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Locally Nilpotent Derivations of
Rings with Roots Adjoined

Gene Freudenburg & Lucy Moser-Jauslin

1. Introduction

Suppose k is a field of characteristic 0. This paper investigates locally nilpotent
derivations of rings of the form B = R[z], where R is a commutative k-domain
and zn ∈ R for some positive integer n. Such a ring has a natural grading by
Zn, and Theorem 3.1 gives the basic properties of locally nilpotent derivations D
of B that are homogeneous relative to this grading. In particular, D is always a
quasi-extension of a locally nilpotent derivation δ of R, and D2z = 0. There are
two cases that can occur: (i) Dz = 0, in which case kerD is a free module over
ker δ of rank n that is generated by the powers of z; or (ii) Dz �= 0, in which case
kerD = ker δ and zn is a local slice of δ. In the first case, for the quotient maps of
the corresponding Ga-actions, a generic orbit of Spec(R) will divide into n orbits
of Spec(B).

Section 2 reviews some basic theory of locally nilpotent derivations before in-
troducing the absolute degree |f |R of elements of R. In several of our results, it
is important to know whether |f |R ≤ 1—that is, whether f is in the kernel (or is
a local slice) of a nonzero locally nilpotent derivation (LND) of R. Section 3 pro-
vides the fundamental method used in the rest of the paper: Corollary 3.1 shows
that, if zn = f ∈R, then there is a one-to-one correspondence between elements
of δ ∈ LND(R) with δ2f = 0 and homogeneous elements of LND(B). This corre-
spondence is given by choosing the appropriate quasi-extension, and it is a useful
tool for studying the locally nilpotent derivations of B by looking at those of R.

For example, Corollary 3.2 shows that if R is Z-graded, f is Z-homogeneous of
degree coprime to n, and |f |R ≥ 2, then B is rigid, that is, B has no nonzero
locally nilpotent derivations.

Section 4 applies Theorem 3.1 to certain rings that are of transcendence de-
gree 1 over R—namely, rings of the form B = R[x, y], where either xm + y n ∈
R or xmy n ∈ R for relatively prime m and n. In the former case this ring has
a natural Zmn-grading; Theorem 4.1 shows that any homogeneous locally nilpo-
tent derivation D of B satisfies D2x = D2y = 0 and that either Dx = 0 or
Dy = 0. In Section 5, we apply this result to the polynomial ring A[n] over an
integral domain A containing Q while assuming that this ring is Z-graded over A.

Theorem 5.1 provides numerical criteria which, when satisfied, imply that certain
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variables of A[n] are either local slices or invariants for all homogeneous locally
nilpotent derivations.

In Sections 7–9 we apply the theory to Pham–Brieskorn surfaces and three-
folds and also to related varieties. Several authors have studied the Ga-actions
of these varieties (most notably, Kaliman and Zaidenberg [14] and Kaliman and
Makar-Limanov [13]). An important tool in these papers is Mason’s theorem,
which gives a bound for the degrees of f , g,h∈K[t] (a univariate polynomial ring
over a field K) when f + g+h = 0. Mason’s theorem is useful because, if B is a
commutative Q-domain and D is a nonzero locally nilpotent derivation of B, then
B ⊂ K[t]; here K is the field of fractions of the kernel of D and t ∈ B is a local
slice of D. Thus, Mason’s theorem can be applied to elements of B. Yet the degree
bounds that it yields do not settle all cases, and these bounds are weakened when
the theorem is generalized to more than three terms. Our results provide additional
tools that are used in conjunction with Mason’s theorem to show that certain types
of Pham–Brieskorn threefolds are rigid. The version of Mason’s theorem that we
use is presented in Section 6.

Mason published the result that bears his name in 1984 [20], although it orig-
inally appeared in the 1981 paper of Strothers [25]. Proofs can also be found in
[16, Thm. 7.1] and [22, Thm. 4.3.1]. Several authors have generalized Mason’s
theorem to more than three terms; see for example [1] and [8].

Preliminaries. We assume throughout that k is a ground field of characteris-
tic 0 and that rings are commutative. The polynomial ring in n variables over a
ring B is denoted by B [n]. The field of fractions of k[n] is denoted k(n).

By a degree function on a ring B we mean a function deg: B → Z ∪ {−∞}
such that, for all a, b ∈B:

1. deg b = −∞ if and only if b = 0;
2. deg(ab) = deg a + deg b; and
3. deg(a + b) ≤ max{deg a, deg b}.

In this paper we consider gradings of rings by a cyclic group �. Suppose that
the ring B is �-graded: B = ⊕

i∈� Bi. Given i ∈ �, there exists a unique func-
tion hi : B → Bi such that, for each f ∈ B, f = ∑

i∈� hi(f ). Given f ∈ B, the
image hi(f ) is denoted by fi. Elements of Bi are said to be homogeneous and
of degree i. (Note that, if B is a domain and � = Z , then the assignment f �→
max{i | fi �= 0} defines a degree function on B.) For R a subring of B, we say
that B is �-graded over R when R = B0. If k ⊂ B then, for any �-grading of B,
we assume that k ⊂ B0.

A nonzero derivation D ∈ Der(B) is homogeneous if and only if (iff ) there
exists a d ∈ � such that DBi ⊂ Bi+d for all i ∈ �. In this case, the degree of D
equals d.

Two �-gradings B = ⊕
i∈� Bi and B = ⊕

i∈� B̃i are said to be equivalent iff
there exists a group isomorphism α : � → � such that B̃i = Bα(i) for each i ∈�.

Suppose that B is Z-graded: B = ⊕
i∈Z Bi. Then, for any integer n ≥ 2, the

natural projection π : Z → Zn induces a Zn-grading of B. In particular, B =⊕
k∈Zn

Bk , where Bk = ⊕
π(i)=k Bi.
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We say that f , g ∈B are relatively prime iff fB ∩ gB = fgB. This notion gen-
eralizes the definition of relative primeness for elements in a unique factorization
domain. The reader can easily verify the following three properties.

1. If f , g ∈B are relatively prime in B, then f and g are relative prime in B [n] for
each n ≥ 0.

When B is an integral domain, the following two properties also hold.

2. If f , g ∈B are relatively prime, then f m and gn are relatively prime for every
m, n ≥ 1.

3. Let A be a factorially closed subring of B, and let f , g ∈ A. If f and g are
relatively prime in B, then f and g are relatively prime in A.

Acknowledgments. The first author wishes to express his sincere gratitude to
the faculty of the Institut de Mathématiques de Bourgogne for their hospitality dur-
ing June 2009, when research leading to this paper was started. The authors grate-
fully acknowledge the assistance of Daniel Daigle of the University of Ottawa,
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mous referee, whose thorough review led to several corrections and improvements
in the paper.

2. Locally Nilpotent Derivations

We first recall a few basic definitions and facts concerning locally nilpotent deriva-
tions. For a more extensive treatment of the subject, the reader is referred to [12].

Suppose B is a commutative k-algebra. The set of k-derivations of B is denoted
by Derk(B), and the subalgebra of elements at which D ∈ Derk(B) is nilpotent is

Nil(D) = {f ∈B | Dnf = 0 for n � 0}.
We denote the kernel of D by kerD. An ideal I ⊂ B is an integral ideal for D if
DI ⊂ I.

The derivation D ∈ Derk(B) is locally nilpotent if and only if Nil(D) = B. The
set of locally nilpotent derivations of B is denoted by LND(B). If A is a subring
of B, then

LNDA(B) = {D ∈ LND(B) | DA = 0}.
The k-algebra B is said to be rigid if and only if LND(B) = {0} and stably rigid
iff LND(B [n]) = LNDB(B

[n]) for each integer n ≥ 0.
To each nonzero D ∈ LND(B) we associate the function νD on B. Namely, for

nonzero f ∈B,

νD(f ) = min{n∈ N | Dn+1f = 0} and νD(0) = −∞.

Any f ∈B with νD(f ) = 1 is called a local slice for D.

The subalgebra

ML(B) =
⋂

D∈LND(B)

kerD
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is the Makar-Limanov invariant of B. We define a new invariant R(B), the rigid
core of B, as follows. Set ML0(B) = B and, for each n ≥ 1, define MLn(B) =
ML(MLn−1(B)). Then

R(B) =
⋂
n≥0

MLn(B).

Note that R(B) is always a rigid ring and that R(B) = B if and only if B is rigid.
If B is a domain then, for each D ∈ LND(B), the subrings kerD, ML(B), and

R(B) are factorially closed and B∗ ⊂ ML(B). In addition, if D �= 0 then νD is a
degree function and, for each local slice f ,

BDf = (kerD)Df [f ] = (kerD)
[1]
Df .

The following lemma will be needed.

Lemma 2.1. Let B be a k-domain and let D ∈ LND(B). If t ∈ B and if
√
tB is

an integral ideal of D, then Dt = 0.

Proof. Assume that D ∈ LND(B) is nonzero and that
√
tB is an integral ideal of

D for nonzero t ∈B. If n = νD(t), then Dnt is a nonzero element of
√
tB∩kerD.

If m ≥ 0 is such that (Dnt)m ∈ tB, then (Dnt)m ∈ tB ∩ kerD, which means
that tB ∩ kerD �= {0}. Since kerD is factorially closed in B, it follows that t ∈
kerD.

2.1. Homogeneous LNDs

When B is an affine Z-graded k-domain, any D ∈ LND(B) decomposes as a fi-
nite sum of homogeneous derivations, and also the highest-degree homogeneous
summand � of D is locally nilpotent. Furthermore, if Df = 0 for f ∈ B then
�F = 0, where F ∈ B is the highest-degree homogeneous summand of f. One
technique for showing that B is rigid is to show that the only homogeneous locally
nilpotent derivation � of B is � = 0. One loses these kinds of strong properties
in passing from Z-gradings to Zn-gradings.

2.2. Quasi-extensions

Let D : B → B be a derivation of an integral domain B, and let δ : R → R be a
derivation of a subring R ⊂ B. Then D is a quasi-extension of δ if there exists a
nonzero t ∈B such that Ds = t · δs for all s ∈R. One of the main tools we use to
study locally nilpotent derivations for rings graded by Zn is the following.

Lemma 2.2 [12, Lemma 5.38]. Let B be an integral domain containing Q,
and let D : B → B be a derivation that is a quasi-extension of a derivation
δ : R → R for some subring R. If D ∈ LND(B), then δ ∈ LND(R).

