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Plurisubharmonic Subextensions
As Envelopes of Disc Functionals

Finnur Lárusson & Evgeny A. Poletsky

1. Introduction

The theory of disc functionals was founded just over twenty years ago. Its main
goal is to provide disc formulas for important extremal plurisubharmonic functions
in pluripotential theory, that is, to describe these functions as envelopes of disc
functionals. This brings the geometry of analytic discs into play in pluripotential
theory. Disc formulas have been proved for largest plurisubharmonic minorants
(some of the main references, in historical order, are [14; 2; 15; 9; 19; 13]) and
for various Green functions (see for example [16; 5; 10; 18; 12]). For recent gen-
eralizations to singular spaces, see [3; 4].

We continue this project by proving a disc formula for largest plurisubharmonic
subextensions. Consider domains W ⊂ X in complex affine space C

n or, more
generally, in a Stein manifold. Let φ : W → [−∞, ∞) be upper semicontinuous,
for example plurisubharmonic, and letSφ be the supremum of all plurisubharmonic
functions u on X with u|W ≤ φ. If X is covered by analytic discs with boundaries
in W, then Sφ is a plurisubharmonic function on X, the largest plurisubharmonic
subextension of φ to X. Under suitable conditions on W and X, we prove that for
every x ∈ X, Sφ(x) is the infimum of the averages of φ over the boundaries of
all analytic discs in X with boundary in W and center x (Theorems 3 and 4). In
general, however, the disc formula can fail (Example 3).

A recent Stein neighborhood theorem of Forstnerič [6, Thm. 1.2] allows us to
work with analytic discs that are merely continuous on the closed unit disc D. This
is technically easier than the traditional approach that uses germs of holomorphic
maps from open neighborhoods of D.

A new equivalence relation on the space AW
X of analytic discs in X with bound-

ary inW naturally appears in the proof of our disc formula. We call analytic discs
in AW

X center-homotopic if they have the same center and can be joined by a path
in AW

X of discs with that same center. The quotient of AW
X by this equivalence

relation, if it is Hausdorff, is a complex manifold with a local biholomorphism
to X (Theorem 6). The sufficient conditions in Theorems 3 and 4 are naturally
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expressed in terms of the quotient (Theorem 7). Finally, we use our disc formula to
generalize Kiselman’s minimum principle [8] and to give a new proof of a special
case of it; this proof is based on the observation that Kiselman’s infimum function
may be viewed as a plurisubharmonic subextension to a suitable larger domain
(Theorem 8).

Acknowledgment. We thank Barbara Drinovec Drnovšek for pointing out an
error in a previous version of the paper.

2. A Disc Formula for Plurisubharmonic Subextensions

We start by establishing some notation. For r > 0, let Dr = {z ∈ C : |z| < r}
and D = D1. Let λ denote the normalized arc-length measure on the unit circle
T = ∂D. For a complex manifold X, let AX denote the set of analytic discs in X,
here taken to be continuous maps f : D → X that are holomorphic on D. We
call f(0) the center of f. We endow AX with the compact-open topology, that is,
the topology of uniform convergence on D. This endowment makes AX a com-
plete metrizable space. For any topological space Y, a continuous map Y → AX

is nothing but a continuous map Y × D → X that is holomorphic when restricted
to {y} × D for every y ∈ Y. If W ⊂ X, write AW

X for the set of analytic discs f

in X with f(T) ⊂ W. If W is open, then AW
X is open in AX.

Let f ∈ AX. By a theorem of Forstnerič [6, Thm. 1.2], the graph �f =
{(z, f(z)) : z ∈ D} of f has a basis of nice Stein open neighborhoods in C × X.

More precisely, there is a basis of Stein open neighborhoodsV of �f in C×X, each
with a biholomorphism onto an open subset of C×C

dimX, mapping ({z}×X)∩V

onto an open convex subset of {z} × C
dimX for each z ∈ C. The sets V ∗ =

{g ∈ AX : �g ⊂ V }, as V ranges over such a basis of open neighborhoods of �f ,
form a basis of open neighborhoods of f in AX. It follows that there is a neighbor-
hoodW of f(0) in X and a continuous map F : W → AX such that F(f(0)) = f

and F(x)(0) = x for each x ∈W. Hence the center map c : AX → X, f �→ f(0),
is not only continuous but also open. Each neighborhood V ∗ is contractible, so
AX is locally contractible. In particular, the connected components and the path
components of AX are the same, and they are open in AX.

For an upper semicontinuous function φ : X → [−∞, ∞), let Hφ : AX →
[−∞, ∞) be the Poisson functional associated to φ, defined by the formula

Hφ(f ) =
∫

T

φ � f dλ.

For B ⊂ AX, the Poisson envelope EBφ : X → [−∞, ∞] of φ with respect to B
is defined by the formula

EBφ(x) = inf
f∈B

f(0)=x

Hφ(f ).

It is well known that Pφ = EAX
φ is the largest plurisubharmonic minorant of φ

on X (see the references given in the Introduction). If W ⊂ X is open, B ⊂ AW
X ,
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and φ : W → [−∞, ∞) is upper semicontinuous, then the envelope EBφ : X →
[−∞, ∞] is defined as before.

