν(W ) < 1, W ∈;ν.

By Harnack’s theorem (and passing to a subsequence), {uν} converges uniformly
on compact subsets of ; to a harmonic function u on ;. From [7, Prop. 5.1] it
follows that
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lim
ν→∞

∣∣∣∣∂u
ν

∂yi
(0)

∣∣∣∣ = ∂u

∂yi
(0),

which is finite. So by the definition of uν we have

lim
ν→∞

∣∣∣∣∂g
ν

∂yi
(wν)

∣∣∣∣|wν |2n−1 < ∞,

which is a contradiction. Therefore, (1) must hold.

We now want to modify Step 3 of [7, Chap. 4]. Recall that

E ν(r) =
⋃

w0∈∂Dν
{w ∈Dν : |w − w0| < r|w0|}

is a collar about ∂Dν lying in Dν whose closure does not contain the origin.
Similarly,

Eν(r) = (T ν)−1(E ν(r)) =
⋃

z0∈∂Dν
{z∈Dν : |z− z0| < r0|z0 − pν |}

is a collar about ∂Dν lying in Dν whose closure does not contain the point pν.

Lemma 5.4. There exist 0 < r0 < 1, a constantC > 0, and an integer I such that∣∣∣∣ ∂
2gν

∂yi∂yj
(w)

∣∣∣∣|∂wgν(w)|−1 ≤ C|w|−1, w ∈ E ν(r0), (5.12)

for all ν ≥ I.

Proof. By the relations

gν(w) = ψν(pν)
2n−2Gν(z,pν) and z = pν − ψν(pν)w,

we observe that (5.12) is equivalent to∣∣∣∣ ∂
2Gν

∂xi∂xj
(z,pν)

∣∣∣∣|∂zGν(z,pν)|−1 ≤ C|z− pν |−1, z∈ Eν(r0). (5.13)

We shall prove (5.13) by contradiction. So suppose there do not exist 0 <

r0 < 1, C > 0, and integer I such that (5.13) holds for all ν ≥ I. Then there exist
a sequence {z0ν} with z0ν ∈ ∂Dν and also a sequence {zν} with

zν ∈Dν and |zν − z0ν | < 1

ν
|z0ν − pν |, ν ≥ 1, (5.14)

such that∣∣∣∣ ∂
2Gν

∂xi∂xj
(zν ,pν)

∣∣∣∣|∂zGν(zν ,pν)|−1 ≥ ν|zν − pν |−1, ν ≥ 1. (5.15)

By passing to a subsequence if necessary, we may assume that

lim
ν→∞ z0ν = z0 ∈ ∂D.

Then, by (5.14),
lim
ν→∞ zν = z0.
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Next we claim that p0 = z0. Suppose that this is not true. Then we can find
an ε > 0 such that B(p0, 2ε) ∩ B(z0, ε) = ∅. Taking ε sufficiently small and ν
sufficiently large, by the implicit function theorem we can find aC∞-smooth func-
tion φ on B(x ′

0, ε) and a sequence {φν} of C∞-smooth functions on B(x ′
0, ε) that

converges in C∞-topology on compact subsets of B(x ′
0, ε) to φ such that

B(z0, ε) ∩ ∂D = {(x ′,φ(x ′)) : x ′ ∈B(x ′
0, ε)},

B(z0, ε) ∩ ∂Dν = {(x ′,φν(x ′)) : x ′ ∈B(x ′
0, ε)}. (5.16)

We assume without loss of generality that all pν lie in B(p0, ε). Then

Gν(z,pν) ≤ |z− pν |−2n+2 < ε−2n+2, z∈B(z0, ε) ∩Dν. (5.17)

Now consider the affine map

Z = Sz = z− z0

ε
,

and set

; = S(B(z0, ε/2) ∩D), ;ν = S(B(z0, ε/2) ∩Dν).
Define

hν(Z) = ε2n−2G(z,pν), Z ∈;ν.

Then hν is harmonic on ;ν; hν = 0 on B(0, 1) ∩ ∂;ν; and, by (5.17),

0 < hν(Z) ≤ 1, Z ∈;ν.

Therefore, by Harnack’s principle (and after passing to a subsequence if neces-
sary), {hν} converges uniformly on compact subsets of ; to a positive harmonic
function h. In view of (5.16), the sequence {hν} on {;ν} satisfies the hypothesis
of [7, Prop. 5.1] and so

lim
ν→∞|∂Zhν(Zν)| = |∂Zh(0)|,

lim
ν→∞

∣∣∣∣ ∂
2hν

∂X̃i∂X̃j
(Zν)

∣∣∣∣ =
∣∣∣∣ ∂ 2h

∂X̃i∂X̃j
(0)

∣∣∣∣ < ∞;
(5.18)

here Zν = Szν. By the Hopf lemma,

|∂Zh(0)| > 0.

Therefore,

lim
ν→∞

|(∂ 2Gν/∂xi∂xj )(zν ,pν)|
|∂zGν(zν ,pν)| |zν −pν | = ε lim

ν→∞
|(∂ 2hν/∂Xi∂Xj )(Zν)|

|∂Zhν(Zν)| |zν −pν |

= |(∂ 2h/∂Xi∂Xj )(0)|
|∂Zh(0)| |z0 − p0| < ∞,

which contradicts (5.15). Hence we must have p0 = z0, and the claim follows.
Now we define

kν = |pν − z0ν |.
Consider the affine maps Sν : Cn → Cn defined by
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z̃ = Sν(z) = z− pν
kν

,

and let D̃ν = Sν(Dν). A defining function for D̃ν is given by

ψν � S−1
ν (z̃) = ψν(pν + kν z̃)

= ψν(pν)+ 2kν�
( n∑
α=1

(ψν)α(pν)z̃α

)
+ k2

νO(1)

for z̃ on a compact subset of Cn. Since {ψν} converges in the C∞-topology on
compact subsets of Cn to ψ, we note that O(1) is independent of ν. Now

ψ̃ν(z̃) = ψν � S−1
ν (z̃)

kν
= ψν(pν)

kν
+ 2�

( n∑
α=1

(ψν)α(pν)z̃α

)
+ kνO(1)

is again a defining function for D̃ν. Note that we can find a ball B, centered at p0,
as well as positive smooth functions φν on B such that

−ψν(p) = φν(p)d(p, ∂Dν), p ∈B.
Differentiating this relation shows that, for all large ν, the functions φν are uni-
formly bounded above by a constant c > 0 on a possibly smaller ball B ′ that is
also centered at p0. This implies that, for all large ν,∣∣∣∣ψν(pν)kν

∣∣∣∣ ≤ cdν(pν , ∂Dν)

|pν − z0ν | ≤ c;

therefore, after passing to a subsequence, {ψν(pν)/kν} converges to a number
c̃ ≤ 0. Thus the functions ψ̃ν converge in the C∞-topology on compact subsets of
Cn to the function

ψ̃(z̃) = c̃ + 2�
( n∑
α=1

ψα(p0)z̃α

)
.

This implies that the domains D̃ν are C∞-perturbation of the half-space

H̃ =
{
z̃∈ Cn : c̃ + 2�

( n∑
α=1

ψα(p0)z̃α

)
< 0

}
.

Since c̃ ≤ 0, it is evident that
0 ∈ H̃. (5.19)

We will now derive a contradiction by proving that (5.19) is false. First, ob-
serve that 0 = Sν(pν) ∈ D̃ν. Let g̃ν(z̃) be the Green function for D̃ν with pole
at 0. Then

g̃ν(z̃) = G(z,pν)k
2n−2
ν . (5.20)

Now let z̃0ν = Sν(z0ν). Then z̃0ν ∈ ∂D̃ν and

|z̃0ν | =
∣∣∣∣z0ν − pν

kν

∣∣∣∣ = 1.
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Therefore, after passing to a subsequence, {z̃0ν} converges to a point z̃0 with

|z̃0| = 1.

Evidently, z̃0 ∈ ∂H̃. If we let z̃ν = Sν(zν), then

|z̃ν − z̃0ν | =
∣∣∣∣zν − z0ν

kν

∣∣∣∣ < 1

ν

by (5.14). Therefore,
lim
ν→∞ z̃ν = z̃0.

Now we derive the contradiction by considering two cases as follows.

Case I: 0 ∈ H̃. Let g̃(z̃) be the Green function for H̃ with pole at 0. Then, by
Corollary 3.2,

lim
ν→∞|∂z̃g̃ν(z̃ν)| = |∂z̃g̃(z̃0)| > 0,

lim
ν→∞

∂ 2g̃ν

∂x̃k∂x̃l
(z̃ν) = ∂ 2g̃

∂x̃k∂x̃l
(z̃0) �= ∞.