2.3. Absolute Degree

Definition 2.1. Suppose B is a commutative k-domain. If B is not rigid then,
given f ∈B, the absolute degree of f is defined by
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|f |B = min{νD(f ) | D ∈ LND(B), D �= 0}.
When B is rigid, we define |f |B = −∞ if f = 0 and |f |B = ∞ otherwise.

It should be noted that this same definition was given by Daigle in [5], where he
uses the term “LND-degree” in place of “absolute degree”. Note also that abso-
lute degree is not a degree function in the standard sense; instead it satisfies the
following properties.

1. |f |B = −∞ if and only if f = 0.
2. |f m|B = m|f |B for all integers m ≥ 0.
3. |fg|B ≥ |f |B + |g|B for all f , g ∈B.

4. |f + κ|B = |f |B for all f ∈B and κ ∈ ML(B) with f , f + κ �= 0.
5. If K is an algebraic extension field of k and BK = K ⊗k B is a domain, then

|f |B ≥ |f |BK
.

If B is Z-graded and affine, then the absolute degree satisfies two additional prop-
erties relative to the grading.

6. Given f ∈B, if F ∈B is the highest-degree homogeneous summand of f then
|f |B ≥ |F |B.

7. If F ∈B is homogeneous and B is not rigid, then there exists a nonzero homo-
geneous D ∈ LND(B) such that

|F |B = νD(F ).

The following well-known result is due to Davenport and dates to 1965; see [7]
and [16].

Theorem 2.1. Let nonzero u, v ∈ k and f , g ∈ k[t] = k[1] be given, where f and
g are not both constant, together with positive integers l and m. Then, relative to
standard degrees in t,

deg(uf l − vgm) ≥ 1

m
(lm − l − m) deg f + 1

unless uf l = vgm identically.

We remark that the condition f and g are not both constant is missing from Dav-
enport’s original formulation of this theorem, but is necessary for the result to be
valid. We shall use Davenport’s theorem to prove the following result. Part (a)
was first given in [19, Lemma 2]; part (b) is new.

Theorem 2.2. Let B be a commutative k-domain, and let D ∈ LND(B) be
nonzero. Suppose u, v ∈ kerD and x, y ∈ B are nonzero and that a and b are
integers with a, b ≥ 2. Assume uxa + vy b �= 0.

(a) If D(uxa + vy b ) = 0, then Dx = Dy = 0.
(b) If D2(uxa + vy b ) = 0 and a and b are not both 2, then Dx = Dy = 0.

Proof. Recall that every element of B may be viewed as a univariate polynomial
over the field K = frac(kerD), since the localization of B at the nonzero elements
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of kerD equals K[t], where t is a local slice of D. In this setting, the degree of
f ∈B equals νD(f ), and elements of B of degree 0 are precisely the nonzero ele-
ments of kerD.

Since a, b ≥ 2, we have ab − a − b ≥ 0. If Dx �= 0 or Dy �= 0, then Daven-
port’s theorem implies

νD(ux
a + vy b ) ≥ 1

b
(ab − a − b)νD(x) + 1 ≥ 1, (1)

so D(uxa + vy b ) �= 0. This proves part (a).
For part (b), assume that a ≥ 3 or b ≥ 3. Then ab − a − b ≥ 1.
Now suppose that Dx �= 0; that is, suppose νD(x) ≥ 1. The first inequality of

(1) implies that νD(uxa + vy b ) > 1, but then νD(ux
a + vy b ) ≥ 2. This means

that D2(uxa + vy b ) �= 0, which contradicts the hypothesis of part (b). Therefore,
Dx = 0. After exchanging the roles of x and y, the same argument shows that
Dy = 0.

Corollary 2.1. Let B = k[x, y] = k[2]. If a and b are integers with a, b ≥ 2
and either a �= 2 or b �= 2, then |xa + y b|B ≥ 2. Consequently, D2(xa + y b) �=
0 for all nonzero D ∈ LND(B).

Daigle proved the following result for polynomials in three variables.

Theorem 2.3 [5, Prop. 4.7]. Let B = k[x, y, z] = k[3]. Suppose a, b, c ≥ 2
and at most one of a, b, c equals 2. Then |xa + y b + zc|B ≥ 2. Consequently,
D2(xa + y b + zc) �= 0 for all nonzero D ∈ LND(B).

3. Adjoining One Root

In this section, we assume that:

1. R is a k-domain;
2. f ∈R and n∈ Z for n ≥ 2; and
3. R[z] = R [1] and f + zn is prime (so f �= 0).

Define
B = R[z]/(f + zn).

We make the following observation.

Lemma 3.1. If |f |R ≤ 1, then B is not rigid.

This result is an immediate consequence of Lemma 3.2 to follow.

3.1. Canonical Quasi-extensions

Given a derivation δ of R, there exists a unique derivation D of B such that

Dr = zn−1δr (r ∈R) and Dz = −1

n
δf.

We call D the canonical quasi-extension of δ to B.
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Lemma 3.2. If δ ∈ LND(R) and δ2(f ) = 0, then the canonical quasi-extension
D of δ is a locally nilpotent derivation of B.

Proof. Note first that if r ∈ R then δr = 0 implies Dr = 0. Therefore, ker δ ⊂
Nil(D). Since δf ∈ ker δ, it follows that Dz ∈ kerD, which implies z ∈ Nil(D).

Since R and z generate B, it will therefore suffice to show that R ⊂ Nil(D). This
is demonstrated by induction on N = νδ(r) for r ∈R. The basis for induction has
been established because ker δ ⊂ Nil(D).

Given N ≥ 1, assume s ∈ Nil(D) whenever νδ(s) ≤ N − 1. In particular, if
r ∈R is such that νδ(r) = N, then δr ∈ Nil(D) since νδ(δr) = N − 1. It fol-
lows that

Dr = zn−1δr ∈ Nil(D) �⇒ r ∈ Nil(D).

Therefore, Nil(D) = B; that is, D is locally nilpotent.

Remark 3.1. The converse to Lemma 3.1 may fail to hold. For example, let f =
x 2 +y3 in C[x, y] = C [2]. Then |f |R = 2 (by the results in Section 2) but the ring

B = R[z]/(f + z2) = C[x, y, z]/(x 2 + y3 + z2)

is the coordinate ring of a nonrigid Pham–Brieskorn surface (see Section 7). How-
ever, under certain additional assumptions, the condition |f |R ≥ 2 becomes equiv-
alent to the condition that B is rigid; see Corollary 3.2.

3.2. Zn-Gradings

We next observe that B is a free R-module given by

B = R + Rz + · · · + Rzn−1.

Given u∈ Z∗
n, this decomposition defines a Zn-grading of B over R for which z is

homogeneous of degree u. In particular, let π : Z → Zn be the natural projection
and define

Buπ(i) = Rzi (0 ≤ i ≤ n − 1).

Then the Zn-grading is given by B = ⊕
k∈Zn

Bk , where B0 = R. Note that we
obtain φ(n) distinct but equivalent Zn-gradings of B over R in this way. In partic-
ular, objects that are homogeneous in one of these gradings remain homogeneous
in any other—it is only the degree that varies.

Lemma 3.3. Let D ∈ Derk(B) be nonzero and homogeneous of degree d rela-
tive to the Zn-grading just described, and let λ be the unique integer such that
0 ≤ λ ≤ n − 1 and π(λ) = u−1d. Then there exists a δ ∈ Derk(R) such that D
is a quasi-extension of δ, where D|R = zλδ. In addition, if D ∈ LND(B) then
δ ∈ LND(R).

Proof. Given s ∈ R = B0, we have Ds ∈ Bd = Rzλ. The derivation D is not
identically zero on R (since B is an algebraic extension of R), so we can choose
s such that Ds �= 0. Define δ : R → R by δs = z−λDs. Then δ is a well-defined
k-derivation of R, and D is a quasi-extension of δ. Furthermore, if D is locally
nilpotent then (by Lemma 2.2) δ is also locally nilpotent.



234 Gene Freudenburg & Lucy Moser-Jauslin

3.3. Main Theorem

Theorem 3.1. Suppose that B is Zn-graded over R as before, where z is homo-
geneous and deg z∈ Z∗

n. Given homogeneous D ∈ LND(B), let δ ∈ LND(R) and
λ∈ Z be such that 0 ≤ λ ≤ n − 1 and D|R = zλδ. Then the following statements
hold :

(a) Dz, δf ∈ ker δ = R ∩ kerD;
(b) if Dz �= 0 then

(i) λ = n − 1 and
(ii) kerD = ker δ.

Proof. Since Dz is homogeneous, Dz ∈ Rzm for some m (0 ≤ m ≤ n − 1). If
m �= 0 then z divides Dz, which implies that Dz = 0; otherwise, m = 0. So
Dz∈R in either case.

If Dz �= 0, then D(zn) �= 0 because kerD is algebraically closed in B. Hence

zn ∈R �⇒ D(zn) = nzn−1Dz∈DR ⊂ Rzλ �⇒ λ = n − 1.

This proves part (i) of (b).
To prove part (a) we must show that D2z = δ2f = 0, which is clear if Dz = 0.

So assume Dz �= 0. Since Dz∈R and DR ⊂ Rzn−1, it follows that D2z∈Rzn−1.

Thus z divides D2z, which implies D2z = 0. In addition, since D(f + zn) = 0
we have

zn−1δf + nzn−1Dz = 0 �⇒ δf = −nDz∈ ker δ.

So part (a) is proved.
To prove part (ii) of (b), let b ∈ kerD be homogeneous and write b = azk,

where a ∈ R and 0 ≤ k ≤ n − 1. Then zk ∈ kerD, which means that k = 0.
Therefore, b = a ∈ R. Since kerD is generated as a k-algebra by homogeneous
elements, it follows that kerD ⊂ R when Dz �= 0. By part (a), we have kerD =
ker δ in this case, proving part (ii).

Remark 3.2. In Theorem 3.1(b), the condition that λ = n − 1 is equivalent to
the statement that D is the canonical quasi-extension of δ constructed previously.

Corollary 3.1. Suppose R is a k-domain. Let f ∈R and n ≥ 2 be given, and
assume that B = R[z]/(f + zn) is a domain. Then the following are equivalent :

(a) |f |R ≤ 1;
(b) there exists a nonzero D ∈ LND(B) that is homogeneous relative to a Zn-

grading of B over R such that z is homogeneous and deg z∈ Z∗
n.