Let W be a domain (a connected, nonempty, open subset) in a complex man-
ifold X. Let φ : W → [−∞, ∞) be upper semicontinuous, for example pluri-
subharmonic (we take the constant function −∞ to be plurisubharmonic). A
plurisubharmonic function u on X is a subextension of φ if u|W ≤ φ. Let

Sφ = sup{u∈ PSH(X) : u|W ≤ φ}.
Now Sφ is upper semicontinuous (in particular nowhere ∞) and hence pluri-
subharmonic if and only if the class {u ∈ PSH(X) : u|W ≤ φ} has local upper
bounds on X, which holds for example if X is covered by analytic discs with
boundaries inW. Then Sφ is the largest plurisubharmonic subextension of φ to X.

It is easily seen that S(Sφ) = Sφ and that Sφ is maximal on X \W. Also, Sφ ≤
EAW

X
φ, with equality if and only if EAW

X
φ is plurisubharmonic on X. We will prove

the disc formula Sφ = EAW
X
φ under suitable conditions on X and W.

As a start, let us derive a preliminary disc formula for largest plurisubhar-
monic subextensions directly from the disc formula for largest plurisubharmonic
minorants.

Proposition 1. Let W be a domain in a complex manifold X such that X is cov-
ered by analytic discs with boundaries in W. Let φ : W → [−∞, ∞) be upper
semicontinuous and bounded above. Then, for every x ∈X,

Sφ(x) = lim
ε→0+ inf

f

∫
(f |T)−1(W )

φ � f dλ,

where, for each ε > 0, the infimum is taken over all f ∈ AX such that f(0) = x

and λ((f |T)−1(W )) > 1 − ε.

Proof. Suppose φ is bounded above on W by m ∈ N. For each n ≥ m, define an
upper semicontinuous function φn on X as φ on W and as n on X \ W. Now Pφn

is plurisubharmonic on X and Pφn ≤ φ on W, so Pφn ≤ Sφ. Also, Sφ ≤ m on
X, so Sφ ≤ Pφn. Hence Sφ = Pφn for all n ≥ m.

Let x ∈X. If f ∈ AX has λ((f |T)−1(W )) > 1 − ε and f(0) = x, then

Sφ(x) ≤
∫

T

φm � f dλ <

∫
(f |T)−1(W )

φ � f dλ + mε.

Thus Sφ(x) ≤ limε→0+ inff
∫
(f |T)−1(W )

φ � f dλ. On the other hand, for each
n ≥ m, there is fn ∈ AX with fn(0) = x and Hφn

(fn) ≤ Pφn(x) + 1/n =
Sφ(x) + 1/n. Then λ((fn|T)−1(W )) → 1 and∫

(fn|T)−1(W )

φ � fn dλ ≤
∫

T

φn � fn dλ ≤ Sφ(x) + 1

n
.

Thus Sφ(x) ≥ limε→0+ inff
∫
(f |T)−1(W )

φ � f dλ.

The disc formula in Proposition 1 is rather clumsy. It is natural to ask whether
we can “pass to the limit” and use only analytic discs whose entire boundary lies
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in W. This turns out to be a subtle question involving a mix of complex analysis
and topology. The answer is affirmative only if suitable restrictions are imposed
on the pair W ⊂ X.

We say that f0, f1 ∈ AW
X with f0(0) = f1(0) are center-homotopic if there is

a continuous map f : D × [0,1] → X with f(·, t) ∈ AW
X for all t ∈ [0,1] and

f(·, t) = ft for t = 0,1 (that is, a continuous path in AW
X joining f0 and f1) such

that f(0, t) = f0(0) for all t ∈ [0,1].
A W-disc structure on X is a family β = (βν) of continuous maps βν : Uν →

AW
X , where (Uν) is an open cover of X, satisfying the following two conditions.

For all x ∈Uν , βν(x)(0) = x.

(S) If x ∈Uν ∩ Uµ, then βν(x) and βµ(x) are center-homotopic.

We will be interested in the following condition that β may or may not satisfy.

(N) There is µ such that Uµ = W and βµ(w) is the constant disc at w for all
w ∈W.

The class Bβ ⊂ AW
X associated to aW-disc structureβ onX is the union

⋃
ν βν(Uν).

It is easily seen that if φ is upper semicontinuous on W, then the envelope Eβφ =
EBβ

φ is upper semicontinuous on X. We say that X is a schlicht disc extension of
W if X carries aW-disc structure satisfying (N). These definitions will be viewed
in a more abstract light in Section 3.

Example 1. Here is a simple example to illustrate the definitions. For n ≥ 2 and
r > 0, let Bn

r = {x ∈ C
n : ‖x‖ < r}. Set X = Bn

4 and W = Bn
4 \Bn

1 . Let U0 = W

and U1 = Bn
2 . Then {U0,U1} is an open cover of X, and a W-disc structure on X

satisfying (N) is given by setting β0(x)(ζ) = x for all x ∈U0 and setting

β1(x)(ζ) =
(
ρ(x)

ρ(x)ζ + x1

ρ(x) + x̄1ζ
, x2, . . . , xn

)
,

where
ρ(x) =

√
9 − |x2|2 − · · · − |xn|2,

for all x = (x1, . . . , xn)∈U1. Condition (S) is evident.