By (5.20), we have

lim
ν→∞

∣∣∣∣ ∂
2G

∂xi∂xj
(zν ,pν)

∣∣∣∣|∂zG(zν ,pν)|−1|zν − pν |

= lim
ν→∞

∣∣∣∣ ∂
2g̃ν

∂x̃i∂x̃j
(z̃ν)

∣∣∣∣|∂z̃g̃ν(z̃ν)|−1|z̃ν | < ∞,

which contradicts (5.15) and so 0 /∈ H̃.
Case II: 0 ∈ ∂H̃. By the implicit function theorem, we can find a ballB(z̃0, ε), a

C∞-smooth function φ on B(x̃ ′
0, ε), and a sequence {φν} of C∞-smooth functions

on B(x̃ ′
0, ε) that converges in the C∞-topology on compact subsets of B(x̃ ′

0, ε)
to φ such that

B(x̃0, ε) ∩ ∂H̃ = {(x̃ ′,φ(x̃ ′)) : x̃ ′ ∈B(x̃ ′
0, ε)},

B(x̃0, ε) ∩ ∂D̃ν = {(x̃ ′,φν(x̃ ′)) : x̃ ′ ∈B(x̃ ′
0, ε)}.

(5.21)

We assume without loss of generality that ε < 1/2. Then, since |z̃0| = 1,

gν(z̃) < |z̃|−2n+2 < 22n−2, z̃∈B(z̃0, ε) ∩ D̃ν. (5.22)

Now consider the affine map

Z̃ = Sz̃ = z̃− z̃0

ε
,

and set
; = S(B(z̃0, ε) ∩ H̃ ), ;ν = S(B(z̃0, ε) ∩ D̃ν).

Define

h(Z̃) = 2−2n+2g(z̃), Z̃ ∈;, (5.23)

hν(Z̃) = 2−2n+2gν(z̃), Z̃ ∈;ν. (5.24)
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Thenhν is a positive harmonic funtion on;ν and satisfieshν = 0 onB(0, 1)∩∂;ν.

Moreover, by (5.22),
0 < hν(Z̃) < 1, Z̃ ∈;ν.

After passing to a subsequence if necessary, it follows from Harnack’s principle
that {hν} converges uniformly on compact subsets of ; to a positive harmonic
function h satisfying h = 0 on B(0, 1)∩ ∂;. In view of (5.21), the sequence {hν}
satisfies the hypothesis of [7, Prop. 5.1]; therefore, by (5.20) and (5.24),

lim
ν→∞

∣∣∣∣ ∂
2G

∂xi∂xj
(zν ,pν)

∣∣∣∣|∂zG(zν ,pν)|−1|zν − pν |

= ε lim
ν→∞

∣∣∣∣ ∂
2hν

∂X̃i∂X̃j
(Z̃ν)

∣∣∣∣|∂Z̃hν(Z̃ν)|−1|z̃ν | = ε

∣∣∣∣ ∂ 2h

∂X̃i∂X̃j
(0)

∣∣∣∣|∂Z̃h(0)|−1,

where Z̃ν = Sz̃ν. Now, by the reflection principle, h extends as a harmonic func-
tion to a neighborhood of 0; hence the quantity on the extreme right of the previ-
ously displayed equation is finite. This contradicts (5.15), so it follows that 0 /∈ ∂H̃.
By Case I and Case II we have 0 /∈ H̃, which contradicts (5.19). Thus (5.13) holds,
completing the proof of Lemma 5.4.

Recall that if r > 0 and I are as in Lemma 2.4, then the function F ν(w) is defined
and smooth on the collar E ν(r).
Proposition 5.5. There exist 0 < r < 1, a constant C > 0, and an integer I
such that

(1) |F ν(w)| < C(1 + |w|−1)|w|−2n+3,
(2) |(∂F ν/∂yi)(w)| < C(1 + |w|−1)|w|−2n+2, and
(3) |(∂ 2F ν/∂yi∂yj )(w)| < C(1 + |w|−1)|w|−2n+1

for all ν ≥ I and w ∈ E ν(r).
Proof. Choose m > 0, 0 < r < 1, and I as in Lemma 2.4. Choose M > 0 as
in Lemma 2.5. Modify I and choose a constant C so that Proposition 5.3 holds.
Modify r and I so that Lemma 5.4 holds. Now fix ν ≥ I.

(1) Let w ∈ E ν(r), |w| > 1. Then, by Lemma 2.4, Lemma 2.5, and Proposi-
tion 5.3,

|F ν(w)| = |(∂fν/∂pγ )(pν ,w)|
|∂wfν(pν ,w)| |∂wgν(w)|

≤ M(1 + |w|−1)|w|2
m

C|w|−2n+1 = C2(1 + |w|−1)|w|−2n+3,

where C1 = MC/m is independent of ν and w.
(2) Differentiating F ν(w) with respect to yi yields

∂F ν

∂yi
= −∂ 2fν/∂pγ ∂yi

|∂wfν | |∂wgν | + 1

4

∂fν

∂pγ

∑2n
k=1(∂fν/∂yk)(∂

2fν/∂yk∂yi)

|∂wfν |3
|∂wgν |

− 1

4

∂fν

∂pγ

1

|∂wfν |
∑2n

k=1(∂gν/∂yk)(∂
2gν/∂yk∂yi)

|∂wgν | . (5.25)



Remarks on the Metric Induced by the Robin Function II 609

Thus, forw ∈ E ν(r) with |w| > 1, it follows from Lemma 2.4, Lemma 2.5, Propo-
sition 5.3, and the relation

∂gν/∂yk

|∂wgν | ≤ 2

that ∣∣∣∣∂F
ν

∂yi
(w)

∣∣∣∣ ≤ M(1 + |w|−1)|w|
m

C|w|−2n+1

+ 1

4
M(1 + |w|−1)|w|2 2nMM|w|−1

m3
C|w|−2n+1

+ 1

4
M(1 + |w|−1)|w|2 1

m
2n2C|w|−2n

≤ C2(1 + |w|−1)|w|−2n+2.

(3) In order to prove this estimate, we differentiate (5.25) with respect to yj and
then estimate as before. All terms, except for those of the form

∂fν/∂pγ

|∂wfν |
(∂ 2gν/∂yk∂yi)(∂

2gν/∂yl∂yi)

|∂wgν |
or

∂fν/∂pν

|∂wfν |
(∂gν/∂yk)(∂gν/∂yl)(∂

2gν/∂yk∂yi)(∂
2gν/∂yl∂yj )

|∂wgν |3
,

are bounded by a constant times (1 + |w|−1)|w|−2n+1 for w ∈ E ν(r). Also by
Lemma 5.4, the above terms are bounded by a constant times (1 +|w|−1)|w|−2n+1

for w ∈ E ν(r0).

We now modify Steps 4 and 5 of [7, Chap. 5] to derive an upper bound for
(∂ 2gν/∂w̄α∂pγ )(pν ,w).

Proposition 5.6. There exist 0 < r < 1 and an integer I such that, for ν ≥ I

and w0 ∈ ∂Dν, we can find a function F ∗(w) (depending on the parameters ν
and w0) of class C2 on

E = {w ∈Dν : |w − w0| < r|w0|}
such that

HEF
∗(w) = ∂gν

∂pγ
(pν ,w), w ∈E.

Moreover, there exists a constant C > 0, independent of ν, and a w0 ∈ ∂Dν

such that :

(1) |F ∗(w)| < C(1 + |w0|−1)|w0|−2n+3 in E;
(2) |(∂F ∗/∂yi)(w0)| < C(1 + |w0|−1)|w0|−2n+2, i = 1, . . . , n;
(3) |
wF ∗(w)| < C(1 + |w0|−1)|w0|−2n+1 in E.

Proof. Choose 0 < r < 1, a constant C, and an integer I as in Proposition 5.5.
Now fix ν ≥ I and w0 ∈ ∂Dν and let

B = {w : |w − w0| < r|w0|}.
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Then E = B ∩Dν. Since
∂gν

∂pγ
(pν ,w) = HDνF

ν(w)

on Dν, the function (∂gν/∂pγ )(pν ,w) is harmonic on E with boundary values

∂gν

∂pγ
(pν ,w) =

{
F ν(w) if w ∈B ∩ ∂Dν,

HDνF
ν(w) if w ∈ ∂B ∩Dν.

(5.26)

Let u be the harmonic function on E with boundary values

u(w) =
{

0 if w ∈B ∩ ∂Dν,

HDνF
ν − F ν(w) if w ∈ ∂B ∩Dν,

and set
F ∗(w) = F ν(w)+ u(w), w ∈E.

Then
HEF

∗ = HEF
ν + u

is a harmonic function on E with boundary values (5.26), whence

HEF
∗(w) = ∂gν

∂pγ
(pν ,w)

on E. This proves the first part of the proposition.
We prove the second part by observing that Proposition 5.5, together with the

continuity of the function

|F ν(w)|(1 + |w|−1)−1|w|2n−3

up to Ē ν(r), implies that

|F ν(w)| ≤ C(1 + |w|−1)|w|−2n+3, w ∈ Ē ν(r).
In particular, this expression holds for w ∈ Ē. Also, since (1 + |w|−1)|w|−2n+3 is
superharmonic on Cn, it also implies that

|HDνF ν(w)| ≤ C(1 + |w|−1)|w|−2n+3, w ∈ D̄ν. (5.27)

Therefore,

|HDνF ν(w)− F ν(w)| ≤ 2C(1 + |w|−1)|w|−2n+3, w ∈ ∂B ∩Dν,

which implies that

|u(w)| ≤ 2C(1 + |w|−1)|w|−2n+3, w ∈ Ē.
Since E ⊂ {w : |w − w0| < r|w0|}, it follows that

|F ∗(w)| ≤ |Fν(w)| + |u(w)| ≤ 3C(1 + |w|−1)|w|−2n+3

≤ 3C(1 − r)−2n+2(1 + |w0|−1)|w0|−2n+3, w ∈E.
This proves (1).