Proof. That (b) implies (a) is a consequence of Theorem 3.1(a). Conversely, if
|f |R ≤ 1 then there exists a nonzero δ ∈ LND(R) such that δ2f = 0. In this case,
Lemma 3.2 implies that the canonical quasi-extension of δ satisfies the conditions
of part (b).

Definition 3.1. Suppose R is a k-domain with Z-grading g, and let f ∈ R be
homogeneous. Given n ≥ 1, set d = gcd(n, deg f ), a = n/d, and ψ = deg f/d.
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Then (ag,ψ) will denote the Z-grading of B = R[z]/(f + zn) which restricts to
the aZ-grading ag on R and for which z is homogeneous and deg z = ψ. In this
case, (ag,ψ) induces a Za-grading ofB overR[za] for which deg z = π(ψ)∈ Z∗

a.

Corollary 3.2. Suppose R is a Z-graded affine k-domain, f ∈ R is homoge-
neous, deg f �= 0, and n ≥ 2 is an integer relatively prime to deg f. Assume that
B = R[z]/(f + zn) is a domain. Then the following are equivalent :

(a) |f |R ≥ 2;
(b) B is rigid.

Proof. That (b) implies (a) is a direct consequence of Corollary 3.1.
Conversely, assume that B is not rigid. Let g be the given Z-grading of R,

and consider the induced Z-grading h = (ng, deg f ) of B. Then h induces a Zn-
grading ĥ of B over R for which deg z∈ Z∗

n.

Suppose a nonzero D ∈ LND(B) is given, and let � be the highest-degree
homogeneous summand of D relative to h. (This is where we use the assumption
that R is affine.) Then � is also nonzero and homogeneous relative to ĥ. By The-
orem 3.1, there exists a δ ∈ LND(R) such that � is a quasi-extension of δ and
δ2f = 0. Therefore, |f |R ≤ 1.

Corollary 3.3. Suppose R is an affine k-domain with Z-grading g, f ∈ R is
homogeneous, and n ≥ 2 is an integer not dividing deg f. Let d = gcd(n, deg f ),
and define the rings

S = R[w]/(f + wd) and B = R[z]/(f + zn).

Assume that B is a domain.

(a) Let D ∈ LND(B) be homogeneous relative to the Z-grading (ag,ψ) of B,
where a = n/d and ψ = deg f/d; then D2z = 0.

(b) B is rigid if and only if |w|S ≥ 2.

Proof. By hypothesis, a ≥ 2 and gcd(a,ψ) = 1. We have

B = R[z]/(f + zn) = R[z,w]/(f + wd,w − za)

= (R[w]/(f + wd))[z]/(w − za) = S [z]/(w − za).

Observe that, since S is isomorphic to a subring of B, it follows that S is a domain.
The Z-grading (ag,ψ) of B induces a Za-grading of B over S = R[za], where z

is homogeneous and deg z∈ Z∗
a. The given derivation D that is homogeneous for

(ag,ψ) is also homogeneous for the Za-grading. Now, by Theorem 3.1, D2z =
0. Thus part (a) is proved.

For part (b), note that the Z-grading g of R extends to S if we set degw = ψ,
where w is homogeneous. The equivalence stated in part (b) now follows from
Corollary 3.2.

Corollary 3.4. Suppose R is a k-domain, g is a Z-grading of R, and f ∈R

is homogeneous (deg f �= 0). Let n ≥ 2 be relatively prime to deg f , and
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assume that B = R[z]/(f + zn) is a domain. Then D(ML(R)) = 0 for every
D ∈ LND(B) that is homogeneous relative to the Z-grading (ng, deg f ) of B.

Proof. The Z-grading induces a Zn-grading of B over R for which deg z ∈ Z∗
n,

and D is homogeneous relative to the Zn-grading. By Theorem 3.1, D is a quasi-
extension of δ ∈ LND(R). Since δ(ML(R)) = 0, it follows that D(ML(R)) = 0.

The following two lemmas are needed in subsequent sections.

Lemma 3.4. Let R be a commutative k-domain and let

B = R[z]/(f + zn),

where f ∈R, n ≥ 1, and B is a domain. If x, y ∈R are relatively prime in R, then
x and y are also relatively prime in B.

Proof. Assume that x, y ∈ R are relatively prime in R. We need to show that
xB ∩ yB ⊂ xyB.

Let g,h, k ∈B be such that k = xg = yh. Since B is a free R-module given by

B = R + Rz + · · · + Rzn−1,

we can write

g = g0 + g1z + · · · + gn−1z
n−1 and h = h0 + h1z + · · · + hn−1z

n−1,

where gi,hi ∈R. Since xg = yh, it follows that xgi = yhi for each i. By hypoth-
esis, x and y are relatively prime in R. Hence there exist Gi ∈R, 1 ≤ i ≤ n, such
that gi = yGi for each i. It follows that g ∈ yB and thus k ∈ xyB.

Lemma 3.5. Assume that :

• k is algebraically closed ;
• R = k[x, y, z] = k[3];
• f ∈R is a prime element ;
• S = R/fR is rigid ; and
• R[w] = R [1] and B = R[w]/(f + wd) is a rational domain over k (d ≥ 2).

If S is not rational over k, then |w|B ≥ 2.

Proof. We show that |w|B ≤ 1 implies that S is rational.
Assume |w|B ≤ 1. If |w|B = 0 then B/wB ∼= S admits a nontrivial locally

nilpotent derivation, contradicting the hypothesis that S is rigid. So |w|B = 1.
Let D ∈ LND(B) have w as a local slice, and let a = Dw. Set A = kerD and

K = frac(A), and define the multiplicatively closed set T = {1, a, a2, . . . } ⊂ A.

Then

T −1B = T −1A[w] = T −1A[1] �⇒ k(3) = frac(B) = K(w) = K(1).

By the rational cancellation theorem, it follows that K ∼= k(2); see [2, Thm. 1.1].
Let πs : T −1B → T −1A be the Dixmier map for s = a−1w (see [12, 1.1.8, and

Princ. 11]). Let p ∈ k[4] be such that Dw = p(x, y, z,w). Since πs is surjective
and πs(w) = 0, it follows that
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T −1A = k[p(X,Y,Z, 0)−1,X,Y,Z],

where
πs(x) = X, πs(y) = Y, πs(z) = Z.

Hence K = k(X,Y,Z), where

0 = πs(f + wd) = f(X,Y,Z).

Because f is prime, we conclude that K ∼= frac(S).

Remark 3.3. Corollary 3.1 admits the following geometric interpretation when
the underlying ring R is affine. In this case, when the conditions of the corol-
lary are satisfied, f is either a kernel element or a local slice for D. Consider the
affine variety X = Spec(B); it is endowed with an action of the cyclic group Cn

of order n, and the quotient of this action is Y = Spec(R). Let πn : X → Y be the
quotient map, which is totally ramified over the zero set of f. The homogeneous
locally nilpotent derivation D of B induces a Ga-action on X that semi-commutes
with the action of Cn. In other words, Ga � Cn acts on X. This action induces an
action of Cn on the algebraic quotient X//Ga. If f is not in the kernel of D, then
the action of Cn on X//Ga is trivial. Thus the quotient map induces a morphism
Y → X//Ga , which is simply the quotient map of the Ga-action on Y induced by
δ (where D is a quasi-extension of δ). Consider a generic Ga-orbit L in X. It is
isomorphic to an affine line, and πn(L) is a generic orbit of the action induced by
δ on Y. Hence πn(L) corresponds to a ramified covering of an affine line onto an
affine line. This is possible only if the map is ramified at exactly one point. Thus
a generic orbit of the action of δ intersects the zero set of f at exactly one point.
That is, f is a local slice.

4. Adjoining Two Elements

Given relatively prime positive integers m and n, we study rings of the form

B = R[x, y],

where either
xm + y n ∈R or xmy n ∈R.

We continue to assume that R is a k-domain.

4.1. Sum of Two Powers

Let f ∈R and let relatively prime integers m, n ≥ 2 be given. For indeterminates
x, y over R, define

B = R[x, y]/(f + xm + y n).

In this situation, B is always a domain.
Define the subalgebra S ⊂ B by

S = R[x] ∩ R[y] = R[xm] = R[y n].
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Then B is a free S-module given by

B =
⊕

Sxiy j (0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1).

Given u, v ∈ Z∗
mn, this decomposition defines a Zmn-grading of B over S; here x

and y are homogeneous, deg x = un, and deg y = vm. We identify Zmn with the
quotient Z/mnZ and view m, n∈ Zmn as the images of m, n∈ Z under the canon-
ical surjection Z → Z/mnZ.

Theorem 4.1. Let D ∈ LND(B) be homogeneous relative to the given Zmn-
grading of B over S. Then

(a) D2x = D2y = 0 and
(b) Dx = 0 or Dy = 0.

Proof. Define the quotient group

� = Zmn/nZmn,

where � ∼= Zn, and let ρ : Zmn → � be the canonical homomorphism. The given
Zmn-grading induces a �-grading of B over R[x] in which the degree of y equals
ρ(vm)∈�∗, and D is homogeneous relative to this induced grading. Using R[x]
in place of R in Theorem 3.1 as well as f +xm in place of f , it follows that D2y =
0. By symmetry, also D2x = 0 and thus part (a) is proved.

Assume that Dx �= 0 and Dy �= 0. Given homogeneous b ∈ kerD, write b =
σxiy j for σ ∈ S, 0 ≤ i ≤ m − 1, and 0 ≤ j ≤ n − 1. Then i = j = 0, since
kerD is factorially closed. Therefore, kerD ⊂ S. Since Dx ∈ kerD and Dx �= 0,
it follows that

0 = deg(Dx) = degD + deg x = degD + un �⇒ degD ∈ nZmn.

Likewise, Dy ∈ kerD and Dy �= 0 together imply degD ∈mZmn. Hence

degD ∈mZmn ∩ nZmn = {0} �⇒ deg x = 0,

a contradiction. This proves part (b).

Remark 4.1. Theorem 4.1 does not depend on our choice of f ∈ R and is valid
even when f = 0.

