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Double Covers of EPW-Sextics

Kieran G. O’Grady

0. Introduction

EPW-sextics are defined as follows. Let V be a 6-dimensional complex vector
space. Choose a volume form vol :

∧6
V ∼−→ C and equip

∧3
V with the sym-

plectic form
(α,β)V := vol(α ∧ β). (0.0.1)

Let LG
(∧3

V
)

be the symplectic Grassmannian parameterizing Lagrangian sub-
spaces of

∧3
V ; of course, LG

(∧3
V

)
does not depend on the choice of volume

form. Let F ⊂ ∧3
V ⊗ OP(V ) be the subvector bundle with fiber

Fv := {
α ∈ ∧3

V | v ∧ α = 0
}

(0.0.2)

over [v] ∈ P(V ). Observe that (·, ·)V is zero on Fv and that 2 dim(Fv) = 20 =
dim

∧3
V ; hence F is a Lagrangian subvector bundle of the trivial symplectic vec-

tor bundle on P(V ) with fiber
∧3
V. Next choose A∈ LG

(∧3
V

)
. Let

F
λA−→ (∧3

V/A
) ⊗ OP(V ) (0.0.3)

be the composition of the inclusion F ⊂ ∧3
V ⊗ OP(V ) followed by the quotient

map. Since rkF = dim(V/A), the determinant of λA makes sense. Let

YA := V(det λA).

A straightforward computation gives that detF ∼= OP(V )(−6) and hence det λA ∈
H 0(OP(V )(6)). It follows that if det λA �= 0 then YA is a sextic hypersurface. As
is easily checked, det λA �= 0 for generic A ∈ LG

(∧3
V

)
(note that there exist

“pathological” As such that λA = 0; e.g., A = Fv0). An EPW-sextic (after Eisen-
bud, Popescu, and Walter [5]) is a sextic hypersurface in P

5 that is projectively
equivalent to YA for someA∈ LG

(∧3
V

)
. Let YA be an EPW-sextic. One can con-

struct a coherent sheaf ξA onYA and a multiplication map ξA×ξA → OYA that gives
OYA ⊕ ξA the structure of an OYA -algebra; this is known to experts (see [3]), and
we will give the construction in Section 1.2. The double EPW-sextic associated to
A is XA := Spec(OYA ⊕ ξA); we let fA : XA → YA be the structure morphism.
In [12] we considered XA for generic A and proved that it is a hyper-Kähler de-
formation of (K3)[2] (the blow-up of the diagonal in the symmetric square of a K3
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surface). In this paper we analyze XA for A varying in a codimension-1 subset of
LG

(∧3
V

)
. In order to state our main results, we shall introduce some notation.

Given A∈ LG
(∧3

V
)
, we let

YA(k) = {[v] ∈ P(V ) | dim(A ∩ Fv) = k}, (0.0.4)

YA[k] = {[v] ∈ P(V ) | dim(A ∩ Fv) ≥ k}. (0.0.5)

Thus YA(0) = (P(V ) \ YA) and YA = YA[1]. Double EPW-sextics come with a
natural polarization; we let

OXA(n) := f ∗
AOYA(n), HA ∈ |OXA(1)|. (0.0.6)

The following closed subsets of LG
(∧3

V
)

play a key role:

� := {
A∈ LG

(∧3
V

) | ∃W ∈ Gr(3,V ) s.t.
∧3
W ⊂ A

}
, (0.0.7)

� := {
A∈ LG

(∧3
V

) | YA[3] �= ∅}
. (0.0.8)

A straightforward computation (see [15]) gives that � is irreducible of codimen-
sion 1. A similar computation (see Proposition 2.2) gives that � is irreducible of
codimension 1 and distinct from �. Now let

LG
(∧3

V
)0

:= LG
(∧3

V
) \� \�. (0.0.9)

Then LG
(∧3

V
)0

is open dense in LG
(∧3

V
)
. In [12] we proved that if A ∈

LG
(∧3

V
)0

then XA is a hyper-Kähler (HK) 4-fold that can be deformed to
(K3)[2]; we also showed that the family of polarized HK 4-folds (XA,HA) for A
varying in LG

(∧3
V

)0
is locally complete. Three other explicit locally complete

families of projective HK manifolds of dimension greater than 2 are known (see
[2; 4; 8; 9]). In all the examples the HK manifolds are deformations of the Hilbert
square of a K3; they are distinguished by the value of the Beauville–Bogomolov
form on the polarization class (it equals 2 in the case of double EPW-sextics and
equals 6, 22, and 38 in the other cases). Here we shall analyze XA for A ∈ �,
usually assuming that A /∈ �. Let A ∈ (� \ �). We will prove the following
results.

(1) YA[3] is a finite set and equals YA(3). If A is generic in (�\�), then YA(3) is
a singleton.

(2) One may associate to [v0 ] ∈ YA(3) a K3 surface SA(v0) ⊂ P
6 of genus 6

that is well-defined up to projectivities. Conversely, the generic K3 surface of
genus 6 is projectively equivalent to SA(v0) for some A∈ (�\�) and [v0 ] ∈
YA(3).

(3) The singular set of XA is equal to f −1
A YA(3). There is a single pi ∈XA map-

ping to [vi] ∈ YA(3), and the cone of XA at pi is isomorphic to the cone over
the set of incident couples (x, r) ∈ P

2 × (P2)∨ (i.e., P(�P2 )). Thus we have
two standard small resolutions of a neighborhood of pi in XA, one with fiber
P

2 over pi and the other with fiber (P2)∨. Making a choice ε of local small
resolution at each pi yields a resolution Xε

A → XA with the following prop-
erties: (a) there is a birational map Xε

A ��� SA(vi)[2] such that the pull-back
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of a holomorphic symplectic form on SA(vi)[2] is a symplectic form on Xε
A;

and (b) if SA(vi) contains no lines (by (2), this condition holds for genericA),
then there exists a choice of ε such that Xε

A is isomorphic to SA(vi)[2].

(4) For a sufficiently small open (classical topology) U ⊂ (
LG

(∧3
V

) \�)
con-

taining A, the family of double EPW-sextics parameterized by U has a simul-
taneous resolution of singularities (no base change) with fiber Xε

A over A (for
an arbitrary choice of ε).

We remark that if YA(3) has more than one point then we do not expect all the small
resolutions to be projective (i.e. Kähler). Items (1)–(4) should be compared with
known results on cubic 4-folds. Recall that if Z ⊂ P

5 is a smooth cubic hyper-
surface then the variety F(Z) parameterizing lines in Z is a HK 4-fold that can
be deformed to (K3)[2]; also, the primitive weight-4 Hodge structure of Z is iso-
morphic (after a Tate twist) to the primitive weight-2 Hodge structure of F(Z)
(see [2]).

Let D ⊂ |OP 5(3)| be the prime divisor parameterizing singular cubics, and let
Z ∈D be generic. The following results are well known.

(1′) singZ is a finite set.
(2 ′) Given p ∈ singZ, the set SZ(p) ⊂ F(Z) of lines containing p is a K3 sur-

face of genus 4; conversely, the generic genus-4 K3 surface is isomorphic to
SZ(p) for some Z and p ∈ singZ.

(3′) F(Z) is birational to SZ(p)[2].

(4 ′) After a local base change of order 2 ramified along D, the period map ex-
tends across Z.

Items (1′)–(3′) are analogous to (1)–(3). Although (4 ′) also is analogous to (4),
there is an important difference—namely, the need for a base change of order 2.
Note that items (3) and (4) prove our previously mentioned theorem that if A ∈
LG

(∧3
V

)0
then XA is a HK deformation of (K3)[2] (given that, by a straight-

forward parameter count, the family of polarized double EPW-sextics is locally
complete). The proof given in this paper is independent of the one in [12]. Beyond
giving a new proof of an “old” theorem, results (1)–(4) show that: (a) away from
�, the period map is regular and lifts (locally) to the relevant classifying space;
and (b) the value at A ∈ (� \ �) may be identified with the period point of the
Hilbert square SA(v0)

[2]. We remark that in [14] we proved that the period map
is as well-behaved as possible at the generic A ∈ (� \ �); however, we did not
have the exact statement aboutXε

A and we had no statement about an arbitraryA∈
(�\�).

The paper is organized as follows. After summarizing our notation, in Section 1
we give formulas that describe double EPW-sextics locally. Although these for-
mulas are known, we go through the proofs for lack of a suitable reference. We
will also perform the local computations needed to prove item (4). In Section 2 we
perform standard computations involving�. In Section 3 we will prove items (1)
and (4) as well as the statements in item (3) that do not involve the K3 surface
SA(v0). In Section 4 we prove item (2) and the remaining statement of item (3).
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Finally, Section 5 contains auxiliary results on 3-dimensional linear sections of
Gr(3, C5).

Notation and Conventions. Throughout the paper, V is a 6-dimensional
complex vector space.

LetW be a finite-dimensional complex vector space. The span of a subset S ⊂
W is denoted by 〈S 〉. Let S ⊂ ∧q

W. The support of S is the smallest subspace
U ⊂W such that S ⊂ im

(∧q
U → ∧q

W
)
, and we denote it by supp(S); if S =

{α} is a singleton, we let supp(α) = supp({α}) (so if q = 1 then supp(α) = 〈α〉).
We define the support of a set of symmetric tensors analogously. For α ∈ ∧q

W or
α ∈ Symd W, the rank of α is the dimension of supp(α). An element of Sym2W∨
may be viewed either as a symmetric map or as a quadratic form; we denote the
former by q̃, r̃, . . . and the latter by q, r, . . . .

LetM = (Mij ) be a d × d matrix with entries in a commutative ring R. We let
Mc = (M ij ) be the matrix of cofactors of M; that is, Mi,j is (−1)i+j multiplied
by the determinant of the matrix obtained from M by deleting its ith row and j th
column. We recall the following interpretation ofMc. Suppose that f : A → B is
a linear map between freeR-modules of rank d and thatM is the matrix associated
to f by the choice of bases {a1, . . . , ad} and {b1, . . . , bd} of A and B, respectively.
Then

∧d−1
f may be viewed as a map∧d−1
f : A∨ ⊗ ∧d

A ∼= ∧d−1
A → ∧d−1

B ∼= B∨ ⊗ ∧d
B. (0.0.10)

(Here A∨ := Hom(A,R) and similarly for B∨.) The matrix associated to
∧d−1

f

by the choice of base {a∨
1 ⊗ (a1 ∧ · · · ∧ ad), . . . , a∨

d ⊗ (a1 ∧ · · · ∧ ad)} and of base
{b∨

1 ⊗ (b1 ∧ · · · ∧ bd), . . . , b∨
d ⊗ (b1 ∧ · · · ∧ bd)} is equal to Mc.

Let W be a finite-dimensional complex vector space. We will adhere to pre-
Grothendieck conventions, so P(W ) is the set of 1-dimensional vector subspaces
ofW. Given a nonzerow ∈W, we denote the span ofw by [w] rather than 〈w〉; this
is in line with standard notation. Suppose that T ⊂ P(W ). Then 〈T 〉 ⊂ P(W ) is
the projective span of T—that is, the intersection of all linear subspaces of P(W )

containing T.
Schemes are defined over C and, unless we state the contrary, the topology is the

Zariski topology. LetW be a finite-dimensional complex vector space: OP(W )(1)
is the line bundle on P(W ) with fiber L∨ on the point L ∈ P(W ). Given F ∈
Symd W∨, let V(F ) ⊂ P(W ) be the subscheme defined by the vanishing of F. If
E → X is a vector bundle, then we denote by P(E) the projective fiber bundle
with fiber P(E(x)) over x and define OP(W )(1) accordingly. For Y a subscheme
of X, we let BlY X → X denote the blow-up of Y.

1. Symmetric Resolutions and Double Covers

In Section 1.1 we describe a method (well known to experts) for constructing dou-
ble covers, and in Section 1.2 we show how this method can be used to construct
double EPW-sextics. Section1.3 contains the main ingredients needed to construct
the simultaneous desingularization described in item (3) of Section 0.
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1.1. Product Formula and Double Covers

LetR be an integral Noetherian ring. LetN be anR-module with a free resolution

0 −→ U1
λ−→ U0

π−→ N −→ 0, rkU1 = rkU0 = d > 0. (1.1.1)

Let {a1, . . . , ad} and {b1, . . . , bd} be bases ofU0 andU1, respectively. LetMλ be the
matrix associated to λ by our choice of bases, and observe that detMλ annihilates
N. Given a homomorphism

β : N → Ext1(N,R), (1.1.2)

we may define a product mβ : N × N → R/(detMλ) as follows. Applying the
Hom(·,R)-functor to (1.1.1) yields the exact sequence

0 −→ U∨
0

λt−→ U∨
1

ρ−→ Ext1(N,R) −→ 0. (1.1.3)

In particular, detMλ kills Ext1(N,R). Now apply the functor Hom(N, ·) to the ex-
act sequence

0 −→ R
detMλ−−−→ R −→ R/(detMλ) −→ 0. (1.1.4)

Since Ext1(N,R) → Ext1(N,R) amounts to multiplication by detMλ, we obtain
the coboundary isomorphism

∂ : Hom(N,R/(detMλ))
∼−→ Ext1(N,R). (1.1.5)

Let
N ×N

mβ−→ R/(detMλ),

(n, n′) �−→ (∂−1β(n))(n′).
(1.1.6)

We will give an explicit formula for mβ. Let π : U0 → N be as in (1.1.1). Then
β � π lifts to a homomorphism µt : U0 → U∨

1 (the map is written as a transpose
in order to conform to the notation for double EPW-sextics; see Section 1.2). It
follows that there exists an α : U1 → U∨

0 such that

0 �� U1
λ ��

α

��

U0
π ��

µt

��

N ��

β

��

0

0 �� U∨
0

λt �� U∨
1

ρ
�� Ext1(N,R) �� 0

(1.1.7)

is a commutative diagram. Let {a∨
1, . . . , a∨

d } and {b∨
1, . . . , b∨

d } be the bases of U∨
0

and U∨
1 that are dual to the chosen bases of U0 and U1. Let Mµt be the matrix

associated to µt by our choice of bases.

