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1. Introduction

1.1. Summary of Results

Gromov–Witten invariants are virtual counts of curves on a fixed target space X,
and they are obtained as intersection numbers on moduli spaces of Kontsevich-
stable maps to X. Besides being interesting symplectic invariants of X, they ex-
hibit a remarkable amount of algebraic structure: appropriate generating functions
of rational Gromov–Witten invariants give a deformation of the intersection ring
ofX (quantum cohomology), also endowing the cohomology ofX with the struc-
ture of a Frobenius manifold. There are two typical “families of questions” in
Gromov–Witten theory. First, a simple-minded yet difficult question is whether it
is possible to compute invariants for a given target. Second, one wishes to draw
interesting consequences from the algebraic structure of invariants, such as com-
paring in some precise way families of invariants of different but related targets or
relating different types of curve-counting invariants on the same target.

In this paper we combine these two kinds of questions to investigate two strik-
ing (conjectural) features of Gromov–Witten theory.

Crepant transformation: the equivalence between GW theories of two
targets related by a crepant birational transformation. In particular, when
the crepant transformation is the resolution of singularities of a Goren-
stein orbifold, this equivalence is referred to as the crepant resolution
conjecture (CRC).

Gluing: the ability to recover GW invariants for a toric variety/orbifold
from open invariants of open subspaces covering the target.

We seek to tackle such questions for arbitrary toric spaces (varieties or orbifolds)
by reducing them to local questions that are compatible with gluing procedures.
We provide an expanded discussion of our motivations in Section 1.2. Here we
present the specific results obtained in this paper.

We give a complete and exhaustive description for the specific geometry in
Figure 1. The global quotient X = [OP1(−1) ⊕ OP1(−1)/Z2 ] (with nontrivial
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Figure 1 Master diagram for the paper

diagonal action on the fibers and trivial action on the base) is a hard Lefschetz
orbifold with Y = KP1×P1 (the total space of the canonical bundle of P

1 × P
1) as

its crepant resolution. The quotient X can be covered by two charts isomorphic
to [C3/Z2 ] (two copies of the nontrivial representation of Z2 and one copy of the
trivial one), whose resolutions (∼= KP1 ⊕ OP1) cover Y.

The four main results of this paper allow us to “complete the square”.

Theorem 5.1. We make and verify a crepant resolution conjecture for the open
invariants of [C3/Z2 ] and KP1 ⊕ OP1.

This is the first occurence of a CRC for open invariants. We compute the genus-0
open potential for [C3/Z2 ] (Proposition 4.2) using the methods of [BrC]. In order
to evaluate invariants for more than one boundary component, we generalize [C2,
Thm. 1] to the case of two-part hyperelliptic Hodge integrals with an arbitrary
number of descendant insertions (Theorem 2.3). Appearances notwithstanding,
Theorem 2.3 is not an instance of the string equation in the orbifold case. The
open potential for KP1 ⊕ OP1 is computed (Proposition 3.3) using the techniques
of [KaL]. Some interesting classical combinatorics is required to package the
potential in a manageable form.

Proposition 6.1. Closed invariants for an arbitrary toric CY 3-fold can be
obtained by gluing open invariants.

We compare the contributions (to the restriction of the virtual fundamental class of
the moduli space of stable maps to a given fixed locus) from the multiple covers of
the fixed lines with the contributions of discs that glue to maps in that fixed locus.
It is worth pointing out that our definition of the disc function is purely local (i.e.,
it does not depend on the global geometry of the 3-fold); hence these two contri-
butions are not tautologically equal. It was recently pointed out to us that a similar
check of the gluing occurred in [DF, Apx. B].

Proposition 6.2. Closed invariants for X are recovered by gluing open invari-
ants of [C3/Z2 ].
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In the orbifold case we content ourselves with proving the gluing for the particular
geometry that we are studying. Checking that orbifold invariants glue in general
is currently under investigation by the second author.

Theorem 7.2. We verify Ruan’s CRC (à la Bryan–Graber ) for X and Y.

We mention two interesting aspects of this result. First, although the CRC has
been verified in many instances [BGh; BG; BGP], this is one of the first cases (see
also [Gi]) in which the Ruan–Bryan–Graber statement is checked for an orbifold
that is not simply a representation of a finite group. In a sense we are checking
for whether the Ruan–Bryan–Graber CRC does indeed have geometric content
and is not just a group-theoretic feature of orbifold invariants. Second, we prove
Theorem 7.2 by showing that our open CRC is “compatible with gluing”, thereby
gathering some positive evidence that the CRC may be addressed locally in the
toric case.

1.2. Context and Motivation

The Atiyah–Bott localization theorem is effectively used in Gromov–Witten the-
ory to reduce the computation of GW invariants for a toric target to a sum of
Hodge integrals over loci of fixed maps. Hodge integrals can be evaluated using
Grothendieck–Riemann–Roch and Witten’s conjecture; whence the slogan that
localization turns toric GW theory into combinatorics. Alas, this slogan is often a
camouflaged admission of defeat for us algebraic geometers, as we are typically
unable to manage the combinatorial complexity and extract meaningful geometric
information from GW invariants. From a physical point of view, open GW invari-
ants (virtual counts of maps from bordered Riemann surfaces) arise naturally from
the propagation of open strings. Mathematically, they offer the opportunity to
tackle the combinatorial complexity of GW invariants by making their study even
more local. The strategy of the topological vertex [AKMV] is first to associate
certain combinatorial gadgets to each fixed point of a toric variety and then to give
“gluing rules” that reconstruct GW invariants. Philosophically (and physically),
these gadgets should correspond to open invariants relative to branes intersecting
the fixed lines containing the given vertex. In [Li+], a limiting argument is used to
motivate a mathematical theory of the topological vertex in terms of relative GW
invariants. Katz and Liu [KaL] take a different approach toward open invariants:
when the target admits an antiholomorphic involution σ, they define open invari-
ants by identifying the σ -invariant portion of the obstruction theory in ordinary
GW theory.

In [BrC], Katz and Liu’s approach is generalized in two different directions.
First, it is noted that the construction can be made local: independent of the global
geometry of the target, disc contributions to open invariants are computed by view-
ing a neighborhood of the fixed (affine) line where the disc is mapping inside a
resolved conifold. This gives rise to a local theory that is strongly similar (and
possibly identical) to the mathematical topological vertex of Li and colleagues.
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However, it is not straightforward that open invariants should glue correctly: this
is the significance of Proposition 6.1. The second generalization carries open in-
variants to the orbifold setting. A formulation of a general theory of the orbifold
vertex is given in [Ro], where the author exploits such formalism to compare the
GW orbifold vertex with the Donaldson–Thomas orbifold vertex of [BCaY]. Our
formulation of open invariants bypasses the technical problem that the foundations
of relative stable maps to orbifolds have not yet been laid. One could also argue
that the involution-invariant approach is naturally tuned to the study of orbifold
geometry (which in essence is “locally G-invariant geometry”).