To prove (2), observe that the preceding calculation yields

|u(w)| ≤ 2C(1 − r)−2n+2(1 + |w0|−1)|w0|−2n+3, w ∈E.



Remarks on the Metric Induced by the Robin Function II 611

Also, u(w) = 0 for w ∈B ∩ ∂Dν. By Lemma 4.1, we can modify the integer I if
necessary to find a ρ > 0, independent of ν and w0, such that there exists a ball
of radius ρ|w0| that is externally tangent to ∂Dν at w0. Hence, by taking R =
min(ρ|w0|, r|w0|) in Step 2 of [7, Chap. 4], we can find a constant c independent
of Dν and u such that

|∂wu(w0)| < 2cC(1 − r)−2n+2(1 + |w0|−1)|w0|−2n+3

min(r|w0|, ρ|w0|)
= C̃(1 + |w0|−1)|w0|−2n+2;

here C̃ is independent of ν, and w0 ∈ ∂Dν. This, together with Proposition 5.5,
implies that∣∣∣∣∂F

∗

∂yi
(w0)

∣∣∣∣ ≤
∣∣∣∣∂Fν∂yi (w0)

∣∣∣∣ +
∣∣∣∣ ∂u∂yi (w0)

∣∣∣∣ ≤ (C + C̃ )(1 + |w0|−1)|w0|−2n+2,

which proves (2).
Finally, since u is harmonic we obtain from Proposition 5.5 that

|
wF ∗(w)| = |
wF ν(w)| ≤ nC(1 + |w|−1)|w|−2n+1

≤ nC(1 − r)−2n(1 + |w0|−1)|w0|−2n+1, w ∈E,

and this proves (3).

Proposition 5.7. There exist a constant C > 0 and an integer I such that∣∣∣∣ ∂ 2gν

∂w̄α∂pγ
(pν ,w)

∣∣∣∣ < C(1 + |w|−1)|w|−2n+2 (5.28)

for all ν ≥ I and w ∈ D̄ν.

Proof. Let 0 < r < 1, C > 0, and I be as in Proposition 5.6, and fix ν ≥ I. By
the maximum principle, it suffices to prove (5.28) for w0 ∈ ∂Dν. Given such w0,
we let F ∗ be a C2-smooth function on

E = {w ∈Dν : |w − w0| < r|w0|}
satisfying the estimates of Proposition 5.6. Now consider the affine map

W = S(w) = w − w0

r|w0| ,

and let ; = S(E). Define the functions u and h on ; by setting

u(W ) = ∂gν

∂pγ
(pν ,w) and h(W ) = F ∗(w).

Then u = H;h on ; and, by Proposition 5.6:

(1) |h(W )| < C(1 + |w0|−1)|w0|−2n+3 in ;;
(2)

∣∣∣∣ ∂h∂Yi (0)
∣∣∣∣ =

∣∣∣∣∂F
∗

∂yi
(w0)

∣∣∣∣r|w0| < Cr(1 + |w0|−1)|w0|−2n+3;
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(3) |
Wh(W )| = |
wF ∗(w)|r 2|w0|2 ≤ Cr 2(1 + |w0|−1)|w0|−2n+3 ≤
Cr(1 + |w0|−1)|w0|−2n+3 in ;.

By Lemma 4.1, we can modify the integer I to find a ρ > 0 that is indepen-
dent of ν and w0 such that there exists a ball B of radius ρ|w0| that is externally
tangent to ∂Dν at w0. Setting T(B) = B̃, we see that the ball B̃ ⊂ Cn \; has ra-
dius ρ/r and is tangent to ∂; at 0. Let B̃2 be the ball with the same center as B̃ but
with radius ρ/r + 2. Hence, by [7, Lemma 5.1′, p. 60], there exists a constant M
depending only on ρ/r such that

|∂
W
u(0)| ≤ MC(1 + |w0|−1)|w0|−2n+3.

Since
∂u

∂Wα

(0) = ∂ 2gν

∂w̄α∂pγ
(p,w0)r|w0|

we have ∣∣∣∣ ∂ 2gν

∂w̄α∂pγ
(pν ,w0)

∣∣∣∣ ≤ MC

r
(1 + |w0|−1)|w0|−2n+2,

which proves the proposition.

Proposition 5.8. Let wν ∈ ∂Dν be such that {wν} converges to w0 ∈ ∂H =
∂D(p0). Then

lim
ν→∞

∂ 2gν

∂w̄α∂pγ
(pν ,w

ν) = ∂ 2g

∂w̄α∂pγ
(p0,w0).

Proof. This follows from standard boundary elliptic regularity arguments and from
the fact that Dν is C∞-close to D.

Proposition 5.9.

lim
ν→∞

∂ 2λν

∂pγ ∂p̄γ
(pν) = ∂ 2λ

∂pγ ∂p̄γ
(p0).

Proof. By Proposition 2.3 and (5.3), we need only prove that

lim
ν→∞

∫
∂Dν
k
νγ

1 (w)
(∂gν/∂w̄α)(w)

|∂wgν(w)|
∂ 2gν

∂wα∂p̄γ
(pν ,w)

∂gν

∂nw
(w) dSw

=
∫
∂H
k
γ

1(p0,w)
(∂g/∂w̄α)(p0,w)

|∂wg(p0,w)|
∂ 2g

∂wα∂p̄γ
(p0,w)

∂g

∂nw
(p0,w) dSw. (5.29)

Let R > 1. Then, by Proposition 5.8 and the arguments in the proof of Proposi-
tion 4.4, we have

lim
ν→∞

∫
B(0,R)∩∂Dν

k
νγ

1 (w)
(∂gν/∂w̄α)(w)

|∂wgν(w)|
∂ 2gν

∂wα∂p̄γ
(pν ,w)

∂gν

∂nw
(w) dSw

=
∫
B(0,R)∩∂H

k
γ

1(p0,w)
(∂g/∂w̄α)(p0,w)

|∂wg(p0,w)|
∂ 2g

∂wα∂p̄γ
(p0,w)

∂g

∂nw
(p0,w) dSw.

(5.30)
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To estimate these integrals outside B(0,R)we note that, by Corollary 2.6, there
exist a constant C and an integer I such that

|kνγ1 (w)| ≤ C|w|2, w ∈ ∂Dν, |w| > 1,

for ν ≥ I. In view of Proposition 5.7, we can modify C and I so that∣∣∣∣ ∂ 2gν

∂w̄α∂pγ
(pν ,w)

∣∣∣∣ ≤ C|w|−2n+2, w ∈ ∂Dν, |w| > 1,

for ν ≥ I. Therefore,∣∣∣∣
∫
Bc(0,R)∩∂Dν

kν1(w)
∂ 2gν

∂wα∂p̄γ
(pν ,w)

(∂gν/∂w̄α)(w)

|∂wgν(w)|
∂gν

∂nw
(w) dSw

∣∣∣∣
≤ C2R−2n+4

∫
Bc(0,R)∩∂Dν

(
− ∂g

ν

∂nw
(w)

)
dSw (5.31)

for ν ≥ I. Again we have∫
Bc(0,R)∩∂Dν

(
− ∂g

ν

∂nw
(w)

)
dSw ≤

∫
∂Dν

(
− ∂g

ν

∂nw
(w)

)
dSw = 2(n− 1)σ2n

and hence, by (5.31),∣∣∣∣
∫
Bc(0,R)∩∂Dν

kν1(w)
∂ 2gν

∂wα∂p̄γ
(pν ,w)

(∂gν/∂w̄α)(w)

|∂wgν(w)|
∂gν

∂nw
(w) dSw

∣∣∣∣
= O(R−2n+4) (5.32)

uniformly for all ν ≥ I. Also, by (2.7) we can modify the constant C so that

|kγ1(p0,w)| ≤ C|w|2 and

∣∣∣∣ ∂ 2g

∂w̄α∂pγ
(p0,w)

∣∣∣∣ ≤ C|w|−2n+2

for w ∈ ∂H with |w| > 1. As before, we obtain∣∣∣∣
∫
Bc(0,R)∩∂H

k
γ

1(p0,w)
(∂g/∂w̄α)(p0,w)

|∂wg(p0,w)|
∂ 2g

∂wα∂p̄γ
(p0,w)

∂g

∂nw
(p0,w) dSw

∣∣∣∣
= O(R−2n+4). (5.33)

From (5.30), (5.32), and (5.33) it now follows that (5.29) holds.

Proof of Theorem 1.4. Given Proposition 4.4, we only need to prove that

lim
ν→∞

∂ 2λν

∂pα∂p̄β
(pν) = ∂ 2λ

∂pα∂p̄β
(p0).