The following lemma is proved along the lines of the original proof in [14] of
the plurisubharmonicity of the Poisson envelope. We follow the exposition in [9].
Note that we are now restricting our discussion to domains in affine space.

Lemma 2. Let W ⊂ X be domains in C
n, and let β be a W-disc structure on X.

If φ : W → [−∞, ∞) is upper semicontinuous, then

EAW
X
φ ≤ PEβφ.

Before proving the lemma, we state and prove our first theorem.

Theorem 3. Let W ⊂ X be domains in C
n such that X is a schlicht disc exten-

sion of W. If φ : W → [−∞, ∞) is upper semicontinuous, then

Sφ = EAW
X
φ.
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Proof. Let β be a W-disc structure on X satisfying (N). We have

Sφ ≤ EAW
X
φ ≤ PEβφ ≤ Sφ.

The first inequality is obvious. The second is Lemma 2. The third holds because
Eβφ ≤ φ on W by (N).

This approach to proving a disc formula using an auxiliary class such as Bβ first
appeared in [11].

Proof of Lemma 2. Let β be aW-disc structure on X. To prove the desired inequal-
ity, we show that for every h ∈ AX, ε > 0, and a continuous function v : X → R

with v ≥ Eβφ, there exists g ∈ AW
X such that g(0) = h(0) and

Hφ(g) ≤ Hv(h) + ε. (1)

The proof is carried out in three steps. First we show that there exists a contin-
uous map F : D × T → X, such that F(·,w) ∈ AW

X and F(0,w) = h(w) for all
w ∈ T, and ∫

T

Hφ(F(·,w)) dλ(w) ≤ Hv(h) + ε

2
. (2)

Next we show that there exists a continuous map G : D × D → X, holomorphic
on D × D, such that G(0,w) = h(w) for all w ∈ D, G(T × T) ⊂ W, and∫

T

Hφ(G(·,w)) dλ(w) ≤
∫

T

Hφ(F(·,w)) dλ(w) + ε

2
. (3)

Finally we show that there is θ0 ∈ [0, 2π ] such that if g ∈ AW
X is defined by the

formula g(z) = G(eiθ0z, z), then

Hφ(g) ≤
∫

T

Hφ(G(·,w)) dλ(w). (4)

By combining (2), (3), and (4), we get (1).

Step 1. Let h ∈ AX, ε > 0, and v : X → R be continuous with v ≥ Eβφ.

Let w0 ∈ T and set x0 = h(w0). Find ν such that x0 ∈ Uν and Hφ(βν(x0)) <

v(x0) + ε/(8π). For all x in a small enough neighborhood of x0, we have
Hφ(βν(x)) < v(x) + ε/(8π). By compactness, there is a cover of T by closed
arcs I1, . . . , Im that meet only in endpoints, such that, for each j = 1, . . . ,m, there
is νj with h(Ij ) ⊂ Uνj and Hφ(βνj (h(w))) < v(h(w)) + ε/(8π) for all w ∈ Ij .

Let w0 be a common endpoint of I1 and I2, say. By (S), βν1(h(w0)) and
βν2(h(w0)) are center-homotopic. Choose a center-homotopy between them, use
small translations to spread the centers of the analytic discs in the homotopy over
a small arc centered at w0, and reparameterize βν1 � h and βν2 � h by small trans-
lations over subarcs slightly smaller than I1 and I2, respectively. In this way we
obtain a continuous map F : D × T → X, such that F(·,w)∈ AW

X and F(0,w) =
h(w) for each w ∈ T, and
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∫
T

Hφ(F(·,w)) dλ(w) ≤
m∑

j=1

∫
Ij

Hφ(βνj � h) dλ + ε

4

≤
m∑

j=1

∫
Ij

v � h dλ + ε

2
= Hv(h) + ε

2
;

thus we have proved (2).

Step 2. For each j ≥ 1 we define the Cesàro mean Fj : D × D
∗ → C

n, where
D

∗ denotes D \ {0}, by

Fj(z,w) = h(w) + 1

j + 1

j∑
m=0

m∑
k=−m

(∫
T

(F(z, ζ) − h(ζ))ζ−k dλ(ζ)

)
wk.

The well-known theorem on the uniform convergence of the Cesàro means of a
continuous function on T holds for maps into a Banach space, such as the space of
continuous maps D → C

n that are holomorphic on D. We conclude that Fj → F

uniformly on D × T as j → ∞. Hence Fj(D × T) ⊂ X and Fj(T × T) ⊂ W for
j large enough. For simplicity, assume that this holds for all j ≥ 1.

For every z∈ D, the map w �→ Fj(z,w)−h(w) has a pole of order at most j at
the origin, and for every w ∈ D

∗, the map z �→ Fj(z,w) − h(w) has a zero at the
origin. Thus (z,w) �→ Fj(zw

k,w) extends to a continuous map D × D → C
n,

holomorphic on D × D, for every k ≥ j.