Our opinion is that the worth of a local theory (especially if defined via local-
ization) should be measured by its success in addressing global questions. One of
the most intriguing conjectures in GW theory, the crepant resolution conjecture,
predicts a relation between orbifold GW invariants of a Gorenstein orbifold and
GW invariants of its crepant resolution—when it exists. (There are various incar-
nations of the CRC featuring different levels of generality. Here we focus on the
most concrete and restrictive version that applies to our geometry. A nice survey
of this rich story—and one that contains the most general formulation—is given
by Coates and Ruan [CoR].) A natural question is whether the CRC is compati-
ble with gluing and can therefore be addressed locally. In this paper we study this
question for a simple yet nontrivial geometry and then give a positive answer.

In [Br], Brini proposes (based on open mirror symmetry) how to relate disc
invariants under crepant transformations by comparing B-model quantities that
are intrinsically more computable. Verifying that this proposal agrees with The-
orem 5.1 is on our immediate agenda because it would not only provide further
evidence of our program’s validity but also, and more importantly, validate Brini’s
proposal as a conjectural formulation of a vertex CRC.

1.3. Organization of the Paper

In Section 2 we review open Gromov–Witten invariants and describe methods for
computing the open invariants of KP1 ⊕OP1 and [C3/Z2 ].We finish the section by
computing explicit formulas for certain hyperelliptic Hodge integrals that show up
in later computations. Sections 3 and 4 are the computational meat of the paper in
which we compute all relevant open invariants. In Section 5 we show that the open
invariants satisfy the open crepant resolution conjecture. In Section 6, we show
that open invariants can be glued to obtain closed invariants. Finally, in Section 7
we show that the closed CRC for [(OP1(−1) ⊕ OP1(−1))/Z2 ] can be deduced
from the open CRC.

Acknowledgments. Many thanks to Dagan Karp for suggesting this geometry
as a natural first step in our program, to Melissa Liu for helpful comments about
the paper and for directing our attention to literature we were unaware of, and to
Andrea Brini for constant communication on his parallel work. We are also grate-
ful to Vincent Bouchard, Y. P. Lee, Sara Pasquetti, Yongbin Ruan, and Hsian-Hua
Tseng for many interesting discussions related to this project. Finally we would
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like to acknowledge the AIM workshop on “Recursion Structures in Topological
String Theory and Enumerative Geometry”, at which the idea of a crepant resolu-
tion conjecture for open invariants was discussed.

2. Preliminaries

2.1. Open Invariants

In [KaL], Katz and Liu propose a theory for computing open Gromov–Witten
invariants that amounts to a generalization of ordinary Gromov–Witten theory
computing virtual counts of maps from surfaces whose boundaries satisfy certain
boundary conditions. Consider a Calabi–Yau 3-fold X and a special Lagrangian
submanifoldL. Fix integersg andh and a relative homology classβ ∈H2(X,L; Z)

with ∂β = ∑
γi ∈H1(L, Z). Then the open Gromov–Witten invariant Ng,h

β;γ1,...,γh

is a virtual count of maps f : (�, ∂�)→ (X,L) satisfying

• (�, ∂�) is a Riemann surface of genus g and with h boundary components,
• f∗[�] = β, and
• f∗[∂�] = ∑

γi.

In order to compute open invariants, Katz and Liu propose an obstruction the-
ory for the moduli space of open stable maps Mg,h(X,L | β; γi) [KaL, Sec. 4.2].
While assuming that the moduli space can be equipped with a well-behaved torus
action, they give an explicit formula for how the corresponding virtual cycle re-
stricts to the fixed locus of the torus action. An especially interesting aspect of this
theory is that the virtual cycle does depend on the torus action. In other words,
different torus actions lead to different invariants. This reflects the framing depen-
dence of open invariants discussed in [AKV].

The computational key to the Katz and Liu setup is the assumption that L is the
fixed locus of an antiholomorphic involution. A map from a bordered Riemann sur-
face mapping boundary intoL can then be doubled to a map from a closed Riemann
surface [KaL, Sec. 3.3]. Open Gromov–Witten invariants are defined/computed
from the involution-invariant contributions to the ordinary Gromov–Witten invari-
ants corresponding to the doubled maps.

Katz and Liu then specialize to compute disk invariants of OP1(−1)⊕OP1(−1),
where L is the fixed locus of the antiholomorphic involution (z, u, v) →
(1/z̄, v̄z̄, ūz̄). Key to the computations are the Riemann–Hilbert bundles L(2d)
andN(d) over (D2, S1) defined in [KaL, Exm. 3.4.3, Exm. 3.4.4]. The sections of
the Riemann–Hilbert bundles are identified torus-equivariantly to the involution-
invariant sections of H 0(P1, O(2d)) and H1(P1, O(−d)⊕ O(−d)), respectively.

Our open invariant computations stem from making Katz and Liu’s construction
“local”, as we now explain. We represent a toric Calabi–Yau 3-fold via its web dia-
gram, a planar trivalent graph in which edges correspond to torus-invariant lines
and vertices to torus-invariant points. Once we equip the space with a C

∗-action
and then lift that action to the moduli space of open stable maps, the fixed loci
consists of maps decomposing as
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• compact components of the source curve contracting to the vertices,
• multiple covers of the fixed lines of the 3-fold (fully ramified over fixed points),

and
• disks mapping (with appropriate winding) to edges equipped with a Lagrangian.

The contribution from the first two items can be computed using standard Atyiah–
Bott localization. The contribution from each disk is computed by applying the
Katz–Liu setup to a formal neighborhood of the fixed point where the vertex of
the disk is mapped.

2.2. Orientation Convention

A subtlety arises in the computations. Although the sections of H 0(L(2d)) are
naturally isomorphic to the sections ofH 0(OP1(2d)), there is no natural choice of
isomorphism between the sections ofH1(N(d )) and the sections ofH1(OP1(−d)⊕
OP1(−d)). The latter correspondence depends instead on a choice of orientation
for the sections (see [KaL, Sec. 5.2]): a σ -invariant section of H1(OP1(−d) ⊕
OP1(−d)) in local coordinates at 0 has the form

s =
( d−1∑
i=1

ai

zi
,
d−1∑
i=1

ai

zd−i

)
=

( d−1∑
j=1

bj

zd−j
,
d−1∑
j=1

bj

zj

)
.