Proposition 1.1. With notation as before, we have

mβ(π(ai),π(aj )) ≡ (Mc
λ ·Mµt )ji modulo detMλ, (1.1.8)

where Mc
λ is the matrix of cofactors of Mλ.
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Proof. Equation (1.1.3) gives an isomorphism

ν : Ext1(N,R) ∼−→U∨
1/λ

t(U∨
0 ). (1.1.9)

Let det(U•) := ∧d
U∨

1 ⊗ ∧d
U0. We will define an isomorphism

θ : U∨
1/λ

t(U∨
0 )

∼−→ Hom(N, det(U•)/(det λ)). (1.1.10)

First let

U∨
1 = ∧d−1

U1 ⊗ ∧d
U∨

1
θ̂−→ ∧d−1

U0 ⊗ ∧d
U∨

1 = Hom(U0, det(U•)),

ζ ⊗ ξ �→ ∧d−1
(λ)(ζ)⊗ ξ.

(1.1.11)

We claim that

im(θ̂) = {φ ∈ Hom(U0, det(U•)) | φ � λ(U1) ⊂ (det λ)}. (1.1.12)

In fact, by Cramer’s formula we have

Mc
λ ·Mt

λ = Mt
λ ·Mc

λ = detMλ · 1 (1.1.13)

and then (1.1.12) follows. Thus θ̂ induces a surjective homomorphism

θ̃ : U∨
1 → Hom(N, det(U•)/(det λ)). (1.1.14)

One easily checks that λt(U∨
0 ) = ker θ̃ (use Cramer’s formula again). We define

θ to be the homomorphism induced by θ̃; we have already proved that it is an
isomorphism.

We claim that
θ � ν = ∂−1 for ∂ as in (1.1.5). (1.1.15)

Let K be the fraction field of R, and let 0 → R
ι−→ I 0 → I1 → · · · be an

injective resolution of R with I 0 = det(U•) ⊗ K and ι(1) = det λ ⊗ 1. Then
Ext•(N,R) is the cohomology of the double complex Hom(U•, I •) and also, of
course, of the single complexes Hom(U•,R) and Hom(N, I •). One checks easily
that the isomorphism ∂ of (1.1.5) is equal to the isomorphismH1(Hom(N, I •)) ∼−→
H1(Hom(U•, I •)); that is,

∂ : Hom(N, det(U•)/(det λ)) = Hom(N, I 0/ι(R))

∼−→H1(Hom(U•, I
•)). (1.1.16)

Let f ∈ Hom(N, det(U•)/(det λ)); a representative of ∂(f ) in the double complex
Hom(U•, I •) is given byg0,1 := f �π ∈Hom(U0, I1). Letg0,0 ∈Hom(U0, det(U•))

be a lift of g0,1 and let g1,0 ∈ Hom(U1, det(U•)) be defined as g1,0 := g0,0 �λ. One
can check that im(g1,0) ⊂ det λ and hence that there exists a g ∈ Hom(U1,R) such
that g1,0 = ι � g. By construction, g represents a class [g] ∈H1(Hom(U•,R)) =
U∨

1/λ
t(U∨

0 ) and [g] = ν �∂(f ). An explicit computation shows that [g] = θ−1(f ),
which proves (1.1.15). Now we prove (1.1.8). From (1.1.15) it follows that

mβ(π(ai),π(aj )) = (∂−1βπ(ai))(π(aj )) = (θνβπ(ai))(π(aj )). (1.1.17)

Unwinding the definition of θ, we find that the right-hand side of this equation
equals the right-hand side of (1.1.8).
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Let mβ be given by (1.1.6). We may define a product on R/(detMλ)⊕ N as fol-
lows. Let (r, n), (r ′, n′)∈R/(detMλ)⊕N, and set

(r, n) · (r ′, n′) := (rr ′ +mβ(n, n′), rn′ + r ′n). (1.1.18)

This product is neither associative nor commutative in general, but we will give
an example in which it is both. Suppose

0 −→ U∨ γ−→ U
π−→ N −→ 0, γ t = γ ; (1.1.19)

here U is a free R-module of rank d > 0 and the sequence is assumed to be exact.
We get the commutative diagram (1.1.7) by letting

U0 := U, U1 := U∨, λ = γ, α = IdU∨ , µt = IdU ,

and β = β(γ ) : N → Ext1(N,R) the map induced by IdU . Abusing notation, we
let mγ : N ×N → R/(detMγ ) be the map defined by mβ(γ ).

Proposition 1.2. Suppose we have the exact sequence (1.1.19). Then the prod-
uct on R/(detMγ )⊕N defined by mγ is associative and commutative.

Proof. Let d := rkU > 0. Let {a1, . . . , ad} be a basis of U, and let {a∨
1, . . . , a∨

d } be
the dual basis of U∨. Let M = Mγ (i.e., the matrix associated to γ by our choice
of bases). According to (1.1.8), we have

mγ(π(ai),π(aj )) ≡ Mc
ji modulo detM. (1.1.20)

Since γ is a symmetric map, it follows that M is a symmetric matrix; hence Mc

is a symmetric matrix. By (1.1.20) we know that mγ is symmetric. It remains to
prove that mγ is associative. For 1 ≤ i < k ≤ d and 1 ≤ h �= j ≤ d, let Mi,k

h,j be
the (d − 2) × (d − 2) matrix obtained by deleting from M the rows i and k and
the columns h and j. Let Xijk = (Xh

ijk)∈Rd be defined by

Xh
ijk :=



(−1)i+k+j+h detMi,k

j,h if h < j,

0 if h = j,

(−1)i+k+j+h−1 detMi,k
j,h if h > j.

(1.1.21)

A tedious but straightforward computation gives that

Mc
ij ak −Mc

jk ai = γ

( d∑
h=1

Xh
ijk a

∨
h

)
. (1.1.22)

This equation proves the associativity of mγ .

Retaining the hypotheses of Proposition 1.2, we let

Xγ := Spec(R/(detMλ)⊕N), Yγ := Spec(R/(detMλ)). (1.1.23)

Let fγ : Xγ → Yγ be the structure map. We may realize Xγ as a subscheme of
Spec(R[ξ1, . . . , ξd ]) as follows. Because the ring R/(detMγ ) ⊕ N is associative
and commutative, there is a well-defined surjective morphism of R-algebras
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R[ξ1, . . . , ξd ] → R/(detMγ )⊕N (1.1.24)

mapping ξi to ai. Thus we have an inclusion

Xγ ↪→ Spec(R[ξ1, . . . , ξd ]). (1.1.25)

Claim 1.3. With reference to inclusion (1.1.25), the ideal of Xγ is generated by
the entries of the matrices

Mγ · ξ, ξ · ξ t −Mc
γ , (1.1.26)

where ξ is viewed as a column matrix.

Proof. By (1.1.20), the ideal of Xγ is generated by detMγ and the entries of the
matrices in (1.1.26). By Cramer’s formula, detMγ belongs to the ideal generated
by the entries of the two matrices. This proves that the ideal of Xγ is as claimed.

Now we suppose in addition that R is a finitely generated C-algebra. Let p ∈
SpecR be a closed point; we are interested in the localization of Xγ at points in
f −1
γ (p). Let J ⊂ U∨(p) be a subspace complementary to ker γ (p). Let J ⊂ U∨

be a free submodule whose fiber over p is equal to J. Let K ⊂ U∨ be the sub-
module orthogonal to J; that is,

K := {u∈U∨ | γ (a)(u) = 0 ∀a ∈ J}. (1.1.27)

The localization of K at p is free. Let K := K(p) be the fiber of K at p; clearly,
K = ker γ (p). Localizing at p, we have

U∨
p = Kp ⊕ Jp. (1.1.28)

Corresponding to (1.1.28) we may write γp = γK ⊕⊥ γJ, where γK : Kp → K∨
p

and γJ : Jp → J∨
p are symmetric maps. Note that we have an equality of germs

(Yγ ,p) = (YγK ,p). (1.1.29)

We claim that there is a compatible isomorphism of germs (XγK , f −1
γK
(p)) ∼=

(Xγ , f −1
γ (p)). Let k := dimK and d := rkU. Choose bases of Kp and Jp; then,

by (1.1.28), we have a basis of U∨
p . The dual bases of K∨

p, J∨
p , and U∨

p are com-
patible with respect to the decomposition that is dual to (1.1.28). Corresponding
to the chosen bases we have embeddings XγK ↪→ YγK × C

k and Xγ ↪→ Yγ × C
d.

The decomposition dual to (1.1.28) gives an embedding j : YγK ×C
k ↪→ Yγ ×C

d.

Claim 1.4. The composition

XγK ↪→ (YγK × C
k )

j−→ (Yγ × C
d) (1.1.30)

defines an isomorphism of germs in the analytic topology,

(XγK , f −1
γK
(p)) ∼−→ (Xγ , f −1

γ (p)), (1.1.31)

that commutes with the maps fγK and fγ .



Double Covers of EPW-Sextics 151

Proof. This follows by writing γp = γK ⊕⊥ γJ and then recalling (1.1.20). We
pass to the analytic topology so that we can extract the square root of a regular
nonzero function.

Proposition 1.5. Assume thatR is a finitely generated C-algebra. Suppose that
we have the exact sequence (1.1.19). Then the following statements hold.

(1) f −1
γ Yγ(1) → Yγ(1) is a topological covering of degree 2.

(2) Let p ∈ (Yγ \ Yγ(1)) be a closed point. The fiber f −1
γ (p) consists of a sin-

gle point q. Let ξi be the coordinates onXγ associated to embedding (1.1.25);
then ξi(q) = 0 for i = 1, . . . , d.

Proof. (1) Localize at p ∈ Yγ(1) and then apply Claim 1.3.
(2) Since corkMγ(p) ≥ 2, we have Mc

γ(p) = 0. Hence this part follows from
Claim 1.3.

We may associate a double cover fγ : Xγ → Yγ to a map β that is symmetric in
the derived category.

Hypothesis 1.6. We have (1.1.7) with α an isomorphism and α = µ.

Proposition 1.7. Assume that Hypothesis 1.6 holds. Then R/(detMλ) ⊕ N

equipped with the product given by (1.1.18) is a commutative (and associative)
ring.

Proof. Let γ := λ � µ−1 and U := U0. Then (1.1.19) holds, and the product de-
fined bymβ is equal to the product defined bymγ . From Proposition 1.2 it follows
that R/(detMλ)⊕N is a commutative associative ring.

Definition 1.8. Suppose that Hypothesis 1.6 holds. Then the symmetrization of
(1.1.7) is exact sequence (1.1.19) with γ and U as in the proof of Proposition 1.7.

1.2. Structure Sheaf of Double EPW-Sextics

Let A ∈ LG
(∧3

V
)

and suppose that YA �= P(V ). We will define the associated
double cover XA → YA by applying the results of Section 1.1. Since A is La-
grangian, the symplectic form defines a canonical isomorphism

∧3
V/A ∼= A∨;

thus (0.0.3) defines a map of vector bundles λA : F → A∨ ⊗ OP(V ). Let i : YA ↪→
P(V ) be the inclusion map. Then, since a local generator of det λA annihilates
coker(λA), there is a unique sheaf ζA on YA such that we have the exact sequence

0 −→ F
λA−→ A∨ ⊗ OP(V ) −→ i∗ζA −→ 0. (1.2.1)

Now choose B ∈ LG
(∧3

V
)

transversal to A. Thus we have a direct sum de-
composition

∧3
V = A ⊕ B and hence a projection map

∧3
V → A inducing a

map µA,B : F → A⊗ OP(V ). We claim that there is a commutative diagram with
exact rows:
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0 �� F
λA ��

µA,B

��

A∨ ⊗ OP(V )
��

µt
A,B

��

i∗ζA ��

βA

��

0

0 �� A⊗ OP(V )

λt
A �� F∨ �� Ext1(i∗ζA, OP(V )) �� 0 .

(1.2.2)

The second row is obtained by applying the Hom(·, OP(V ))-functor to (1.2.1), and
the equality µtA,B � λA = λtA � µA,B holds because F is a Lagrangian subbundle

of
∧3
V ⊗ OP(V ). Finally, βA is defined as the unique map making the diagram

commutative; it exists because the rows are exact. Observe that, as suggested by
the notation, the map βA is independent of the choice of B.

Next, by applying the Hom(i∗ζA, ·)-functor to the exact sequence

0 −→ OP(V ) −→ OP(V )(6) −→ OYA(6) −→ 0, (1.2.3)

we obtain the exact sequence

0 −→ i∗ Hom(ζA, OYA(6))
∂−→ Ext1(i∗ζA, OP(V ))

n−→ Ext1(i∗ζA, OP(V )(6)), (1.2.4)

where n is locally equal to multiplication by det λA. Since the second row of (1.2.2)
is exact, it follows that a local generator of det λA annihilates Ext1(i∗ζA, OP(V ));
thus n = 0 and hence we get a canonical isomorphism

∂−1 : Ext1(i∗ζA, OP(V ))
∼−→ i∗ Hom(ζA, OYA(6)). (1.2.5)

We define m̃A by setting

ζA × ζA
m̃A−→ OYA(6),

(σ1, σ2) �−→ (∂−1 � βA(σ1))(σ2).
(1.2.6)

Let ξA := ζA(−3). Tensorizing both sides of (1.2.6) by OYA(−6) yields the multi-
plication map

ξA × ξA
mA−→ OYA. (1.2.7)

Thus we have defined a multiplication map on OYA ⊕ ξA. The following result is
well known to experts.

Proposition 1.9. With notation as before, let A ∈ LG
(∧3

V
)

and suppose that
YA �= P(V ). Then:

(1) βA is an isomorphism; and
(2) the multiplication map mA is associative and commutative.

Proof. Let [v0 ] ∈ P(V ). Choose B ∈ LG
(∧3

V
)

transversal to Fv0 (and to A, of
course). ThenµA,B is an isomorphism in an open neighborhoodU of [v0 ], whence
βA is an isomorphism in a neighborhood of [v0 ]; this proves (1). To prove (2), let
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B ∈ LG
(∧3

V
)

and let U be as before; we may assume that U is affine. Let N :=
H 0(i∗ζA|U) and β := H 0(βA|U). Then β : N → Ext1(N, C[U ]). By Proposi-
tion 1.7 and the commutativity of diagram (1.2.2), the multiplication map mβ is
associative and commutative. Yet mβ is the multiplication induced by mA on N;
since [v0 ] is an arbitrary point of P(V ), it follows that mA is also associative and
commutative.

We let XA := Spec(OYA ⊕ ξA) and let fA : XA → YA be the structure morphism.
Then XA is the double EPW-sextic associated to A, and fA is its structure map.
The covering involution ofXA is the automorphism φA : XA → XA corresponding
to the involution of OYA ⊕ ξA with (−1)-eigensheaf equal to ξA.