However, this equality follows from Proposition 5.9 by a unitary change of coor-
dinates.

6. Holomorphic Sectional Curvature

In this section we prove Theorem 1.1 under the normalization described in the
Introduction; that is, we will compute the right-hand side of equation (1.1). To
avoid confusion, we first recall the following notation.
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(a) {Dν} is sequence of smoothly bounded strongly pseudoconvex domains such
that 0 ∈Dν for each ν ≥ 1 and the normal to ∂Dν at 0 is along the �zn-axis.

(b) {Dν} converges in the C∞-topology to a C∞-smoothly bounded strongly
pseudoconvex domainD; thus 0 ∈ ∂D, and the normal to ∂D at 0 is along the
�zn-axis.

(c) pν = (0, . . . , 0, δν)∈Dν , where δν = d(pν , ∂Dν) and pν → p0 = 0 ∈ ∂D.
(d) (gν)αβ and gαβ are the components of the 
-metrics on Dν and D, respec-

tively.
(e) ψν and ψ are C∞-smooth defining functions forDν andD, respectively, such

that {ψν} converges in the C∞-topology on compact subsets of Cn to ψ; we
further assume that ∂ψν(0) = ∂ψ(0) = (0, . . . , 0,1).

Lemma 6.1. We have

(i) limν→∞(gν)αβ̄(pν)(ψν(pν))2 = (2n− 2)ψα(0)ψβ̄(0),
(ii) limν→∞(∂(gν)αβ̄/∂zγ )(pν)(ψν(pν))3 = −2(2n−2)ψα(0)ψβ̄(0)ψγ(0), and

(iii) limν→∞(∂ 2(gν)αβ̄/∂zγ ∂zδ̄)(pν)(ψν(pν))
4 = 6(2n− 2)ψα(0)ψβ̄(0)ψδ(0).

Proof. Let H be the half-space

H =
{
z∈ Cn : 2�

( n∑
α=1

ψα(0)zα

)
− 1< 0

}
= {z∈ Cn : 2�zn − 1< 0}.

From [1, (1.4)], the Robin function for H is given by


H(z) = −
( |∂ψ(0)|

2�( ∑n
α=1ψα(0)zα

) − 1

)2n−2

= −
(

2�
( n∑
α=1

ψα(0)zα

)
− 1

)−2n+2

so that

• 
H(0) = −1,
• (
H)a(0) = −(2n− 2)ψa(0),
• (
H)ab(0) = −(2n− 2)(2n− 1)ψa(0)ψb(0),
• (
H)abc(0) = −(2n− 2)(2n− 1)(2n)ψa(0)ψb(0)ψc(0), and
• (
H)abcd(0) = −(2n− 2)(2n− 1)(2n)(2n+ 1)ψa(0)ψb(0)ψc(0)ψd(0);
here the indices a, b, c, d refer to either holomorphic or conjugate holomorphic
derivatives. Hence, by Theorem 1.2, we have

• 
ν(pν)(ψν(pν))2n−2 → −1,
• 
νa(pν)(ψν(pν))2n−1 → (2n− 2)ψa(0),
• 
νab(pν)(ψν(pν))2n → −(2n− 2)(2n− 1)ψa(0)ψb(0),
• 
νabc(pν)(ψν(pν))2n+1 → (2n− 2)(2n− 1)(2n)ψa(0)ψb(0)ψc(0), and
• 
νabcd(pν)(ψν(pν))2n+2 →

−(2n− 2)(2n− 1)(2n)(2n+ 1)ψa(0)ψb(0)ψc(0)ψd(0).
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Now

gαβ̄ = ∂ 2 log(−
)
∂zα∂z̄β

= 
αβ̄



− 
α
β̄


2
. (6.1)

Multiplying both sides of this equation by ψ 2 yields

gαβ̄ψ
2 = 
αβ̄ψ

2n


ψ 2n−2
− (
αψ

2n−1)(
β̄ψ
2n−1)

(
ψ 2n−2)2
.

It follows that

lim
ν→∞ gναβ̄(pν)(ψν(pν))

2 = (2n− 2)ψα(0)ψβ̄(0),

which is (i).
Differentiating (6.1) with respect to zγ , we obtain

∂gαβ̄

∂zγ
= 
αβ̄γ



−

(

αβ̄
γ


2
+ 
αγ
β̄


2
+ 
β̄γ
α


2

)
+ 2
α
β̄
γ


3
. (6.2)

Multiplying both sides of this equation by ψ 3, we get

∂gαβ̄

∂zγ
ψ 3

= 
αβ̄γψ
2n+1


ψ 2n−2

−
(
(
αβ̄ψ

2n)(
γψ
2n−1)

(
ψ 2n−2)2
+ (
αγψ

2n)(
β̄ψ
2n−1)

(
ψ 2n−2)2

+ (
β̄γψ
2n)(
αψ

2n−1)

(
ψ 2n−2)2

)

+ 2(
αψ
2n−1)(
β̄ψ

2n−1)(
γψ
2n−1)

(
ψ 2n−2)3
.

Hence

lim
ν→∞

∂gναβ̄

∂zγ
(pν)ψν(pν)

3 = −2(2n− 2)ψα(0)ψβ̄(p)ψγ(0),

which is (ii).
Differentiating (6.2) with respect to z̄δ yields

∂ 2gαβ̄

∂zγ ∂z̄δ̄
= 
αβ̄γ δ̄



−

(

αβ̄γ
δ̄


2
+ 
αβ̄δ̄
γ


2
+ 
αγ δ̄
β̄


2
+ 
β̄γ δ̄
α


2

)

−
(

αβ̄
γ δ̄


2
+ 
αγ
β̄δ̄


2
+ 
αδ̄
β̄γ


2

)

+ 2

(

αβ̄
γ
δ̄


3
+ 
αγ
β̄
δ̄


3
+ 
β̄γ
α
δ̄


3
+ 
αδ̄
β̄
γ


3

+ 
β̄δ̄
α
γ


3
+ 
γ δ̄
α
β̄


3

)
− 6
α
β̄
γ
δ̄


4
.
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If we multiply both sides byψ 4, then this equation can be written in a form where

is multiplied by ψ 2n−2 and the first-, second-, third-, and fourth-order derivatives
of
 are multiplied by ψ 2n−1, ψ 2n, ψ 2n+1, and ψ 2n+2, respectively. It follows that

lim
ν→∞

∂ 2gναβ̄

∂zγ ∂z̄δ̄
(pν)(ψν(pν))

4 = 6(2n− 2)ψα(0)ψβ̄(0)ψγ(0)ψδ̄(0),

which is (iii).

To obtain finer asymptotics of the derivatives of 
ν along {pν}, we need the fol-
lowing lemma.

Lemma 6.2. Let 1 ≤ α ≤ n− 1. Then

lim
ν→∞

(ψν)α(pν)

ψν(pν)
= 1

2
(ψαn(0)+ ψαn̄(0)).

Proof. Fix a ν and define the function f on [0,1] by

f(t) = ψν(tpν) = ψν(0, . . . , 0, −δνt). (6.3)

From Taylor’s theorem it follows that

f(1) = f(0)+ f ′(0)+ 1

2
f ′′(s)

for some s ∈ (0, 1). Therefore, by successive application of the chain rule to (6.3),
we obtain

ψν(pν) = −δν((ψν)n(0)+ (ψν)n̄(0))

+ δ2
ν

2
((ψν)nn(ζν)+ 2(ψν)nn̄(ζν)+ (ψν)n̄n̄(ζν)), (6.4)

where ζν = spν.

Now fix 1 ≤ α ≤ n− 1 and define the function g on [0,1] by

g(t) = (ψν)α(tpν) = (ψν)α(0, . . . , 0, −δνt). (6.5)

By Taylor’s theorem, we have

g(1) = g(0)+ g ′(0)+ 1

2
g ′′(s)

for some s ′ ∈ (0, 1). Therefore, by successive application of the chain rule to (6.5),

(ψν)α(pν) = −δν((ψν)αn(0)+ (ψν)αn̄(0))

+ δ2
ν

2
((ψν)αnn(ην)+ 2(ψν)αnn̄(ην)+ (ψν)αn̄n̄(ην)), (6.6)

where ην = s ′pν. It is now evident from (6.4) and (6.6) that

lim
ν→∞

(ψν)α(pν)

ψν(pν)
= 1

2
(ψαn(0)+ ψαn̄(0)),

so the lemma is proved.
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Using Lemma 6.2 and Theorem 1.3, we obtain the following finer asymptotics of
the first- and second-order derivatives of 
ν along {pν}.
Lemma 6.3. Let 1 ≤ α ≤ n− 1 and 1 ≤ β ≤ n. Then:

(i) limν→∞
να(pν)(ψν(pν))2n−2 = λα(0)+ (2n− 2)Cα;
(ii) limν→∞
αβ̄(pν)(ψν(pν))

2n−1 =
−(2n− 2)λα(0)ψβ̄(0)− (2n− 2)(2n− 1)ψβ̄(0)Cα + (2n− 2)ψαβ̄(0),

where Cα = 1
2 (ψαn(0)+ ψαn̄(0)).