The space of involution-invariant sections is identified (torus-equivariantly) with
a complex vector space by the first (resp. second) projection when using the coor-
dinates ai (resp. bj ). This choice results in different open invariants: in the first
(resp. second) case the weights of the sections are C

∗-weights of sections of the
OP1(−d) on the left-hand (resp. right-hand) side. The choice of orientation ulti-
mately yields a global factor of (−1)d+1, where d is the winding of the disk.

In order to track the choice of orientation, we establish the following convention.

Orientation Convention 2.1. Throughout the paper, we add an arrow to
each edge intersecting a Lagrangian (see Figure 2). The corresponding disk
contributions are computed by identifying the involution-invariant sections of
H1(OP1(−d) ⊕ OP1(−d)) via projection to the sections of the bundle to the left
of the arrow. The choices of orientations for the geometric objects considered are
depicted in Figure 3.

Figure 2 C
3 with one oriented half-edge indicates that (a) we are computing open

invariants with disks lying along the horizontal edge and (b) σ -invariant sections are
identified by projecting onto the bundle corresponding to the vertical edge



Open Gromov–Witten Theory and the Crepant Resolution Conjecture 813

(a) KP1 ⊕ OP1 (b) KP1×P1

(c) [C3/Z2 ] (d) [(OP1(−1)⊕ OP1(−1))/Z2 ]

Figure 3 The BZ2-gerbes are marked by heavy lines, and orientations have been
chosen via Convention 2.1

In [BrC], the methods of Katz and Liu are extended to the orbifolds [C3/Zn].
Analogously to computing closed orbifold Gromov–Witten invariants, the open
orbifold Gromov–Witten invariants of [C3/Zn] are defined/computed by consid-
ering only the contributions to the open invariants that descend to the quotient. In
both [KaL] and [BrC], the open invariants defined via the A-model are verified
against B-model predictions.

2.3. Hyperelliptic Hodge Integrals

In this section we prove a closed formula for a generating function that packages
the hyperelliptic Hodge integrals of the form

L(g, i,m) :=
∫

M0;2g+2,0(BZ2 )

λgλg−i(ψ)m; (1)

here m is a multi-index (m1, . . . ,ml), |m| := m1 + · · · +ml = i − 1, and

ψm := ψm1
1 · · ·ψmll .

Remark 2.2. Recall that M0;2g+2,0(BZ2) is the moduli space of maps from
genus-0 curves into BZ2 with 2g + 2 twisted marked points. Each such map cor-
responds to a (possibly nodal) genus g double cover of the source curve ramified
over the marked points. We have two natural forgetful maps,

M0;2g+2,0(BZ2)
F ��

π

��

Mg

M0;2g+2 ,

(2)
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by sending a map to the corresponding double cover of its source curve. The λ-
classes on M0;2g+2,0(BZ2) are defined to be

λi := ci(F ∗
E),

where E is the Hodge bundle on Mg. The ψ-classes are defined via pull-back
from M0;2g+2.

For a fixed i and m with |m| = i − 1, define the generating function

L i,m(x) :=
∑
g

L(g, i,m)
x 2g

(2g)!
. (3)

We know from the λgλg−1 computation [BP; BeCT; FaP] that

L1,∅ = log sec

(
x

2

)
, (4)

and we know from [C2] that

L i,(i−1) = 2i−1

i!
Li1,∅. (5)

The following theorem generalizes (5).

Theorem 2.3.

L i,m =
(
m1 + · · · +ml
m1, . . . ,ml

)
2i−1

i!
Li1,∅. (6)

Remark 2.4. This formula was given independently by Gillam [Gi], who veri-
fied the result computationally for l ≤ 4.

Proof of Theorem 2.3. We use induction on the multi-index m. Given m =
(m1, . . . ,mk) with |m| = j − 1, we know that the statement is true if either j = 1
or k = 1. Suppose (6) holds when j < i and also when j = i and k ≤ l. For this
case, we show that (6) holds when j = i and k = l + 1.

Notation. Write m = (m1, . . . ,ml ,ml+1) and set m′ = (m1, . . . ,ml−1,m′
l ),

where m′
l := ml + ml+1. For a subset A ⊆ {1, . . . , l + 1}, we write m(A) for

the multi-index that is equal tom in the entries indexed by numbers inA and equal
to 0 in the other entries. As usual, Ac denotes the complement of A. We use m[k]
to denote the multi-index m with the first entry replaced by k.

We shall prove the recursion by evaluating via localization auxiliary integrals on
M0;2g+2,0(P

1 × BZ2, 1). This moduli space parameterizes double covers of the
source curve with a special rational component picked out. By postcomposing the
usual evaluation maps with projection onto the first factor, we obtain evaluation
maps to P

1 that we denote by ei . The auxiliary integrals are
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A1:
∫
λgλg−iψm({1}

c )e∗
l (0)e

∗
l+1(0)e

∗
2g+2(∞);

A2:
∫
λgλg−iψm

′({1}c )e∗
l (0)e

∗
l+1(0)e

∗
2g+2(∞).

Remark 2.5. (i) In each integrand, we do not include the ψ1-part of the Hodge
integral. Theψ1-classes in the result make an appearance through node smoothing.
The other ψ-classes correspond to the marked points with the matching index.

(ii) We have abused notation in order to make the expression legible. By λg−i
we intend ceq.

g−i(R1π∗f ∗O), where the trivial bundle is linearized with 0 weights:
the λ-classes are how these classes restrict to the fixed loci. By e∗

i (0) (resp. e∗
i (∞))

we denote ceq.
1 (e

∗
l O(1)) linearized with weight 1 over 0 and weight 0 over ∞ (resp.

0 over 0 and −1 over ∞). These classes essentially localize to require the corre-
sponding mark point to map over 0 (resp. ∞).

(iii) The difference in the two auxiliary integrals is that we have “spread” the
ψ-classes on the two points fixed over 0 in two different ways.

(iv) Both integrals vanish for dimensional reasons. In both integrals, the degree
of the class we integrate is m2 + · · · + ml+1 + 3 + 2g − i, which is strictly less
than 2g + 2 (because m1 + · · · +ml+1 = i − 1 and m1 > 0).