1.3. Local Models of Double Covers

In this section we assume that R is a finitely generated C-algebra. Let W be a
finite-dimensional complex vector space, and suppose we have the exact sequence

0 −→ R ⊗ W∨ γ−→ R ⊗ W −→ N −→ 0, γ = γ t. (1.3.1)

Thus we have a double cover fγ : Xγ → Yγ . Let p ∈ Yγ be a closed point. We
will examine Xγ in a neighborhood of f −1

γ (p) when the corank of γ (p) is small.
We may view γ as a regular map SpecR → Sym2 W; it therefore makes sense to
consider the differential

dγ (p) : Tp SpecR → Sym2 W. (1.3.2)

Let K(p) := ker γ (p) ⊂ W∨. We will consider the linear map

Tp SpecR
δγ (p)−−−→ Sym2K(p)∨,

τ �−−→ dγ (p)(τ )|K(p).
(1.3.3)

Let d := dim W; choosing a basis of W, we realize Xγ as a subscheme of
SpecR × C

d with ideal given by Claim 1.3. We will assume that cork γ (p) ≥
2. Proposition 1.5 gives that f −1

γ (p) consists of a single point q; in fact, the
ξi-coordinates of q are all zero. Throughout this section, we let

f −1
γ (p) = {q}. (1.3.4)

Claim 1.10. Suppose that d = dim W = 2 and γ (p) = 0. Then I(Xγ ) is gen-
erated by the entries of ξ · ξ t −Mc

γ .

Proof. This follows from Claim 1.3 and a straightforward computation.

Example 1.11. Let R = C[x, y, z], W = C
2. Suppose that the matrix associated

to γ is

Mγ =
(
x y

y z

)
. (1.3.5)

Then fγ : Xγ → Yγ is identified with
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C
2 −→ V(xz− y2),

(ξ1, ξ2) �→ (ξ 2
2 , −ξ1ξ2, ξ 2

1 ),
(1.3.6)

that is, with the quotient map for the action of 〈−1〉 on C
2.

Proposition 1.12. Suppose that

(a) cork γ (p) = 2 and
(b) the localization Rp is regular.

Then Xγ is smooth at q if and only if δγ(p) is surjective.

Proof. Applying Claim 1.4 allows us to assume that d = 2. Let

Mγ =
(
a b

b c

)
. (1.3.7)

By Claim 1.10, the ideal of Xγ in SpecR × C
2 is generated by the entries of

ξ · ξ t −Mc
γ ; that is,

I(Xγ ) = (ξ 2
1 − c, ξ1ξ2 + b, ξ 2

2 − a). (1.3.8)

Therefore,

cod(TqXγ , Tq(SpecR × C
2)) = dim〈da(p), db(p), dc(p)〉. (1.3.9)

On the other hand, codq(Xγ , SpecR × C
2) = 3 and so, at q, Xγ is smooth if and

only if δγ(p) is surjective.

Claim 1.13. Retain the preceding notation and hypotheses, and suppose that
cork γ (p) ≥ 3. Then Xγ is singular at q.

Proof. Let I be the ideal ofXγ in SpecR[ξ1, . . . , ξd ]. By Claim 1.3, I is nontrivial;
however, the differential at q of an arbitrary g ∈ I is zero.

Next we discuss in greater detail thoseXγ whose corank atf −1
γ (p) is equal to 3. We

begin by identifying the “universal” example (the universal example for corank 2 is
Example 1.11). Let V be a 3-dimensional complex vector space. We view Sym2 V
as an affine (6-dimensional) space and let R := C[Sym2 V ] be its ring of regu-
lar functions. We identify R ⊗C V and R ⊗C V∨ with the space of (respectively)
V-valued and V∨-valued regular maps on Sym2 V. Let

R ⊗C V∨ γ−→ R ⊗C V (1.3.10)

be the map induced on the spaces of global sections by the tautological map of
vector bundles, SpecR× V∨ −→ SpecR× V. The map γ is symmetric. Let N be
the cokernel of γ ; then

0 −→ R ⊗C V∨ γ−→ R ⊗C V −→ N −→ 0 (1.3.11)

is an exact sequence. Since γ is symmetric, it defines a double cover f : X(V ) →
Y(V ) for



Double Covers of EPW-Sextics 155

Y(V ) := {α ∈ Sym2 V | rkα < 3} (1.3.12)

the variety of degenerate quadratic forms.
Let

φ : X(V ) → X(V ) (1.3.13)

be the covering involution of f. Then X(V ) may be described explicitly as fol-
lows. Let

(V ⊗ V )1 := {µ∈ (V ⊗ V ) | rkµ ≤ 1}. (1.3.14)

Thus (V ⊗ V )1 is the cone over the Segre variety P(V )× P(V ). We have the fol-
lowing finite degree-2 map:

(V ⊗ V )1 σ−→ Y(V )
µ �→ µ+ µt.

(1.3.15)

Proposition 1.14. There exists a commutative diagram

(V ⊗ V )1
σ

���
��

��
��

��
τ �� X(V )

f

����
��

��
��

Y(V ),
(1.3.16)

where τ is an isomorphism. Let φ be involution (1.3.13). Then

φ � τ(µ) = τ(µt ) ∀µ∈ (V ⊗ V )1. (1.3.17)

Proof. To define τ, we will give a coordinate-free version of inclusion (1.1.25) for
the case of X(V ). Let

Sym2 V × (V∨ ⊗ ∧3 V) H−→ (V ⊗ ∧3 V)
× (V∨ ⊗ V∨ ⊗ ∧3 V ⊗ ∧3 V)

,

(α, ξ) �→ (
α � ξ, ξ t � ξ − ∧2

α
)
.

(1.3.18)

A few words of explanation are in order. In the definition of the first component of
H(α, ξ)we view ξ as belonging to Hom

(∧3 V∨, V∨); whereas, in the definition of
the second component of H(α, ξ), we view ξ as belonging to Hom

(V ⊗∧3 V∨, C
)
.

We also make the obvious choice of isomorphism, C ∼= C
∨. Moreover,∧2

α ∈ Hom
(∧2 V∨,

∧2 V) = Hom
(V ⊗ ∧3 V∨, V∨ ⊗ ∧3 V)

= V∨ ⊗ V∨ ⊗ ∧3 V ⊗ V. (1.3.19)

Choosing a basis of V, we obtain the embedding X(V ) ⊂ Sym2 V × C
3; see

(1.1.25). Claim 1.3 now gives equality of pairs(
Sym2 V × (V∨ ⊗ ∧3 V)

,H−1(0)
) = (Sym2 V × C

3,X(V )), (1.3.20)

whereH−1(0) is the scheme-theoretic fiber ofH. Note that we have the following
isomorphism:
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V ⊗ V
T∼−−→ Sym2 V × (V∨ ⊗ ∧3 V)

,

ε �−→ (ε + εt, ε − εt ).

(1.3.21)

Let τ := T |(V⊗V )1. We then have the embedding

τ : (V ⊗ V )1 ↪→ Sym2 V × (V∨ ⊗ ∧3 V)
. (1.3.22)

We shall demonstrate the equality of schemes

im(τ ) = H−1(0) (= X(V )). (1.3.23)

First, let
V ⊕ V ρ−→ (V ⊗ V )1,

(η,β) �→ ηt � β.
(1.3.24)

Observe that ρ is the quotient map for the C
×-action on V⊕V defined by t(η,β) :=

(tη, t−1β). We have

τ � ρ(η,β) = (ηt � β + βt � η, η ∧ β). (1.3.25)

Second, let’s prove that
H−1(0) ⊃ im(τ ). (1.3.26)

Notice that Gl(V ) acts on (V ⊗ V )1 with a unique dense orbit—namely, {ηt � β |
η ∧ β �= 0}. An easy computation shows that τ(ηt � β) ∈ H−1(0) for a conve-
niently chosen ηt �β in the dense orbit of (V ⊗ V )1; it follows that (1.3.26) holds.
On the other hand, T defines an isomorphism of pairs,

(V ⊗ V, (V ⊗ V )1) ∼= (
Sym2 V∨ × (V∨ ⊗ ∧3 V)

, im(τ )
)
. (1.3.27)

Since the ideal of (V ⊗ V )1 in V ⊗ V is generated by nine linearly indepen-
dent quadrics, it follows that the ideal of im(τ ) in Sym2 V∨ × (V∨ ⊗ ∧3 V)

is
also generated by nine linearly independent quadrics. The ideal of H−1(0) in
Sym2 V×(V∨⊗∧3 V)

is likewise generated by nine linearly independent quadrics;
see (1.3.18). SinceH−1(0) ⊃ im(τ ), the ideals ofH−1(0) and of im(τ ) are the same
and hence (1.3.23) holds. This proves that τ is an isomorphism between (V ⊗V )1
andX(V ). Diagram (1.3.16) is commutative by construction, and (1.3.17) is equiv-
alent to

φ(τ � ρ(β, η)) = τ � ρ(η,β)). (1.3.28)

This equality holds because β ∧ η = −η ∧ β.
The following result is an immediate consequence of Proposition 1.14.

Corollary 1.15. singX(V ) = τ(0) = f −1(0).

2. The Divisor �

2.1. Parameter Counts

Let �+ ⊂ LG
(∧3

V
)

and �̃+ , �̃+(0) ⊂ LG
(∧3

V
) × P(V )2 be defined as

follows:
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�+ := {
A∈ LG

(∧3
V

) | |YA[3]| > 1
}
, (2.1.1)

�̃+ := {(A, [v1], [v2 ]) | [v1] �= [v2 ], dim(A ∩ Fvi ) ≥ 3}, (2.1.2)

�̃+(0) := {(A, [v1], [v2 ]) | [v1] �= [v2 ], dim(A ∩ Fvi ) = 3}. (2.1.3)

Note that �̃+ and �̃+(0) are locally closed.

Lemma 2.1. With notation as before, we have that

(1) �̃+ is irreducible of dimension 53, and
(2) �+ is constructible and cod

(
�+ , LG

(∧3
V

)) ≥ 2.

Proof. (1) We start by proving that �̃+(0) is irreducible of dimension 53. Con-
sider the map

�̃+(0)
η−→ Gr

(
3,

∧3
V

)2 × P(V )2,

(A, [v1], [v2 ]) �→ (A ∩ Fv1,A ∩ Fv2 , [v1], [v2 ]).
(2.1.4)

We have

im η = {(K1,K2, [v1], [v2 ]) | Ki ∈ Gr(3,Fvi ), K1 ⊥ K2, [v1] �= [v2 ]}. (2.1.5)

We stratify im η according to i := dim(K1 ∩ Fv2 ) and j := dim(K1 ∩ K2); of
course, j ≤ i. Let (im η)i,j ⊂ im η be the stratum corresponding to i, j.A straight-
forward computation gives that

dim η−1(im η)i,j

= 10 + 7(3 − i)+ j(i − j)+ (3 − j)(4 + i)+ 1

2
(j + 5)(j + 4)

= 53 − 4i − 1

2
j(j − 1). (2.1.6)

Since 0 ≤ i, j, it follows that the maximum is achieved for i = j = 0 and that
it equals 53; hence �̃+(0) is irreducible of dimension 53. Yet because �̃+(0) is
clearly dense in �̃+ , part (1) holds.

(2) Let π+ : �̃+ → LG
(∧3

V
)

be the forgetful map, π+([v1], [v2 ],A) =
A; then π+(�̃+) = �+. From (1) we get that dim�+ ≤ 53; therefore, since
dim LG

(∧3
V

) = 55, part (2) follows.

Proposition 2.2. The following statements hold.

(1) � is closed irreducible of codimension 1 in LG
(∧3

V
)

and is not equal to �.
(2) If A∈� is generic, then YA[3] = YA(3) and consists of a single point.

Proof. (1) Let
�̃ := {(A, [v]) | dim(Fv ∩ A) ≥ 3},

�̃(0) := {(A, [v]) | dim(Fv ∩ A) = 3}.
(2.1.7)

Then �̃ is a closed subset of LG
(∧3

V
) × P(V ) and �̃(0) is an open subset of

�̃. Let π : �̃ → LG
(∧3

V
)

be the forgetful map. Thus π(�̃) = � and, since
π is projective, it follows that � is closed. Projecting �̃(0) to P(V ) yields that
�̃(0) is smooth irreducible of dimension 54. A standard dimension count shows
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that �̃(0) is open dense in �̃ and so �̃ is irreducible of dimension 54. It follows
that � is irreducible. By Lemma 2.1 we know that dim �̃+ ≤ 53. Therefore, the
generic fiber of �̃ → � is a single point—in particular, dim� = 54—and hence
cod

(
�, LG

(∧3
V

)) = 1 because dim LG
(∧3

V
) = 55. A dimension count shows

that dim(� ∩�) < 54 and hence � �= �.

(2) Let A ∈� be generic. We have already observed that there exists a unique
[v] ∈ P(V ) such that ([v],A) ∈ �̃; that is, YA[3] consists of a single point. Since
�̃(0) is dense in �̃ and since dim �̃ = dim�, it follows that ([v],A)∈ �̃(0); that
is, YA[3] = YA(3).

2.2. First-Order Computations

Let (A, [v0 ]) ∈ �̃(0). We will study the differential of π : �̃ → LG
(∧3

V
)

at
(A, [v0 ]). First we give a local description of �̃ as degeneracy locus. Let

N(V ) := {
A∈ LG

(∧3
V

) | YA = P(V )
}
. (2.2.1)

Notice that N(V ) is closed. Let Y be the tautological family of EPW-sextics:

Y := {
(A, [v])∈ (

LG
(∧3

V
) \ N(V )

) × P(V ) | dim(A ∩ Fv) > 0
}
. (2.2.2)

Because Y may be described as a determinantal variety, it has a natural scheme
structure. For U ⊂ (

LG
(∧3

V
) \ N(V )

)
open, we let YU := Y ∩ (U × P(V )).

Given B ∈ LG
(∧3

V
)
, let

UB := {
A∈ LG

(∧3
V

) | A � B
} \ N(V ). (2.2.3)

(Here A � B means that A intersects B transversely; i.e., A ∩ B = {0}.) Let
iUB : YUB ↪→ UB × P(V ) be the inclusion and let A be the tautological rank-10
vector bundle on LG

(∧3
V

)
(the fiber of A over A is A itself ). Going through the

argument that produced commutative diagram (1.2.2), we find that there exists a
commutative diagram

0 �� OUB � F
λUB ��

µUB

��

(A∨|UB )� OP(V )
��

µt
UB

��

iUB,∗ζUB ��

βUB

��

0

0 �� (A|UB )� OP(V )

λt
UB �� OUB � F∨ �� Ext1(iUB,∗ζUB , OUB×P(V )) �� 0 .

(2.2.4)

Now let (A, [v0 ]) ∈ Y. Choose B ∈ LG
(∧3

V
)

such that B � A and B � Fv0 .