SinceFj(0,w) = h(w)∈X for allw ∈ D
∗, there is δj > 0 such thatFj(zwk,w)∈

X for all integers k ≥ j and (z,w)∈Dδj × D. Since Fj(D × T) ⊂ X, there is rj ∈
(0,1) such that Fj(D × (D \ Drj )) ⊂ X, so Fj(zw

k,w) ∈ X for all (z,w) ∈
D × (D \ Drj ) and all k ≥ j.

Take kj ≥ j so large that |zwkj | < δj for all (z,w) ∈ D × Drj . Then we have
Fj(zw

kj,w) ∈ X for all (z,w) ∈ D × D. Define a continuous map Gj : D × D →
X, holomorphic on D × D, by Gj(z,w) = Fj(zw

kj,w). Then Gj(T × T) ⊂ W

and Gj(0,w) = h(w) for all w ∈ D.

Take j large enough that

1

(2π)2

∫ 2π

0

∫ 2π

0
φ(Fj(e

it, eiθ )) dt dθ

≤ 1

(2π)2

∫ 2π

0

∫ 2π

0
φ(F(eit, eiθ )) dt dθ + ε

2

=
∫ 2π

0
Hφ(F(·,w)) dλ(w) + ε

2
,

and let G = Gj . Then∫
T

Hφ(G(·,w)) dλ(w) = 1

(2π)2

∫ 2π

0

∫ 2π

0
φ(Fj(e

i(t+kj θ), eiθ )) dt dθ

= 1

(2π)2

∫ 2π

0

∫ 2π

0
φ(Fj(e

it, eiθ )) dt dθ,

and (3) is proved.
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Step 3. The right-hand side of (4) is

1

(2π)2

∫ 2π

0

∫ 2π

0
φ(G(eit, eiθ )) dt dθ = 1

(2π)2

∫ 2π

0

∫ 2π

0
φ(G(eiθe it, eit )) dt dθ.

There is θ0 ∈ [0, 2π] such that

1

(2π)2

∫ 2π

0

∫ 2π

0
φ(G(eit, eiθ )) dt dθ ≥ 1

2π

∫ 2π

0
φ(G(eiθ0eit, eit )) dt.

If we set g(z) = G(eiθ0z, z), then g(0) = G(0, 0) and (4) holds.

We now provide another sufficient condition for our disc formula to hold.

Theorem 4. Let W ⊂ X be domains in C
n. Suppose AW

X has a connected com-
ponent, call it B, with the following properties.

(i) B covers X.

(ii) If two analytic discs in B have the same center, then they are center-homotopic.

Then, for every upper semicontinuous function φ : W → [−∞, ∞),

Sφ = EAW
X
φ.

Proof. The proof is the same as the proof of Theorem 3, except for the inequality
PEBφ ≤ Sφ, which now requires more work. We can show that EAW

X
φ ≤ PEBφ

exactly as we proved Lemma 2, using (i) and (ii) and the fact that B is open in
AW

X. We need to show that EBφ ≤ φ on W, which previously was an immediate
consequence of (N).

Let p ∈ W and ε > 0. We need an analytic disc f ∈ B with f(0) = p and
Hφ(f ) < φ(p) + ε. Take g ∈ B with g(0) = p. Extend g to a continuous map
g : D∪[1, 2] → X such that g|[1, 2] is a path inW with g(2) = p. By Mergelyan’s
theorem, g can be approximated uniformly on D∪[1, 2] by polynomial maps C →
C

n. Since W and B are open, we may assume that g is the restriction to D ∪ [1, 2]
of a polynomial map that we will still call g.

Let 6 ⊂ C be the simply connected domain of all points within distance δ > 0
of D ∪ [1, 2]. Let µ be the harmonic measure of 6 with respect to the point 2.
Choose δ so small that g(6\D) ⊂ W and

∫
∂6

φ �g dµ < φ(g(2))+ε = φ(p)+ε.

A theorem of Radó (see [17] or [7, II.5, Thm. 2]) states that as a simply con-
nected bounded domain in C is continuously varied in a suitable sense, its nor-
malized Riemann map also varies continuously. More precisely, for each n ≥ 0,
let Un be a simply connected domain in C containing 0 and bounded by Jordan
curves, and let ψn : D → Un be the biholomorphism with ψn(0) = 0 and ψ ′

n(0) >
0. Then ψn → ψ0 uniformly on D if and only if, for every ε > 0, there is m ≥ 1
such that, for every n ≥ m, there is a homeomorphism ∂Un → ∂U0 such that the
distance between corresponding points is at most ε.

Radó’s theorem provides a continuous map 8 : D × [0,1] → 6 such that 8t =
8(·, t) is a homeomorphism onto its image and holomorphic on D with 8t(0) =
0 for every t ∈ [0,1], 8(T × [0,1]) ⊂ 6 \ D, 80 is the inclusion D ↪→ 6, and
81(D) = 6. Then g �8t ∈ AW

X for all t ∈ [0,1], so h = g �81 ∈ B and h(0) = p.
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Let a = 8−1
1 (2). Then h(a) = p. By precomposing h by a path in Aut D join-

ing the identity to an automorphism α of D taking 0 to a, we obtain f ∈ B with
f(0) = p. Finally,

Hφ(f ) =
∫

T

φ � g � 81 � α dλ =
∫
∂6

φ � g dµ < φ(p) + ε.