(v) Localizing A1 yields relation (8) among Hodge integrals, where all terms
are already known by induction. Localizing A2 yields relation (9) by computing
one unknown Hodge integral in terms of inductively known ones. Then, since (8)
and (9) are proportional to each other, we can determine the desired integral.

Analyzing the obstruction theory via the normalization sequence of the source
curve, one sees that the maps in the contributing fixed loci satisfy the following
properties (see [C1] for more details).

• The preimages of 0 and ∞ in the corresponding double cover must be connected.
• One distinguished projective line in the source curve maps to the main compo-

nent of the target with degree 1. The corresponding double cover has a rational
component over the distinquished projective line.

• The lth and (l + 1)th marked points must map to 0, and the (2g + 2)th marked
point must map to ∞.

The contributing fixed loci are as follows.

Fg: All marked points—except for the (2g+ 2)th—map to 0. The correspond-
ing double cover contracts a genus-g component over 0 and does not have a
positive-dimensional irreducible component over ∞. This locus is isomor-
phic to M0;2g+2,0(BZ2).

Fg1,g2 : 2g1 + 1 marked points map to 0 and 2g2 + 1 marked points map to ∞
(this includes the points that are already forced to map to 0 and ∞). The
corresponding double cover contracts a genus-g1 component over 0 and a
genus-g2 component over ∞. This locus is isomorphic to M0;2g1+2,0(BZ2)×
M0;2g2+2,0(BZ2).
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The mirror analogue of Fg is not in the fixed locus because we require that at least
two marked points map to 0.

The first integral evaluates on the two types of fixed loci to

Fg:
(−1)i

t m1

∫
M0;2g+2,0(BZ2 )

λgλg−iψm = (−1)i

t m1
L(g, i,m),

Fg1,g2 :
2(−1)i

t m1

i−1∑
k=1

∑
A⊆{2,...,l−1}

(
2g + 1 − l

2g1 + 1 − |A|
)
(−1)k−|m(Ac)|−1

·
∫

M0;2g1+2,0(BZ2 )

λg1λg1−i+kψ
i−k−|m(A)|−1
1 ψm(A)ψ

ml
l ψ

ml+1
l+1

·
∫

M0;2g2+2,0(BZ2 )

λg2λg2−kψ
k−|m(Ac)|−1
1 ψm(A

c);

here we sum only over subsets A that keep the powers of ψ-classes nonnegative.
The subset A determines which ψ-classes map to 0, and the binomial coefficient
corresponds to the number of ways of distributing the marked points with no cor-
responding ψ-class in the integral.

Now write nA,k for the multi-index m(Ac)[k − |m(Ac)| − 1]. The vanishing of
the integral and the foregoing computations yield the following relation:

L(g, i,m) = 2
∑
g1

i−1∑
k=1

∑
A⊆{2,...,l−1}

(
2g + 1 − l

2g1 + 1 − |A|
)
(−1)k−|m(Ac)|

· L(g1, i − k,m− nA,k) · L(g2, k, nA,k). (7)

Evaluating the auxiliary integral for all genera and then packaging (7) in generat-
ing function form, we have

d l−1

dx l−1
L i,m

= 2
i−1∑
k=1

∑
A⊆{2,...,l−1}

(−1)k−|m(Ac)|
(
d l−1−|A|

dx l−1−|A| L i−k,m−nA,k

)(
d |A|

dx|A| Lk,nA,k

)
. (8)

The second integral leads to a similar relation:

d l−1

dx l−1
L(i,m′)

= 2
i−1∑
k=1

∑
A⊆{2,...,l−1}

(−1)k−|m′(Ac)|
(
d l−1−|A|

dx l−1−|A| L i−k,m′−n′
A,k

)(
d |A|

dx|A| Lk,n′
A,k

)
. (9)

By definition, nA,k = n′
A,k; hence

d |A|

dx|A| Lk,nA,k
= d |A|

dx|A| Lk,n′
A,k
. (10)

Also, the induction hypothesis implies (because k ≥ 1) that
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d l−1−|A|

dx l−1−|A| L i−k,m−nA,k
= (ml +ml+1)!

ml!ml+1!

d l−1−|A|

dx l−1−|A| L i−k,m′−n′
A,k
. (11)

Thus the left-hand sides of (8) and (9) are term-by-term proportional; therefore,

d l−1

dx l−1
L i,m = (ml +ml+1)!

ml!ml+1!

d l−1

dx l−1
L i,m′ . (12)

Now recall that l(m) = l + 1 and so, in order for
∫
λgλg−iψm to be defined,

we must have at least l +1 marked points in our moduli space. Hence obtaining a
nontrivial integral requires that 2g + 2 ≥ l + 1. All coefficients of monomials of
smaller degree than x l−1 in both generating functions vanish, so we conclude that

L i,m = (ml +ml+1)!

ml!ml+1!
L i,m′

= (ml +ml+1)!

ml!ml+1!

(
m1 + · · · +m′

l

m1, . . . ,m′
l

)
2i−1

i!
Li1,∅

=
(
m1 + · · · +ml+1

m1, . . . ,ml+1

)
2i−1

i!
Li1,∅; (13)

here we again use the induction hypothesis on the second equality.

All L i,m can be further packaged in one jumbo generating function (with infinitely
many symmetric variables qi keeping track of all possible descendant insertions):

L(x, q) :=
∑
i,m

L i,mqm. (14)

Corollary 2.6.

L = 1

2
∑
qi

exp
((

2
∑

qi

)
L1,∅

)
= 1

2
∑
qi

sec2
∑
qi

(
x

2

)
. (15)

Proof. The first equality follows immediately from Theorem 2.3. The second is
obtained by replacing L1,∅ with the RHS of (4).

3. Open Gromov–Witten Invariants of KPPP1 ⊕ OPPP1

In this section we compute the open GW invariants of KP1 ⊕ OP1. We give the
space a C

∗-action with (Calabi–Yau) weights as in Figure 4.

−2t

t

−t

0t

t

t

Figure 4 The web diagram for KP1 ⊕ OP1 along with the specialized toric weights
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In local coordinates at the top vertex, the action is defined by λ · (z, u, v) =
(λ · z, λ−2 · u, λ · v), and similarly for the bottom vertex. The C

∗ fixed maps are
easily described and understood.

• The source curve consists of a genus-0 (possibly nodal) closed curve along with
attached disks.

• The noncontracted irreducible components of the closed curve must be multiple
covers of the torus-invariant P

1.

• The disks must map to the fixed fibers of the trivial bundle with prescribed wind-
ings at the Lagrangians.