Proof. The normalized Robin function

λ(z) =
{

(z)(ψ(z))2n−2 if z∈D,

−|∂ψ(z)|2n−2 if z∈ ∂D (6.7)

associated to (D,ψ) is C2 on D̄. In particular, λ(0) = −1. Differentiating λ with
respect to zα , we obtain


αψ
2n−2 = λα − (2n− 2)λψ−1ψα.

Hence, by Theorems 1.2 and 1.3 and Lemma 6.2,

lim
ν→∞
να(pν)(ψν(pν))

2n−2 = λα(0)+ (2n− 2)Cα ,

which is (i). Similarly, differentiating (6.7) with respect to zα followed by z̄β
yields


αβ̄ψ
2n−1 = λαβ̄ψ − (2n− 2)(λαψβ̄ + λβ̄ψα)

+ (2n− 2)(2n− 1)λψ−1ψαψβ̄ − (2n− 2)λψαβ̄ .

Again by Theorems 1.2 and 1.3 and Lemma 6.2, we have

lim
ν→∞
αβ̄(pν)(ψν(pν))

2n−1 = −(2n− 2)λα(0)ψβ̄(0)

− (2n− 2)(2n− 1)ψβ̄(0)Cα + (2n− 2)ψαβ̄(0),

which is (ii).

Lemma 6.4. Let 1 ≤ α ≤ n− 1 and 1 ≤ β ≤ n. Then

lim
ν→∞ gναβ̄(pν)(ψν(pν)) = (2n− 2)

(
1

2
{ψαn(0)+ ψαn̄(0)}ψβ̄(0)− ψαβ̄(0)

)
.

Proof. We have

gαβ̄ = ∂ 2 log(−
)
∂zα∂z̄β

= 
αβ̄



− 
α
β̄


2
.

Multiplying both sides of this equation by ψ yields

gαβ̄ψ = 
αβ̄ψ
2n−1


ψ 2n−2
− (
αψ

2n−2)(
β̄ψ
2n−1)

(
ψ 2n−2)2
. (6.8)

By the proof of Lemma 6.1,
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ν(pν)(ψν(pν))
2n−2 → −1

and

νβ̄(pν)(ψν(pν))

2n−1 → (2n− 2)ψβ̄(0).

We can now use Lemma 6.3 and (6.8) to obtain

lim
ν→∞ gναβ̄(pν)ψν(pν)

= (2n− 2)λα(0)ψβ̄(0)+ (2n− 2)(2n− 1)ψβ̄(0)C

− (2n− 2)ψαβ̄(0)− {λα(0)+ (2n− 2)Cα}{(2n− 2)ψβ̄(0)}.
Simplifying the right-hand side, we have

lim
ν→∞ gναβ̄(pν)ψν(pν) = (2n− 2)(ψβ̄(0)Cα − ψαβ̄(0))

= (2n− 2)

(
1

2
{ψαn(0)+ ψαn̄(0)}ψβ̄(0)− ψαβ̄(0)

)
.

Because we have no information about the third-order derivatives of λ(p) =
ψ 2n−2
(p) near the boundary of D, the method just described fails to give finer
asymptotics of 
ναβ̄γ . By Proposition 2.1, however, the function

g(p,w) = ψ(p)2n−2G(p, z) (6.9)

for w = (z − p)/(−ψ(p)) is C2 up to D ∪ ∂D. Also, for each p ∈ D, both
(∂g/∂pα)(p) and (∂ 2g/∂pα∂p̄β)(p) are harmonic functions of w ∈ D̄(p) and
hence can be differentiated infinitely often with respect to w. Moreover,

∂g

∂pα
(p, 0) = ∂λ

∂pα
(p) and

∂ 2g

∂pα∂p̄β
(p, 0) = ∂ 2λ

∂pα∂p̄β
. (6.10)

In what follows, we exploit these properties to calculate finer asymptotics of
ναβ̄γ
by expressing it in terms of mixed derivatives of gν.

By [7, Prop. 6.1], the functions

Gα(p, z) =
(
∂G

∂pα
+ ∂G

∂zα

)
(p, z),

Gαβ̄(p, z) =
(
∂Gα

∂pβ̄
+ ∂Gα

∂z̄β

)
(p, z)

(6.11)

are real-analytic and symmetric functions in D × D and are harmonic in z and
in p. By [7, 6.14],


αβ̄γ(p) = 2
∂Gαβ̄

∂zγ
(p,p). (6.12)

By [7, Prop. 6.2], the functions

g0(p,w) = g(p,w)+ 1

n− 1

n∑
i=1

wi
∂g

∂wi
,

gα(p,w) = ψ(p)
∂g

∂pα
(p,w)− (n− 1)ψα(p)

(
g0(p,w)+ g0(p,w)

) (6.13)
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are harmonic functions ofw ∈D(p) for each p ∈ D̄. From [7, p. 83] it follows that

∂Gαβ̄

∂zγ
(p,p)

= −(ψ(p))−2n−1

{
−2nψβ̄(p)

∂gα

∂wγ
(p, 0)+ ψ(p) ∂ 2gα

∂wγ ∂p̄β
(p, 0)

}
. (6.14)

Combining (6.12) and (6.14) now yields


αβ̄γ(p)(ψ(p))
2n = 4n

ψβ̄(p)

ψ(p)

∂gα

∂wγ
(p, 0)− ∂ 2gα

∂wγ ∂p̄β
(p, 0). (6.15)

Lemma 6.5. Let 1 ≤ α, γ ≤ n and 1 ≤ β ≤ n− 1. Then

lim
ν→∞
ναβ̄γ(pν)(ψν(pν))

2n

exists and is finite.

Proof. By (6.15) and Lemma 6.2, we need only prove that

lim
ν→∞

∂gνα

∂wγ
(pν , 0) and lim

ν→∞
∂ 2gνα

∂wγ ∂p̄β
(pν , 0)

exist and are finite.
We know that gνα(pν ,w) is a harmonic function of w ∈ Dν. To estimate the

boundary values of these functions, note that the first term of gν0(pν ,w) (i.e.,
gν(pν ,w)) is bounded by |w|−2n+2 for all ν; by Proposition 5.3, the second term
is bounded by C|w|−2n+2 for all large ν. Therefore, by (6.13),

|gν0(pν ,w)| ≤ C|w|−2n+2, w ∈ ∂Dν, (6.16)

for all large ν. From Proposition 4.3 it follows that |(∂gν/∂pα)(pν ,w)| is bounded
by C(1 + |w|−1)|w|−2n+3 for all large ν; in addition, ψν(pν) and ψνα(pν) are
bounded by a constant C for all large ν. Hence, using (6.13) and (6.16) we obtain

|gνα(pν ,w)| ≤ C(1 + |w|−1)|w|−2n+3, w ∈ ∂Dν, (6.17)

for all large ν.
Choose r > 0 such that B̄(0, r) ⊂ H. SinceDν converges in the Hausdorff sense

to H, there exists an integer I such that B̄(0, r) ⊂ Dν for all ν ≥ I. Consequently,

|w| > r (6.18)

for all ν ≥ I and w ∈ ∂Dν. Hence by (6.17) we have

|gνα(pν ,w)| ≤ Cr−2n+3(1 + r−1), w ∈ ∂Dν,

for all large ν and so gνα(pν ,w) is uniformly bounded on B(0, r) for all large ν.
Moreover, by [7, Prop. 6.2] and the equality (∂gν/∂pα)pν , 0) = (∂λν/∂pα)(pν),

gνα(pν , 0) = ψν(pν)
∂λν

∂pα
(pν)− (2n− 2)ψνα(pν)λ(pν), (6.19)

which converges. It follows from Harnack’s principle that
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lim
ν→∞

∂gνα

∂wγ
(pν , 0)

exists.
Now differentiating (6.13) with respect to p̄β , we obtain

∂g0

∂p̄β
(p,w) = ∂g

∂p̄β
+ 1

n− 1

n∑
i=1

wi
∂ 2g

∂p̄β∂wi
(6.20)

and

∂gα

∂p̄β
(p,w) = ψ(p)

∂ 2g

∂pα∂p̄β
(p,w)+ ψβ̄(p)

∂g

∂pα
(p,w)

− (n− 1)ψα(p)

(
∂g0

∂p̄β
(p,w)+ ∂g0

∂pβ
(p,w)

)

− (n− 1)ψαβ̄(p)
(
g0(p,w)+ g0(p,w)

)
, (6.21)

which are harmonic functions of w ∈ D. As before, |∂gν/∂p̄β | is bounded by
C(1 + |w|−1)|w|−2n+3 for all large ν; and by Proposition 5.7, |∂ 2gν/∂p̄β∂wi | is
bounded by C(1 + |w|−1)|w|−2n+2 for all large ν. It follows that∣∣∣∣∂gν0

∂p̄β
(pν ,w)

∣∣∣∣ ≤ C|w|−2n+3, w ∈ ∂Dν, (6.22)

for all large ν. By Proposition 2.1, for 1 ≤ γ ≤ n and p ∈D we have∣∣∣∣ ∂ 2g

∂pγ ∂p̄γ
(p,w)

∣∣∣∣ ≤ |kγ2(p,w)||∂wg(p,w)| + 2|kγ1 |
n∑
i=1

∣∣∣∣ ∂ 2g

∂wi∂p̄γ

∣∣∣∣, w ∈ ∂D(p).