In Theorems 3 and 4, C
n can be replaced by any Stein manifold S. Only minor

modifications of Step 2 in the proof of Lemma 2 and of the proof of Theorem 4
are needed, using a tubular neighborhood of S viewed as a submanifold of C

m for
some m. Whether C

n can be replaced by an arbitrary complex manifold is an open
question.

Example 2. Take X = D2 and W = D2 \D. Then we have one connected com-
ponent of AW

X for each nonnegative winding number. The hypotheses of Theorem 4
hold for each positive winding number. Namely, (i) is obvious and (ii) follows
from writing an analytic disc in AW

X as the product of a holomorphic function with-
out zeros and a Blaschke product whose degree equals the winding number. Thus
our disc formula holds for the pair W ⊂ X. Theorem 3 does not apply because X

is not a schlicht disc extension of W.

The following example shows that, without the hypotheses of Theorems 3 and 4,
our disc formula can fail.

Example 3. Fix δ ∈ (
0, 1

2

)
and let

W1 = D × {z2 ∈ C : |z2| < δ},
W2 = D × {z2 ∈ C : 1 − δ < |z2| < 1}.

JoinW1 and W2 by the curve [0,1] → C
2, t �→ (

1+ e2πi(2t−1)/3,
(
1− δ

2

)
t
)
. Let W3

be a thin open tubular neighborhood of the image of the curve, and let W be the
domainW1 ∪W2 ∪W3. We may assume that the intersection with R of the projec-
tion of W onto the z1-plane is (−1,1) ∪ (a, b) with 1 < a < 2 < b and also that b
is the supremum of Re z1 on W. Let I = (a, b), and let

W− = W1 ∪ {z∈W3 : Im z1 < 0},
W + = W2 ∪ {z∈W3 : Im z1 > 0}.

Let U1 and U2 be thin open neighborhoods of the semicircles

γ1 = {eit/2 : t ∈ [0,π]} and γ2 = {eit/2 : t ∈ [π, 2π]}
in D, respectively, and let

V1 = U1 × {z2 ∈ C : |z2| < δ} ⊂ W1,

V2 = U2 × {z2 ∈ C : 1 − δ < |z2| < 1} ⊂ W2.

Define an upper semicontinuous function φ on W as −1 on V1 ∪ V2 and as 0
elsewhere.
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Let X be any domain in C
2 containing W such that X is covered by images

f(D) of analytic discs f ∈ AW
C2 and such that X contains the image of the analytic

disc ζ �→ (
z1,

(
1 − δ

2

)
ζ
)

for every z1 ∈ γ2. For example, X could be D
2 ∪W3.

By making W3, U1, and U2 thin enough, we can ensure that there is an s < 1
such that, for every g ∈ AC2 with g(0) = (0, 0), each of the sets g−1(I ∪V1) ∩ T

and g−1(I ∪V2)∩ T has harmonic measure (with respect to 0 ∈ D, that is, normal-
ized arc-length measure) less than s.

We will show that Sφ(0, 0) = −1, but EAW
X
φ(0, 0) ≥ −s > −1 and so our disc

formula fails for the pair W ⊂ X.

First, if z1 ∈ γ1, then φ(z1, 0) = −1, so Sφ(z1, 0) = −1. If z1 ∈ γ2, then the
analytic disc ζ �→ (

z1,
(
1 − δ

2

)
ζ
)

has its boundary inV2, so φ = −1 on the bound-
ary and Sφ(z1, 0) = −1. It follows that Sφ(0, 0) = −1.

Second, let f = (f1, f2)∈ AW
X with f(0) = (0, 0). We may assume that f ex-

tends holomorphically to an open neighborhood of D, that f1 has no critical values
in Ī, and that f1|T is transverse to I, so in particular f −1

1 (I ) ∩ T is finite. We claim
that the harmonic measure of f −1(V1 ∪V2) ∩ T is less than s, so Hφ(f ) > −s.

If f −1
1 (I ) = ∅, then f −1(V1 ∪ V2) ∩ T is either f −1(V1) ∩ T or f −1(V2) ∩ T,

so the claim is clear. Assume that f −1
1 (I ) �= ∅. Then f −1

1 (I ) is the disjoint union
of finitely many embedded 1-dimensional submanifolds. None of them are loops,
for otherwise f1 would be constant, so they are all arcs. None of them are rela-
tively compact in D since f1 cannot take a point in D to b, so each arc has one
endpoint on T and the other on T or in D.

Say an arc in f −1
1 (I ) is good if both its endpoints lie on T. Call the other arcs

bad. Let 6 be the set of all points in D that lie on the same side of each good arc
as 0. Then 6 is a simply connected domain containing 0, bounded by some of the
good arcs and some arcs in T that we will call circular arcs, unless there are no
good arcs, in which case 6 = D and T is the one circular “arc”.

The finitely many points on each circular arc that lie in f −1
1 (I ) divide the circular

arc into open subarcs, where each subarc has its f -image in W− or W +. Suppose
there is a subarc with its f -image inW +. Moving counterclockwise along the sub-
arc, we come to an endpoint p.