Analyzing the obstruction theory via the normalization sequence of the source
curve, one sees that the 0 weight at the bottom vertex limits the possible contribut-
ing maps in the following ways.

• Maps with positive-dimensional components contracting to the bottom vertex
do not contribute.

• Maps with nodes mapping to the bottom vertex contribute only if the node con-
nects a d-fold cover of the invariant P

1 to a disk with winding d.

d

d

d

2

3

1

d

d

4

5

k
1

k2 d
5

d
4

Figure 5 The open localization graphs have bi-colored vertices to keep track of the
components to which each vertex contracts; labeled arrows represent disks mapping
with the indicated winding

Fixed loci F0 are indexed by localization graphs as in Figure 5. The combina-
torial data is given by three multi-indices as follows.

• k1, . . . , kl , the degrees of the multiple covers of the invariant P
1 that do not attach

to a disk at the bottom vertex.
• d1, . . . , dm, the winding profile of the disks with origin mapping to the top vertex.
• dm+1, . . . , dn, the winding profile of the disks with origin mapping to the bottom

vertex. Equivalently, if n > 1 then these are the degrees of the multiple covers
of the invariant P

1 that do attach to a disk at the bottom vertex.

If n = 1, then maps from a single disk may map the origin to the bottom vertex;
we label the locus of such maps 0 ′.

With the given multi-indices, the fixed locusF0 is isomorphic to a finite quotient
of M0,n+l (where we interpret M0,1 and M0,2 as points). Define the contribution
from a fixed locus 0 to be
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OGW(0) :=
∫
F0

i∗ [M]vir

e(Nvir)
, (16)

where i∗ [M]vir is the restriction of the virtual fundamental class (proposed in
[KaL]) to the fixed locus and Nvir denotes the virtual normal bundle of F0 in the
moduli space of stable maps.

In order to package the invariants in the Gromov–Witten potential, we assign
the following formal variables:

• q tracks the degree of the map on the base P
1;

• y(t)i tracks the number of disks with winding i at the top vertex;
• y(b)i tracks the number of disks with winding i at the bottom vertex;
• x tracks insertions of the nontrivial cohomology class (conveniently, this class

is a divisor).

The open potential is computed by adding the contributions of all fixed loci:

OGWK
P1⊕O

P1 (x, q, y(t)i , y(b)i )

=
∑
0 ′

OGW(0 ′)y(b)d

+
∑
0 �=0 ′

OGW(0)(qex)k+dm+1+···+dny(t)d1
· · · y(t)dmy(b)dm+1

· · · y(b)dn . (17)

In (17),0 ′ denotes graphs consisting of a single white vertex and an arrow labeled
with winding d. For nondegenerate graphs 0 �= 0 ′, we denote by OGW(0) the
contribution to the potential from the fixed locus indexed by 0, including invari-
ants with any number of divisor insertions. Following the obstruction theory for
open invariants proposed in [KaL], the OGW(0) are computed using the follow-
ing ingredients: the Euler class of the push–pull of the tangent bundle, the Euler
class of the normal bundle of F0 in the moduli space of stable maps, and all rele-
vant automorphisms of the map

1

|glob. aut.|
∫
F0

e(−R •π∗f ∗TK
P1⊕O

P1 ) · (inf. aut.)

(smoothing of nodes)
(18)

For convenience, we organize the computation on each locus 0 into three parts:
closed curves, disks, and nodes.

1. Closed curve: This consists of a closed curve contracting to the upper ver-
tex as well as multiple covers of the torus-fixed P

1. We choose not to include
the d-covers of the fixed line that are attached to a disk mapping with winding d
to the bottom vertex. The contracted component contributes (−2t 3)−1 from the
push–pull of the tangent bundle, and each k-cover contributes

−t
k2

eH1(O(−2k))

eH 0(O)eH 0(O(2k)) = (−1)k

tk2

(
2k − 1
k

)
. (19)

Here we have included both the global automorphism of the k : 1 cover and the
infinitesimal automorphism at the point ramified over the bottom vertex.

2. Disks: A disk can be mapped either to the top or the bottom vertex. Follow-
ing Katz and Liu [KaL], the contribution of a disk mapping to the top vertex with
winding d is given by
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1

d

eH1(N(d ))

eH 0(L(2d))
= (−1)d+1

td

(
2d − 1
d

)
, (20)

where L(2d) and N(d) are defined in [KaL, Exm. 3.4.3, Exm. 3.4.4]. We have
divided the contributions in a way that the contribution of a disk mapping to the
bottom vertex also includes the contribution of the multiple cover attaching it to
the contracted component. The reason for this is that the combined contribution
becomes

1

d 2

eH1(O(−2d))

eH 0(O)eH 0(O(2d))
eH1(N(d ))

eH 0(L(2d))

eH 0(Ny/Y )

t/d − t/d

= 1

d 2

(−1)d+1

t 2

(
2d − 1
d

)
1

t

−0t 3

t/d − t/d

= (−1)d+1

td

(
2d − 1
d

)
, (21)

which is the same as the contribution of the disk at the top vertex.

Remark 3.1. In order to interpret the quotient −0
1−1 in (21), recall that this term

arises as s1s2 s3
s1+s2 , where the si sum to 0. As s3 → 0, the quotient tends to −s1s2.

3. Nodes: Since we have already accounted for the nodes at the bottom ver-
tex (those attaching winding-d disks to d : 1 covers), this piece contains only the
contribution from nodes at the top vertex. For each such node connecting either
a disk of winding d or a curve of degree d to the contracted component, we get
a contribution of −2t 3 from the push–pull of the tangent sheaf and a contribution
of (t/d − ψi)−1 from node smoothing.

Putting these three parts together yields

OGW(0) = 1

|Aut(0)|
l∏
i=1

(−1)ki

tk2
i

(
2ki − 1
ki

) n∏
i=1

(−1)di+1

tdi

(
2di − 1
di

)

· (−2t 3)l+n−1
∫
M0,n+l

1∏(
t
ki

− ψi
) ∏(

t
di

− ψi+l
) , (22)

whereAut(0) is the product of the automorphisms of the ordered tuples (k1, . . . , kl),
(d1, . . . , dm), and (dm+1, . . . , dn).

After we apply the string equation to the integral and then simplify, (22) becomes

OGW(0) = −2l+n−1

|Aut(0)|
[ l∏
i=1

(−1)ki+1

ki

(
2ki − 1
ki

)]

·
[ n∏
i=1

(−1)di
(

2di − 1
di

)]
(d + k)l+n−3, (23)

where d = ∑
di and k = ∑

ki.