It follows that∣∣∣∣ ∂ 2gν

∂pγ ∂p̄γ
(pν ,w)

∣∣∣∣ ≤ C(1 + |w|−1 + |w|−2)|w|−2n+4, w ∈ ∂Dν,

and hence—by a unitary change of coordinates—that∣∣∣∣ ∂ 2gν

∂pα∂p̄β
(pν ,w)

∣∣∣∣ ≤ C(1 + |w|−1 + |w|−2)|w|−2n+4, w ∈ ∂Dν,

for all large ν. Thus∣∣∣∣∂gνα∂p̄β
(pν ,w)

∣∣∣∣ ≤ C(1 + |w|−1 + |w|−2)|w|−2n+4

≤ Cr−2n+4(1 + r−1 + r−2), w ∈ ∂Dν,

for all large ν. Therefore, the sequence {(∂gνα/∂p̄β)(pν ,w)} is uniformly bounded
on B(0, r). Moreover,

∂gνα

∂p̄β
(pν , 0) = ψν(pν)

∂ 2λν

∂pα∂p̄β
(pν)+ ψνβ̄(pν)

∂λν

∂pα
(pν)

− (2n− 2)ψνα(pν)
∂λν

∂p̄β
(pν)− (2n− 2)ψναβ̄(pν)λν(pν),
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which converges. It now follows from Harnack’s principle that

lim
ν→∞

∂ 2gνα

∂wγ ∂p̄β
(pν , 0)

exists.

Lemma 6.6. Let 1 ≤ α, γ ≤ n and 1 ≤ β ≤ n− 1. Then

lim
ν→∞

∂gναβ̄

∂zγ
(pν)(ψ(pν))

2

exists and is finite.

Proof. From (6.2), we obtain

∂gναβ̄

∂zγ
ψ 2
ν = 
ναβ̄γψ

2n
ν


νψ 2n−2
ν

−
(
(
ναβ̄ψ

2n−1
ν )(
νγψ

2n−1
ν )

(
νψ 2n−2
ν )2

+ (
ναγψ
2n
ν )(
νβ̄ψ

2n−2
ν )

(
νψ 2n−2
ν )2

+ (
νβ̄γψ
2n−1
ν )(
ναψ

2n−1
ν )

(
νψ 2n−2
ν )2

)

+ 2(
ναψ 2n−1
ν )(
νβ̄ψ

2n−2
ν )(
νγψ

2n−1
ν )

(
νψ 2n−2
ν )3

.

Given Theorem1.2 and Lemma 6.3, we can see that the second and third terms have
finite limits along {pν}; by Lemma 6.5, the first term has a finite limit along {pν}.

Lemma 6.7. The limit

lim
ν→∞ det(gναβ̄(pν))(ψν(pν))

n+1

exists and is nonzero.

Proof. Let (
αβ̄) be the cofactor matrix of (gαβ̄). Then expanding by the nth row
yields

det(gαβ̄) = gn1̄
n1̄ + · · · + gnn̄
nn̄.

Therefore,

det(gαβ̄)ψ
n+1 = (gn1̄ψ

2)(
n1̄ψ
n−1)+ · · · + (gnn̄ψ 2)(
nn̄ψ

n−1). (6.23)

Note that


nᾱψ
n−1 = ψn−1(−1)n+α det



g11̄ · · · g1α−1 g1α+1 · · · g1n̄

...
...

...
...

...
...

gn−11̄ · · · g
n−1α−1 gn−1α+1 · · · gn−1n̄




= (−1)n+α det



g11̄ψ · · · g1α−1ψ g1α+1ψ · · · g1n̄ψ

...
...

...
...

...
...

gn−11̄ψ · · · g
n−1α−1ψ g

n−1α+1ψ · · · gn−1n̄ψ


.
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By Lemma 6.4, if 1 ≤ α ≤ n − 1 and 1 ≤ β ≤ n then the term gναβ̄(pν)ψν(pν)

converges to a finite quantity. It follows that if 1 ≤ α ≤ n− 1 then

lim
ν→∞
νnᾱ(pν)(ψν(pν))

n−1

exists and is finite. Also, if 1 ≤ α,β ≤ n − 1 then gναβ̄(pν)ψν(pν) converges to
−(2n− 2)ψαβ̄(0). Hence

lim
ν→∞
νnn̄(pν)(ψν(pν))

n−1 = (−1)n(2n− 2)n det(ψαβ̄(0))1≤α,β≤n−1.

Finally, by Lemma 6.1, if 1 ≤ α,β ≤ n then gναβ̄(pν)(ψν(pν))
2 converges to

(2n− 2)ψα(0)ψβ̄(0). Now it follows from (6.23) that

lim
ν→∞ det(gναβ̄(pν))(ψν(pν))

n+1 = (−1)n(2n− 2)n+1 det(ψαβ̄(0))1≤α,β≤n−1 �= 0

because D is strongly pseudoconvex at 0.

Proof of Theorem 1.1. We have

− 1

(gnn̄(z))2

∂ 2gnn̄

∂zn∂z̄n
(z) = − 1(

gnn̄(z)(ψ(z))2
)2

∂ 2gnn̄

∂zn∂z̄n
(z)(ψ(z))4.

By Lemma 6.1,

− 1

(gνnn̄(pν))2

∂ 2gνnn̄

∂zn∂z̄n
(pν)

→ − 1

{(2n− 2)ψn(0)ψn̄(0)}2
{6(2n− 2)ψn(0)ψn̄(0)ψn(0)ψn̄(0)}

= − 3

n− 1
.

To compute the limit of the second term, note that gβᾱ = 
αβ̄/det(gαβ̄). There
are various cases to be considered depending on α and β.

Case 1: α �= n and β �= n. Here

1

g2
nᾱ

gβᾱ
∂gnᾱ

∂zn

∂gβn̄

∂z̄n
= 1

(gnn̄ψ 2)2(det(gij̄ )ψ n+1)
(
αβ̄ψ

n)

(
∂gnᾱ

∂zn
ψ 2

)(
∂gβn̄

∂z̄n
ψ 3

)
.

By Lemma 6.1,
gνnn̄(pν)(ψν(pν))

2 → (2n− 2).

By Lemma 6.7, det(gij̄ (pν))(ψνpν))
n+1 converges to a nonzero finite quantity.

Also,

αβ̄ =

∑
σ

(−1)sgn(σ)g1σ(1)g2σ(2) · · · gnσ(n),

where the summation runs over all permutations

σ : {1, . . . ,α − 1,α + 1, . . . , n} → {1, . . . ,β − 1,β + 1, . . . , n}.
Hence


αβ̄ψ
n =

∑
σ

(−1)sgn(σ)(g1σ(1)ψ)(g2σ(2)ψ) · · · (gnσ(n)ψ 2).
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According to Lemma 6.4, if 1 ≤ i ≤ n− 1 then g
νiσ(i)

(pν)(ψν(pν)) converges to
a finite quantity. Also,

g
νnσ(n)

(pν)(ψ(pν))
2 → (2n− 2)ψn(0)ψσ(n)(0)

by Lemma 6.1. Thus 
ναβ̄(pν)(ψν(pν))
n converges to a finite quantity.

By Lemma 6.6, (∂gνnᾱ/∂zn)(pν)(ψν(pν))2 converges to a finite quantity; and
by Lemma 6.1,

∂gνβn̄

∂z̄n
(pν)(ψν(pν))

3 =
(
∂gνnβ̄

∂zn
(pν)(ψν(pν))3

)

→ −2(2n− 2)(ψνn(0))(ψβ̄(0))(ψn(0)) = 0.
Hence

lim
ν→∞

1

(gνnn̄(pν))2
gβᾱν (pν)

∂gνnᾱ

∂zn
(pν)

∂gνβn̄

∂z̄n
(pν) = 0.

Case 2: α = n and β �= n. Here

1

g2
nn̄

gβn̄
∂gnn̄

∂zn

∂gβn̄

∂z̄n

= 1

(gnn̄ψ 2)2(det(gij̄ )ψ n+1)
(
nβ̄ψ

n−1)

(
∂gnn̄

∂zn
ψ 3

)(
∂gβn̄

∂z̄n
ψ 3

)
.

