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Log-terminal Smoothings of
Graded Normal Surface Singularities

Jonathan Wahl

Introduction

Let (X, 0) be the germ of an isolated complex normal singularity. Suppose that
its canonical module KX is Q-Cartier; thus, the canonical sheaf KX−{0} has some
finite order m. The index 1 (or canonical ) cover (T, 0) → (X, 0) is obtained by
normalizing the corresponding cyclic cover. Note that (T, 0) has an isolated nor-
mal singularity with KT Cartier. If T is Cohen–Macaulay, then it is Gorenstein;
we call such an (X, 0) Q-Gorenstein. (Warning: some authors require only that
X be Cohen–Macaulay with KX Q-Cartier.) That T is Cohen–Macaulay is auto-
matic ifX has dimension 2 but not in general, even ifX itself is Cohen–Macaulay.
In fact, Singh [16, 6.1] constructs an example of an isolated 3-dimensional ra-
tional (hence Cohen–Macaulay) singularity X with KX Q-Cartier whose index 1
cover is not Cohen–Macaulay.

Now suppose (X, 0) is a Q-Gorenstein normal surface singularity (e.g., a ra-
tional singularity). We will say that a smoothing f : (X , 0) → (C, 0) of X is
Q-Gorenstein if it is the quotient of a smoothing of the index 1 cover of X. The
basic examples are certain smoothings of the cyclic quotient singularities of type
rn2/rnq−1, first mentioned in [8, (5.9)]. In this particular case, X is a cyclic quo-
tient of C3—it is even a terminal singularity—and a cyclic quotient by a smaller
group is the total space of the smoothing of the index 1 cover of X (which is
an Arn−1-singularity). The importance of Q-Gorenstein smoothings was first no-
ticed in the work of Kollár and Shepherd-Barron [7]. But even if the (now 3-
dimensional) total space X of a smoothing of X has KX Q-Cartier, it does not
immediately follow that the smoothing is Q-Gorenstein.

The main point of this work is that, in an important special case, one can de-
duce that a smoothing is Q-Gorenstein by proving the much stronger result that
the total space X can be chosen to be log-terminal. The result is surprising since
the original singularities X are generally not even log-canonical (i.e., have dis-
crepancies −∞).

In the early 1980s the author constructed many examples (both published and
unpublished) of surface singularities that admit smoothings with Milnor num-
ber 0—that is, smoothings whose Milnor fibre is a QHD (rational homology disk).
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The simplest of these were the aforementioned n2/nq − 1 cyclic quotients. These
smoothing examples were constructed in one of two ways. The first was an ex-
plicit “quotient construction” [19, 5.9]. One starts with (a germ of) an isolated
3-dimensional Gorenstein singularity (Z , 0); a finite group G acting on it, freely
off the origin; and a G-invariant function f on Z whose zero locus (W, 0) has an
isolated singularity (and hence is both normal and Gorenstein). Then f : (Z , 0) →
(C, 0) is a smoothing ofW with a Milnor fibreM, which in these examples is sim-
ply connected. One also has f : (Z/G, 0) → (C, 0), which gives a Q-Gorenstein
smoothing of (W/G, 0) ≡ (X, 0) with Milnor fibre M/G (note that G acts freely
on M). Here the order of G equals the Euler characteristic of M, so M/G has
Euler characteristic 1 and hence is a QHD Milnor fibre. In all these examples, Z
is actually canonical Gorenstein; therefore, the total space Z/G of the smoothing
is log-terminal.

Yet other examples can be constructed using only Pinkham’s [13] method of
“smoothing with negative weight” for a weighted homogeneous singularity. For
these cases (e.g., the triply infinite family of type M in [18, (8.3)]), the properties
of the total space of the smoothing are much less obvious and it is not at all clear
whether the smoothings are Q-Gorenstein.

The problem of finding 3-manifolds that “nicely bound” rational homology
disks became of interest in symplectic topology, and it led to a proof that our old
list of examples was complete in the weighted homogeneous case (see [18] and
[1]). Thus, one knows the resolution dual graph of all weighted homogeneous sur-
face singularities admitting a QHD smoothing. Nonetheless, this explicit class of
singularities is rather mysterious. We show that such smoothings are Q-Gorenstein
and can even be assumed to have log-terminal total space. In Theorem 3.4 we prove
the following claims.