Open Gromov–Witten Theory and the Crepant Resolution Conjecture 821

Recall now that the contribution of a disk is the same regardless of whether it
maps to the top or bottom Lagrangian. Therefore, letting0(d; k) denote all0 �= 0 ′
with winding profile d = (d1, . . . , dn) and fixed k = (k1, . . . , kl), we can attach the
formal variables and compute∑

0∈0(d;k)
OGW(0)

= −2l+n−1

|Aut(d)|
n∏
i=1

(y
(t)
di

+ y(b)di (qex)di )
n∏
i=1

(−1)di
(

2di − 1
di

)

· 1

|Aut(k)|
l∏
i=1

(−1)ki+1(qex)ki

ki

(
2ki − 1
ki

)
(d + k)l+n−3. (24)

We now sum over all k with
∑
ki = k. In order to do this, set

F(X,Y ) := exp

(∑
κ≥1

(−1)κ+1

κ

(
2κ − 1
κ

)
XκY

)

=
∑
l,k

∑
k

1

|Aut(k)|
[ l∏
i=1

(−1)ki+1

ki

(
2ki − 1
ki

)]
XkY l, (25)

where the second sum is over all l-tuples k = (k1, . . . , kl)with
∑
ki = k. The sum

of all contributions with fixed winding profile (d1, . . . , dn) and with (k1, . . . , kl) sat-
isfying

∑
ki = k is obtained by specializing Y = 2(d + k) and then multiplying

the coefficient of Xk by an appropriate factor:∑
|k|=k

∑
0∈0(d;k)

OGW(0) = −2n−1

|Aut(d)|
n∏
i=1

(y
(t)
di

+ y(b)di (qex)di )
n∏
i=1

(−1)di
(

2di − 1
di

)

· (qex)k(d + k)n−3[F(X, 2(d + k))]Xk . (26)

To handle (26), we find a closed-form expression for F. Start with the known
generating function∑

k≥1

(
2k − 1
k

)
(−1)kXk = 1

2
· 1 − √

1 + 4X√
1 + 4X

. (27)

If we divide by −X and formally integrate term by term (while requiring that the
constant term be 0), we obtain∑

k≥1

(−1)k+1

k

(
2k − 1
k

)
Xk = ln

(
1

2

(
1 + √

1 + 4X
))
. (28)

Finally, we can write

F = exp

(
Y ln

(
1

2

(
1 + √

1 + 4X
)))

=
[

1

2

(
1 + √

1 + 4X
)]Y
. (29)
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Several remarks are worth making at this point, as follow.

• Setting G := 1
2

(
1 + √

1 + 4X
)
, we see that G = 1 + X · C(X) for C(X) the

generating function for the Catalan numbers.
• G satisfies the recursive relation Gn = Gn−1 +XGn−2.

• It is easy to see that the recursion and the relation between G and the Cata-
lan numbers are equivalent to the array of coefficients of Gi taking on a slight
variation of two classical combinatorial objects, as illustrated in Figure 6. Here
“slight variation” is probably best described by looking at the first few terms in
Table 1.

G

G
G

1

2

3

...

Catalan Triangle

Lucas Triangle

Figure 6 The coefficients of Gn as classical combinatorial numbers

Using the recursion and induction, one easily proves the following lemma.

Lemma 3.2. If d > 0, then the Xk-coefficient of G2(d+k) is(
k + (2d − 1)

2d − 1

)
d + k
d
. (30)

The Xk-coefficient of G2k is 2.

These are precisely the coefficients we need. We can therefore draw the following
conclusions.

• By equation (26), if (d1, . . . , dn) �= ∅ then∑
|k|=k

∑
0∈0(d;k)

OGW(0)

= −2n−1

d · |Aut(d)|
n∏
i=1

(y
(t)
di

+ y(b)di (qex)di )

·
n∏
i=1

(−1)di
(

2di − 1
di

) ∑
k≥0

(d + k)n−2

(
k + (2d − 1)

2d − 1

)
(qex)k. (31)

• Also by (26), if (d1, . . . , dn) = ∅ and (k1, . . . , kl) �= ∅ then∑
|k|=k

∑
0∈0(∅;k)

OGW(0) = −1

k3
(qex)k. (32)

Here we have recovered the Aspinwall–Morrison formula for KP1 ⊕ OP1.
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Table 1 First Coefficients of the Series of Gn

1 x x 2 x3 x4 x 5 x6 x7 x8 x9

G 1 1 −1 2 −5 14 −42 132 −429 1430
G2 1 2 −1 2 −5 14 −42 132 −429 1430
G3 1 3 0 1 −3 9 −28 90 −297 1001
G4 1 4 2 0 −1 4 −14 48 −165 572
G5 1 5 5 0 0 1 −5 20 −75 275
G6 1 6 9 2 0 0 −1 6 −27 110
G7 1 7 14 7 0 0 0 1 −7 35
G8 1 8 20 16 2 0 0 0 −1 8
G9 1 9 27 30 9 0 0 0 0 1
G10 1 10 35 50 25 2 0 0 0 0

Finally, recall that:

• if both d = ∅ and k = ∅, then the locus consists of the degree-0 maps with only
divisor insertions that can be computed via localization to be

−x3

12
; (33)

• the contribution from a locus 0 ′ consisting of a single disk mapping to the bot-
tom vertex with winding d is given by

1

d 2
y
(b)
d . (34)

After adding all contributions, we conclude that

OGWK
P1⊕O

P1 (x, q, y(t)i , y(b)i )

= −1

2

x3

3!
+

∑
k≥1

−1

k3
(qex)k +

∑
d≥1

1

d 2
y
(b)
d

+
∑

(d1,...,dn)�=∅

[ −2n−1

d · |Aut(d)|
n∏
i=1

(y
(t)
di

+ y(b)di (qex)di )
n∏
i=1

(−1)di
(

2di − 1
di

)

·
∑
k≥0

(d + k)n−2

(
k + (2d − 1)

2d − 1

)
(qex)k

]
. (35)

In a neighborhood of x = −∞, we have:∑
k≥0

(
k + (2d − 1)

2d − 1

)
(qex)d+k = (qex)d

(1 − qex)2d . (36)

We can now use (36) to express (35) as∑
k≥0

(d + k)n−2

(
k + (2d − 1)

2d − 1

)
(qex)k = 1

(qex)d

d n−2

dxn−2

(
(qex)d

(1 − qex)2d
)

, (37)
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where differentiation /integration is computed formally termwise. When n ≥ 2,
there is no ambiguity since d n−2

dxn−2 is a derivative. When n = 1, we must exercise
some caution because the integral is defined only up to translation. Observe that

lim
x→−∞

∑
k≥0

1

k + d
(
k + (2d − 1)

2d − 1

)
(qex)k+d = 0; (38)

hence we use ∫
(qex)d

(1 − qex)2d dx
to denote the antiderivative with limit 0 as x approaches −∞.