Suppose that on the other side of p there is a subarc of the same circular arc.
Then p is an endpoint of a bad arc, and Im f1|T changes sign at p from positive to
negative. Since f1 is conformal at p, Re f1 is decreasing as we approach p along
the bad arc. Now Re f1 has no critical points on the bad arc; hence Re f1 is de-
creasing all along the bad arc in the direction of p, and the maximum principle is
violated at the interior endpoint of the bad arc. A slight elaboration of this argu-
ment shows that 6 �= D.

Therefore, p is an endpoint of a good arc. Since f1 is conformal at p, Re f1 is
increasing as we leave p along the good arc. Since Re f1 has no critical points on
the good arc, Re f1 is still increasing as we approach the other endpoint q of the
good arc. Since f1 is conformal at q, it follows that Im f1 is increasing as we leave
q along the next subarc, which therefore has its f -image in W +.

This shows that f(∂6) cannot intersect both W− and W +. Thus either
f −1(V1) ∩ T or f −1(V2) ∩ T lies behind ∂6 ∩ D as seen from 0, so the harmonic
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measure of f −1(V1 ∪ V2) ∩ T is at most the harmonic measure with respect to
0 ∈6 of either f −1(I ∪V1) ∩ ∂6 or f −1(I ∪V2) ∩ ∂6 and is therefore less than
s, proving our claim.

By Theorem 3, X is not a schlicht disc extension of W. By Theorem 4, one or
both of the following statements hold (we only know that they are not both false).

• No disc in AW
X can be deformed in AW

X to a disc with an arbitrary center in X.

• There are discs in AW
X with the same center that are homotopic but not center-

homotopic.

3. The Center-Homotopy Relation
on Spaces of Analytic Discs

Let X be a complex manifold and, as before, let AX be the space of analytic discs
in X, that is, continuous maps D → X that are holomorphic on D, with the topol-
ogy of uniform convergence. Let f ∈ AX. Recall that by [6, Thm. 1.2] there is a
basis of Stein open neighborhoods V of the graph �f of f in C × X, each with
a biholomorphism onto an open subset of C × C

dimX, mapping ({z} × X) ∩ V

onto an open convex subset of {z} × C
dimX for each z ∈ C. The sets V ∗ =

{g ∈ AX : �g ⊂ V }, as V ranges over such a basis of open neighborhoods of �f ,
form a basis of open neighborhoods of f in AX. We already noted that V ∗ is con-
tractible; moreover, V ∗ intersects each fibre of the center map AX → X, f �→
f(0), in a contractible set. Let W be a domain in X. If f ∈ AW

X and if V as above
is small enough, thenV ∗ lies in AW

X and intersects each fibre of the restricted cen-
ter map c : AW

X → X in a contractible set.
Define an equivalence relation ∼c on AW

X by taking f ∼c g if f and g are center-
homotopic; that is, the equivalence classes of ∼c are the connected components—
or, equivalently, the path components—of the fibres of c. Let q : AW

X → XW =
AW

X/∼c be the quotient map, and endow XW with the quotient topology. Let X 0
W

be the connected component of XW containing the equivalence classes of the con-
stant discs in W. Since c is continuous, it factors through q by a continuous map
π : XW → X.

Proposition 5. Let W be a domain in a complex manifold X. The equivalence
relation ∼c on AW

X is open; that is, the quotient map q : AW
X → XW is open.

Proof. Let f ∼c g in AW
X and let V be a neighborhood of f. Take a path

γ : [0,1] → c−1(f(0)) with γ (0) = f and γ (1) = g. Cover the image of γ

by a chain of open sets V ∗
1 , . . . ,V ∗

k of the kind described previously, whose inter-
section with each fibre of c is contractible, such that f ∈ V ∗

1 ⊂ V, g ∈ V ∗
k , and

V ∗
j ∩V ∗

j+1 ∩ γ ([0,1]) �= ∅ for j = 1, . . . , k − 1. Recall that c is open and let U be

the neighborhood
⋂k−1

j=1 c(V
∗

j ∩V ∗
j+1) of f(0) in X. Then each analytic disc in the

neighborhood V ∗
k ∩ c−1(U) of g is ∼c-related to an analytic disc in V. Thus ∼c

is open.

Theorem 6. Let W be a domain in a complex manifold X. Then the map
π : XW → X is a local homeomorphism.



Plurisubharmonic Subextensions As Envelopes of Disc Functionals 561

Proof. First, π is open since c is. We need to show that π is locally injective. Let
f ∈ AW

X. Let U be a neighborhood of q(f ) in XW. Then q−1(U) is a neighbor-
hood of f in AW

X. Find a neighborhood V ∗ of f in AW
X as described before with

V ∗ ⊂ q−1(U). By Proposition 5, q(V ∗) ⊂ U is a neighborhood of q(f ) and π is
injective on q(V ∗).

The Poincaré–Volterra theorem now implies that each connected component of
XW is second countable [1, I.11.7, Cor. 2]. Thus we could turn XW into a complex
manifold with the unique complex structure that makes π holomorphic, except
that we do not know whether XW is Hausdorff. It is evident, though, that XW has
closed points, that is, is T1. By Proposition 5 and [1, I.8.3, Prop. 8], XW is Haus-
dorff if and only if the graph of ∼c is closed in AW

X × AW
X , that is, if whenever

fn → f and gn → g in AW
X and fn ∼c gn for all n, we have f ∼c g.