Theorem. Let (X, 0) be a weighted homogeneous surface singularity admitting
a QHD smoothing. Then:

(1) a QHD smoothing occurs over a 1-dimensional smoothing component of
(X, 0); and

(2) for f : (X , 0) → (C, 0) the induced smoothing over the normalization of that
component, (X , 0) is log-terminal and the smoothing is Q-Gorenstein.

The first statement is [21, Cor. 8.2] (one guesses that the smoothing component
is smooth, so normalization is unnecessary); the main point is the second asser-
tion. We do not claim that log-terminality remains true after base-change (see
Remark 3.5(1) to follow).

Our main technical tool is to define and study a graded discrepancy α(X) for
an isolated normal graded singularity X with KX Q-Cartier. The blow-up of the
weight filtration Z → X has irreducible exceptional fibre E, so that (Z,E) is a
log-terminal pair. Then in Definition 1.2 we define α(X) to be the discrepancy of
K along E. This invariant depends not only on X but upon the grading as well. A
key observation (Proposition 1.4) is that

α(X) > −1 �⇒ X is log-terminal.
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The following basic result relates the graded discrepancy of a singularity to that
of a graded hypersurface section (see Theorem 1.5 and Corollary 1.6).

Theorem. Let X = SpecA be a graded normal isolated singularity, withKX Q-
Cartier, whose minimal set of generators z1, z2, . . . , zt has weights m1,m2, . . . ,mt

with GCD equal to 1. Suppose X = SpecA/(f ) is normal and graded with iso-
lated singularity. Assume further one of the following:

(1) f = zt and m1, . . . ,mt−1 have GCD equal to 1;
(2) f ∈m2

A.

Then α(X ) = α(X)+ weight f.

Corollary. Under the foregoing hypothesis, if in additionX is a Q-Gorenstein
surface singularity with α(X) > −2, then X is log-terminal (and, in particular,
the corresponding smoothing is Q-Gorenstein).

If X is a weighted homogeneous surface singularity, we show in Section 2 how
to compute α(X) in terms of some topological invariants χ and e introduced by
W. Neumann. Proposition 2.1 shows that

α(X) = −1− (χ/e).

But [18] limits greatly the possible resolution dual graphs of the singularities with
a QHD smoothing; computing χ and e, we conclude that α(X) > −2 in those
cases. (Although [1] pinned down the exact list of graphs, that more precise result
is not needed in this proof.) Thus X is the total space of a smoothing of X and, by
the theorem just stated, α(X ) > −1, so it is log-terminal.

Finally, we apply an old result of Watanabe [23] in Corollary 4.6 to show exactly
which weighted homogeneous surface singularities are Q-Gorenstein (an analytic
condition). The invariant χ/e shows up naturally.

We have profited from conversations with János Kollár and Sándor Kovács.

1. Seifert Partial Resolution and Graded Discrepancy

Let z1, . . . , zt be coordinate functions on an affine space C t, where zi has positive
integer weight mi. Assume that GCD(m1, . . . ,mt) = 1. Blowing up the corre-
sponding weight filtration gives the weighted or filtered blow-up π : Z → C t, an
isomorphism off π−1(0) ≡ E , that is an irreducible Weil divisor isomorphic to the
corresponding weighted projective space. Note that Z is covered by t affine va-
rieties Ui, each of which is a quotient of an affine space Vi by a cyclic group of
order mi. Consider on V1 coordinates x, y2, . . . , yt , related to the zi via

z1 = xm1, z2 = xm2y2, . . . , zt = xmtyt .

U1 is the quotient of V1 by the action of the cyclic group generated by

S = [−1/m1,m2/m1, . . . ,mt/m1] = (1/m1)[−1,m2, . . . ,mt ],

where we are using the notation
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[q1, . . . , qt ] := (exp(2πiq1), . . . , exp(2πiqt )).

The hyperplane {x = 0} in V1 maps onto the exceptional fibre E ∩ U1.

The group 〈S 〉 acts on V1 without pseudo-reflections. We describe the locus
where the action is not free. For each prime p dividingm1, let Jp = {j | 2 ≤ j ≤ t,
(p,mj) = 1}; it is nonempty. If j /∈ Jp, then Sm1/p acts trivially in the j th slot.
Thus Sm1/p acts trivially on the linear subspaceV1,p defined by the vanishing of x
and the yj with j ∈ Jp. The codimension of V1,p inV1 is 1+ #Jp, and the union of
the images in U1 gives the singular locus there.