We conclude this section by putting the open potential in its simplest form.

Proposition 3.3. The open Gromov–Witten potential (sans fundamental class
insertions) for KP1 ⊕ OP1 is

OGWK
P1⊕O

P1 (x, q, y(t)i , y(b)i )

= −1

12
x3 +

∑
k≥1

−1

k3
(qex)k

+
∑
d≥1

[
1

d 2
y
(b)
d + (−1)d+1

d
(y
(t)
d + y(b)d (qex)d)

(
2d − 1
d

)

· 1

(qex)d

∫
(qex)d

(1 − qex)2d dx
]

+
∑

d1,...,dn(n≥2)

[ −2n−1

d · |Aut(d)|
[ n∏
i=1

(−1)di(y(t)di + y(b)di (qex)di )
(

2di − 1
di

)]

· 1

(qex)d

d n−2

dxn−2

(
(qex)d

(1 − qex)2d
)]
.

The first two lines capture the closed contribution, the next two lines are the con-
tribution from curves with one boundary component, and the final two lines are
the contribution from curves with more than one boundary component.

4. Open Orbifold Gromov–Witten Invariants of [CCC3/ZZZ2]

In this section we compute the open orbifold GW invariants of [C3/Z2 ], following
[BrC]. We define a C

∗-action on the orbifold with weights described in Figure 7.

0t

t
−t

Figure 7 Toric diagram for [C3/Z2 ] and C
∗-weights
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We characterize the C
∗ fixed maps as follows.

• The source curve consists of a genus-0 closed curve along with attached disks.
The closed component can carry (possibly twisted) marks, whereas a disk can
carry a mark only at the origin (and then only if it is not attached to a closed
component). The attaching points of the nodes must carry inverse twisting.

• The closed curve must contract to the vertex.
• The disks must map to the twisted C with prescribed windings at the Lagrangian.

Since we are working with a Z2 quotient, we simply refer to points as twisted
or untwisted as there is no ambiguity. A careful analysis of the obstruction theory
via the normalization sequence of the source curve shows that the 0 weight con-
veniently kills all contributions where a disk attaches to a contracted component
at an untwisted node. For dimensional reasons, all other marks must be twisted.

Combinatorially, the fixed loci 6 are indexed by

• m, the number of insertions of the twisted sector; and
• d1, . . . , dn, the winding profile of the disks.

Remark 4.1. Since all nodes and marked points are twisted, the maps restricted
to the contracted component (maps into BZ2) classify double covers of the con-
tracted component with simple ramification overm+n points. Since such a cover
exists only ifm+n is even, it follows that the loci are nonempty only whenm+n
is even.

If we let z and wd be formal variables tracking the twisted sector insertions and
the winding d disks, then the open orbifold potential can be computed as

OGW[C3/Z2 ](z,wi) =
∑
6

OGW(6)
zm

m!
wd1 · · ·wdn. (39)

As before, we group the computation of OGW(6) into three components.
1. A closed curve: The closed curve contracted to the vertex essentially car-

ries the information of a map into BZ2 along with the weights of the C
∗-action

on the three normal directions. This classifies a double cover of the source curve.
Analogously to [CaC, Sec. 2.1], the contribution from the closed component is the
equivariant Euler class of two copies of the dual of the Hodge bundle on the cover
twisted by the weights of the action on the untwisted fixed fibers:

e(E∨
−1(−1)⊕ E

∨
−1(0)). (40)

We also get a contribution of t−1 from the weight of the action on the twisted sector.
2. Disks: The disk contribution is laid out in [BrC, Sec. 2.2.3]. This contribu-

tion is a combinatorial function that depends on the winding at the Lagrangian and
the twisting at the origin of the disk. The localization step simplifies the disk con-
tribution to two cases: either the origin of the disk is marked and twisted (possibly
a node) or the origin is unmarked. For the particular case at hand, a disk with
winding d and with twisting at the origin contributes
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1

2d

(2d − 1)!!

(2d)!!
(41)

whereas a disk with no mark and no twisting at the origin contributes

1

2d 2
. (42)

3. Nodes: We consider the nodes that attach a winding-d disk to the closed com-
ponent. Each node gets a t from the weight of the action on the twisted sector.
Smoothing the node contributes (t/2d − ψi/2)−1.

Putting together the three parts just described, we find that

OGW(6) = 1

|Aut(d)|
[ n∏
i=1

1

2d

(2di − 1)!!

(2di)!!

] ∫
(2)nt n−1e

eq.(E∨−1(−1)⊕ E
∨−1(0))∏n

i=1(t/di − ψi)

= 1

|Aut(d)|
[ n∏
i=1

(2di − 1)!!

(2di)!!

] g−1∑
i=1

∑
|j |=i−1

∫
λgλg−i(dψ)j ,

where the integral is taken over M0;m+n,0(BZ2), g = m+n−2
2 (the genus of the

cover of the closed curve), and (dψ)j and |j | are as defined in Section 2.3.
Summing over all m (equivalently g) and specializing qi = di in Theorem 2.6,

we see that the contribution to the open potential from all maps with a fixed wind-
ing profile d1, . . . , dn is given by

1

|Aut(d)|
[ n∏
i=1

(2di − 1)!!

(2di)!!

]
d n−2

dzn−2

sec2d(z/2)

2d
. (43)

There is no ambiguity for n ≥ 2, but we must again be careful when n < 2.
If n = 1 then formula (43) still holds; however, since integrals are defined only

up to translation, we must make sure to get the correct constant term. The constant
term corresponds to the contribution from maps with one boundary component
and no marked points. The only type of map in the fixed locus that satisfies this
criterion is a disk with no marked points mapping with winding d.We’ve seen that
the contribution from such a map is 1/2d 2.

When n = 0, we must compute the closed contribution. The maps must have
at least three marked points to be stable, but any map into BZ2 must have an even
number of twisted points (see Remark 4.1). Because there are no disk or node
smoothing factors, the contribution is

H(z) =
∑
g≥1

∫
M0;2g+2,0(BZ2 )

λgλg−1
z2g+2

(2g + 2)!
; (44)

hence the now classical λgλg−1 result of Faber and Pandharipande [FaP] implies
that d 2

dz2H(z) = log(sec(z/2)).
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Pulling together everything from this discussion enables us to prove the follow-
ing result.