Let N ⊂ P(V ) be an open neighborhood of [v0 ] such that B � Fw for all w ∈ N.
The restriction to UB of A is trivial, as is the restriction to N of F. Moreover, the
restriction of µUB to UB × N is an isomorphism. Let

γ := (λUB |UB×N ) � (µUB |UB×N )−1. (2.2.5)

We have the exact sequence

0 −→ (A|UB )� ON
γ−→ (A∨|UB )� ON −→ iUB,∗ζUB |UB×N −→ 0. (2.2.6)
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The map γ is symmetric; in fact, it is the symmetrization of the restriction of
(2.2.4) to UB × N (see Definition 1.8). Then �̃ ∩ (UB × N ) is the symmetric
degeneration locus

�̃ ∩ (UB × N ) = {(A′, [v])∈ (UB × N ) | cork γ (A′, [v]) ≥ 3} (2.2.7)

and so it inherits the natural structure of a closed subscheme of LG
(∧3

V
)×P(V ).

In order to study the differential of the forgetful map �̃ → P(V ), we introduce
some notation. Given v ∈ V, we define a quadratic form φv0

v on Fv0 as follows.
Let α ∈Fv0; then α = v0 ∧ β for some β ∈ ∧2

V. We set

φv0
v (α) := vol(v0 ∧ v ∧ β ∧ β). (2.2.8)

This expression gives a well-defined quadratic form on Fv0 because β is deter-
mined up to addition by an element of Fv0 . Of course, φv0

v depends only on the
class of v in V/[v0 ].

Choose a direct sum decomposition

V = [v0 ] ⊕ V0. (2.2.9)

We have the isomorphism

λ
v0
V0

:
∧2
V0

∼−→Fv0 ,

β �−→ v0 ∧ β. (2.2.10)

Under this identification, the Plücker quadratic forms on
∧2
V0 correspond to the

quadratic forms φv0
v for v varying in V0. Let K := A ∩ Fv0 and

V0
τ
v0
K−−→ Sym2K∨, Sym2 A∨ θA

K−→ Sym2K∨,

v �−→ φv0
v |K; q �−→ q|K.

(2.2.11)

The isomorphism

V0
∼−→ P(V ) \ P(V0),

v �−→ [v0 + v]

defines an isomorphismV0
∼= T[v0 ]P(V ). Recall that the tangent space to LG

(∧3
V

)
at A is canonically identified with Sym2 A∨.

Proposition 2.3. If we make the choice (2.2.9), then

T(A,[v0 ])�̃ ⊂ T(A,[v0 ])
(
LG

(∧3
V

) × P(V )
) = Sym2 A∨ ⊕ V0 (2.2.12)

is given by
T([v0 ],A)�̃ = {(q, v) | θAK(q)− τ

v0
K (v) = 0}. (2.2.13)

Proof. From the (local) degeneracy description (2.2.7) it follows that (q, v) ∈
T([v0 ],A)�̃ if and only if

0 = dγ (A, [v0 ])(q, v)|K = dγ (A, [v0 ])(q, 0)|K + dγ (A, [v0 ])(0, v)|K.
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It is clear that dγ (A, [v0 ])(q, 0)|K = θAK(q). On the other hand, equation (2.26)
of [12] gives that

dγ (A, [v0 ])(0, v)|K = −τ v0
K (v). (2.2.14)

The proposition follows.

Corollary 2.4. �̃(0) is smooth and of codimension 6 in LG
(∧3

V
) × P(V ).

Let (A, [v0 ]) ∈ �̃(0) and K := A ∩ Fv0 . Then the differential dπ(A, [v0 ]) is
injective if and only if τ v0

K is injective.

Proof. Let (A, [v0 ]) ∈ �̃(0) and K := A ∩ Fv0 . The map θAK is surjective, and
by Proposition 2.3 we have that T(A,[v0 ])�̃(0) has codimension 6 in the space
T(A,[v0 ])

(
LG

(∧3
V

)×P(V )
)
.Yet the description of �̃(0) as a symmetric degener-

ation locus, as in (2.2.7), gives that �̃(0) has codimension at most 6 in LG
(∧3

V
)×

P(V ). These two statements together imply that �̃(0) is smooth of codimension 6
in LG

(∧3
V

)× P(V ). Our claim about the injectivity of dπ(A, [v0 ]) follows im-
mediately from Proposition 2.3.

Remark. The statement in Corollary 2.4 about the smoothness of �̃(0) is not
contained in the proof of Proposition 2.2 because, in that proof, we consider �̃(0)
with its reduced structure.

Before stating the next result, we give the following definition. ForA∈ LG
(∧3

V
)
,

let
JA := {

W ∈ Gr(3,V ) | ∧3
W ⊂ A

}
. (2.2.15)

Proposition 2.5. Let (A, [v0 ])∈ �̃(0) and letK := A∩Fv0 . Then τ v0
K is injec-

tive if and only if :

(1) no W ∈JA contains v0; or
(2) there is exactly one W ∈JA containing v0 and, moreover,

A ∩ Fv0 ∩ (∧2
W ∧ V ) = ∧3

W. (2.2.16)

If (1) (respectively, (2)) holds, then im τ v0
K belongs to the unique open (respectively,

closed ) PGL(K)-orbit of Gr(5, Sym2K∨).

Proof. Let V0 ⊂ V be a codimension-1 subspace transversal to [v0 ], and let

ρ
v0
V0

: Fv0
∼−→ ∧2

V0 (2.2.17)

be the inverse of isomorphism (2.2.10). Let K := P(ρ
v0
V0
(K)) ⊂ P

(∧2
V0

)
, in

which case K is a projective plane. Isomorphism ρ
v0
V0

identifies the space of qua-
dratic forms φv0

v , v ∈ V0, with the space of Plücker quadratic forms on
∧2
V0.

Because the ideal of Gr(2,V0) ⊂ P
(∧2

V0
)

is generated by the Plücker quadratic
forms, we get that τ v0

K is identified with the natural restriction map

V0 = H 0(IGr(2,V0)(2))
τ
v0
K−−→ H 0(OK(2)) = Sym2K∨. (2.2.18)
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It follows that, if the scheme-theoretic intersection K ∩Gr(2,V0) is neither empty
nor a single reduced point, then τ v0

K is not injective.
Now suppose that K ∩ Gr(2,V0) is either

(1′) empty (i.e., part (1) of the proposition holds) or
(2 ′) a single reduced point (i.e., part (2) holds).

Let

P
(∧2

V0
) K��� |H 0(IGr(2,V0)(2))|∨ = P(V ∨

0 ) (2.2.19)

be the natural map: it associates to [α] /∈ Gr(2,V0) the projectivization of suppα.
We have a tautological identification

K
K|K��� P(im τ v0

K )
∨,

where K|K is the Veronese embedding K → |OK(2)|∨ followed by the projec-
tion with center P(Ann(im τ v0

K )). Notice that τ v0
K is not injective if and only if

dim P(Ann(im τ v0
K )) ≥ 1. Suppose that (1′) holds. Then K|K is regular and is, in

fact, an isomorphism onto its image (see [15, Lemma 2.7]. Since the chordal
variety of the Veronese surface in |OK(2)|∨ is a hypersurface, it follows that
dim P(Ann(im τ v0

K )) < 1 and hence τ v0
K is injective. We also get that Ann(im τ v0

K )

is a point in |OK(2)|∨ that does not belong to the chordal variety of the Veronese
surface; it therefore belongs to a unique open PGL(K)-orbit. Now suppose that
(2 ′) holds. Assume that τ v0

K is not injective, in which case dim P(Ann(im τ v0
K )) ≥

1. It follows that there exist [x] �= [y] ∈ K in the regular locus ofK|K (i.e., neither
x nor y is decomposable) such that K([x]) = K([y]). By the preceding descrip-
tion ofK in terms of supports, we have that supp(x) = supp(y) = U for dimU =
4; since Gr(2,U) is a hypersurface in P

(∧2
U

)
, the line 〈[x], [y]〉 ⊂ P

(∧2
V0

)
intersects Gr(2,U) in a subscheme of length 2. Since 〈[x], [y]〉 ⊂ K it follows
that K ∩ Gr(2,V0) contains a scheme of length 2, which contradicts (2 ′). This
proves that if (2 ′) holds then τ v0

K is injective. It also follows that Ann(τ v0
K ) belongs

to the Veronese surface in |OK(2)|∨; that is, im(τ v0
K ) belongs to the unique closed

PGL(K)-orbit.

3. Simultaneous Resolution

In Section 3.1 we analyze families of double EPW-sextics and their singular locus.
Section 3.2 shows how to construct the simultaneous desingularization described
in item (3) of Section 0 (the relation with the Hilbert square of a K3 surface will
be given in Section 4).

3.1. Families of Double EPW-Sextics

Let U ⊂ (
LG

(∧3
V

) \ N(V )
)

(see (2.2.1)) be open. Suppose there exist a scheme
XU and a finite fU : XU → YU such that, for every A ∈ U , the induced map
f −1YA → YA is identified with fA : XA → YA. Then we say that a tautological
family of double EPW-sextics parameterized by U exists—or, more simply, that
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fU : XU → YU exists. Composing fU with the natural map YU → U yields a
map ρU : XU → U such that ρ−1

U (A) ∼= XA.

Proposition 3.1. Let B ∈ LG
(∧3

V
)
. Then there exists a tautological family of

double EPW-sextics parameterized by UB , where UB is given by (2.2.3).

Proof. Let ν : YUB → P(V ) be projection. Let ξUB := ζUB ⊗ν∗OP(V )(−3), where
ζUB is the sheaf on YUB fitting in (2.2.4). Referring to commutative diagram (2.2.4)
and proceeding as in the definition of multiplication on OYA ⊕ ξA, we find that βUB
defines a multiplication on OYUB

⊕ξUB . Then, by Proposition 1.7, OYUB
⊕ξUB is an

associative commutative ring. Let XUB := Spec(OYUB
⊕ξUB ) and let fUB : XUB →

YUB be the structure map.

Let U ⊂ (
LG

(∧3
V

) \ N(V )
)

be open and such that fU : XU → YU exists. We
will determine the singular locus of XU . Let

Y [d] := {
(A, [v])∈ (

LG
(∧3

V
) \ N(V )

) × P(V ) | dim(A ∩ Fv) ≥ d
}
, (3.1.1)

Y(d ) := {
(A, [v])∈ (

LG
(∧3

V
) \ N(V )

) × P(V ) | dim(A ∩ Fv) = d
}
. (3.1.2)

Then Y [d] has the natural structure of a closed subscheme of LG
(∧3

V
) ×

P(V ) given by its local description as a symmetric determinantal variety (see [15,
Sec. 2.2]). Let U ∈ (

LG
(∧3

V
) \ N(V )

)
be open. We let YU [d] := Y [d] ∩ YU

and similarly for YU (d ). Suppose that fU : XU → YU is defined, and let

WU := f −1
U Y [3]. (3.1.3)

Observe that the restriction of fU to WU defines an isomorphism WU ∼−→YU [3].
We will prove the following result.

Proposition 3.2. Let U ⊂ (
LG

(∧3
V

) \ N(V )
)

be open, and suppose that
fU : XU → YU exists. Then sing XU = WU .

Proof. We may assume that U = UB × N, where B ∈ LG
(∧3

V
)

and N ⊂
P(V ) is an open subset such that B � Fw for all w ∈ N. Then (see the proof of
Proposition 3.1)

f −1
UB
(U ) = Xγ , (3.1.4)

where γ is given by (2.2.5). It therefore suffices to examine Xγ . Let (A, [v])∈ U
and let

δγ(A, [v]) : T(A,[v])LG
(∧3

V
) × P(V ) −→ Sym2(A ∩ Fv)∨ (3.1.5)

be as in (1.3.3). The restriction of δγ(A, [v]) to the tangent space to LG
(∧3

V
)

at
A is surjective, so

δγ(A, [v]) is surjective. (3.1.6)

Let q ∈ Xγ and fU (q) = (A, [v]). Suppose that q /∈ WU (i.e., that cork γ (p) ≤
2). If cork γ (p) = 1 then YU = Yγ is smooth because the differential δγ(A, [v])
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is surjective, and from Proposition 1.5 it then follows that XU is smooth at q. If
cork γ (p) = 2 then XU is smooth at q by Proposition 1.12—recall that the dif-
ferential δγ(A, [v]) is surjective. This proves that sing XU ⊂ WU . On the other
hand, WU ⊂ sing XU by Claim 1.13.

We shall next prove a few results about the individual XA.

Lemma 3.3. Let A ∈ (
LG

(∧3
V

) \ N(V )
)

and let [v] ∈ YA. Suppose that
dim(A ∩ Fv) ≤ 2 and that there is no W ∈ JA (see (2.2.15)) containing v.
Then XA is smooth at f −1

A ([v]).

Proof. Let q ∈ f −1
A ([v]), and suppose that dim(A ∩ Fv) = 1. By [15, Cor. 2.5],

YA is smooth at [v]; hence, by Proposition 1.5, XA is smooth at q. Suppose that
dim(A ∩ Fv) = 2. Locally around q, the double cover XA → YA is isomorphic
to Xγ̄ → Yγ̄ , where γ̄ is the symmetrization of the restriction of βA to an affine
neighborhood SpecR of [v]. Thus we may consider the differential δγ̄ ([v]) (see
(1.3.3)). The differential is surjective by [15, Prop. 2.9], so XA is smooth at q by
Proposition 1.12.

Proposition 3.4. Let A∈ (
LG

(∧3
V

) \ N(V )
)
. Then XA is smooth if and only

if A∈ LG
(∧3

V
)0
.

Proof. If A ∈ LG
(∧3

V
)0

then XA is smooth by [12]. For the “only if”, suppose
that XA is smooth. Then A /∈ � by Claim 1.13. Assume that A ∈ �; we will
reach a contradiction. Let W ∈ JA and [v] ∈ P(W ), and note that P(W ) ⊂ YA.

Let q ∈ f −1
A ([v]). Since A /∈ �, it follows that 1 ≤ dim(A ∩ Fv) ≤ 2. Suppose

dim(A ∩ Fv) = 1. Then YA is singular at [v] by [15, Cor. 2.5] and so XA is singu-
lar at q by Proposition 1.5. Suppose now that dim(A∩Fv) = 2, and let γ̄ be as in
the proof of Lemma 3.3. Then δγ̄ ([v]) is not surjective by [15, Prop. 2.3]; hence
XA is singular at q by Proposition 1.12.