Let X = SpecA be an isolated normal singularity with good C∗-action. Then
the graded domain A = ⊕

Ak can be written as the quotient of a graded polyno-
mial ring C[z1, . . . , zt ], where the weightsmi of the zi are assumed to have GCD 1.
Assume further that one has chosen a minimal set of generators—in other words,
that the embedding dimension is t. Denote the weight filtration by Is = ⊕

k≥s Ak ,
and consider ∞⊕

s=0

Isu
s ⊂ A[u].

The blow-up of the weight filtration of A is

π : Z = Proj
∞⊕
s=0

Isu
s → X = SpecA,

which is sometimes called the Seifert partial resolution ofX (of course, it depends
on the choice of grading). It is an isomorphism off π−1(0) ≡ E, an irreducible
Weil divisor isomorphic to ProjA.

Further, π : Z → X is equal to the proper transform in Z of the subvariety
SpecA ⊂ C t, so Z is covered by closed subvarieties Ūi of the affine Ui above.
More precisely, let {gα(z1, . . . , zt )} be homogeneous generators of the graded ideal
defining X. Then the proper transform V̄1 of X in V1 is the affine subvariety with
coordinate ring C[x, y2, . . . , yt ]/(gα(1, y2, . . . , yt )) ≡ A1, which is a polynomial
ring in x over the subring generated by y2, . . . , yt . Note that V̄1 is smooth because
X has an isolated singularity (for this and other details, consult e.g. Flenner [5] or
[20, (2.1)]); thus, (Z,E) is a log-terminal pair that is locally the cyclic quotient
of a smooth space plus normal crossing divisors. In particular, the corresponding
affine open subset ofZ is Ū1 = V̄1/〈S 〉. Since the zi form a minimal set of genera-
tors, all yi are nonzero in A1. So the group acts on V̄1 “without pseudo-reflections”;
that is, it acts freely off the intersections V̄1 ∩ V1,p ≡ V̄1,p, which are necessarily
of codimension at least 2 (but possibly less than 1+ #Jp).

We wish to compare the Seifert partial resolution (Z,E) → (X, 0) with that of
an appropriate hypersurface section. So let f ∈ Ad be a homogeneous element
with the property that the hypersurfaceX ′ = SpecA/(f ) ⊂ X is also normal with
isolated singularity. Then f = 0 on Z consists of the proper transform Z ′ of X ′
plus the set E ′ = E ∩Z ′, which is irreducible and isomorphic to ProjA/(f )). We
are interested in achieving the condition
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(∗) E ′ is not contained in the singular locus of Z.

When (∗) is satisfied, one has

(∗∗) generically E ′ is a Cartier divisor on both E and Z ′.

To verify (∗), it suffices to check in some Ūi for which the pull-back of E ′ is
nonempty. The singular locus is the image of the fixed point locus in V̄i . So in V̄1,
say, write f = xdf(1, y2, . . . , yt ) ≡ xdf̄ . Assume that (f̄ , x) is not the unit ideal.
The condition (∗) means that the set x = f̄ = 0 is not contained in any V̄1,p.

Example. LetX = C3, with coordinates z1, z2, z3 having weights 2, 2,1(respec-
tively). Then V1 has coordinates x, y2, y3, and the action of S is (1/2)[−1, 2,1];
so U1 has coordinates u = x 2, v = xy3, w = y2

3, and y2. In other words, U1 is a
line cross the ordinary double point given by uw = v2, with exceptional fibre de-
fined by u = v = 0, and singular locus the line cross the point u = v = w = 0.
Consider now the proper transform of f = z3 in U1 defined by v = w = 0. Its
intersection with the exceptional fibre is exactly the singular locus of U1. Thus,
(∗) is not satisfied.

The problem in the preceding example was that the weights other than that of z3

were not relatively prime. However, we have the following result.

Proposition 1.1. Let X = SpecA be a graded normal isolated singularity
with the minimal set of weights m1,m2, . . . ,mt having GCD = 1. Suppose X ′ =
SpecA/(f ) is normal and graded and with isolated singularity. Then condition
(∗) is satisfied in both of the following cases:

(1) f = zt and m1, . . . ,mt−1 have GCD = 1;
(2) f ∈m2

A.