Definition 4.1. Suppose R is a k-domain with Z-grading g. Assume that f ∈R

is homogeneous of degree ψ ∈ Z and that m, n ≥ 2. Then (mng, nψ,mψ) will
denote the Z-grading of

B = R[x, y]/(f + xm + y n)

which restricts to the Z-grading mng on R and for which x is homogeneous of de-
gree nψ and y is homogeneous of degree mψ. If m, n,ψ are pairwise relatively
prime, then (mng, nψ,mψ) induces a Zmn-grading of B over S = R[xm] =
R[y n] for which deg x = ψ̄n and deg y = ψ̄m, where ψ̄ ∈ Z∗

mn is the canonical
image of ψ in Zmn.



Locally Nilpotent Derivations of Rings with Roots Adjoined 239

Corollary 4.1. Let R be a Z-graded affine k-domain, let f ∈ R be nonzero
and homogeneous of degree ψ, and let t be an indeterminate over R. Let inte-
gers m, n ≥ 2 be such that m, n,ψ are pairwise relatively prime. If the rings
R[t]/(f + t m) and R[t]/(f + t n) are rigid domains (equivalently, R[t]/(f + t m)

and R[t]/(f + t n) are domains and |f |R ≥ 2) and if R[x, y] = R [2], then

B = R[x, y]/(f + xm + y n)

is a rigid domain.

Proof. Let g denote the Z-grading of R, and let S = R[xm] = R[y n]. The Z-
grading h of B defined by

h = (mng, nψ,mψ)

induces a Zmn-grading ĥ of B over S for which deg x = ψ̄n and deg y = ψ̄m,
where ψ̄ ∈ Z∗

mn.

Let D ∈ LND(B) be nonzero and homogeneous for h. We may assume that D
is irreducible. Since D is also homogeneous for ĥ, Theorem 4.1 implies that either
Dx = 0 or Dy = 0. Assume that Dx = 0, and let D̄ denote the quotient deriva-
tion on B/xB = R[y]/(f + y n). Since D is irreducible, it follows that D̄ �= 0,
which contradicts the hypothesis that R[y]/(f + y n) is rigid. Similarly, a contra-
diction is reached if Dy = 0.

We conclude that no such D exists; in other words, B is rigid.

Example 4.1. Let a0, a1, . . . be a sequence of pairwise relatively prime integers
with ai ≥ 2 for each i. We show by induction that the ring

Bn = k[x0, . . . , xn]/(xa0
0 + · · · + xan

n )

is rigid for each n ≥ 1. Note first that the ring k[x0, x1]/(xe0
0 + x

e1
1 ) is a rigid do-

main if e0, e1 ≥ 2 and gcd(e0, e1) = 1, since the cuspidal curve defined by this
ring is rigid (by an easy application of Corollary 3.2).

Given n ≥ 2, assume that the ring k[x0, . . . , xk]/(xe0
0 +· · ·+ x

ek
k ) is a rigid do-

main whenever 1 ≤ k ≤ n − 1 and that the integers ei ≥ 2 are pairwise relatively
prime. SetR = k[x0, . . . , xn−2 ], and define f ∈R by f = x

a0
0 +· · ·+x

an−2
n−2 . Then

R admits a Z-grading relative to which f is homogeneous of degree a0 · · · an−2.

By the inductive hypothesis, the rings R[t]/(f + t an−1) and R[t]/(f + t an) are
rigid domains. By Corollary 4.1, Bn is a rigid domain.

The variety Spec(Bn) is an example of a Pham–Brieskorn variety of dimen-
sion n. These varieties are discussed in Sections 7 and 8.

4.2. Product of Two Powers

In this section we consider rings of the form

B = R[x, y]/(f + xmy n),

where R is a k-domain, R[x, y] = R [2] (m, n ≥ 1) are relatively prime, and f ∈R

is nonzero. In this situation, B is a domain.
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Consider the Z-grading g of B over R in which x and y are homogeneous, with

deg x = −n and deg y = m.

If B0 is the subalgebra of elements of degree 0 then, since gcd(m, n) = 1, we have
B0 = R[xmy n] = R.

Lemma 4.1. If D ∈ LND(B) is g-homogeneous, then Dx = 0 or Dy = 0.

Proof. Consider first the case kerD ⊂ B0 = R. Then B0 is algebraic over kerD
and, since kerD is algebraically closed in B, it follows that kerD = B0 = R.

But then

0 = D(f + xmy n) = D(xmy n) �⇒ Dx = Dy = 0,

a contradiction since neither x nor y belongs to B0.

Hence there exists a nonzero homogeneous h ∈ kerD such that degh �= 0. If
degh < 0 then h can be expressed as a sum of monomials of the form rxαyβ,
where r ∈ R and α > 0. Thus h ∈ xB, which implies Dx = 0. Likewise, if
degh > 0 then h is a sum of monomials of the form rxαyβ, where r ∈ R and
β > 0. Then h∈ yB, which implies Dy = 0.

Theorem 4.2. Suppose that R is an affine k-domain and that f ∈ R satisfies
|f |R ≥ 2. Let m, n∈ Z be such that m, n ≥ 2, gcd(m, n) = 1, and f + t m, f + t n ∈
R[t] = R [1] are prime. If R[x, y] = R [2], then the ring

B = R[x, y]/(f + xmy n)

is rigid.

Proof. Since B is affine, it will suffice to show that if D ∈ LND(B) is g-homoge-
neous then D = 0. Assume to the contrary that D ∈ LND(B) is homogeneous and
nonzero. Moreover, choose D to be irreducible.

By Lemma 4.1, either Dx = 0 or Dy = 0. If Dx = 0, consider the Zn-grading
of B over R induced by g. Since deg x = 0 relative to the Zn-grading, it follows
that B/(x − 1)B is Zn-graded and that the quotient derivation D̄ induced by D is
both nonzero (since D is irreducible) and Zn-homogeneous. We then have

B/(x − 1)B = R[x, y]/(f + xmy n, x − 1) = R[y]/(f + y n),

where deg y = −m is a unit of Zn. By Theorem 3.1, there exists a nonzero δ ∈
LND(R) such that δ2f = 0. Yet this contradicts the hypotheses.

In exactly the same way, a contradiction is reached in the case Dy = 0. We
conclude that the only possibility is LND(B) = {0}.
Theorem 4.3. Suppose that R is a rigid affine k-domain and that f ∈ R with
f �= 0. Let m, n be positive integers such that gcd(m, n) = 1 and f + t m, f + t n ∈
R[t] = R [1] are prime. If R[x, y] = R [2], then the ring

B = R[x, y]/(f + xmy n)

is rigid.
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Proof. If m, n ≥ 2 then the claim follows from Theorem 4.2, so assume that m = 1
or n = 1.

Consider first the case m = n = 1:

B = R[x, y]/(f + xy).

Let D ∈ LND(B) be g-homogeneous and irreducible. By Lemma 4.1, either
Dx = 0 or Dy = 0. If Dx = 0 then D induces a nonzero quotient derivation on
the ring

B/(x − 1)B = R[x, y]/(f + y, x − 1) ∼=k R,

contradicting the rigidity of R. Therefore, B is rigid when m = n = 1.
For the remaining cases, we may assume n = 1 and m ≥ 2. Then

B = R[x, y]/(f + xmy) = R[x, y, z]/(f + yz, z − xm) = <[x]/(z − xm),

where < = R[y, z]/(f + yz). By our previous results, < is rigid.
Define a Z-grading on < by deg y = −1 and deg z = 1. Then z ∈ < is homo-

geneous, and its degree is relatively prime to m ≥ 2. Therefore, by Corollary 3.2,
B is rigid.

Corollary 4.2. Let R be an affine k-domain, and let R[x, y] = R [2]. Given
nonzero f ∈R, set

B = R[x, y]/(f + xy).

Then R is rigid if and only if B is rigid.

Proof. If R is rigid, then B is rigid by Theorem 4.3.
So assume that R is not rigid, and let D be a nonzero element of LND(R). Then

D extends to a locally nilpotent derivation D̂ on R[y, y−1] defined by D̂(y) =
0 and D̂|R = D. Note that B = R[x, y] ⊂ R[y, y−1], and the locally nilpotent
derivation yD̂ of R[y, y−1] restricts to B.

5. Z-Gradings of Polynomial Rings

For rings of polynomials that are Z-graded over a ground ring, the main theorem
(Theorem 3.1) provides the basis for a degree criterion whereby certain variables
are either local slices or invariants for all homogeneous locally nilpotent deriva-
tions. In particular, Theorem 5.1 shows that, from a finite sequence of integers, we
can immediately deduce invariant properties of homogeneous derivations that are
otherwise difficult to calculate. Our theorem does not assume that the derivation
D is an A-derivation but only that the Z-grading of the ring is over A.

Results in this section generalize a result of R. Kolhatkar; Theorem 5.1 was
proved in her thesis for the special case where A = k and k is algebraically closed
[15, Thm. 2.6.3].

Theorem 5.1. Suppose A is a commutative k-domain and B = A[x1, . . . , xn] =
A[n] is Z-graded over A, where each xi is homogeneous of degree ai (1 ≤ i ≤ n)

and gcd(a1, . . . , an) = 1. Let homogeneous D ∈ LND(B) be given.
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(a) For each i such that 1 ≤ i ≤ n,

gcd(a1, . . . , âi , . . . , an) �= 1 �⇒ D2xi = 0.

(b) For each pair i, j such that 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i �= j,

gcd(a1, . . . , âi , . . . , an) �= 1 and gcd(a1, . . . , âj , . . . , an) �= 1

�⇒ Dxi = 0 or Dxj = 0.

Proof. Let homogeneous D ∈ LND(B) be given. For convenience, assume
gcd(a1, . . . , an−1) �= 1and letp ∈ Z be a prime dividing each aj for j = 1, . . . , n−1.
Set R = A[x1, . . . , xn−1, y] = A[n], where deg xj = aj (1 ≤ j ≤ n − 1) and
deg y = pan. Then B = R[xn]/(y + x

p
n ) has a natural Zp-grading over R such

that deg xn = an. Since this is the same Zp-grading induced by the given Z-
grading, it follows that D is homogeneous relative to this Zp-grading of B. By
Theorem 3.1, D2xn = 0. This proves part (a).

Under the additional hypotheses of (b) and still assuming that i = n, suppose
Dxn �= 0. Then by Theorem 3.1 we have that D|R = x

p−1
n δ for some δ ∈ LND(R).

As a result, Dxj = x
p−1
n δxj ∈ kerD. Since xn /∈ kerD, it follows that δxj = 0.