3.2. The Desingularization

Definition 3.5. Let LG
(∧3

V
)∗ ⊂ LG

(∧3
V

)
be the set of A such that

(1) A /∈ N(V ),
(2) YA[3] = YA(3), and
(3) YA[3] is finite.

Remark 3.6. LG
(∧3

V
)∗

is an open subset of LG
(∧3

V
)
.

Claim 3.7.
(
LG

(∧3
V

) \�) ⊂ LG
(∧3

V
)∗
.

Proof. Definition 3.5(1) holds by [15, Claim 2.11]. To prove part (2), suppose
that YA[3] �= YA(3); in other words, suppose there exists a [v0 ] ∈ P(V ) such that
dim(A ∩ Fv0) ≥ 4. Let V0 ⊂ V be a codimension-1 subspace that is transversal
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to [v0 ] and let ρv0
V0

be as in (2.2.17). Let K := P(ρ
v0
V0
(A ∩ Fv0)); then dim K ≥ 3.

Since Gr(2,V0) has codimension 3 in P
(∧2

V0
)
, it follows that there exists an

[α] ∈ K ∩ Gr(2,V0). Let α̃ ∈ (A ∩ Fv0) such that ρv0
V0
(α̃) = α. Then α̃ is nonzero

and decomposable—a contradiction because A /∈�. To prove part (3), let [v0 ] ∈
YA[3] = YA(3). Then (A, [v0 ]) ∈ �̃(0). Let K := A ∩ Fv0 and let τ v0

K be as
in (2.2.11). We have

T[v0 ]YA[3] = T[v0 ]YA(3) = ker τ v0
K .

By Proposition 2.5, the map τ v0
K is injective. Hence [v0 ] is an isolated point

of YA[3].

LetA∈ LG
(∧3

V
)∗
. Let U ⊂ LG

(∧3
V

)∗
be a small open (in either the Zariski or

the classical topology) subset containing A. In particular, ρU : XU → YU exists.
Let πU : X̃U → XU be the blow-up of WU , and let EU be the exceptional set
of πU .

Claim 3.8. With notation as before, X̃U is smooth. If U is open and sufficiently
small in the classical topology, then we have a locally trivial fibration

EU → YU [3]. (3.2.1)

Let (A, [v]) ∈ YU [3]. The fiber of (3.2.1) over (A, [v]) is isomorphic to
P(A ∩ Fv)

∨ × P(A ∩ Fv)
∨, and the restriction of NEU /X̃U to the fiber is iso-

morphic to OP(A∩Fv)∨(−1)� OP(A∩Fv)∨(−1).

Proof. By Propositon 3.2 we know that X̃U is smooth outside EU . It remains to
examine X̃U over WU ∼= YU [3]. We may assume that U = UB × N is as in the
proof of Proposition 3.2, and we will adopt the notation of that proof. Let q ∈
Xγ and fU (q) = (A, [v]) = p. A neighborhood of q in XU is isomorphic to
Xγ , where γ is given by (2.2.5) (see (3.1.4)). We assume that q ∈WU and hence
cork γ (p) = 3. Let f : X(V ) → Y(V ) be as in Section 1.3; that is, f is the uni-
versal double covering of corank 3 at the origin. We claim that there exists a map
ν : Xγ → X(V ) such that the diagram

Xγ

fγ

��

ν �� X(V )

f

��

Yγ
µ

�� Y(V )

(3.2.2)

commutes and such thatXγ is identified with the fibered productYγ ×Y(V )X(V ). In
fact, it suffices to apply the reduction procedure of Section 1.1 that led to Claim 1.4.
Let K be as in Claim1.4. By (1.1.29) we have (YγK ,p) = (Yγ ,p), and by Claim1.4
we have a natural isomorphism (XγK , f −1

γK
(p)) ∼−→ (Xγ , f −1

γ (p)) commuting with
fγK and fγ . Let U = SpecR; we are free to replace U by any affine open sub-
set containing (A, [v]). Thus we may assume that K is a trivial R-module; that is,
K = V ⊗R for V a complex 3-dimensional vector space. Hence we may view γK
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as a map γK : SpecR → Sym2 V∨. Notice that we have equality of schemes Yγ =
γ−1

K Y(V ) and so the restriction of γK to Yγ defines a map µ : Yγ → Y(V ). The
claim then follows. By the surjectivity of δγ(A, [v]) (see (3.1.6)) we get that the
germ (Xγ , f −1

γ (p)) is the product of a smooth germ (of dimension 54) and the germ
(X(V ), f −1(0)). Then the explicit description of X(V ) given by Proposition 1.14
immediately gives that X̃U is smooth over q and the remaining statements as well.
We must assume that U is a small open subset in the classical topology in order to
ensure that (3.2.1) is a locally trivial fibration.

Remark 3.9. Let A ∈ LG
(∧3

V
)∗

and let YA[3] = {[v1], . . . , [vs]}. Let U ⊂
LG

(∧3
V

)∗
be a small open (in the classical topology) subset containing A. For

each 1 ≤ i ≤ s, choose a projection

EU ([vi]) −→ P(A ∩ Fv)∨. (3.2.3)

There exists a unique P
2-fibration

ε : EU −→ N, (3.2.4)

where N is itself a fibration over YU [3] with fiber P(A ∩ Fv)∨ over (A, [v]). We
say that (3.2.3) is a choice of P

2-fibration ε for XA.

Let A ∈ LG
(∧3

V
)∗

and choose a P
2-fibration ε for XA. Let U ⊂ LG

(∧3
V

)∗
be

a small open (in the classical topology) subset containing A. By Claim 3.8, the
normal bundle of EU along the fibers of (3.2.4) is OP2(−1). Hence there exists a
contraction cU,ε : X̃U → X ε

U in the category of complex manifolds fitting into the
commutative diagram

X̃U

πεU ���
��

��
��

�

cU,ε
�� X ε

U

gεU����
��

��
��

XU .

(3.2.5)

Let f εU = fU � gεU : X ε
U → YU , and let ρεU : X ε

U → U be the map f εU followed by
YU → U . Let

Xε
A := (ρεU )

−1(A), gεA := gεU |Xε
A

, f εA := f εU |Xε
A

,

OXε
A
(1) := (f εA )

∗OYA(1), H ε
A ∈ |OXε

A
(1)|.

Our notation makes no reference to U because the isomorphism class of the po-
larized couple (Xε

A, OXε
A
(1)) does not depend on the open set U containing A.

Observe that if A∈� then OXε
A
(1) is not ample; in fact, it is trivial on s copies of

P
2 for s = |YA[3]|. Of course,

(Xε
A, OXε

A
(1)) ∼= (XA, OXA(1)) if A∈ (

LG
(∧3

V
) \�)

. (3.2.6)

Proposition 3.10. Let A ∈ LG
(∧3

V
)∗

, and let ε be a choice of P
2-fibration

for XA.
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(1) Xε
A is smooth away from (f εA )

−1
(⋃

W∈JA P(W )
)
.

(2) If [vi] ∈ YA[3], then (f εA )
−1[vi] ∼= P(A ∩ Fvi )∨.

(3) If ε ′ is another choice of P
2-fibration forXA, then there exists a commutative

diagram

Xε
A

f ε
A ��

��
��

��
�

��������� Xε ′
A

f ε
′

A����
��

��
�

YA

(3.2.7)

in which the birational map is the flop of a collection of (f εA )
−1[vi]’s. Con-

versely, every flop of a collection of (f εA )
−1[vi]’s is isomorphic to one Xε ′

A .

Proof. To prove part (1), note that Xε
A is smooth away from (f εA )

−1
(
YA[3] ∪⋃

W∈JA P(W )
)

by Lemma 3.3. It remains to prove that Xε
A is smooth at every

point of (f εA )
−1{[v1], . . . , [vs]}, where

{[v1], . . . , [vs]} = YA[3]
∖ ⋃

W∈JA
P(W ). (3.2.8)

Let U ⊂ LG
(∧3

V
)∗

be a small open (in the classical topology) subset contain-
ing A. Let ρ̃U := ρU � πU ; thus ρ̃U : X̃U → U . For 1 ≤ i ≤ s, the fiber over
(A, [vi]) of fibration (3.2.1) is canonically isomorphic to P(A∩Fvi )∨×P(A∩Fvi )∨.
Let X̂A ⊂ X̃U be the strict transform of XA. Abusing notation, we write

ρ̃−1
U (A) = X̂A ∪

s⋃
i=1

P(A ∩ Fvi )∨ × P(A ∩ Fvi )∨. (3.2.9)

(Of course, P(A ∩ Fvi )∨ × P(A ∩ Fvi )∨ denotes the fiber over (A, [vi]) of fibra-
tion (3.2.1). The components P(A ∩ Fvi )∨ × P(A ∩ Fvi )∨ are pairwise disjoint.
We claim that, for i = 1, . . . , s, the intersection

EA,i := X̂A ∩ (P(A ∩ Fvi )∨ × P(A ∩ Fvi )∨) (3.2.10)

is a smooth symmetric divisor in the linear system |OP(A∩Fvi )
∨(1)�OP(A∩Fvi )

∨(1)|.
In order to prove this, refer to (1.3.15) and recall that V is a 3-dimensional com-
plex vector space. Pull-back by σ defines an isomorphism

Sym2 V∨ σ ∗−→ (V∨ ⊗ V∨)Z/(2) =: Sym2 V∨, (3.2.11)

which is Gl(V )-equivariant. Isomorphism σ ∗ induces a PGL(V )-equivariant iso-
morphism of projective spaces p : P(Sym2 V∨) ∼−→ P(Sym2 V∨). Clearly, p maps
a point in the unique open PGL(V )-orbit of P(Sym2 V∨) to a point in the unique
open PGL(V )-orbit of P(Sym2 V∨). Now let V = (A∩Fvi )∨. LetKi := (A∩Fvi )
and let τ viKi be as in (2.2.11). By Proposition 2.5, im(τ viKi ) belongs to the unique
open PGL(Ki)-orbit of P(Sym2(A∩Fvi )). The commutative diagram (1.3.16) then
gives that EA,i is a symmetric smooth divisor in |OP(A∩Fvi )

∨(1)� OP(A∩Fvi )
∨(1)|.
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Thus we have described ρ̃−1
U (A). Since Xε

U is obtained from X̃U by contract-
ing EU along the P

2-fibration ε, it follows that Xε
A is smooth at every point of

(f εA )
−1{[v1], . . . , [vs]}. This proves (1). And because Xε

A is obtained from X̂A by
contracting each of the divisorsEA,i along the fibration P

1 → EA,i → P(A∩Fvi )∨
determined by ε (and similarly for ε ′), we also get parts (2) and (3).

Corollary 3.11. Let A ∈ (
LG

(∧3
V

) \�)
. Then gεA : Xε

A → XA is a desingu-
larization for every choice of P

2-fibration ε for XA.

Proof. By Claim 3.7 we know that A ∈ LG
(∧3

V
)∗

, so Proposition 3.10 applies
to Xε

A. Since A /∈�, it follows that Xε
A is smooth by Proposition 3.10(1).

Corollary 3.1.2. Let A,A′ ∈ (
LG

(∧3
V

) \�)
, and let ε, ε ′ be choices of P

2-
fibration for XA. Then the quasi-polarized 4-folds (Xε

A,H ε
A) and (Xε

A′ ,H ε
A′) are

deformation equivalent.

4. Double EPW-Sextics Parameterized by �

Let A ∈� and [v0 ] ∈ YA(3). In Section 4.1 we will associate to (A, [v0 ]) (under
some hypotheses that are certainly satisfied if A /∈ �) a K3 surface SA(v0) of
genus 6, which means that it comes equipped with a big and nef divisor class
DA(v0) of square 10. We will also prove a converse: given a generic such pseudo-
polarized K3 surface S, there exist A ∈� and [v0 ] ∈ YA(3) such that the pseudo-
polarized surfaces S and SA(v0) are isomorphic. In Section 4.2 we assume that
A∈ (�\�); with this hypothesis,DA(v0) is very ample. We will prove that there
exists a bimeromorphic map ψ : S [2]

A (v0) ��� Xε
A, where ε is an arbitrary choice

of P
2-fibration for XA. That such a map exists for generic A∈� could be proved

by invoking the results of [14]. Here we present a direct proof that appeals neither
to [14] nor to [12]. Furthermore, we will prove that if SA(v0) contains no lines (this
will be the case for generic A) then there exists a choice of ε for which ψ is reg-
ular—in particular, Xε

A is projective for such ε. We conclude Section 4 by using
these results to show that a smooth double cover of an EPW-sextic is a deforma-
tion of the Hilbert square of a K3 (and that the family of double EPW-sextics is
a locally versal family of projective hyper-Kähler manifolds); the proof is more
direct than the corresponding one in [12].

4.1. EPW-Sextics and K3 Surfaces

Assumption 4.1. A ∈ LG
(∧3

V
)
, [v0 ] ∈ YA(3), and the following statements

hold.

(a) There exists a codimension-1 subspace V0 ⊂ V such that
∧3
V0 � A; that is,∧3

V0 ∩ A = {0}.
(b) There exists at most oneW ∈JA containing v0.

(c) If W ∈JA contains v0 then A ∩ (∧2
W ∧ V ) = ∧3

W.



168 Kieran G. O’Grady

Remark 4.2. Let A ∈ (� \ �). Let [v0 ] ∈ YA(3) (= YA[3] by Claim 3.7). Then
Assumption 4.1 holds. In fact, parts (b) and (c) hold trivially and part (a) holds by
[15, Claim 2.11, eq. (2.81)].

Let (A, [v0 ]) be as in Assumption 4.1. We define a surface SA(v0) of genus 6.
The condition that

∧3
V0 be transverse to A is open: hence we have the direct sum

decomposition
V = [v0 ] ⊕V0. (4.1.1)

We will denote by D be the direct sum decomposition of V appearing in (4.1.1).
Let

KD
A := ρ

v0
V0
(A ∩ Fv0), (4.1.2)

where ρv0
V0

is given by (2.2.17). Choose a volume form onV0. Wedge product fol-
lowed by the volume form defines an isomorphism

∧3
V0

∼= ∧2
V ∨

0 , so it makes
sense to let

FD
A := P(AnnKD

A ) ∩ Gr(3,V0). (4.1.3)

By Proposition 5.2 and Proposition 5.3 (see the Appendix) we know that FD
A is

a Fano 3-fold with at most one singular point. Next we will define a quadratic
form on AnnKD

A . By Assumption 4.1(a), the subspace A is the graph of a map
q̃D
A :

∧2
V0 → ∧3

V0; explicitly,

q̃D
A (α) = β ⇐⇒ (v0 ∧ α + β)∈A. (4.1.4)

The map q̃D
A is symmetric becauseA,

∧2
V0, and

∧3
V0 are Lagrangian subspaces

of
∧3
V. It is clear that ker q̃D

A = KD
A , so q̃D

A induces the isomorphism

r̃D
A :

∧2
V0/K

D
A

∼−→AnnKD
A ⊂ ∧3

V0. (4.1.5)

The inverse (r̃D
A )

−1 defines a nondegenerate quadratic form (rD
A )

∨ on AnnKD
A .