Proof. Consider the first case. As already indicated, it suffices to look in the V̄i .
For i = t, the corresponding f̄ is equal to 1 and so Ūt ∩ E ′ = ∅. One may there-
fore restrict to, say, V̄1. Here f̄ = yt .

Now, A/(zt ) is graded normal with isolated singularity and its minimal set of
generators has relatively prime weights m1, . . . ,mt−1. Thus, the relevant affine V ′

1
has coordinate ring A1/(yt ) with an induced action by 〈S 〉 that is still free off a
set of codimension at least 2.

But suppose there exists a prime p such that the locus x = yt = 0 is contained
in V̄1,p. Then Sm/p would act trivially on a divisor of V ′

1. This is a contradiction.
The second case is proved similarly.

Now suppose KX is Q-Cartier, so that for some positive integer n one has on U =
X − {0} that ω⊗n

U
∼= OU . Then nKZ has some integral coefficient c along E, and

we make the obvious definition.

Definition 1.2. The graded discrepancy α(X) is c/n.
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Remark 1.3. Note that α(X) depends upon the grading. For instance, it is easy
to check that if C2 has coordinates with weights 1 and m then α = m.

However, we also have the following statement.

Proposition 1.4. If α(X) > −1, then X is log-terminal. If α(X) ≥ −1, then
X is log-canonical.

Proof. The key point is that the pair (Z,E) is log-terminal. So, if α(X) ≥ −1, re-
solving singularities will not give any exceptional components whose discrepancy
is less than α(X). (See [6, Sec. 5.2] for this and other facts about log-terminal
singularities, such as that they are cyclic quotients of rational Gorenstein singu-
larities and hence Cohen–Macaulay.)

On the other hand, even when α(X) is smaller than −1, it can be a useful invariant
despite the usual discrepancy of the singularity being −∞.

Example. Let Y be a smooth projective variety and L an ample line bundle.
Then the coneX = Spec

⊕
i≥0 /(Y,L⊗i ) is a normal graded ring with isolated

singularity. The Seifert partial resolution has total space the geometric line bundle
Z = V(L−1) → Y, and the exceptional divisorE is the 0-section. If there exist in-
tegers m and n �= 0 such that K⊗n

Y
∼= L⊗m, then KX is Q-Cartier. Writing KZ ≡

cE and using the adjunction formula, one easily finds that

α(X) = −1− (m/n).

An important use of the invariant α(X) arises when taking graded hypersurface
sections—for instance, when one views X as the total space of a graded smooth-
ing of a singularity of dimension one less.

Theorem 1.5. Let π : Z → X = SpecA be the Seifert partial resolution of an
isolated normal singularity with good C∗-action for which KX is Q-Cartier. Sup-
pose f ∈Ad is such that the Cartier divisor X ′ defined by f also has an isolated
normal singularity and satisfies condition (∗). Then:

(1) the Cartier divisor defined by f on Z is generically dE+Z ′, where Z ′ → X ′
is the Seifert partial resolution of X ′;

(2) the graded discrepancies are related by

α(X) = α(X ′)+ d.

Proof. The first assertion follows from the previous discussion relating weighted
blow-up of a singularity to the proper transform in the weighted blowing-up of a
graded affine space. Condition (∗) means that generically along E ′ = E ∩ Z ′,
E and Z are Cartier divisors. For the second assertion, one can write generically
KZ ≡ αE. By adjunction, generically alongE ′ one hasKZ ′ ∼= OZ ′(αE+Z ′). But
the divisor of f is trivial on Z, so generically Z ′ ≡ −dE. The result follows.
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Corollary 1.6. Let X = SpecA be an isolated normal singularity with good
C∗-action and with KX Q-Cartier. Suppose f ∈Ad also defines an isolated nor-
mal singularity X ′ and that f satisfies either of the conditions of Proposition 1.1.
If a(X ′) > −2 (resp. a(X ′) ≥ −2), thenX is log-terminal (resp. log-canonical ).