By Lemma 6.1,
gνnn̄(pν)(ψν(pν))

2 → (2n− 2);
also, det(gναβ̄(pν))(ψ(pν))

n+1 has a nonzero limit and 
νnβ̄(pν)(ψν(pν))
n−1

converges to a finite quantity (these claims follow from Lemma 6.7). Now Lem-
ma 6.1 implies that

∂gνnn̄

∂zn
(pν)(ψν(pν))

3 → −2(2n− 2)ψn(0)ψn̄(0)ψn(0) = −2(2n− 2)

and

∂gνβn̄

∂z̄n
(pν)(ψν(pν))

3 =
(
∂gνnβ̄

∂zn
(pν)(ψν(pν))3

)

→ −2(2n− 2)(ψn(0))(ψβ̄(0))(ψn(0)) = 0.
Therefore,

lim
ν→∞

1

(gνnn̄(pν))2
gβn̄ν (pν)

∂gνnn̄

∂zn
(pν)

∂gνβn̄

∂z̄n
(pν) = 0.

Case 3: α �= n and β = n. This case is similar to Case 2, and we have

lim
ν→∞

1

(gνnn̄(pν))2
gnᾱν (pν)

∂gνnᾱ

∂zn
(pν)

∂gνnn̄

∂z̄n
(pν) = 0.

Case 4: α = n and β = n. In this case, we have

1

g2
nn̄

gnn̄
∂gnn̄

∂zn

∂gnn̄

∂z̄n

= 1

(gnn̄ψ 2)2(det(gij̄ )ψ n+1)
(
nn̄ψ

n−1)

(
∂gnn̄

∂zn
ψ 3

)(
∂gnn̄

∂z̄n
ψ 3

)
.
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By Lemma 6.1,
gνnn̄(pν)(ψν(pν))

2 → (2n− 2)

and both
∂gνnn̄

∂zn
(pν)(ψν(pν))

3,
∂gnn̄

∂z̄n
(pν)(ψν(pν))

3 → −2(2n− 2);
by Lemma 6.7,


νnn̄(pν)(ψν(pν))
n−1 → (−1)n(2n− 2)n det(ψij̄ (0))1≤i,j≤n−1

and

det(gνij̄ (pν))(ψν(pν))
n+1 → (−1)n(2n− 2)n+1 det(ψij̄ (0))1≤i,j≤n−1.

Hence

lim
ν→∞

1

(gνnn̄(pν))2
gnn̄ν (pν)

∂gνnn̄

∂zn
(pν)

∂gνnn̄

∂z̄n
(pν) = 2

n− 1
.

From the various cases we finally obtain

lim
ν→∞R(zν , vN(zν)) = −3

n− 1
+ 2

n− 1
= −1

n− 1
.

7. Existence of Closed Geodesics

In this section we prove Theorem 1.5. The main tool that we will use is the fol-
lowing theorem of Herbort [6].

Theorem 7.1. Let G be a bounded domain in Rk such that π1(G) is nontrivial.
Assume that the following conditions are satisfied.

(i) For each p ∈ Ḡ, there is an open neighborhood U ⊂ Rk such that the set
G ∩ U is simply connected.

(ii) G is equipped with a complete Riemannian metric g that possesses the fol-
lowing property.
(P) For each S > 0 there is a δ > 0 such that, for every point p ∈ G with

d(p, ∂D) < δ and every X ∈ Rk, g(p,X) ≥ S|X|2.
Then every nontrivial homotopy class in π1(G) contains a closed geodesic for g.

It is evident that a C∞-smoothly bounded domain D satisfies part (i) of the theo-
rem. To see whether the 
-metric satisfies property (P), consider a C∞-smoothly
bounded pseudoconvex domainD in Cn and suppose that ψ is C∞-smooth defin-
ing function for D. Then, differentiating the relation

λ = 
ψ 2n−2

with respect to zα , we obtain

∂ log(−
)
∂zα

= λ−1λα − 2(n− 1)ψ−1ψα. (7.1)

Now differentiating this with respect to z̄β yields

∂ 2 log(−
)
∂zα∂z̄β

= λ−1λαβ̄−λ−2λαλβ̄+2(n−1)ψ−2ψαψβ̄−2(n−1)ψ−1ψαβ̄ . (7.2)
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Hence, for v ∈ Cn,

ds2(v, v) =
n∑

α,β=1

∂ 2 log(−
)
∂zα∂z̄β

vαv̄β

= λ−1Lλ(z, v)− λ−2|〈v, ∂̄λ〉|2 + 2(n− 1)ψ−2|〈v, ∂̄ψ〉|2
− 2(n− 1)ψ−1Lψ(z, v). (7.3)

Lemma 7.2. LetD be a C∞-smoothly bounded pseudoconvex domain in Cn, and
let ψ be a C∞-smooth defining function for D. Let z0 ∈ ∂D and v ∈ Cn with
|v| = 1. Then

lim
z→z0

(−ψ(z))2 ds2
z (v, v) = 2(n− 1)|〈v, ∂̄ψ(z0)〉|2.

Also, if 〈v, ∂̄ψ(z0)〉 = 0 then

lim
z→z0

(−ψ(z)) ds2
z (v, v) = 2(n− 1)Lψ(z0, v).

Finally, the limits just given are uniform in z0 and v.

Proof. Since λ is C2-smooth up to D̄ and since ψ is C∞-smooth, it follows that
the terms

〈v, ∂λ̄(z)〉, 〈v, ∂ψ̄(z)〉, Lλ(z, v), and Lψ(z, v)

are uniformly bounded for all z ∈ D̄ and all v ∈ Cn with |v| = 1. Also, since λ =
−|∂ψ |2n−2 on ∂D, it is evident that λ−1 is bounded near ∂D.

By the foregoing observation it is clear from (7.3) that

lim
z→z0

(ψ(z))2 ds2
z (v, v) = 2(n− 1)|〈v, ∂̄ψ(z0)〉|2

uniformly for z0 ∈ ∂D and unit vectors v. This proves the first part of the lemma.
To prove the second part, observe that if 〈v, ∂̄ψ(z0)〉 = 0 then

〈v, ∂̄ψ(z)〉 = 〈v, ∂̄ψ(z)〉 − 〈v, ∂̄ψ(z0)〉 = 〈v, ∂̄ψ(z)− ∂̄ψ(z0)〉.
Since

|∂̄ψ(z)− ∂̄ψ(z0)| � (−ψ(z))
uniformly for z near z0, it follows that

|〈v, ∂̄ψ(z)〉| � (−ψ(z))
uniformly for z near z0 and for unit vectors v satisfying 〈v, ∂̄ψ(z0)〉 = 0. Com-
bining this with our previous observation, it now follows from (7.3) that

lim
z→z0

(−ψ(z)) ds2
z (v, v) = 2(n− 1)Lψ(z0, v)

uniformly for z0 ∈ ∂D and for unit vectors v satisfying 〈v, ∂̄ψ(z0)〉 = 0. Thus the
lemma is proved.

Proposition 7.3. Let D be a C∞-smoothly bounded strongly pseudoconvex do-
main in Cn, and let ψ be a C∞-smooth defining function for D. Then there exist
a neighborhood U of ∂D and a constant K > 0, depending only on D, such that

ds2
z (v, v) ≥ K

|v|2
−ψ(z) , z∈U ∩D, v ∈ Cn.
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Proof. Let z0 ∈ ∂D and v0 ∈ Cn with |v0| = 1. If 〈v0, ∂̄ψ(z0)〉 �= 0 then, by
Lemma 7.2,

(−ψ(z))2 ds2
z (v0, v0) ≥ (n− 1)|〈v0, ∂̄ψ(z0)〉|2

for z sufficiently close z0. From this it follows that

(−ψ(z))2 ds2
z (v, v) ≥ (n− 1)

2
|〈v0, ∂̄ψ(z0)〉|2

for z sufficiently close z0 and for unit vectors v sufficiently close to v0. Hence

ds2
z (v, v) ≥ (n− 1)

2
|〈v0, ∂̄ψ(z0)〉|2 1

(−ψ(z))2
≥ (n− 1)

2
|〈v0, ∂̄ψ(z0)〉|2 1

(−ψ(z)) (7.4)

for z sufficiently close z0 and for unit vectors v sufficiently close to v0.

If 〈v0, ∂̄ψ(z0)〉 = 0 then Lψ(z0, v0) > 0 and, again by Lemma 7.2,

−ψ(z) ds2
z (v0, v0) ≥ (n− 1)Lψ(z0, v0)

for z sufficiently close z0; thus

−ψ(z) ds2
z (v, v) ≥ (n− 1)

2
Lψ(z0, v0)

for z sufficiently close z0 and for unit vectors v sufficiently close to v0. Then

ds2
z (v, v) ≥ (n− 1)

2
Lψ(z0, v0)

1

−ψ(z) (7.5)

for z sufficiently close z0 and for unit vectors v sufficiently close to v0. Since ∂D
and {v ∈ Cn : |v| = 1} are compact, (7.4) and (7.5) together imply that there exists
a constant K > 0 such that

ds2
z (v, v) ≥ K

|v|2
−ψ(z)

for z near ∂D and for unit vectors v. The proof of the proposition now follows
from the homogeneity of ds2

z (v, v) in the vector variable.

Proof of Theorem 1.5. By Proposition 7.3, the
-metric is complete onD and sat-
isfies property (P) of Theorem 7.1, from which the proof follows.