For future reference, we unwind the definitions of (r̃D
A )

−1 and (rD
A )

∨. Let β ∈
AnnKD

A ; that is,
v0 ∧ α + β ∈A, α ∈ ∧2

V0. (4.1.6)

Then

(r̃D
A )

−1(β) ≡ α (mod KD
A ), (rD

A )
∨(β) = vol(v0 ∧ α ∧ β). (4.1.7)

Let V((rD
A )

∨) ⊂ P(AnnKD
A ) be the 0-scheme of (rD

A )
∨: a smooth 5-dimen-

sional quadric. Let
SD
A := V((rD

A )
∨) ∩ FD

A . (4.1.8)

We need to show that SD
A does not depend on the choice of the subspace V0 ⊂

V that is complementary to [v0 ]—in other words, that it depends only on A and
[v0 ]. Toward this end we remark that FD

A is independent of V0; in fact,
∧3
V0 is

transversal to Fv0 . Then, since both
∧3
V0 and Fv0 are Lagrangians, the volume

vol induces an isomorphism

gV0 :
∧3
V0

∼−→F∨
v0
. (4.1.9)
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Thus gV0 defines the inclusion

FD
A ↪→ P(AnnKA). (4.1.10)

Remark 4.3. The image of map (4.1.10) does not depend on V0. It depends ex-
clusively on A and [v0 ] ∈ YA(3), and we will denote it by ZA(v0).

Similarly, gV0 defines the inclusion

gV0 : SD
A ↪→ P(AnnKA). (4.1.11)

Lemma 4.4. Retain our previous notation and assumptions. Then gV0(S
D
A ) is in-

dependent of V0; in other words, it depends exclusively on A and [v0 ] ∈ YA(3).
Proof. Let V ′

0 ⊂ V be a codimension-1 subspace that is complementary to [v0 ]
and transverse to A. Let D ′ denote the corresponding direct sum decomposition
of V. We must show that

gV0(S
D
A ) = gV ′

0
(SD ′
A ). (4.1.12)

The subspace V ′
0 is the graph of a linear function,

V0 −→ [v0 ],

v �→ f(v)v0; (4.1.13)

we thus have the isomorphism

V0
ψ−→ V ′

0,

v �−→ v + f(v)v0.
(4.1.14)

Observe that ∧3
ψ(β) = β + v0 ∧ (f �β), (4.1.15)

where � denotes contraction. In particular, gV ′
0

� ∧3
ψ = gV0 . Note also that

φ := ∧3
ψ |AnnKD

A
is an isomorphism between AnnKD

A ⊂ ∧3
V0 and AnnKD ′

A′ ⊂∧3
V ′

0. Hence it suffices to prove that

φ(SD
A ) = SD ′

A . (4.1.16)

We claim that
φ∗(rD ′

A )∨ − (rD
A )

∨ ∈H 0(IFD
A
(2)). (4.1.17)

If we letβ ∈AnnKD
A ⊂ ∧3

V0 then (4.1.6) holds. Then it follows from (4.1.15) that

v0 ∧ (α − (f �β))+ φ(β) = v0 ∧ α + β ∈A. (4.1.18)

By (4.1.15) we have

φ∗(rD ′
A )∨(β) = vol(v0 ∧ (α − (f �β)) ∧ φ(β))

= vol(v0 ∧ α ∧ φ(β))− vol(v0 ∧ (f �β) ∧ φ(β))
= vol(v0 ∧ α ∧ β)− vol(v0 ∧ (f �β) ∧ β)
= (rD

A )
∨(β)− vol(v0 ∧ (f �β) ∧ β). (4.1.19)
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The second term on the last line in (4.1.19) is the restriction to P(AnnKD
A ) of a

Plücker quadratic form, so that term vanishes on FD
A . This proves (4.1.17) and

hence (4.1.16) holds.

Lemma 4.4 leads to the following definition.

Definition 4.5. Let A ∈ LG
(∧3

V
)
. Suppose that [v0 ] ∈ YA(3) and that As-

sumption 4.1 holds. Let D be the direct sum decomposition (4.1.1). Then we set

SA(v0) := gV0(S
D
A ). (4.1.20)

We single out special points ofSA(v0) as follows. Suppose thatW∈JA (see (2.2.15)
for the definition of JA) and assume that v0 /∈W. Let γ be a generator of

∧3
W

(i.e., γ is decomposable with supp(γ ) = W). By hypothesis,
∧3
V0 ∩ A = {0}

and henceW �⊂ V0; therefore,

γ = (v0 + u1) ∧ u2 ∧ u3, ui ∈V0. (4.1.21)

Since v0 /∈ W, it follows that u1 ∧ u2 ∧ u3 �= 0 and so [u1 ∧ u2 ∧ u3] ∈ FD
A .

Moreover, [u1∧u2 ∧u3] ∈V((rD
A )

∨) by (4.1.7) and so [u1∧u2 ∧u3] ∈ SD
A . We let

JA \ {W | v0 ∈W } θD
A−→ SD

A

W �−→ [u1 ∧ u2 ∧ u3].
(4.1.22)

The map

θA(v0) := gV0 � θD
A : (JA \ {W | v0 ∈W }) → SA(v0) (4.1.23)

is independent of D; in other words, it depends only on A and [v0 ]. Note that
θA(v0) is injective.

Proposition 4.6. Let A ∈ LG
(∧3

V
)
. Suppose that [v0 ] ∈ YA(3) and that As-

sumption 4.1 holds. Let D be the direct sum decomposition (4.1.1). Then the set of
points at which the intersection V((rD

A )
∨) ∩ FD

A is not transverse is equal to

im θD
A

∐
(SD
A ∩ singFD

A ). (4.1.24)

Proof. Let [β] ∈ SD
A ; in particular, β is nonzero decomposable. LetU := suppβ.

Since [β] ∈ FD
A , we have that (4.1.6) holds. Let α ∈ ∧2

V0 be as in (4.1.6). We
claim that

V((rD
A )

∨) � FD
A at [β] unless 〈α, KD

A 〉 ∩ ∧2
U �= ∅. (4.1.25)

In fact, the projective tangent space to Gr(3,V0) at [β] is given by

T[β] Gr(3,V0) = P
(
Ann

(∧2
U

))
. (4.1.26)

On the other hand, (4.1/7) gives that

T[β]V((r
D
A )

∨) = P(Annα) ∩ P(AnnKD
A ). (4.1.27)

Statement (4.1.25) now follows immediately from (4.1.26) and (4.1.27).
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Next we prove that

〈α,KD
A 〉 ∩ ∧2

U �= ∅ ⇐⇒ [β] ∈ singFD
A or [β] ∈ im θD

A . (4.1.28)

Suppose that [β] ∈ singFD
A ; then Proposition 5.3(1) gives that KD

A ∩ ∧2
U �= ∅.

Next suppose that [β] ∈ im θD
A ; then α ∈ ∧2

U by (4.1.21). This proves the “if”
implication of (4.1.28). Let us prove the “only if” implication. First assume that
KD
A ∩∧2

U �= {0}, and let 0 �= κ0 ∈KD
A ∩∧2

U. Then κ0 is decomposable because
dimU = 3, whence [κ0 ] is the unique point belonging to P(KD

A )∩ Gr(2,V0). By
equation (5.8) in the Appendix, [β] is the unique singular point of FD

A . Next as-
sume thatKD

A ∩∧2
U = {0}. Then there exists a κ ∈KD

A such that (α+κ)∈ ∧2
U.

Since κ ∈KD
A , we have (v0 ∧ (α+ κ)+ β)∈A. The tensor (v0 ∧ (α+ κ)+ β)∈

A is decomposable; we useW to denote its support. Then v0 /∈W because β �=
0 and hence [β] = θD

A (W ). This finishes the proof of (4.1.28) and hence of the
proposition.

Corollary 4.7. Let A ∈ LG
(∧3

V
)
. Suppose that [v0 ] ∈ YA(3) and that As-

sumption 4.1 holds. Asssume that JA is finite. Then SA(v0) is a reduced and
irreducible surface with

sing SA(v0) = im θA(v0)
∐
(SA(v0) ∩ singZA(v0)). (4.1.29)

(See Remark 4.3 for the definition of ZA(v0).)

Proof. By Proposition 4.6 we know that SD
A is a smooth surface beyond the right-

hand side of (4.1.29). By hypothesis, JA is finite and hence the right-hand side
of (4.1.29) is finite. On the other hand, by Proposition 5.3 we know that ZA(v0)

is a 3-fold with at most one singular point (which must be an ordinary quadratic
singularity) and that SD

A is the complete intersection of ZA(v0) and a quadric
hypersurface. It follows that SD

A is reduced and irreducible with singular set, as
claimed.
Corollary 4.8. With hypotheses as in Corollary 4.7, suppose that SA(v0) has
duVal singularities. Let ŜA(v0) → SA(v0) be the minimal desingularization. Then
ŜA(v0) is a K3 surface.

Proof. Let OZA(v0)(1) be the pull-back by map (4.1.10) of the hyperplane line bun-
dle on P(Ann(Fv0 ∩ A)). Then SA(v0) ∈ |OZA(v0)(2)|. By Proposition 5.2 and
Proposition 5.3, there exist smooth divisors in |OZA(v0)(2)| and they are K3 sur-
faces; from the simultaneous resolution of duVal singularities it follows that ŜA(v0)

is a K3 surface.

Corollary 4.9. LetA∈ (�\�). Let [v0 ] ∈ YA(3), which means (by Remark 4.2)
that Assumption 4.1 holds. Then SA(v0) is a (smooth) K3 surface.

Proof. This is an immediate consequence of Corollary 4.8.

Under the hypotheses of Corollary 4.8, let OSA(v0)(1) be the restriction to SA(v0)

of OZA(v0)(1). Let OŜA(v0)
(1) be the pull-back of OSA(v0)(1) to ŜA(v0). We set
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DA(v0)∈ |OSA(v0)(1)|, D̂A(v0)∈ |OŜA(v0)
(1)|. (4.1.30)

Remark 4.10. With hypotheses as in Corollary 4.8, we have that (ŜA(v0), D̂A(v0))

is a quasi-polarized K3 surface of genus 6. Furthermore, the composition

ŜA(v0) −→ SA(v0) −→ P(Ann(Fv0 ∩ A)) (4.1.31)

is identified (up to projectivities) with the map associated to the complete linear
system |D̂A(v0)|.
Remark 4.10 has a converse. In order to formulate it, we identifyFv0

∼= ∧2
(V/[v0 ])

(this identification is well-defined up to homothety).

Assumption 4.11. K ∈ Gr(3,Fv0) and

(1) P(K) ∩ Gr(2,V/[v0 ]) = ∅, or
(2) the scheme-theoretic intersection P(K) ∩ Gr(2,V/[v0 ]) is a single reduced

point.

Let
WK := P(AnnK) ∩ Gr(3,V/[v0 ]). (4.1.32)

(This makes sense because we have an isomorphism
∧2
(V/[v0 ]) ∼−→ ∧3

(V/[v0 ])∨
that is well-defined up to homothety.) Let

S :=WK ∩Q, Q ⊂ P(AnnK) a quadric. (4.1.33)

IfQ is generic then S is a linearly normal K3 surface of genus 6 (see Corollary 4.8).
In fact, the family of such K3 surfaces is locally versal. Suppose more generally
that Assumption 4.11 holds, that S is given by (4.1.33), and that S has du Val sin-
gularities. Let Ŝ → S be the minimal desingularization, in which case Ŝ is a K3
surface. Let D ∈ |OS(1)| and let D̂ be the pull-back of D to Ŝ. Consider the fam-
ily S → B of deformations of (S,D) obtained by deforming slightly K and Q;
by Brieskorn and Tjurina there is a suitable base change B̂ → B such that the
pull-back of S to B̂ admits a simultaneous resolution of singularities Ŝ → B̂ with
fiber Ŝ over the point corresponding to S. Of course, there is a divisor class D̂ on
Ŝ whose restriction to Ŝ is D̂; hence Ŝ → B̂ is a family of quasi-polarized K3
surfaces. The following result is well known, so we omit the (standard) proof.

Proposition 4.12. The family Ŝ → B̂ is a versal family of quasi-polarized K3
surfaces.

Lemma 4.13. Suppose that Assumption 4.11 holds. Let S be as in (4.1.33), and
assume that Q is transversal to WK outside a finite set ; hence S is a surface with
finite singular set. Then there exists a smooth quadric Q′ ⊂ P(AnnK) such that
S =WK ∩Q′.

Proof. SinceWK is cut out by quadrics, Bertini’s theorem gives that the generic
quadric in P(AnnK) containing S is smooth outside sing S; let Q0 = V(P0) be
such a quadric. Let p ∈ sing S. The generic quadric Q′ = V(P ′) ∈ |IWK(2)| is
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smooth at p and soV(P0 +P ′) is smooth at p. Since sing S is finite, it follows that
the generic quadric Q containing S is smooth at all points of sing S. Therefore,
the generic quadric Q containing S is smooth.

Our next result gives the inverse of the process that yields SA(v0) from (A, [v0 ])∈
�̃(0) (with the extra hypotheses in Assumption 4.1).

Proposition 4.14. Suppose that Assumption 4.11 holds. Let S be as in (4.1.33),
and assume thatQ is smooth and transversal toWK outside a finite set. Then there
exist A ∈�, [v0 ] ∈ P(V ), and a codimension-1 subspace V0 ⊂ V transversal to
[v0 ] such that :

(1)
∧3
V0 ∩ A = {0};

(2) Assumptions 4.1(c) and 4.1(d) hold ; and
(3) the natural isomorphism P

(∧3
(V/[v0 ])

) ∼−→ P
(∧3

V0
)

maps S to SD
A , where

D is the direct sum decomposition of V appearing in (4.1.1).

If we (a) replace the quadric Q with a smooth quadric Q′ ⊂ P(AnnK) such that
S = WK ∩Q′ and (b) let A′ ∈� be the corresponding point, then there exists a
projectivity of P(V ) that fixes [v0 ] and takes A to A′.