Note that q has local continuous sections since c does, and that a W-disc struc-
ture on X is therefore nothing but a continuous section σ : X → XW of π (so,
in particular, π is surjective). Condition (N) says that σ extends the tautological
section W → X 0

W that takes a point in W to the class of the constant disc at that
point. Thus we can restate Theorems 3 and 4 as follows.

Theorem 7. Let W ⊂ X be domains in C
n. Suppose that one of the following

two conditions holds.

• There is a continuous section X → X 0
W of π : XW → X extending the tauto-

logical section on W.

• The restriction of π to some connected component of XW is a bijection onto X.

Then, for every upper semicontinuous function φ : W → [−∞, ∞),

Sφ = EAW
X
φ.

4. Hartogs Domains and Kiselman’s Minimum Principle

Let Y be a domain in C
n−1, n ≥ 2. Let r : Y → [0, ∞) be an upper semicontinuous

function and let R : Y → (0, ∞] be lower semicontinuous with r < R. Then

W = {(z ′, zn)∈ Y × C : r(z ′) < |zn| < R(z ′)}
is a Hartogs domain in C

n. It is well known that if W is pseudoconvex, then log r

is plurisubharmonic and logR is plurisuperharmonic. Let

X = {(z ′, zn)∈ Y × C : |zn| < R(z ′)}
be the completion of W.

Assume W is pseudoconvex. We claim that every analytic disc f = (f ′, fn) ∈
AW

X is center-homotopic to a vertical disc of a special kind, where f ′ denotes
(f1, . . . , fn−1). Namely, since f(T) ⊂ W, fn has no zeros on T. Let h be a har-
monic extension of log|fn| to D. Now f is center-homotopic in AW

X to ζ �→
f(sζ) for s < 1 close enough to 1, so we may assume that f is smooth on D. Then
h has a harmonic conjugate k on D that extends continuously to D, so H =
eh+ik : D → C

∗ is continuous with H |D holomorphic and |fn| = |H | on T.
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Hence |fn/H | ≤ 1 on D. Again since f(T) ⊂ W, r � f ′ < |fn| < R � f ′ and so
log r � f ′ < h < logR � f ′ on T. Since log r � f ′ is subharmonic and logR � f ′
is superharmonic, r � f ′ < eh = |H | < R � f ′ on D.

Consider the continuous map [0,1] → AX, t �→ f t, where

f t(ζ) = (f ′(tζ), fn(ζ)H(tζ)/H(ζ)), ζ ∈ D.

For ζ ∈ T, |f t
n(ζ)| = |H(tζ)| and so f t(T) ⊂ W for every t ∈ [0,1]. Also, f t(0) =

f(0) for all t ∈ [0,1] and f 1 = f , so f is center-homotopic to the vertical disc
g = f 0 ∈ AW

X with g(ζ) = (f ′(0), fn(ζ)H(0)/H(ζ)). Note that |gn| = |H(0)|
on T.

There are two cases. Iffn and thereforegn has no zeros in D, theng is constant, so
in particular f(0) = g(0)∈W. If fn has k ≥ 1 zeros in D, then fn/H is a Blaschke
product with k factors. Hence, either f(D) ⊂ W and f is center-homotopic to a
constant disc, or f is center-homotopic to an analytic disc of the form (f ′(0), sB)∈
AW

X , where B is a Blaschke product and r(f ′(0)) < s < R(f ′(0)).
This shows that AW

X has one connected component Ak for each winding number
k ≥ 0, and within each component, two discs with the same center are center-
homotopic. Clearly, c(A 0) = W and c(Ak) = X for k ≥ 1, where c is the center
map. The quotient XW has a component q(A 0) biholomorphic to W as well as
components q(Ak), k ≥ 1, that are each biholomorphic to X. In particular, XW is
Hausdorff. Evidently, X is not a schlicht disc extension of W. Finally, Theorem 4
implies that our disc formula holds for the pair W ⊂ X.

The disc formula provides a new proof of Kiselman’s minimum principle [8,
Thm. 2.2] in the present setting. Let φ : W → [−∞, ∞) be plurisubharmonic and
rotation-invariant in the last variable. Define

ψ : Y → [−∞, ∞), ψ(z ′) = inf
(z ′,zn)∈W

φ(z ′, zn).

Let us refer toψ as the infimum function ofφ. Kiselman’s minimum principle states
that ψ is plurisubharmonic. We will prove it by showing that ψ(z ′) = Sφ(z ′, zn)
for all (z ′, zn)∈X \W.

It is clear that Sφ(z ′, zn) ≤ ψ(z ′) for (z ′, zn) ∈ X \W. To prove the opposite
inequality, take z = (z ′, zn) ∈ X and ε > 0, and then find f = (f ′, fn) ∈ AW

X

with f(0) = z and Hφ(f ) < Sφ(z)+ ε. As before, there is a continuous function
H : D → C

∗ such that H |D is holomorphic, |fn| = |H | on T, and r � f ′ < |H | <
R � f ′ on D. Let

F : D × D → C
n, F(ζ, ξ) = (f ′(ζ),H(ζ)ξ).