8. L2-Cohomology of the �-Metric

In this section we prove Theorem 1.6. Let us first recall the definition of L2-
cohomology. Let M be a complete Kähler manifold of complex dimension n.
Let ;i

2 be the space of square-integrable i-forms on M. Then the (reduced) L2-
cohomology of the complex

;0
2(M)

d0−→ ;1
2(M)

d1−→ · · · d2n−1−−−→ ;2n
2 (M)

d2n−−→ 0
is defined by

H i
2(M) = ker di

Im di−1
,

where the closure is taken inL2. Now, let Hi
2(M) be the space of square-integrable

harmonic i-forms on M. Then the completeness of the metric implies that
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H i
2(M)

∼= Hi
2(M).

We have the following result from [3] on the vanishing of theL2-cohomology out-
side the middle dimension.

Theorem 8.1. Let M be a complete Kähler manifold of complex dimension n.
Suppose that the Kähler formω ofM can be written asω = dη, where η is bounded
in supremum norm. Then Hi

2(M) = 0 for i �= n.

We also have the following result from [9] on the infinite dimensionality of the
L2-cohomology of the middle dimension.

Theorem 8.2. Let D be a domain in a connected complex manifold of dimen-
sion n, and let ds2 be a Hermitian metric onD. Suppose there exists a nondegen-
erate regular boundary point z0 ∈ ∂D. Also, suppose there exist a neighborhood
U of z0, a local defining function φ for D defined on U, and a Hermitian metric
ds2
U defined on U such that

C−1 ds2 < (−φ)−a ds2
U + (−φ)−b∂φ∂̄φ < C ds2

on U ∩D, where a, b, and C are positive numbers with 1 ≤ a ≤ b < a+3. Then,
for any positive integer p and q with p + q = n, we have

dimHp,q

2 (D) = ∞;
here Hp,q

2 (D) denotes the L2 ∂̄-cohomology group relative to ds2.

Remark 8.3. If in Theorem 8.2 we assume also that ds2 is complete and Kähler,
then for any positive integer p and q with p + q = n we have

dim Hp,q

2 (D) = ∞,

where Hp,q

2 (D) is the space of square-integrable harmonic (p, q)-forms onD rel-
ative to ds2.

To apply these results to the 
-metric, let D be a C∞-smoothly bounded pseudo-
convex domain in Cn and let ds2 be the 
-metric on D. Then the Kähler form ω

of ds2 is given by

ω = i

n∑
α=1

∂ 2 log(−
)
∂zα∂z̄β

dzα ∧ dz̄β = dη,

where

η = −i
n∑
α=1

∂ log(−
)
∂zα

dzα.

Now let ψ be a C∞-smooth defining function forD. Then, using (7.1), for v ∈ Cn

we have

η(v) = −i
n∑
α=1

∂ log(−
)
∂zα

vα = −i(λ−1〈v, ∂̄λ〉 − 2(n− 1)ψ−1〈v, ∂̄ψ〉)

and
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|η(v)|2 = λ−2|〈v, ∂̄λ〉|2 − 4(n− 1)λ−1ψ−1�(〈v, ∂̄λ〉〈v, ∂̄ψ〉)
+ 4(n− 1)2ψ−2|〈v, ∂̄ψ〉|2. (8.1)

Lemma 8.4. LetD be aC∞-smoothly bounded pseudoconvex domain in Cn, and
let ψ be a C∞-smooth defining function for D. Let z0 ∈ ∂D and v ∈ Cn with
|v| = 1. Then

lim
z→z0

(−ψ(z))2|ηz(v)|2 = 4(n− 1)2|〈v, ∂̄ψ(z0)〉|2.
Also, if 〈v, ∂̄ψ(z0)〉 = 0 then

lim
z→z0

(−ψ(z))|ηz(v)|2 = 0.

Finally, the limits are uniform in z0 and v.

Proof. Since λ is C2-smooth up to D̄ and since ψ is C∞-smooth, the terms

〈v, ∂λ̄(z)〉 and 〈v, ∂ψ̄(z)〉
are uniformly bounded for all z ∈ D̄ and all v ∈ Cn with |v| = 1. Also, since λ =
−|∂ψ |2n−2 on ∂D, it follows that λ−1 is bounded near ∂D.

By the preceding observation it is evident from (8.1) that

lim
z→z0

(−ψ(z))2|ηz(v)|2 = 4(n− 1)2|〈v, ∂̄ψ(z0)〉|2

uniformly for z0 ∈ ∂D and unit vectors v. This proves the first part of the lemma.
To prove the second part we observe that, as in the proof of Lemma 7.2,

|〈v, ∂̄ψ(z)〉| � (−ψ(z))
uniformly for z near z0 and for unit vectors v satisfying 〈v, ∂̄ψ(z0)〉 = 0. Com-
bining this with our previous observation, it now follows from (8.1) that

lim
z→z0

(−ψ(z))|ηz(v)|2 = 0

uniformly for z0 ∈ ∂D and for unit vectors v satisfying 〈v, ∂̄ψ(z0)〉 = 0. Thus the
lemma is proved.

Proposition 8.5. LetD be a C∞-smoothly bounded strongly pseudoconvex do-
main in Cn. Then the ratio |ηz(v)|2

ds2
z (v, v)

(8.2)

is uniformly bounded for z∈D and for vectors v ∈ Cn with v �= 0.

Proof. Let z0 ∈ ∂D and v0 ∈ Cn with |v0| = 1. By Lemma 7.2 and Lemma 8.4,
for 〈v0, ∂̄ψ(z0)〉 �= 0 we have

lim
z→z0

|ηz(v0)|2
ds2
z (v0, v0)

= 2(n− 1);
for 〈v0, ∂̄ψ(z0)〉 = 0,

lim
z→z0

|ηz(v0)|2
ds2
z (v0, v0)

= 0
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since Lψ(z0, v0) > 0 at the strongly pseudoconvex boundary point z0. It follows
that the ratio

|ηz(v)|2
ds2
z (v, v)

is uniformly bounded for all z near z0 and for unit vectors v near v0. Since ∂D and
{v ∈ Cn : |v| = 1} are compact, this ratio is uniformly bounded for all z near ∂D
and for all unit vectors v. It is clear that this ratio is uniformly bounded for all z
on a compact subset of D and for all unit vectors v. Now, by the homogeneity of
ηz(v) and ds2

z (v, v) in the vector variable v, it follows that the ratio is uniformly
bounded above for all z ∈D and for vectors v ∈ Cn with v �= 0. This proves the
proposition.

We also note the following result.

Proposition 8.6. LetD be a C∞-smoothly bounded strongly pseudoconvex do-
main in Cn, and let ds2 be the 
-metric on D. Suppose that ψ is a C∞-smooth
defining function for D. Then

ds2 ≈ (−ψ)−1 ds2
E + (−ψ)−2∂ψ∂̄ψ

uniformly near ∂D, where ds2
E is the Euclidean metric on Cn.

Proof. Let us denote the tensor on the right-hand side by h so that, for z∈D and
v ∈ Cn,

hz(v, v) = (−ψ(z))−1|v|2 + (−ψ(z))−2|〈v, ∂̄ψ(z)〉|2.
Let z0 ∈ ∂D and v0 ∈ Cn with |v0| = 1. Then

lim
z→z0

(−ψ(z))2hz(v0, v0) = |〈v0, ∂̄ψ(z0)〉|2.

Hence if 〈v0, ∂̄ψ(z0)〉 �= 0 then, by Lemma 7.2,

lim
z→z0

ds2
z (v0, v0)

hz(v0, v0)
= 2(n− 1). (8.3)

If 〈v0, ∂̄ψ(z0)〉 = 0 then, as in Lemma 7.2,

|〈v0, ∂̄ψ(z)〉| � (−ψ(z))
and so

lim
z→z0

(−ψ(z))hz(v0, v0) = |v0|2 = 1;
therefore, by Lemma 7.2,

lim
z→z0

ds2
z (v0, v0)

hz(v0, v0)
= 2(n− 1)Lψ(z0, v0) > 0 (8.4)

becauseD is strongly pseudoconvex. It follows from (8.3) and (8.4) that the ratio

ds2
z (v, v)

hz(v, v)
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is uniformly bounded above and below by positive constants for all z near z0 and
for unit vectors v near v0. Since ∂D and {v ∈ Cn : |v| = 1} are compact, this
ratio is uniformly bounded above and below by positive constants for all z near ∂D
and for unit vectors v. The proposition now follows from the homogeneity of both
ds2
z (v, v) and hz(v, v) in the vector variable v.

Proof of Theorem 1.6. Let ds2 be the 
-metric on D. By Proposition 7.3, ds2

is complete. By Proposition 8.5, ds2 satisfies the hypotheses of Theorem 8.1.
Therefore,

Hi
2(D) = 0

for i �= n and hence
Hp,q

2 (D) = 0

for p + q �= n. Also, by Proposition 8.6, ds2 satisfies the hypotheses of Theo-
rem 8.2. Therefore, by Remark 8.3,

dim Hp,q

2 (D) = ∞
for any positive integers p and q with p + q = n. Moreover, it is evident that
Hn,0

2 (D) and H0,n
2 (D) are infinite dimensional. This completes the proof.
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