Proof. Let Q = V(P ). The dual of AnnK is
∧2
(V/[v0 ])/K, so the polarization

of P defines the nondegenerate symmetric map

AnnK ∼−→ ∧2
(V/[v0 ])/K. (4.1.34)

The inverse of this map is the nondegenerate symmetric map∧2
(V/[v0 ])/K ∼−→AnnK. (4.1.35)

Composing on the right with
∧2
V0

∼−→ ∧2
(V/[v0 ]) and the quotient map∧2

(V/[v0 ]) → ∧2
(V/[v0 ])/K while composing on the left with AnnK ↪→∧3

(V/[v0 ]) and
∧3
(V/[v0 ]) ∼−→ ∧3

V0, we obtain the symmetric map∧2
V0 −→ ∧3

V0 (4.1.36)

with 3-dimensional kernel corresponding to K. The graph of this map is a La-
grangian A∈ LG

(∧3
V

)
. One can then easily check that parts (1), (2), and (3) of

the proposition hold. Proceeding as in the proof of Lemma 4.4, we can show that
the projective equivalence of A does not depend on Q.

4.2. Xε
A for A∈ (�\�)

Let S be a K3 surface, and let �[2]
S ⊂ S [2] be the irreducible codimension-1 sub-

set parameterizing nonreduced subschemes. Then there exists a square root of
the line bundle OS [2](�

[2]
S ); we use ξ to denote its first Chern class. There is a

natural morphism of integral Hodge structures µ : H 2(S) → H 2(S [2]) such that
H 2(S [2]; Z) = µ(H 2(S; Z))⊕Zξ ; see [1]. Let (·, ·) be the Beauville–Bogomolov
bilinear symmetric form on H 2(S [2]). It is known [1] that
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(µ(η),µ(η)) =
∫
S

c1(η)
2, µ(H 2(S; Z)) ⊥ Zξ, (ξ, ξ) = −2. (4.2.1)

Because S and S [2] are regular varieties, we may identify their respective Picard
groups with H1,1

Z
(S) and H1,1

Z
(S [2]). Let C ∈ Pic(S). Abusing notation, we will

denote by µ(C) the class in Pic(S [2]) corresponding to µ(OS(C))∈H1,1
Z
(S); if C

is an integral curve then it is represented by the set of subschemes whose support
intersects C. The following theorem is the main result of Section 4.2.

Theorem 4.15. Let A ∈ (� \ �) and [v0 ] ∈ YA[3] (= YA(3) by Claim 3.7 ), so
SA(v0) is a K3 surface by Corollary 4.9. Then the following statements hold.

(1) If SA(v0) does not contain lines (which is true for generic A by Proposi-
tion 4.12), then there exist a choice ε of P

2-fibration for XA and an isomor-
phism

ψ : SA(v0)
[2] ∼−→Xε

A (4.2.2)
such that

ψ∗H ε
A ∼ µ(DA(v0))−�

[2]
SA(v0)

. (4.2.3)

(2) For arbitrary A and ε, there exists a bimeromorphic map

ψ : SA(v0)
[2] ��� Xε

A (4.2.4)
such that (4.2.3) holds.

Remark 4.16. Suppose that SA(v0) contains a lineL. The restriction of the right-
hand side of (4.2.3) to L(2) (embedded in SA(v0)

[2]) is OL(2) (−1). SinceH ε
A is nu-

merically effective, in this case map (4.2.4) cannot be regular.

The proof of Theorem 4.15 will be given after a series of auxiliary results. Let
S ⊂ P

6 be a linearly normal K3 surface of genus 6 such that IS/P6(2) is glob-
ally generated; then S is projectively normal and hence Riemann–Roch gives that
dim|IS(2)| = 5. One defines a rational map S [2] ��� |IS(2)|∨ as follows. Given
[Z] ∈ S [2], we let 〈Z〉 ⊂ P

5 be the line spanned by Z. Let(
S [2]

∖ ⋃
L⊂S line

L(2)
)

g−→ |IS(2)|∨ ∼= P
5,

[Z] �→ {Q∈ |IS(2)| | s.t. Q ⊃ 〈Z〉}.
(4.2.5)

For D a hyperplane divisor on S, one can show (see [11, Claim 5.16]) that

g∗OP 5(1) ∼= µ(D)−�
[2]
S . (4.2.6)

(Notice that the set of lines on S is finite and hence
⋃
L⊂S line L

(2) has codimen-
sion 2 in S [2].) In fact, g can be identified with the map associated to the complete
linear system |(µ(D) −�

[2]
S )|. We will analyze g under the assumption that S is

generic (in a precise sense).

Assumption 4.17. Assumption 4.11(1) holds; also,

S :=WK ∩Q (4.2.7)

for Q ⊂ P(AnnK) a quadric intersectingWK transversely.
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Let S ⊂ P(AnnK) be as in Assumption 4.17. Then S is a linearly normal K3
surface of genus 6 and IS(2) is globally generated. Thus the map g of (4.2.5) is
defined. Let F(WK) be the variety that parameterizes lines inWK. Since the set of
lines in S is finite (for generic S, that set is empty by Proposition 4.12), we have
the map

(F(WK) \ {L | L ⊂ S}) −→ S [2],

L �→ L ∩Q. (4.2.8)

Definition 4.18. Let P 0
S ⊂ S [2] be the image of map (4.2.8), and let PS be its

closure in S [2].

We recall that F(WK) ∼= P
2 by Iskovskih [10]; see Proposition 5.2.

Claim 4.19. Let S ⊂ P(AnnK) be as in Assumption 4.17, and suppose that S
contains no lines. Let C1,C2, . . . ,Cs be the (smooth) conics contained in S (of
course, the generic S contains no conics). Then PS ,C(2)

1 , . . . ,C [2]
s are pairwise

disjoint subsets of S [2]. Moreover, there exists a biregular morphism

c : S [2] −→ N(S) (4.2.9)

that contracts each of PS ,C(2)
1 , . . . ,C [2]

s . Hence N(S) is a compact complex nor-
mal space with

singN(S) = {c(PS), . . . , c(C(2)), . . . | C ⊂ S is a conic} (4.2.10)

and c is an isomorphism of the complement of PS ∪ C(2)
1 ∪ · · · ∪ C [2]

s onto the
smooth locus of N(S). The map g (which is regular on all of S [2] because S con-
tains no lines) descends to a regular map

ḡ : N(S) → |IS(2)|∨, ḡ � c = g. (4.2.11)

Proof. PS is isomorphic to P
2 by Proposition 5.2, and each C(2)

i is isomorphic
to P

2 because Ci is a conic. Thus each of PS and the Ci can be contracted in-
dividually. Let’s show that PS ,C(2)

1 , . . . ,C [2]
s are pairwise disjoint. Suppose that

[Z] ∈ PS ∩ C(2)
i , and let T be the plane containing Ci. Then T ∩WK contains

the line 〈Z〉 and the smooth conic Ci. SinceWK is cut out by quadrics, it follows
that T ⊂ WK—which is absurd becauseWK contains no planes. This proves that
PS ∩ C(2)

i = ∅. Yet by Corollary 5.5 there does not exist a [Z] ∈C(2)
i ∩ C(2)

j . We
have proved that PS ,C(2)

1 , . . . ,C [2]
s are pairwise disjoint, so the contraction (4.2.9)

exists. It remains to prove that g is constant on each of PS ,C(2)
1 , . . . ,C [2]

s . In fact,
if [Z] ∈PS then g([Z]) = |IWK(2)|, and if [Z] ∈C(2)

i then

g([Z]) = {Q∈ |IS(2)| | Q ⊃ 〈Ci〉}.
Now we return to the “general” case and suppose that Assumption 4.17 holds
(although S may very well contain lines). Let

S [2]
N := S [2]

∖
PS

∖ ⋃
R⊂S line or conic

Hilb2R. (4.2.12)
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(If R ⊂ S is a conic that is not smooth, then we delete all [Z] ∈ S [2] such that Z is
contained in the scheme R.) The following result is essentially [14, Lemma 3.7].

Proposition 4.20. Suppose that Assumption 4.17 holds.

(1) The fibers of g|
S

[2]
N

are finite of cardinality at most 2, and the generic fiber has
cardinality 2.

(2) There exist an open dense subset A ⊂ S [2]
N and an anti-symplectic (and hence

nontrivial ) involution φ : A → A such that

(g|A) � φ = g|A; (4.2.13)

the induced map
A/〈φ〉 −→ g(A) (4.2.14)

is a bijection.
(3) If, in addition, S does not contain lines, then (a) φ descends to a regular in-

volution φ̄ : N(S) → N(S) such that ḡ � φ̄ = ḡ and (b) the induced map

j : N(S)/〈φ̄〉 −→ g(S [2]) (4.2.15)

is a bijection. Furthermore,

cod(Fix(φ̄),N(S)) ≥ 2 (4.2.16)

for Fix(φ̄) the fixed locus of φ̄.

Let A and [v0 ] be as in the statement of Theorem 4.15; we shall perform the
key computation needed to prove that theorem. Let V0 ⊂ V be a codimension-1
subspace transversal to [v0 ] and such that

∧3
V0 ∩ A = {0}. Let D be the de-

composition V = [v0 ] ⊕ V0, and let SD
A be given by (4.1.8); thus SD

A sits in
P(AnnKD

A ) ∩ Gr(3,V0) and is isomorphic to SA(v0). Let f ∈ V ∨
0 . We let qf be

the quadratic form on
∧3
V0 defined by setting

qf (ω) := vol0((f �ω) ∧ ω), (4.2.17)

where vol0 is a volume form onV0. Then qf is a Plücker quadric; in fact, we have
an isomorphism

V ∨
0

∼−→H 0(IGr(3,V0)(2)),

f �−→ qf .
(4.2.18)

Let V ∨ = [v∨
0 ] ⊕ V ∨

0 be the dual decomposition of D; thus v∨
0 ∈ AnnV0 and

v∨
0(v0) = 1. We then have the isomorphism

[v∨
0 ] ⊕V ∨

0
∼−→H 0(ISD

A
(2)),

xv∨
0 + f �−→ x(rD

A )
∨ + qf .

(4.2.19)

Let
ι : |ISD

A
(2)|∨ ∼−→ P(V ) (4.2.20)

be the projectivization of the transpose of (4.2.19).
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Proposition 4.21. Let A and [v0 ] be as in the statement of Theorem 4.15. Let g
be map (4.2.5) for SD

A (this makes sense by Corollary 4.9). Then ι(im g) ⊂ YA.

Proof. Let
[Z] ∈ ((SD

A )
[2]
N \�[2]

SD
A

\ PSD
A
). (4.2.21)

We will show that
ι(g([Z])∈ YA; (4.2.22)

this will suffice to prove the lemma because the right-hand side of (4.2.21) is dense
in (SD

A )
[2]
N and YA is closed.

By hypothesis, Z is reduced; hence Z = {[β], [β ′ ]}, where β,β ′ ∈ ∧3
V0 are

decomposable. The line 〈[β],β ′ ]〉 spanned by [β] and [β ′ ] is not contained inFD
A

because [Z] /∈ PSD
A
. Thus 〈[β],β ′ ]〉 is not contained in Gr(3,V0), from which it

follows that the vector subspaces ofV0 supporting the decomposable vectors β and
β ′ intersect in a 1-dimensional subspace. Hence there exists a basis {v1, . . . , v5} of
V0 such that

β = v1 ∧ v2 ∧ v3, β ′ = v1 ∧ v4 ∧ v5. (4.2.23)

We may also assume that vol0(v1 ∧ v2 ∧ v3 ∧ v4 ∧ v5) = 1. By (4.1.6) and (4.1.7),
there exist α,α ′ ∈ ∧2

V0 such that

v0 ∧ α + β ∈A, v0 ∧ α ′ + β ′ ∈A, α ∧ β = α ′ ∧ β ′ = 0. (4.2.24)

Because A is Lagrangian, we obtain

vol0(α ∧ β ′) = vol0(α
′ ∧ β) =: c. (4.2.25)

Let t0, . . . , t5 ∈ C. Then a straightforward computation gives that(
t0(r

D
A )

∨ +
5∑
i=1

tiqv∨
i

)
(β + β ′) = 2ct0 + 2t1. (4.2.26)

Therefore,
ι(g([Z])) = [cv0 + v1]. (4.2.27)

It remains to prove that
[cv0 + v1] ∈ YA. (4.2.28)

LetKD
A be as in (4.1.2); we claim that it suffices to prove the existence of (x, x ′)∈

(C2 \ {(0, 0)}) and κ ∈KD
A such that

(cv0 + v1) ∧ (x(v0 ∧ α + β)+ x ′(v0 ∧ α ′ + β ′)+ v0 ∧ κ) = 0. (4.2.29)

So assume that (4.2.29) holds. Then

0 �= (x(v0 ∧ α + β)+ x ′(v0 ∧ α ′ + β ′)+ v0 ∧ κ)∈A ∩ Fcv0+v1 (4.2.30)

(the inequality holds because β and β ′ are linearly independent). A straightfor-
ward computation now gives that (4.2.29) is equivalent to

x(cβ − v1 ∧ α)+ x ′(cβ ′ − v1 ∧ α ′) = v1 ∧ κ. (4.2.31)

As is easily checked, we have
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(cβ − v1 ∧ α), (cβ ′ − v1 ∧ α ′)

∈ (
[v1] ∧ (∧2〈v2, v3, v4, v5〉

)) ∩ {v2 ∧ v3, v4 ∧ v5}⊥, (4.2.32)

where perpendicularity is with respect to wedge product followed by vol0. Multi-
plication by v1 gives an injection ofKD

A into the right-hand side of (4.2.32); in fact,
no nonzero element of KD

A is decomposable because A /∈�. Since the right-hand
side of (4.2.32) has dimension 4 and since dimKD

A = 3, it follows that there exists
(x, x ′)∈ (C2 \ {(0, 0)}) such that (4.2.31) holds.

Lemma 4.22. LetA∈ (
LG

(∧3
V

)\�)
. Then YA(1) is not empty, the topological

double cover f −1
A YA(1) → YA(1) is not trivial, and YA is integral.

Proof. By Claim 3.7 we know that YA[3] is finite. However, (YA[2] \ YA[3]) is
a smooth surface by [12, Prop. 2.8]. Since singYA ⊂ YA[2], it follows that YA
is integral and that YA(1) is connected. Let [v0 ] ∈ (YA[2] \ YA[3]). By Proposi-
tion 1.5 we know that f −1

A ([v0 ]) is a singleton {q}; moreover, XA is smooth at q
by Lemma 3.3. Hence there exists an open neighborhoodU of [v0 ] in YA such that
f −1
A U is smooth. Furthermore, (f −1

A YA[2]) ∩ f −1
A U is nowhere dense in f −1

A U.