Therefore, Dxj = 0 when Dxn �= 0. By symmetry, Dxn = 0 when Dxj �= 0.
This proves part (b).

In the particular case of two variables adjoined to A, Theorem 5.1 gives the fol-
lowing result.

Corollary 5.1. Suppose A is a commutative k-domain and B = A[x, y] =
A[2]. Assume that B is Z-graded over A, where x, y are homogeneous, deg x = a,
deg y = b, and gcd(a, b) = 1. If |a|, |b| ≥ 2 then, for every homogeneous D ∈
LND(B), either Dx = 0 or Dy = 0.

Proof. This is immediately implied by Theorem 5.1(b).

Part of Kolhatkar’s thesis investigates locally nilpotent derivations of polynomial
rings k[x1, . . . , xn] (k algebraically closed) that are homogeneous relative to grad-
ings by an abelian group G, with special interest in the case G = Z. In particular,
suppose a linear Z-grading g of B is defined by deg xi = ai ∈ Z for i = 1, . . . , n,
where gcd(a1, . . . , an) = 1. Given i, set αi = gcd(a1, . . . , âi , . . . , an). Then the
type of g is defined by

type(g) = #{i | αi �= 1}.
In [15, Sec. 2.3.14] it is shown that, if D ∈ LND(B) is homogeneous, then

rank(D) + type(g) ≤ n + 1.

The integer rank(D) is defined in [12, Sec. 3.2.1] and coincides with rankk(D) as
defined in what follows.

In order to extend Kolhatkar’s result, let A be a commutative k-domain and
B = A[x1, . . . , xn] = A[n] for n ≥ 2. Let g be a Z-grading of B over A; here each
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xi is homogeneous, deg xi = ai for i = 1, . . . , n, and gcd(a1, . . . , an) = 1. Given
i, set αi = gcd(a1, . . . , âi , . . . , an). Then the type of g over A is defined by

typeA(g) = #{i | αi �= 1}.
Similarly, let D ∈ LNDA(B); then the corank of D over A, denoted corankA(D),
is the largest integer m such that there exist y1, . . . , ym ∈B satisfying

y1, . . . , ym ∈ kerD and B = A[y1, . . . , ym][n−m].

We then define the rank of D over A by rankA(D) = n− corankA(D). Now The-
orem 5.1(b) implies the next corollary.

Corollary 5.2. Suppose A is a commutative k-domain, B = A[n], and g is a
linear Z-grading of B over A. Then, given homogeneous D ∈ LNDA(B), we have

rankA(D) + typeA(g) ≤ n + 1.

The following example illustrates that Kolhatkar’s bound cannot, in general, be
improved.

Example 5.1. For evenn ≥ 6, consider the polynomial ringR = k[x1, . . . , xn] =
k[n] with the standard Z-grading defined by deg xi = 1 for each i. By [12,
Thm. 3.37] there exists a homogeneous δ ∈ LND(R) of rank n and degree 4
such that δ2xi = 0 for each i.

For prime p ∈ Z , define B = R[z]/(xn + zp) = k[x1, . . . , xn−1, z]. Then B has
a Z-grading g defined by deg xi = p (1 ≤ i ≤ n) and deg z = 1. In particular,
type(g) = 1. Let D be the canonical quasi-extension of δ to B:

Dr = zp−1δr (r ∈R) and Dz = − 1

p
δxn.

By Lemma 3.2 we have that D ∈ LND(B). Note that δxn �= 0 since the rank of δ
is n. Therefore, Dz �= 0. It remains to show that the rank of D is n.

Assume v ∈B is a variable such that Dv = 0, and let L be its linear part; that is,
L is the degree-1 summand of v relative to the standard Z-grading of B. Then L =
c1x1 + · · · cn−1xn−1 + cnz for ci ∈ k and, since v is a variable, we have L �= 0.

Now consider the Zp-grading of B induced by g. Since D is Zp-homogeneous
and Dz �= 0, Theorem 3.1(b) implies that kerD = ker δ; in particular, v ∈ ker δ.
It follows that cn = 0, since v can support only pth powers of z. Since δ is homo-
geneous in the standard grading of R, it follows that L∈ ker δ—contradicting the
fact that δ has no variable in its kernel. Therefore, the rank of D is n.

6. A Version of Mason’s Theorem

Define T ⊂ Z3 to be the set of triples (a, b, c) satisfying a, b, c ≥ 2, where at most
one of a, b, c equals 2. Then T = T1 ∪ T2 for subsets T1 and T2 defined by

T1 = {(a, b, c)∈ T | gcd(ab, c) = 1 or gcd(ac, b) = 1 or gcd(bc, a) = 1},
T2 = {(a, b, c)∈ T | a−1 + b−1 + c−1 ≤ 1}.
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The following is a version of Mason’s theorem.

Theorem 6.1. Let B be a commutative k-domain, and suppose x, y, z ∈ B are
pairwise relatively prime elements that satisfy xa + y b + zc = 0 for integers
a, b, c ≥ 2.

(a) If (a, b, c)∈ T2 then k[x, y, z] ⊂ R(B), the rigid core of B.
(b) If there exists a D ∈ LND(B) such that νD(z) = 1, then a = b = 2.

Proof. Assume that k[x, y, z] is not contained in ML(B) and let D ∈ LND(B) be
given, where at least one of Dx,Dy,Dz is nonzero.

Clearly, if two of Dx,Dy,Dz are 0 then the third is as well. So consider the
case where Dz = 0 but Dx �= 0 and Dy �= 0. Then D(xa + y b) = 0. By Theo-
rem 2.2(a), either Dx = Dy = 0 (which contradicts the assumption) or xa +y b =
0. If xa + y b = 0 then, since xa and y b are relatively prime, it follows that x and
y are either 0 or invertible. In this case Dx = Dy = 0, which again contradicts
the assumption. Therefore, νD(x), νD(y), and νD(z) are positive.

Apply D to the equation xa + y b + zc = 0 to obtain

(
x y z

aDx bDy cDz

)
 xa−1

y b−1

zc−1


 =

(
0
0

)
,

and define the matrix

A =

 x y z

aDx bDy cDz

0 0 1


.

If det(A) = bxDy − ayDx = 0 then the element k := bxDy = ayDx belongs
to xyB, since x and y are relatively prime. If k = xyh for h ∈B then bDy = yh,
since B is a domain. But then Dy = 0, a contradiction.

Consequently, det(A) �= 0. We have

A


 xa−1

y b−1

zc−1


 = zc−1


 0

0
1




�⇒ det(A)


 xa−1

y b−1

zc−1


 = zc−1 adj(A)


 0

0
1


 = zc−1


 cyDz − bzDy

azDx − cxDz

bxDy − ayDx


.

Since x, y, and z are pairwise relatively prime in B, it follows that

zc−1 divides bxDy − ayDx �⇒ (c − 1)νD(z) ≤ νD(x) + νD(y) − 1,

y b−1 divides azDx − cxDz �⇒ (b − 1)νD(y) ≤ νD(x) + νD(z) − 1,

xa−1 divides cyDz − bzDy �⇒ (a − 1)νD(x) ≤ νD(y) + νD(z) − 1;
note that, in the first line, bxDy − ayDx = det(A). In order to prove part (a), let
σ = νD(x) + νD(y) + νD(z). The preceding inequalities show that
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νD(x) ≤ σ − 1

a
, νD(y) ≤ σ − 1

b
, νD(z) ≤ σ − 1

c
.

By addition we obtain

σ ≤ σ − 1

a
+ σ − 1

b
+ σ − 1

c
= (σ − 1)

(
1

a
+ 1

b
+ 1

c

)
.

This implies

1 < 1 + 1

σ − 1
≤ 1

a
+ 1

b
+ 1

c
;

that is, (a, b, c) /∈ T2. We have thus established that k[x, y, z] ⊂ ML(B) whenever
(a, b, c)∈ T2.

Note that x, y, z are pairwise relatively prime in ML(B), since ML(B) is facto-
rially closed in B. By induction, k[x, y, z] ⊂ MLn(B) for each n ≥ 0. But then
k[x, y, z] ⊂ R(B), so part (a) is proved.

For part (b), assume that νD(z) = 1. Then the previous inequalities yield

1 = νD(z) ≥ (b − 1)νD(y) − νD(x) + 1 and

1 = νD(z) ≥ (a − 1)νD(x) − νD(y) + 1,

which in turn give

νD(x) ≥ (b − 1)νD(y) and νD(y) ≥ (a − 1)νD(x).

Hence νD(y) ≥ (a − 1)(b − 1)νD(y), which implies a = b = 2 since νD(y) �=
0. This proves part (b).

The next corollary is a well-known analogue of Fermat’s last theorem for rational
functions; see [23, XIII.1] for a nice historical account.

Corollary 6.1. Suppose k ⊂ B ⊂ k(m) for some m ≥ 0. Given n ≥ 3, if
nonzero a, b, c ∈B are such that an + bn + cn = 0 then there exist λ,µ∈ k such
that b = λa and c = µa.

Proof. It suffices to prove the result for the rings B = k(m), m ≥ 0. Toward this
end, define the following property.

P(n): If nonzero a, b, c ∈ B satisfy an + bn + cn = 0, then there exist
λ,µ∈ k such that b = λa and c = µa.

We show by induction on m that k(m) satisfies P(n) for all m ≥ 0, as the case
m = 0 is self-evident.

Assume that the fields k(0), k(1), . . . , k(m) satisfy P(n) for some m ≥ 0, and let
nonzero a, b, c ∈ k(m+1) be such that an + bn + cn = 0. Write

a = a1(t)

a2(t)
, b = b1(t)

b2(t)
, c = c1(t)

c2(t)
,

where ai, bi, ci ∈K[t] = K [1] are nonzero (i = 1, 2), and K = k(m). Then

(a1b2c2)
n + (a2b1c2)

n + (a2b2c1)
n = 0
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in the polynomial ring K[t]. Write

a1b2c2 = dα, a2b1c2 = dβ, a2b2c1 = dγ ;
here d,α,β, γ ∈K[t] and α,β, γ are relatively prime. Then

αn + βn + γ n = 0

in K[t]. In particular, α,β, γ are pairwise relatively prime. By Theorem 6.1,
α,β, γ ∈ R(K[t]) = K = k(m). By the inductive hypothesis, there exist λ,µ∈ k
such that β = λα and γ = µα. As a result,

b = b1

b2
= dβ/a2c2

dα/a1c2
= βa1

αa2
= λa and c = c1

c2
= dγ/a2b2

dα/a1b2
= γa1

αa2
= µa.