Suppose X ′ is a singularity with good C∗-action. A deformation of X ′ is said to
have negative weight if, roughly speaking, one perturbs the defining equations by
terms of smaller degree. Specifically, a smoothing of negative weight consists of
an isolated singularity X with good C∗-action, a function f : X → C of some
positive weight d, and a graded isomorphism of the special fibre with X ′. Even if
KX ′ is Q-Cartier, KX need not be (see Remark 3.2). Yet we do have the following
result.

Corollary 1.7. Let X ′ be an isolated normal singularity with good C∗-action
and withKX ′ Q-Cartier. Suppose f : X → C gives a smoothing of X ′ of negative
weight, so that KX is Q-Cartier. If a(X ′) > −2, then:

(1) X is log-terminal—in particular, rational and Q-Gorenstein;
(2) X ′ is Cohen–Macaulay and, in fact, Q-Gorenstein;
(3) the smoothing is Q-Gorenstein—in particular, a quotient of a corresponding

smoothing of the index 1 cover of X ′.

Proof. If X and X ′ have the same embedding dimension, then f satisfies Propo-
sition 1.1(2). Otherwise, f is among a minimal set of generators for the graded
ring of X while the other generators have weights that are those of X ′; thus, the
other weights have GCD = 1. The first assertion is therefore just Corollary 1.6
combined with familiar facts about log-terminal singularities. The index1 cover T
of X has an isolated canonical Gorenstein singularity [6, Cor. (5.2.1)], which in-
duces a cover T ′ → X ′ that agrees with the index 1 cover of X ′ off the singular
point. But T ′ is Cohen–Macaulay (since T is), so it is normal and thus equal to
the index 1 cover of X ′.

2. K for a Normal Graded Surface Singularity

We recall briefly the topological description of normal surface singularities X =
SpecA with good C∗-action; the analytic classification will be described later.

One has the cyclic quotient singularities of type n/q, where 0 < q < n, (q, n) =
1, defined as the quotient of C2 by the cyclic group action generated by

[1/n, q/n].

Writing the continued fraction expansion n/q = b1 − 1/b2 − · · · − 1/bs , each
bi ≥ 2, the minimal resolution of the singularity consists of a string of rational
curves with dual graph

−b1

•
−b2

• ��� ���

−bs
•
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This singularity is isomorphic to n/q ′, where qq ′ ≡ 1 mod n, and the continued
fraction expansion n/q ′ gives the bi in the opposite order.

Every other normal surface singularity has a unique C∗-action with minimal
good resolution graph / that is star-shaped:

n2/q2 •
������ ..

. . . . . .. nt−1/qt−1•
� � � � � �

• ����� •
�����

n1/q1 • ������ • −d�
[g]

• �����
nt /qt•

The strings of / are described uniquely by the continued fractions shown, starting
from the node. The central curve C has genus g. If t = 0 then one has a cone. If
g = 0, minimality and the exclusion of cyclic quotients require t ≥ 3. The Seifert
partial resolution of the singularity contains the one exceptional curve C with t
cyclic quotient singularities on it.

The graph / completely determines the topology of the singularity (i.e., gives
the Seifert invariants). One has two topological invariants introduced by Neumann
(e.g., [11, p. 250]):

e = d −
t∑
i=1

qi

ni
;

χ = 2g − 2 + t −
t∑
i=1

1

ni
= 2g − 2 +

t∑
i=1

(
1− 1

ni

)
.

While e > 0, one can easily show that χ < 0 exactly for quotient singularities
(which are log-terminal) and that χ = 0 exactly for the familiar list of graded
log-canonical singularities.

Let (X̃,E) → (X, 0) be the minimal good resolution with resolution graph
as described previously. The line bundle KX̃ is numerically equivalent to a Q-
combination of exceptional curves whose coefficients we examine. For a cyclic
quotient, this is an exercise using Cramer’s rule (cf. [8, 5.9.(iii)]); but we shall not
use this. Exclude the cyclic quotients and consider the Q-cycle Z ≡ −(K + E),
writing in terms of cycles supported on the t strings plus a multiple of the central
curve C:

Z =
t∑

k=1

Yk + βC.

We solve for each Yk in terms of nk , qk , and β, and then we solve for the appro-
priate β. For any irreducible exceptional curve F, set dF = −F ·F and denote by
uF the number of neighbors of F. Thus Z · F = −(dF + 2gF − 2 + uF − dF ) =
2 − 2gF − uF , so that Z · F equals 1 on the t ends and 2 − 2g − t at F = C (and
is 0 elsewhere).