Then F(D, T) ⊂ W and so, for each ξ ∈ T, F(·, ξ) is an analytic disc in W and

ψ(z ′) ≤ φ(F(0, ξ)) ≤
∫

T

φ(F(·, ξ)) dλ.

If we average over ξ, change the order of integration, and use the rotation invari-
ance of φ, we get
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ψ(z ′) ≤
∫

T

∫
T

φ(F(ζ, ξ)) dλ(ξ) dλ(ζ)

=
∫

T

φ(F(ζ, fn(ζ)/H(ζ))) dλ(ζ) = Hφ(f ).

This proves that ψ(z ′) ≤ Sφ(z ′, zn).
The observation that Kiselman’s infimum function is a plurisubharmonic sub-

extension can be generalized. Let W be a Hartogs domain in C
n = C

n−1×C such
that if (z1, . . . , zn)∈W and η ∈ T, then (z1, . . . , zn−1, ηzn)∈W. Let p : W → C

n−1

be the projection (z1, . . . , zn) �→ (z1, . . . , zn−1), and let Y be the domain p(W ) in
C

n−1. For every y ∈ Y, each vertical fibre p−1(y) is a disjoint union of at most
one disc and some number of annuli, possibly none, all centered at the origin in
{y} × C. Define an upper semicontinuous function r : W → [0, ∞) and a lower
semicontinuous function R : W → (0, ∞] as follows. If z ∈W is contained in an
annulus in p−1(p(z)), then r(z) is the inner radius and R(z) the outer radius of
the annulus. If z is contained in a disc in p−1(p(z)), then R(z) is the radius of the
disc and r(z) = 0.

Suppose W is pseudoconvex. Then log r is plurisubharmonic and logR is
plurisuperharmonic. If p−1(y0) contains a disc for some y0 ∈ Y, then p−1(y)

contains a disc for all nearby y ∈ Y, so log r = −∞ on an open subset of W.

Since W is connected, log r = −∞ on all of W, so every vertical fibre is a disc or
a punctured disc. The latter are ruled out by the Kontinuitätssatz. Thus pseudo-
convex Hartogs domains are divided into two classes: the complete ones, whose
vertical fibres are discs; and the incomplete ones, whose vertical fibres are unions
of annuli.

We assume that W is pseudoconvex and incomplete. Kiselman showed that
identifying each annulus in each vertical fibre of W to a point yields a connected
Hausdorff space A that is a pseudoconvex Riemann domain over Y [8, Prop. 2.1,
Cor. 2.3]. Now r and R induce functions on A that are (respectively) plurisubhar-
monic and plurisuperharmonic, and W is reincarnated as the Hartogs domain

W = {(a, ζ)∈A × C : r(a) < |ζ| < R(a)}
over A with completion

X = {(a, ζ)∈A × C : |ζ| < R(a)},
in which A is embedded as A × {0}.

Let φ : W → [−∞, ∞) be plurisubharmonic and rotation-invariant in the sense
that φ(a, ηζ) = φ(a, ζ) for all (a, ζ)∈W and η ∈ T. Define the infimum function

ψ : A → [−∞, ∞), ψ(a) = inf
(a,ζ)∈W

φ(a, ζ).

Kiselman’s minimum principle states that ψ is plurisubharmonic. Our generaliza-
tion of the principle is as follows.

Theorem 8. Let W be an incomplete pseudoconvex Hartogs domain in C
n with

completion X over the Kiselman quotient A of W.
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(i) If φ is a plurisubharmonic and rotation-invariant function on W, then the in-
fimum function ψ of φ is the restriction to A of the envelope EAW

X
φ.

(ii) For every upper semicontinuous function φ on W, the envelope EAW
X
φ is pluri-

subharmonic onX and is therefore the largest plurisubharmonic subextension
of φ to X.

We remark that we are not giving a new proof of Kiselman’s minimum principle
because the principle is used in the proof that A is pseudoconvex, which implies
that X is Stein. We need this in our proof of (ii) in order to apply Theorem 4.
Statement (i), proved from scratch by the method used previously, shows that (ii)
does indeed generalize Kiselman’s minimum principle.

Proof of Theorem 8. (i) For a ∈ A, ψ(a) is the infimum of Hφ(f ) over all ana-
lytic discs f ∈ AW

X of the form f(ζ) = (a, sζ) with r(a) < s < R(a). Hence
ψ ≥ EAW

X
φ|A. The opposite inequality can be proved as above by assuming (as

we may) that f is smooth on D.

(ii) Let B be the connected component of AW
X containing an analytic disc of the

form ζ �→ (a, sζ) with a ∈ A and r(a) < s < R(a). Then B contains all ana-
lytic discs of the form ζ �→ (a, sα(ζ)) with a ∈ A, r(a) < s < R(a), and α ∈
Aut D, so B covers X. As before, we can prove that every analytic disc in B is
center-homotopic to an analytic disc of the latter form. Therefore, if two analytic
discs in B have the same center then they are center-homotopic. Since X is Stein,
Theorem 4 now implies that our disc formula holds for the pair W ⊂ X.
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