Hence k(m+1) satisfies P(n).
We conclude by induction that k(m) satisfies P(n) for all m ≥ 0.

Remark 6.1. Theorem 6.1(a) does not hold for (a, b, c) ∈ T1 − T2. The set
T1 − T2 consists of the three elements (2, 3, 3), (2, 3, 4), and (2, 3, 5), and for
each of these there exist pairwise relatively prime x(t), y(t), z(t)∈ k[t] such that
x(t)a + y(t)b + z(t)c = 0 (see [11]). There are even counterexamples if we
add the condition that x, y, z should be pairwise algebraically independent. For
example, [6] gives x(u, v), y(u, v), z(u, v) ∈ k[u, v] = k[2], which are pairwise
algebraically independent such that x(u, v)2 + y(u, v)3 + z(u, v)5 = 0. Note also
that Theorem 6.1(a) is false unless we assume that x, y, z are pairwise relatively
prime. For example, if ζ ∈ C is a primitive ninth root of unity and C[t] = C [1],
then t 3 + (ζt)3 + (ζ2 t)3 = 0.

Remark 6.2. In [10, Lemma 2], the authors give a result similar to Theorem
6.1(a) for ML(B) instead of R(B) but without the assumption that x, y, z are pair-
wise relatively prime. This means that their result is not correct as stated. How-
ever, the elements involved in their applications happen to be pairwise relatively
prime and so their subsequent results remain valid.

7. Pham–Brieskorn Surfaces

Given n ≥ 1 and positive integers ai, 0 ≤ i ≤ n, the corresponding Pham–
Brieskorn variety is the hypersurface H ⊂ An+1 defined by

x
a0
0 + x

a1
1 + · · · + xan

n = 0.

These hypersurfaces have been of interest in topology and algebraic geometry for
decades; see for example the excellent survey of Seade [24].

In particular, given positive integers a, b, c, the corresponding Pham–Brieskorn
surface is defined by

xa + y b + zc = 0

in A3 and is denoted S(a,b,c). The coordinate ring of S(a,b,c) is

B = k[x, y, z]/(xa + y b + zc).

Note that, by Lemma 3.4, x, y, z are pairwise relatively prime in B.
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Theorem 7.1. Suppose positive integers a, b, c are given.

(a) If (a, b, c)∈ T, then S(a,b,c) is rigid.
(b) If (a, b, c)∈ T2, then S(a,b,c) is stably rigid.

Proof. For any integer n ≥ 0, suppose D ∈ LND(B [n]) is given. Since x, y, z
are pairwise relatively prime in B, they are also pairwise relatively prime in B [n].

If (a, b, c) ∈ T2, then Dx = Dy = Dz = 0 by Theorem 6.1, which means that
DB = 0. This proves part (b).

Therefore, in order to prove part (a), it suffices to assume that (a, b, c) ∈ T1

and n = 0. In particular, suppose gcd(ab, c) = 1 and define a Z-grading of R =
k[x, y] by

deg x = b, deg y = a.

Then f = xa + y b is a homogeneous element of R of degree ab that is relatively
prime to c. Since |f |R ≥ 2 by Corollary 2.1, it follows from Corollary 3.2 that B
is rigid. This proves part (a).

Corollary 7.1. LetAbe a commutative k-domain, and suppose thatA[x, y, z] =
A[3]. If (a, b, c)∈ T and B = A[x, y, z]/(xa + y b + zc), then LNDA(B) = {0}.
Proof. Set K = fracA, and define

B ′ = K ⊗A B = K[x, y, z]/(xa + y b + zc).

By Theorem 7.1(a), B ′ is rigid. Since any D ∈ LNDA(B) extends to B ′, it follows
that LNDA(B) = {0}.
Question. Are the surfaces S(2,3,3), S(2,3,4), and S(2,3,5) stably rigid?

Remark 7.1. If R is a rigid affine k-domain, then it is known that ML(R [1]) =
R. Moreover, if dimk R = 1 then ML(R [n]) = R for all n ≥ 0; that is, R is sta-
bly rigid. In general it remains an open question whether ML(R [2]) = R when
dimk R ≥ 2, although some cases were settled by Crachiola in his thesis (see
[3; 12] for details).

Remark 7.2. Theorem 7.1 was essentially proved by Kaliman and Zaidenberg in
[14]. They do not explicitly state the stable rigidity of S = S(a,b,c) when (a, b, c)∈
T2 but this is contained in their proof, which relies on geometric methods in addi-
tion to Mason’s theorem. They consider the existence of sufficiently many rational
curves on a variety and show that any rational curve on S must pass through the
singularity. If there were a nontrivial Ga-action on V = S × An, then any one-
dimensional orbit not contained in Sing(V ) must be disjoint from Sing(V ). The
projection of this orbit to S is thus either a point or a rational curve not passing
through the singularity. Hence the only possibility is that this projection is a point.

8. Pham–Brieskorn Threefolds

In this section we consider several classes of Pham–Brieskorn threefolds, as de-
scribed in the following result.
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Theorem 8.1. Given integers a, b, c, d ≥ 2, the ring

B = k[x0, x1, x2, x3]/(xa
0 + xb

1 + xc
2 + xd

3 )

is rigid in each of the following cases:

(a) gcd(abc, d) = 1;
(b) min{a, b, c, d} ≥ 8;
(c) (a, b, c, d) = (a, 3, 3, 3), where a �= 3;
(d) (a, b, c, d) = (2, b, c, d), where b, c, d ≥ 3, b is even, gcd(b, c) ≥ 3, and

gcd(d, lcm(b, c)) = 2.

The proof proceeds in several steps.

8.1. Proof of Theorem 8.1(a)

Define a Z-grading of R = k[x0, x1, x2 ] by

deg x0 = bc, deg x1 = ac, deg x2 = ab.

Then f = xa
0 + xb

1 + xc
2 is a homogeneous element of R of degree abc relatively

prime to d. Since |f |R ≥ 2 by Theorem 2.3, it follows from Corollary 3.2 that B
is rigid.

8.1. Proof of Theorem 8.1(b)

The statement is a consequence of the following result, which is due to Bayat and
Teimoori.

Theorem 8.2 [1,Thm. 5]. Letn1, n2, n3, n4 be integers with min{n1, n2, n3, n4} ≥
8. Then there is no solution in the polynomial ring C[t] for the equation

f1(t)
n1 + f2(t)

n2 + f3(t)
n3 + f4(t)

n4 = 0

with nonconstant pairwise relatively prime fi ∈ C[t].

We first note that the proof of Theorem 8.2 given by Bayat and Teimoori uses
nothing special about C—only that the ground field is algebraically closed and of
characteristic 0. Thus Theorem 8.2 remains valid when the complex field is re-
placed by any algebraically closed field of characteristic 0.

Suppose there exists a nonzero D ∈ LND(B). Then Dxi �= 0 for each i, since
otherwise the quotient ring B/xiB is nonrigid for some i. Set A = kerD and K =
frac(A), and let t ∈ B be a local slice. We have B ⊂ K[t] ⊂ K̄[t], where K̄ de-
notes the algebraic closure of K. Hence the equation

f0(t)
a + f1(t)

b + f2(t)
c + f3(t)

d = 0

has a solution xi = fi(t) in K[t] ⊂ K̄[t], where each fi is nonconstant. By The-
orem 8.2, it follows that fi(t) and fj(t) have a common root ξ ∈ K̄ for at least
one pair i �= j. Let g(t) ∈ K[t] be the minimal polynomial of ξ over K. Then
degt g(t) ≥ 1, and there exist p(t), q(t)∈K[t] such that

fi(t) = g(t)p(t) and fj(t) = g(t)q(t). (2)
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Therefore, q(t)xi = p(t)xj in K[t]. Choose nonzero α ∈ A such that P(t) :=
αp(t) and Q(t) := αq(t) belong to A[t]. Then, in B, we have

Q(t)xi = P(t)xj .

Since xiB is a prime ideal of B not containing xj , it follows that P(t)∈ xiB. From
the first equation of (2) we conclude that deg t g(t) = 0, a contradiction. There-
fore, no such D can exist.

8.3. Proof of Theorem 8.1(c)

In order to prove part (c), consider the Pham–Brieskorn threefold Y with coordi-
nate ring

ϒ = k[Y ] = k[θ0, θ1, θ2, θ3]/(θ 3
0 + θ 3

1 + θ 3
2 + θ 3

3).

This Y is called the affine Fermat cubic threefold and is the affine cone over the fa-
mous Fermat cubic surface X. It is well known that X is rational; hence Y is also
rational. Here ϒ is naturally Z-graded, where each θi is homogeneous of degree 1.

Lemma 8.1. |θ0|ϒ ≥ 2.

Proof. If |θ0|ϒ = 0 then there exists an irreducible D ∈ LND(ϒ) with Dθ0 = 0.
But then D mod (θ0ϒ) is a nonzero locally nilpotent derivation on ϒ/θ0ϒ , which
by Theorem 7.1 is a rigid ring. Therefore, |θ0|ϒ ≥ 1.

Assume that |θ0|ϒ = 1, and let D ∈ LND(ϒ) have θ0 as a local slice. Let L =
frac(ϒ) andK = frac(kerD). Ifπs : ϒ → K is the Dixmier map for s = θ0/Dθ0,
then kerπs = θ0ϒDθ0 ∩ ϒ; see [12, 1.1.8, Princ. 11]. In particular, πs(θ0) = 0
and so

0 = πs(θ
3
0 + θ 3

1 + θ 3
2 + θ 3

3) = πs(θ1)
3 + πs(θ2)

3 + πs(θ3)
3.

This is an equation in K, and k ⊂ K ⊂ L = k(3).

If πs(θi) = 0 for i ∈ {1, 2, 3} then θi ∈ kerπs , which implies that (Dθ0)
nθi ∈

θ0ϒ for some n ≥ 0. Note that θ0ϒ is a prime ideal of ϒ not containing θ1, θ2, or
θ3. Therefore, n ≥ 1 and Dθ0 ∈ θ0ϒ. But this implies Dθ0 = 0, a contradiction.