Consider first one string of type n/q. Suppose the exceptional curves count-
ing out from C are E1,E2, . . . ,Es. Let ei be the Q-cycle supported on the string
defined by ei(Ej ) = −δij . Then the cycle Y = βe1 − es dots to −β with E1, to 1
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with Es , and to 0 with the intermediate Ej . It is easy to see that the Q-cycle e1 has
coefficient 1/n at Es and that its coefficients increase strictly as one approaches
E1, where it is q/n. By the same argument, es has coefficient 1/n at E1 that is in-
creasing to q ′/n at Es , where as usual qq ′ ≡ 1 mod n. In particular, the coefficient
of Y at E1 is (βq− 1)/n, and the coefficient at the end Es is (β− q ′)/n. Note that
if s = 1 then q = q ′ = 1, so the formulas are still correct.

Choosing the corresponding Yk for each string, we show that for appropriate β,
the cycle Z = ∑ t

k=1Yk +βC represents −(K+E). Given the coefficient of each
Yk at the curve intersecting C, the condition Z · C = 2 − 2g − t becomes

−βd +
t∑

k=1

βqk − 1

nk
= 2 − 2g − t.

We therefore must set
β = χ/e.

Proposition 2.1. Writing KX̃ numerically as a rational combination of excep-
tional curves, the coefficient of the central curve C is −1− (χ/e).

Corollary 2.2. Suppose X is a Q-Gorenstein weighted homogeneous surface
singularity (e.g., g = 0) and not a cyclic quotient. Then the graded discrepancy is

α(X) = −1− (χ/e).

Proof. The Seifert partial resolution is obtained from the minimal good resolution
by blowing-down the t strings. The parenthetical assertion in the corollary (that
a weighted homogeneous singularity with rational central curve is Q-Gorenstein)
follows, for instance, from the main theorem of [10]; this implies the stronger re-
sult that such an X is a quotient of a complete intersection.

Next, it is natural to find the numerical (i.e., topological) order of the class of KX

(or equivalently KX̃ +E) in the discriminant group 7 = E∗/E of the singularity.
A multiple rZ is integral if and only if its image in 7 dots to 0 with every element
in the discriminant group or with any set of generators. Yet the duals of any t − 1
of the end curves are generators, and Z dotted with an end curve dual is equal to
the (negative of the) coefficient of the corresponding end curve in Z. At the end
of the kth string, this is

(β − q ′
k)/nk.

We summarize as follows.

Proposition 2.3. Consider the graph of a weighted homogeneous surface sin-
gularity as described before. Then:

(1) the coefficient of C in −K is 1+ (χ/e);
(2) all other coefficients of −K are strictly smaller than 1+ (χ/e); and
(3) the order of the class of K in the discriminant group is the least common

denominator for any t − 1 of the terms

(χ/e − q ′
k )/nk.
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The second assertion must be checked separately for quotient singularities.
Combining Corollary 2.2 with Corollary 1.7, one sees there is a special role

played by singularities with χ/e < 1. Observe that qi = 1 means the correspond-
ing string has length 1. The following result is easily verified from the definitions
of χ and e.

Lemma 2.4. Consider a weighted homogeneous surface singularity with ratio-
nal central curve of self-intersection −d and the Seifert invariants (ni, qi), 1 ≤
i ≤ t. Then χ/e < 1 in each of the following cases:

(1) t = 3 and either
(a) d ≥ 4,
(b) d = 3 and q1 = 1, or
(c) d = 2 and q1 = q2 = 1;

(2) t = 4, d ≥ 3, and q1 = q2 = q3 = 1.

3. The Main Theorem

Let (X, 0) be the germ of a normal surface singularity, topologically the cone over
its neighborhood boundary L, its link. This L is a compact 3-manifold and can be
viewed as the boundary of a tubular neighborhood of the exceptional fibre in a res-
olution of X. If now f : (X , 0) → (C, 0) is a smoothing, then the general fibre M
of f , the Milnor fibre, is a compact 4-manifold with boundary L. Note thatM has
the homotopy type of a complex of dimension 2, and its first Betti number is 0.
If N denotes the link of X , then N is a compact 5-manifold containing L whose
complement fibres over the circle via f/|f |, with general fibre M; this is called
an open-book decomposition of N. In particular, N can be constructed from M by
adjoining cells of dimension > 2, so that they have the same fundamental group
and H2(M) → H2(N ) is surjective. For further details, see [8, Lemma 5.1].