Since f −1
A U is smooth, the complement f −1

A (YA(1)∩U) is connected; sinceYA(1)
is connected, it follows that f −1

A YA(1) is connected.

Proposition 4.23. With hypotheses and notation as in Proposition 4.21, we have
ι(im g) = YA.

Proof. By Proposition 4.20(1), the map g has finite generic fiber and hence
dim im g = 4. By Proposition 4.21, ι(im g) is an irreducible component of YA.
But since YA is irreducible (by Lemma 4.22), it follows that ι(im g) = YA.

Remark 4.24. With notation as in Proposition 4.21, we have

ι � g(P 0
SD
A

) = ι(H 0(IFD
A
(2))) = [v0 ]. (4.2.33)

Proof of Theorem 4.15. For part (1), let A and [v0 ] be as in the statement of
Theorem 4.15. Let V0 ⊂ V be a codimension-1 subspace transversal to [v0 ] and
such that

∧3
V0 ∩A = {0}. Let D be the decomposition V = [v0 ] ⊕V0. In order

to simplify notation, we set S = SD
A ; thus S ∼= SA(v0) and, by hypothesis, S does

not contain lines. Let j be the map of (4.2.15). Then, by Proposition 4.21, the
composition ι � j is a map

ι � j : N(S)/〈φ̄〉 −→ YA. (4.2.34)

We claim that ι � j is an isomorphism. In fact, it has finite fibers and is birational
(by Proposition 4.20). Since dim singYA = 2 (because A /∈�), the hypersurface
YA is normal and thus ι � j is an isomorphism. Let π : N(S) → N(S)/〈φ̄〉 be the
quotient map. By (4.2.16), the singular locus of N(S)/〈φ̄〉 is the image of Fix(φ̄)
(and so is isomorphic to Fix(φ̄)); since (4.2.34) is an isomorphism, we have that
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N(S) \ Fix(φ̄) −→ Y smA ,

x �→ ι � j � π(x) (4.2.35)

is a topological covering of degree 2. We claim that

π1(Y
sm
A ) ∼= Z/(2). (4.2.36)

In fact, (N(S)\Fix(φ̄)) ∼= (S [2] \(PS∪Fix(φ|S [2]\PS )). Since (PS∪Fix(φ|S [2]\PS ))
is of codimension 2 in the simply connected manifold S [2], it follows that (N(S) \
Fix(φ̄)) is simply connected. Thus (4.2.35) is the universal covering of Y smA and
we obtain (4.2.36). On the other hand, Y smA ⊂ YA(1) by [15, Cor. 2.5] and so, by
Lemma 4.22, f −1

A Y smA → Y smA is the universal covering of Y smA as well. Hence
bothXA andN(S) are normal completions of the universal cover of Y smA such that
the extended maps to YA are finite; it follows that they are isomorphic (over YA).
The singular locus of N(S) is given by (4.2.10). Since singXA = YA[3], by Re-
mark 4.24 we can order the set of (smooth) conics on S (say, C1, . . . ,Cs) and the
set of points in YA[3] different from [v0 ] (say, [v1], . . . , [vs]) such that

ψ̄(c(PS)) = [v0 ], ψ̄(c(C
(2)
i )) = [vi], 1 ≤ i ≤ s (4.2.37)

(recall Remark 4.24). Let ε0 be a choice of P
2-fibration for XA. Then ψ̄ defines

a birational map ψ0 : S [2] ��� Xε0
A such that

ψ∗
0H

ε0
A

∼= µ(D)−�
[2]
S , (4.2.38)

where D is the hyperplane class of S (thus (S,D) is isomorphic to (SA(v0),
DA(v0))). The birational map ψ0 is an isomorphism away from

PS ∪ C(2)
1 ∪ · · · ∪ C(2)

s . (4.2.39)

It follows that ψ0 is the flop of a collection of irreducible components of (4.2.39).
By Proposition 3.10 we get that there exists a choice of P

2-fibration forXA, call it
ε, such that the corresponding birational map ψ : S [2] ��� Xε

A is biregular. Equa-
tion (4.2.3) then follows from (4.2.38). This completes the proof of Theorem
4.15(1). Part (2) of the theorem follows from part (1) and a specialization argu-
ment; we leave the details to the reader.

We conclude this section by re-proving a previous result. Let hA := c1(OXA(HA)).

Theorem 4.25 [12]. Let A∈ LG
(∧3

V
)0
. Then XA is a deformation of (K3)[2]

and (hA,hA)XA = 2. Any small deformation of (XA,HA) (i.e. a small deforma-
tion of XA keeping hA of type (1, 1)) is isomorphic to (XB ,HB) for some B ∈
LG

(∧3
V

)0
.

Proof. LetA0 ∈ (�\�) and [v0 ] ∈ YA0 [3]. Suppose that SA0(v0) does not contain
lines. By Theorem 4.15, there exists a choice ε of P

2-fibration for XA0 yielding
the isomorphism

ψ : S [2] ∼−→Xε
A0

, ψ∗H ε
A0

∼ µ(DA(v0))−�
[2]
SA0 (v0)

. (4.2.40)
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On the other hand, (XA,HA) is a deformation of (Xε
A0

,H ε
A0
) by Corollary 3.12;

this proves that (XA,HA) is a deformation of (S [2], (µ(DA(v0)) −�
[2]
SA0 (v0)

)). By
(4.2.1) we have that (hA,hA)XA = 2. Finally, we prove that an arbitrary small de-

formation of (XA,HA) is isomorphic to (XA′ ,HA′) for someA′ ∈ LG
(∧3

V
)0
. The

deformation space of (XA,HA) has dimension given by

dim Def(XA,HA) = h1,1(XA)− 1 = 20. (4.2.41)

Yet LG
(∧3

V
)0

is contained in the locus of points in LG that are stable for the
natural (linearized) PGL(V )-action (this is proved in [12]). Thus, by varying A∈
LG

(∧3
V

)
we get

dim LG
(∧3

V
) − dim SL(V ) = 55 − 35 = 20 (4.2.42)

moduli of double EPW-sextics. Because (4.2.41) and (4.2.42) are equal, we
may conclude that an arbitrary small deformation of (XA,HA) is isomorphic to
(XB ,HB) for some B ∈ LG

(∧3
V

)0
.

5. Appendix: Three-Dimensional Sections of Gr(3,CCC5)

Throughout this section, V0 is a complex vector space of dimension 5. Choose a
volume form vol0 on V0; it defines an isomorphism∧2

V0
∼−→ ∧3

V ∨
0 ,

α �−→ ω �→ vol0(α ∧ ω). (5.1)

Let K ⊂ ∧2
V0 be a 3-dimensional subspace such that either

P(K) ∩ Gr(2,V0) = ∅ (5.2)

or else
P(K) ∩ Gr(2,V0) = {[κ0 ]} = P(K) ∩ T[κ0 ] Gr(2,V0). (5.3)

In other words, either P(K) does not intersect Gr(2,V0) or else the scheme-
theoretic intersection is a single reduced point. We shall describe

WK := P(AnnK) ∩ Gr(3,V0). (5.4)

First recall that the dual of Gr(3,V0) is Gr(2,V0). More precisely, let [α] ∈
P
(∧2

V0
); then

sing(P(Annα) ∩ Gr(3,V0)) = {U ∈ Gr(3,V0) | U ⊃ suppα}. (5.5)

In particular, P(Annα) is tangent to Gr(3,V0) if and only if [α] ∈ Gr(2,V0) (in
which case it is tangent along a P

2). Second, we record the following observation
(the proof is an easy exercise).

Lemma 5.1. Let U ⊂ V0 be a codimension-1 subspace, and let α ∈ ∧2
V0. Then

α ∧ (∧3
U

) = 0 (5.6)

if and only if suppα ⊂ U.
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We recall the following result of Iskovskih.

Proposition 5.2 [10]. With notation as before, let K ⊂ ∧2
V0 be a 3-dimen-

sional subspace such that (5.2) holds. Then

(1) WK is a smooth Fano 3-fold of degree 5 with ωWK ∼= OWK(−2),
(2) the Fano variety F(WK) parameterizing lines on WK (reduced structure) is

isomorphic to P
2, and

(3) the projective equivalence class of WK does not depend on K.

Proposition 5.3. LetK ⊂ ∧2
V0 be a subvector space of dimension 3 such that

(5.3) holds. ThenWK is a singular Fano 3-fold of degree 5 with ωWK ∼= OWK(−2)
and with one singular point that is ordinary quadratic and belongs to

{U ∈ Gr(3,V0) | U ⊃ supp κ0}. (5.7)

Proof. If κ ∈ (K \ [κ0 ]), then κ is not decomposable and hence P(Ann κ) is trans-
verse to Gr(3,V0); hence, by (5.5),

singWK = {U ∈ Gr(3,V0) | U ⊃ supp κ0} ∩ P(AnnK). (5.8)

We claim that this intersection consists of one point. First observe that we have a
natural identification

{U ∈ Gr(3,V0) | U ⊃ supp κ0} ∼= P(V0/supp κ0) (5.9)

and a linear map
K

ν−→ (V0/supp κ0)
∨,

κ �→ (v̄ �→ vol0(v ∧ κ0 ∧ κ)); (5.10)

here v ∈V0 and v̄ is its class in V0/supp κ0. Given (5.8) and (5.9), we have

singWK = P(Ann im ν). (5.11)

Second, it is clear that κ0 ∈ ker ν and so, in order to prove that singWK is a sin-
gleton, it suffices to prove that ker ν = [κ0 ]. If κ ∈ (K \ [κ0 ]) then κ0 ∧ κ �= 0;
in fact, this follows from (5.3) together with the equality

P
{
κ ∈ ∧2

V0 | κ0 ∧ κ = 0
} = T[κ0 ] Gr(2,V0). (5.12)

Since κ0 ∧ κ �= 0, we have ν(κ) �= 0; this proves that singWK consists of a single
point. The formula for the dualizing sheaf ofWK follows at once from adjunction.

It remains only to prove that the singular point of WK is an ordinary quadratic
point. Let W̃K ⊂ P(supp κ0) × P(V0/supp κ0) ×WK be the closed subset de-
fined by

W̃K := {([v],U,W) | v ∈W ⊂ U}. (5.13)

The projection W̃K → P(V0/supp κ0) is a P
1-fibration and hence W̃K is smooth.

One can show that the projection π : W̃K → WK is the blow-up of singWK.
Moreover, π−1(singWK) ∼= P

1 × P
1 and so it follows that the singularity ofWK is

ordinary quadratic.
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Our last result is about the base locus of 3-dimensional linear systems of quadrics
containingWK forK ⊂ ∧2

V0 a 3-dimensional subspace such that (5.2) holds. We
begin by addressing the analogous question for the Grassmannian Gr

(
3,

∧3
V0

)
.

Consider the rational map

P
(∧3

V0
) K��� |IGr(3,V0)(2)|∨ ∼= P(V0), (5.14)

where the last isomorphism is given by (4.2.18). Let Z ⊂ P
(∧3

V0
) × P(V0) be

the incidence subvariety defined by

Z := {([ω], [v]) | v ∧ ω = 0}. (5.15)

Then we have a commutative triangle

Z

K̃

��
��

��
��

��
H

��								

P
(∧3

V0
) K �������� P(V0),

(5.16)

whereH and K̃ are the restrictions toZ of the two projections of P
(∧3

V0
)×P(V0).

Note that H is the blow-up of Gr(3,V0). In particular, if ω ∈ ∧3
V0 is not decom-

posable then there exists a unique [v] ∈ P(V0) such that v ∧ω = 0 andK([ω]) =
[v]. Let [v] ∈ P(V0); by (4.2.18), we may view Ann(v) ⊂ V ∨

0 as a hyperplane in
|IGr(3,V0)(2)|. Then, by the commutativity of (5.16), we have⋂

f∈Ann(v)

V (qf) = Gr(3,V0) ∪ {
[ω] ∈ P

(∧3
V0

) | v ∧ ω = 0
}
. (5.17)

Proposition 5.4. Let K ⊂ ∧2
V0 be a 3-dimensional subspace such that (5.2)

holds. Let L ⊂ |IWK(2)| be a hyperplane (here IWK is the ideal sheaf of WK in
P(AnnK)). Then ⋂

t∈L
Qt = WK ∪ RL, (5.18)

where RL is a plane. Furthermore,WK ∩ RL is a conic.

Proof. Restriction to P(AnnK) defines an isomorphism

|IGr(3,V0)(2)| ∼−→ |IWK(2)|. (5.19)

By (4.2.18), we may identify L with P(Ann(v)) for a well-defined [v] ∈ P(V0)

and may also identify each quadric Qt for t ∈ L with P(AnnK) ∩ V(qf) for a
suitable [f ] ∈ P(Ann(v)). By (5.17),⋂

f∈Ann(v)

(P(AnnK) ∩ V(qf)) =WK ∪ RL; (5.20)

here
RL := P(AnnK) ∩ {

[ω] ∈ P
(∧3

V0
) | v ∧ ω = 0

}
. (5.21)
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Thus RL is a linear space of dimension at least 2. Now observe that we have the
isomorphism ∧2

(V0/[v]) ∼−→ {
[ω] ∈ P

(∧3
V0

) | v ∧ ω = 0
}
,

ᾱ �−→ v ∧ α,
(5.22)

where α ∈ ∧2
V0 is an element mapped to ᾱ by the quotient map

∧2
V0 →∧2

(V0/[v]). Because dim(V0/[v]) = 4, the Grassmannian Gr(2,V0/[v]) is a
quadric hypersurface in P

(∧2
(V0/[v])

); it follows that eitherRL ⊂WK orRL∩WK
is a quadric hypersurface in RL. According to Lefschetz, Pic(WK) is generated by
the hyperplane class; it follows that WK contains no planes and no quadric sur-
faces. Hence necessarily dimRL = 2; moreover, RL �⊂ WK and the intersection
RL ∩WK is a conic.

Corollary 5.5. Let K ⊂ ∧2
V0 be a 3-dimensional subspace such that (5.2)

holds, and let C(WK) be the variety parameterizing conics onWK (reduced struc-
ture). Then we have the isomorphism

|IWK(2)|∨ ∼−→ C(WK),
L �−→RL ∩WK ,

(5.23)

where RL is as in Proposition 5.4. Furthermore, given Z ∈W [2]
K , there exists a

unique conic containing Z—namely, RL ∩WK for L ∈ |IWK(2)|∨ the hyperplane
of quadrics containing 〈Z〉.
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