As a result, πs(θi) �= 0 for i = 1, 2, 3. By Corollary 6.1, there exists a λ ∈ k
such that πs(θ2) = λπs(θ1). It follows that

πs(θ2 − λθ1) = 0 �⇒ θ2 − λθ1 ∈ kerπs

�⇒ (Dθ0)
n(θ2 − λθ1)∈ θ0ϒ for some n ≥ 0.

But θ0ϒ is a prime ideal of ϒ not containing θ2 − λθ1. Hence n ≥ 1 and Dθ0 ∈
θ0ϒ—again a contradiction. It must therefore be the case that |θ0|ϒ ≥ 2.

To complete the proof of Theorem 8.1(c), let m ≥ 2 be given. Since |θ0|ϒ ≥ 2 by
Lemma 8.1, it follows from Corollary 3.2 that the ring

ϒ[z]/(θ0 − zm) = k[z, θ1, θ2, θ3]/(z3m + θ 3
1 + θ 3

2 + θ 3
3)

is rigid.
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On the other hand, if a ≥ 2 is an integer not divisible by 3, then Theorem 8.1(a)
indicates that the ring

k[x0, x1, x2, x3]/(xa
0 + x3

1 + x3
2 + x3

3)

is rigid.

8.4. Proof of Theorem 8.1(d)

Set R = k[x0, x1, x2 ] = k[3], and define f ∈ R by f = x 2
0 + xb

1 + xc
2 . Consider

the following (nonrigid) Pham–Brieskorn threefold with coordinate ring:

W = R[w]/(f + w2) = k[x0, x1, x2,w]/(x 2
0 + xb

1 + xc
2 + w2).

Assume first that k is algebraically closed. We established in Theorem 7.1 that the
ring S = R/fR is rigid. Now we will show by the following lemma that the hy-
potheses imply that S is nonrational over k.

Lemma 8.2. Let S be the ring k[x0, x1, x2 ]/(x 2
0 + xb

1 + xc
2 ), where b is even and

gcd(b, c) ≥ 3. Then S is irrational.

Proof. Let r be the greatest common divisor of b and c. Suppose that b = βr and
c = γ r for integers β and γ. Choose n,m ∈ Z such that nβ + mγ = 1. Consider
the generators x0, x1, x2 ∈ S. Observe that frac(S) = k(x0, x1, x2) = k(X,Y,Z),
where

X = x0/x
b/2
1 , Y = x

γ

2 /x
β

1 , Z = xm
1 xn

2.

Since x 2
0 + xb

1 + xc
2 = 0, we have that X2 + 1 + Y r = 0. Thus k(x0, x1, x2) =

K(Z) = K(1), where K = k(X,Y ). If r ≥ 3, then K is the field of a hyperelliptic
curve. In particular, it is not rational and so K(Z) is not rational.

Since W is rational over k, it follows from Lemma 3.5 that |w|W ≥ 2. Therefore,
|w|W ≥ 2 without the assumption that k is algebraically closed (see Section 2.3).

We remark that R has a Z-grading for which f is homogeneous and deg f =
lcm(b, c). In addition, d does not divide deg f because gcd(d, deg f ) = 2 < d.

Since |w|W ≥ 2, it follows from Corollary 3.3(b) that B = R[x3]/(f + xd
3 ) is

rigid.

This completes the proof of Theorem 8.1.

Example 8.1. Let k ≥ 2 be an integer not divisible by 3. Then Theorem 8.1(d)
implies that B is rigid when (a, b, c, d) = (2, 3, 6, 2k).

Example 8.2. It is possible to glean additional cases from Theorem 8.1. The
preceding example shows that the ring

S ′ = k[x0, x1, x2, x3]/(x 2
0 + x3

1 + x6
2 + x 2k

3 )

is rigid when k ≥ 2 is not divisible by 3. In particular, |x0|S ′ ≥ 2. Define R =
k[x1, x2, x3] and f ∈R by f = x3

1 + x6
2 + x 2k

3 . Then R has a Z-grading relative
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to which deg f = 6k. If m ≥ 2 is any integer such that gcd(m, 3k) = 1, then it
follows from Corollary 3.3(b) that the ring

R[z]/(f + z2m) = k[z, x1, x2, x3]/(z2m + x3
1 + x6

2 + x 2k
3 )

is rigid.

Remark 8.1. Lemma 8.2 is a special case of a more general result concerning the
rationality of Pham–Brieskorn surfaces. When k = C, it is well known for which
values of a, b, c the surface V defined by the equation xa

0 + xb
1 + xc

2 = 0 in C3 is
rational (see e.g. [14; 21]). The idea is to use that V has a natural C∗-action and
that the quotient of V \{(0, 0, 0)} is a smooth curve (denoted by L). SinceV is bi-
rationally equivalent to the product of L and C, one checks whether the conditions
for L to be rational are satisfied.

For the proof of Theorem 8.1(d) we need only consider the case when a = 2.
In that case, Lemma 8.2 establishes a sufficient condition for V to be irrational.

Note also that, in [5, Cor. 4.10], Daigle gives conditions on integer triples (a, b, c)
which imply that the weighted projective plane curve defined by the polynomial
xa

0 + xb
1 + xc

2 is not rational over any algebraically closed field of characteristic 0.

Remark 8.2. An important open question is whether the affine Fermat cubic
threefold Y defined by

x3
0 + x3

1 + x3
2 + x3

3 = 0

is rigid. We address also the following cubic threefold, which is the affine cone
over a singular cubic surface.

Theorem 8.3. If B is the ring

B = k[x, y, z, t]/(x3 + y3 + xyz + t 3),

then ML(B) = k.

Proof. Let R = k[x, y, z] = k[3], and define r ∈ R by r = x3 + y3 + xyz.

According to [12, Sec. 5.5.2], there exists a sequence δn ∈ LND(R) such that
δnr ∈ ker δn but δnr �= 0 and such that ker δm ∩ ker δn = k when n ≥ m + 2. Let
Dn be the canonical quasi-extension of δn for each n. By Lemma 3.2, the deriva-
tions Dn are locally nilpotent and kerDn = ker δn for each n. We conclude that
ML(B) = k.

It is worth mentioning that the same argument shows that every fiber x3 + y3 +
xyz + t 3 = λ for λ∈ k has trivial Makar-Limanov invariant.

9. Pham–Brieskorn Surfaces with Parameter

In this section we consider threefolds defined by rings of the form

B = R[x, y, z]/(uxa + vy b + wzc),

where R = k[t] = k[1] and u, v,w ∈R satisfy gcd(u, v,w) = 1. These threefolds
may be viewed as Pham–Brieskorn surfaces with a parameter introduced, in the
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sense that k(t) ⊗k B is the coordinate ring of a Pham–Brieskorn surface over the
function field k(t).

We first need the following result.

Theorem 9.1. Given integers a, b, c with a, b, c ≥ 2, the rings

A = k[y, z]/(y b + zc) and B = k[x, y, z]/(xay b + zc)

are rigid.

Our proof requires the following lemma.

Lemma 9.1. Let a, b, c be positive integers. Then gcd(a, b, c) = 1 if and only if
xay b + zc is irreducible in k[x, y, z].

Proof. Let F = xay b + zc, and set d = gcd(a, b). Let α = a/d and β = b/d.

Then F = (xαyβ)d + zc and gcd(a, b, c) = gcd(c, d). It is easy to see that F is
reducible if gcd(c, d) ≥ 2.

Now suppose that gcd(c, d) = 1. Choose u, v ∈ Z such that au + bv = d, and
define the map ϕ : k[x, y, z] → k[t, t−1, z] by

ϕ(x) = t u, ϕ(y) = tv, ϕ(z) = z.

Note that ifP ∈ k[x, y, z] is monic in z andP /∈ k[x, y], then degz ϕ(P ) = degz P.

Suppose that F = GH for G,H ∈ k[x, y, z]. We may assume that G and H

are monic in z. Then ϕ(F ) = t d + zc = gh, where g = ϕ(G) and h = ϕ(H ).

Since gcd(c, d) = 1, we have that t d + zc is irreducible in k[t, z] and thus also in
k[t, t−1, z]. Therefore, either g or h is constant. It follows that either degz G = 0
or degz H = 0. Given the particular form of F, this suffices to conclude that either
G∈ k or H ∈ k.

Proof of Theorem 9.1. We may assume that the ground field k is algebraically
closed. Note that A and B are reduced rings. In addition, the curve Z = Spec(A)
is irreducible if and only if gcd(b, c) = 1, and by Lemma 9.1 the surface X =
Spec(B) is irreducible iff gcd(a, b, c) = 1.

To prove the assertion for A, set d = gcd(b, c). If d = 1 then Z is called a
cuspidal plane curve; in this case, for S = k[y] we have

|y b|S = b|y|S = b ≥ 2.

Moreover, y is homogenous of degree 1 in the standard Z-grading of S. It then
follows from Corollary 3.2 that A is rigid in this case.

If d ≥ 2, then Z is a either a union of distinct cuspidal curves (when b/d ≥ 2
and c/d ≥ 2) or a union of distinct lines (when b/d = 1 or c/d = 1). The irre-
ducible components Z1, . . . ,Zd comprised by Z intersect in a single point Q, and
this point is fixed by any Ga-action. Moreover, any Ga-action onZ restricts to each
of the irreducible components Zi (see [4, Prop. 1.4]). Hence any Ga-action on Z

restricts to the complement Zi −Q for each i. Recall, however, that Zi − Q = k∗
for each i and that k∗ is rigid. We therefore conclude that A is rigid in this case
as well.
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In order to prove the assertion for B, consider first the case gcd(a, b, c) = 1.
Let D ∈ LND(B) be given. If D2(xay b ) = 0 then a, b ≥ 2 implies that xy di-
vides the image D(xay b ), which is in the kernel of D. But then Dx = Dy = 0,
which implies D = 0. Therefore, |xay b|B ≥ 2. In addition, since gcd(a, b, c) =
1, there exists a Z-grading of R = k[x, y] such that xay b is homogeneous and c

is relatively prime to deg(xay b ). By Corollary 3.2, we conclude that B is rigid.
For the general case, set e = gcd(a, b, c) and assume e ≥ 2. Then uavb + wc

is a reducible polynomial in k[u, v,w] = k[3], where each prime factor appears
with multiplicity 1. As before, any Ga-action on X restricts to each of the irre-
ducible components X1, . . . ,Xe of X. In addition, any Ga-action on X must fix the
intersection Y = ⋂

1≤i≤e Xi, which is a union of two distinct but intersecting lines
(since e ≥ 2). Therefore, any Ga-action on X restricts to the complement Xi − Y

for each i.