Before stating and proving the main theorem, we start with a general proposition.

Proposition 3.1. Let f : (X , 0) → (C, 0) be a smoothing of a normal surface
singularity (X, 0) such that the Milnor fibre M is a rational homology disk (i.e,
b2(M) = 0). Then:

(1) (X, 0) is a rational surface singularity;
(2) (X , 0) is a rational 3-fold singularity;
(3) the link N of X is a rational homology sphere;
(4) Pic(X − {0}) is finite and so KX is Q-Cartier.

Proof. That (X, 0) is rational follows by the Durfee–Steenbrink formulaµ0+µ+ =
2pg(X) [17]. Elkik’s theorem [4] then implies that (X , 0) is rational. As mentioned
previously, H1(M;Q) ∼= H1(N;Q) = 0 in general and H2(N;Q) = 0 because
M has no rational homology. Thus, the compact 5-manifold is a rational homol-
ogy sphere.

Following Mumford’s original arguments in [9], let U = X − {0} and consider
the cohomology sequence
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H1(U, OU) → H1(U, O∗
U) → H 2(U, Z).

The first term is 0 because the depth of X is 3. The 5-manifold N is homotopic
to U, so H 2(U, Z) ∼= H 2(N, Z) is finite; this is then isomorphic to the torsion in
H1(N;Z), which is in turn isomorphic to H1 of the Milnor fibre. In particular,
Pic(U) is finite.

Remark 3.2. Artin component smoothings of a rational surface singularity are
definitely not Q-Gorenstein (except for the rational double points), for the Milnor
fibre—being diffeomorphic to the minimal resolution—is simply connected and
so is not the quotient of the Milnor fibre of the index 1 cover. In fact, the total
space X of such a smoothing does not have KX Q-Cartier.

Remark 3.3. As mentioned in the Introduction, it does not follow immediately
from Proposition 3.1 that the total space X is Q-Gorenstein, since it is not clear
that its index1 cover Y → X is Cohen–Macaulay. In particular, Y could conceiv-
ably give a smoothing of a nonnormal model of the index 1 cover of X.

We now state and prove the main theorem of this paper.

Theorem 3.4. Let (X, 0) be a weighted homogeneous surface singularity that
possesses a rational homology disk smoothing. Then the following statements
hold.

(1) The smoothing is induced by the graded smoothing f : (X , 0) → (C, 0) com-
ing from a 1-dimensional smoothing component in the base space of the semi-
universal deformation of (X, 0).

(2) (X , 0) is log-terminal, and the smoothing is Q-Gorenstein.

Proof. The result is known for the relevant cyclic quotients by explicit construc-
tion, so we skip this case. The grading onX extends to a grading on the base space
and total space of the semi-universal deformation. According to [21, Cor. 8.2], a
rational homology disk smoothing occurs over a 1-dimensional smoothing com-
ponent; it must also be graded. We consider the induced smoothing f : (X , 0) →
(C, 0) over the normalization of this component. By Proposition 3.1, KX is Q-
Cartier. By [18, Cor. 2.5], the resolution dual graph of X satisfies one of (1) or (2)
in Lemma 2.4; therefore, χ/e < 1. By Corollary 2.2, it follows that α(X) > −2.
Corollary 1.7 now yields the desired result.

Remark 3.5. (1) As J. Kollár has pointed out, the log-terminality result need not
hold after base-change of the deformation, given that the condition on the weights
in Proposition 1.1 need not hold. For instance, one would not want to consider
the deformation of the elliptic cone given by x3 + y3 + z3 + t 3m = 0; although
the total space is a graded ring, its weights (m,m,m,1) do not induce the original
weights (1,1,1) when one sets t = 0.

(2) It is important to note that, among all the X that admit rational homology
disk smoothings, the only log-canonical examples are the cyclic quotients plus
three more (which are quotients of elliptic cones).
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(3) The proof did not use the precise list of resolution graphs found in [1] but
only the restrictions on the graph found earlier in [18].

4. When Is X QQQ-Gorenstein?

The topological data of a weighted homogeneous surface singularity X is given
by its graph—that is, the data (g, d, {ni/qi}). (We exclude cyclic quotients.) The
additional information of the analytic type is: the central curve C, if g > 0; the
isomorphism class of a conormal divisor D of C of the resolution, which has de-
gree d; and the t points P1, . . . ,Pt on C. A theorem of Pinkham [12] (also due
to Dolgachev) shows that the graph together with this analytic data allows one to
write down the graded pieces of the ring of the singularity. We describe this re-
sult following the approach of Demazure [2], who proved a more general result
describing graded normal domains of any dimension.

Consider a Q-divisor on C, say F = =rjQj , where rj ∈ Q and Qj ∈ C. Two
such divisors are equivalent if their difference is an integral divisor linearly equiv-
alent to 0. Define the integral divisor

�F  = =�rj Qj

and the invertible sheaf

O(F ) ≡ O(�F  ) ⊂ k(C);
as usual, �r means greatest integer ≤ r.

Now let X = SpecA be a weighted homogeneous surface singularity with
graph / and analytic data C,D, {P1, . . . ,Pt }. Define the Q-divisor

E = D −=(qi/ni)Pi.

The degree of E is the topological invariant e > 0.

Theorem 4.1 [12]. LetX = SpecA be a graded normal surface singularity with
resolution graph / and analytic invariants as before. Then

A =
∞⊕
k=0

Ak =
∞⊕
k=0

H 0(O(kE))T k ⊂ k(C)[T ].

(In the notation of [12] and [20], one has �kE = D(k).)

In [22], Watanabe computed the graded local cohomology of A (in all dimen-
sions) and hence the canonical sheaf KX of X. Consider the Q-divisor

? = K +=(1 − 1/ni)Pi,

where K is a canonical divisor on C. The degree of ? is the topological invari-
ant χ.

Theorem 4.2 [22, (2.8)]. With notation as before, the dualizing module of A is

ωA =
∞⊕

k=−∞
H 0(C,?+ kE)T k.
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Corollary 4.3 (see also [20, (2.1)]). A is Gorenstein if and only if there is a
t ∈Z with

? ≡ tE;
that is, tqi ≡ 1(ni) for all i and �tE ≡ KC. Necessarily, t = χ/e.

Watanabe’s method yields a formula as well for sKX—namely, the double dual
ω
(s)
A of the sth tensor power of ωA (this is first stated in [23, Lemma 3.2]). By [22,

Thm. 1.6], there is an isomorphism from the group of equivalence classes of cer-
tain Q-divisors whose fractional part involves only the Pi onto the divisor class
group of A; this map sends

F !→
∞⊕

k=−∞
H 0(C,F + kE)T k.

Theorem 4.4 (Watanabe). With notation as before,

ω
(s)
A =

∞⊕
k=−∞

H 0(C, s?+ kE)T k.

Corollary 4.5. sKX is Cartier if and only if there is a t ∈Z with

s? ≡ tE.

Taking degrees, the last analytic condition implies sχ = te. From this equality,
one can easily prove the following statement.

Corollary 4.6. X is Q-Gorenstein if and only if the class of the degree 0
Q-divisor

?− (χ/e)E

is torsion.

Remark 4.7. (1) If X is Q-Gorenstein, then the order of KX in the (analytic)
divisor class group is divisible by the denominator of χ/e written as a reduced
fraction, since t/s = χ/e (cf. Proposition 2.3(3)).

(2) Corollary 4.6 gives an explicit condition on a conormal divisorD such that a
weighted homogeneous singularity is Q-Gorenstein once one fixes the topological
data as well as the isomorphism type of the curve C and the points Pi. Recall that
Popescu-Pampu [14] proved that, for the resolution graph of any normal surface
with fixed analytic type of the reduced exceptional divisor, one can choose normal
bundles so that there exists a Q-Gorenstein singularity with the given topological
and analytic data.

(3) An alternate description of a weighted homogeneous surface singularity A,
due to I. Dolgachev, is

A =
∞⊕
k=0

H 0(U,L−k )/,
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where L is a line bundle on the universal covering space U of ProjA and / ⊂
AutU is a discrete subgroup. From this point of view, the Gorenstein condition
is found by Dolgachev in [3] and the Q-Gorenstein condition is due to Pratousse-
vitch [15].
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