The component Xi has the form Xi = Spec(Bi), where

Bi = k[x, y, z]/(xa/ey b/e + λiz
c/e) (λi ∈ k∗).

If a/e, b/e, c/e ≥ 2 then, by what we have already shown, each Bi is rigid and so
any Ga-action on X is trivial. Otherwise, a/e = 1, b/e = 1, or c/e = 1, which
means that each component Xi is isomorphic to a Danielewski surface (possibly
a plane). Let i be given, 1 ≤ i ≤ e. Since Y ⊂ Xi is defined by xy = z = 0, we
see that Xi − Y is isomorphic to k∗ × k∗, which is a rigid variety. Therefore, the
only Ga-action on X is trivial.

9.1. The Case of One Coefficient with Parameter

Theorem 9.2. Let integers a, b, c, d ≥ 2 be given, where b and c are not both 2.
Define

B = k[t, x, y, z]/(t dxa + y b + zc),

and set e = gcd(a, d). Then B is rigid in each of the following cases:

(i) e = 1;
(ii) (e, b, c)∈ T ;

(iii) e = 2, a �= 2, and d �= 2.

Proof. Set R = k[y, z] and f = y b + zc. Let m, n be positive integers such that
a = em and d = en.

(i) Since b and c are not both 2, Corollary 2.1 implies that |f |R ≥ 2. By Theo-
rem 4.2, we conclude that B is rigid in this case.

(ii), (iii) We have

B = R[t, x]/(f + t dxa) = R[t, x, v]/(f + ve, v − t nxm) = S [t, x]/(v − t nxm),

where
S = R[v]/(f + ve) = k[v, y, z]/(ve + y b + zc).

If |v|S = 1 then Theorem 6.1(b) implies that b = c = 2, a contradiction. If |v|S =
0 then the quotient ring R/fR is not rigid, which contradicts Theorem 9.1. There-
fore, |v|S ≥ 2.
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If e �= 2 or if e = 2 and b, c ≥ 3, then S is rigid by Theorem 7.1. It follows from
Theorem 4.3 that B is rigid in this case. Otherwise, e = 2 and m, n ≥ 2. Since
|v|S ≥ 2, it follows from Theorem 4.2 that B is rigid in this case as well.

Remark 9.1. When a, b, c, d ≥ 2, all other cases are nonrigid if we assume that
i ∈ k and i2 = −1. These cases are defined by polynomials of the form

t dxa + y2 + z2 or t 2kx 2 + y2 + zc (k ≥ 1),

which are irreducible polynomials. For the second case, let R = k[t, x, y] = k[3]

and f = t 2kx 2 + y2. It is easy to check that |f |R = 1, so Lemma 3.1 implies
nonrigidity in this case. It should be noted that, when d = 1, the hypersurface
txa + y b + zc = 0 is nonrigid for all positive integers a, b, c. We also have the
following statement.

Theorem 9.3. Given an integer n ≥ 1, define the ring

B = k[t, x, y, z]/(t 2x 2 + y2 + zn).

If i = √−1 belongs to k, then ML(B) = k.

Proof. If n = 1, then B = k[3] and the result is clear. So assume n ≥ 2.
Let R = k[t, x, y], and define f ∈R by f = t 2x 2 + y2. If u = y + itx and v =

y − itx, then R = k[t, x, u] = k[t, x, v] and f = uv. Define δ1, δ2 ∈ LND(R) by

δ1(t) = 1, δ1(x) = δ1(u) = 0 and δ2(x) = 1, δ2(t) = δ2(u) = 0.

Then δ2
1f = δ2

2f = 0. Let D1 and D2 be the canonical quasi-extensions of δ1 and
δ2, respectively. By Lemma 3.2, D1 and D2 are locally nilpotent. We have

kerD1 = ker δ1 = k[x, u] and kerD2 = ker δ2 = k[t, u],

so ML(B) ⊂ k[u]. By symmetry, ML(B) ⊂ k[v] as well. Therefore, ML(B) = k.

9.2. The Case of Two Coefficients with Parameter

Theorem 9.4. Suppose a, b, c, d, e ≥ 2, and set

B = k[t, x, y, z]/(t dxa + t ey b + zc).

(a) t ∈ ML(B).

(b) If (a, b, c)∈ T, then B is rigid.

Proof. Since d, e ≥ 2, the singular locus of X = Spec(B) consists of the union of
the hypersurface Y ⊂ X defined by the ideal

√
tB = (t, z) and the line defined by

x = y = 0. Therefore, any Ga-action on X restricts to Y, which means that
√
tB

is an integral ideal for each D ∈ LND(B). By Lemma 2.1, it follows that Dt = 0
for every D ∈ LND(B). This proves part (a).

For part (b), assume (a, b, c) ∈ T. If LND(B) �= {0} then |t |B = 0, which
implies that the quotient B/(t − 1)B is nonrigid. Since this would contradict The-
orem 7.1, it follows that B is rigid.
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Remark 9.2. Without the hypothesis that d, e ≥ 2 in this theorem, we do not
know whether B is rigid when (a, b, c)∈ T. Some of these cases can be settled by
using the following lemma in combination with Corollary 3.2. It should be noted
that, when d = e = 1, the hypersurface txa + ty b + zc = 0 is nonrigid for all
positive integers a, b, c.

Lemma 9.2. Let R = k[t, x, y] = k[3] and let f ∈R be given by

f = t dxa + t ey b,

where d, e ≥ 1, a, b ≥ 2, a and b are not both 2, and d and e are not both 1. Then
|f |R ≥ 2.

Proof. We may assume without loss of generality that d ≥ e. Suppose |f |R ≤ 1,
and choose irreducible D ∈ LND(R) with |f |R = νD(f ). If Dt = 0 then
νD(f ) ≥ 2 by Theorem 2.2, a contradiction. Hence Dt �= 0 and so νD(t) ≥ 1.
We have

1 ≥ νD(f ) = eνD(t) + νD(t
d−exa + y b),

which implies

e = νD(t) = 1 and νD(t
d−exa + y b) = 0.

Therefore, by hypothesis, d ≥ 2.
Since D is irreducible, it induces a nonzero locally nilpotent derivation θ on the

quotient ring R̄ = k[t, x, y]/(t d−1xa + y b). In particular, R̄ is not rigid. If d ≥ 3
then Lemma 9.1 implies that R̄ is rigid, a contradiction. Therefore, d = 2.

We thus have f = tg for g = txa + y b, where D2 t = 0 and Dg = 0. This im-
plies θ 2 t = 0. Since ML(R̄) = k[x] it follows that θx = 0 (see [17; 18]), and
θy �= 0 (for otherwise θ = 0). But then

1 ≥ νθ (t) = νθ (tx
a) = νθ (y

b ) = bνθ (y) ≥ b ≥ 2,

a contradiction. Therefore, |f |R ≥ 2.

Kaliman and Makar-Limanov [13] consider the complex threefolds defined by

t m(n−1)xn − t m(k−1)y k + zJ = 0,

where m ≥ 1, n > k ≥ 2, gcd(n, k) = 1, and J ≥ 2. They show that such a
threefold is rigid unless k = l = 2 and m is even. Our framework provides an
alternate proof over any field k of characteristic 0 (and without the assumption
gcd(n, k) = 1).

Corollary 9.1 (cf. [13, Prop. 10.1]). Let

B = k[t, x, y, z]/(t m(n−1)xn − t m(k−1)y k + zJ),

where J ≥ 2, m ≥ 1, n ≥ k ≥ 2, and n and k are not both 2. Then B is rigid
except when k = J = 2 and m is even.

Proof. Set γ = gcd(J,m). Consider first the case γ = 1, and define a Z-grading
on R = k[t, x, y] = k[3] by
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(deg t, deg x, deg y) = (−1,m,m).

Let f ∈ R be defined by f = t m(n−1)xn − t m(k−1)y k. Then f ∈ R is homoge-
neous of degree m and J is relatively prime to m. Lemma 9.2 and Corollary 3.2
now imply that B is rigid.

So assume that γ ≥ 2. Then

m ≥ γ ≥ 2 �⇒ m(n − 1) ≥ m(k − 1) ≥ 2.

By Theorem 9.4, if (J, n, k) ∈ T then B is rigid. Otherwise, the triple (J, n, k)
equals (2, 2,N), (2,N, 2), or (N, 2, 2) for some N ≥ 2. Because k = min{k, n},
we conclude that k = 2 and therefore n �= 2. Thus, J = γ = 2 and 2 divides m.

10. Concluding Remarks

Remark 10.1. Let B be an affine k-domain with dimk B ≥ 2. Given a nonzero
f ∈B, we have

B/fB is rigid �⇒ |f |B ≥ 1.

However, the converse of this is generally false, as seen from the following re-
sult (due to Derksen, Kutzschebauch, and Winkelmann). The ground field for this
result is the field of complex numbers.

Theorem 10.1 [9, Thm. 1]. There exist a smooth irreducible hypersurface H ⊂
A5 and an algebraic action µ of the additive group (C, +) on H such that, for all
t �= 0, there exists neither an algebraic nor a holomorphic automorphism ϕ of A5

with ϕ|H = µ(t).

It follows that the natural map

LNDf (B) → LND(B/fB)

is not generally surjective even when B is a polynomial ring.

Remark 10.2. We have focused on rings R[z] such that zn ∈R. There are three
related classes of rings that naturally suggest themselves for similar investigation:

1. rings of the form R[z], where z is integral over R;
2. rings of the form R[z], where z∈ frac(R); and
3. rings of the form R[x, y], where xy ∈R.

Note that a ring of the third type is the extended Rees algebra of a principal ideal
of R and that some results for these rings are given in Section 4.

Remark 10.3. One of the main ideas of this paper is to develop a systematic way
of studying Ga-actions that semi-commute with an action of a cyclic group. More
precisely, in Sections 3 and 4 we consider a cyclic group action on a variety where
the quotient map is a ramified covering space of a specific form. In the first case
(adjoining one root), the ramification is always total. In the second case (adjoining
two elements), there are critical points of different ramification indices. It would
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be of interest to use the ideas developed here to study in general the case of finite
abelian group actions; we should like to find results analogous to Theorems 3.1
and 4.1 concerning kernels and local slices of homogeneous derivations.
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