Proposition 4.2. The open orbifold Gromov–Witten potential (sans fundamental
class insertions) of [C3/Z2 ] is

OGW[C3/Z2 ](z,wi)

= H(z)+
∑
d≥1

(
1

2d 2
+ (2d − 1)!!

(2d)!!

∫
sec2d(z/2)

2d
dz

)
wd

+
∑

d1,...,dn(n≥2)

1

|Aut(d)|
( n∏
i=1

(2di − 1)!!

(2di)!!

)(
d n−2

dzn−2

sec2d(z/2)

2d

)
wd1 · · ·wdn ,

(45)
where the antiderivative is chosen to vanish at z = 0.

5. An Example of the Open Crepant
Resolution Conjecture

Now that we have computed the open potentials for [C3/Z2 ] and its crepant res-
olution KP1 ⊕ OP1, we show that there is a change of variables that equates the
stable terms of the two potentials. We start with the contribution from a given
winding profile on the orbifold and then consider all contributions on the resolu-
tion with that same winding profile to show that the change of variables equates
these contributions. More specifically, we demonstrate the following.

Theorem 5.1. Under the change of variables

q → −1,

x → iz,

y
(b)
d → i

2
wd ,

y
(t)
d → i

2
wd(−eiz)d,

(46)

the open GW potential of KP1 ⊕ OP1 analytically continues to the open GW po-
tential of [C3/Z2 ] up to unstable terms.

Proof. On the closed portion of the potential, we essentially (up to a harmless
weight factor) have the result of [BG, Sec. 3.2].

Now consider the winding-d disk contribution on the resolution:

1

d 2
y
(b)
d + (−1)d+1

d
(y
(t)
d + y(b)d (qex)d))

(
2d − 1
d

)
1

(qex)d

[ ∫
(qex)d

(1 − qex)2d dx
]
.

(47)
After the change of variables, (47) becomes
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i

2d 2
wd + (−1)d+1

d

(
i

2
wd(−eiz)d + i

2
wd(−eiz)d)

)(
2d − 1
d

)

· 1

(−eiz)d
[
i

∫
(−eiz)d
(1 + eiz)2d dz

]

= i

2d 2
wd + i(−1)d+1

d
wd

(
2d − 1
d

)[
i

∫
(−eiz)d
(1 + eiz)2d dz

]

= i

2d 2
wd + −i

d
wd

(
2d − 1
d

)
·
[
i

∫
sec2d(z/2)

(22d)
dz

]
.

Here we ignore the constant terms in the antiderivatives because they correspond
to unstable terms about which we make no claims. Hence we obtain

1

d

(
2d − 1
d

)
wd

∫
sec2d(z/2)

(22d)
dz = (2d − 1)!!

(2d)!!
wd

∫
sec2d(z/2)

2d
dz, (48)

the disk potential computed on the orbifold.
Finally, consider a general term in the open potential of the resolution with

winding profile d1, . . . , dn:

−2n−1

d · |Aut(d)|
[ n∏
i=1

(−1)di(y(t)di + y(b)di (qex)di )
(

2di − 1
di

)]

· 1

(qex)d

d n−2

dxn−2

(
(qex)d

(1 − qex)2d
)
. (49)

Making the change of variables, we obtain

−2n−1

d · |Aut(d)| (i)
n

n∏
i=1

wdi

(
2di − 1
di

)
1

in−2

d n−2

dzn−2

1

22d
sec2d

( z
2

)

= 1

2d · |Aut(d)|
n∏
i=1

wdi

22di−1

(
2di − 1
di

)(
d n−2

dzn−2
sec2d

( z
2

))

= 1

|Aut(d)|
n∏
i=1

(2d − 1)!!

(2d)!!

(
d n−2

dzn−2

sec2d
(
z

2

)
2d

)
wdi · · ·wdn;

this final expression coincides with the contribution on the orbifold.

6. Gluing Open Invariants

In this section we develop rules for gluing open GW invariants to obtain closed
GW invariants. For nonorbifold invariants, we develop a general rule for gluing
invariants from trivalent vertices with any compatible torus actions. For orbifold
invariants, we specialize to the case of the Z2 quotient with the specific torus ac-
tion introduced in the previous sections.

6.1. Nonorbifold Gluing

In the spirit of the topological vertex [AKMV], we show in this section that the
open invariants defined by Katz and Liu can be glued to obtain closed invariants
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of a smooth toric Calabi–Yau 3-fold. Any smooth toric Calabi–Yau 3-fold can be
equipped with a C

∗-action so that the three (Calabi–Yau) weights at any vertex of
the web diagram sum to 0. The torus action can be lifted to the moduli space of
stable maps, and the fixed loci consist of maps that contract components to the
vertices and map rational components to the compact edges via multiple covers
fully ramified over the vertices. The Gromov–Witten potential is then computed
as a sum over contributions coming from these fixed loci.

Placing a Lagrangian along each compact edge of the web diagram, we can “cut”
each fixed locus into a locus of open maps at each vertex. In this section, we show
that the contribution of the fixed locus to the usual Gromov–Witten potential can
be obtained essentially by multiplying the corresponding open Gromov–Witten in-
variants. The standard procedure for localization computations of Gromov–Witten
invariants shows that we need only check that the contribution from a multiple
cover of a compact edge can be recovered from the disk contributions on each
half-edge. Specifically, we show that the degree-d multiple cover contribution of
OP1(−k)⊕OP1(k−2) can be obtained essentially by multiplying winding-d disk
contributions on each of the vertices.

Proposition 6.1. Closed GW invariants of a smooth toric Calabi–Yau 3-fold are
obtained by first computing the open invariants at each vertex and then contract-
ing the winding-d contributions along the edges with a factor of

(−1)dk+1d if the half-edges have the same orientation,

(−1)dk+dd if the half-edges have opposite orientation.

Proof. Figure 8 gives arbitrary Calabi–Yau weights for a neighborhood of a gen-
eral fixed line in a toric Calabi–Yau 3-fold. Assume that k and a are positive. One
computes the winding-d disk invariant on the left vertex to be

(−1)d+1

ad−1d(d!)

d−1∏
i=1

(bd − ai) (50)

and the winding-d disk invariant on the right vertex to be

1

ad−1d(d!)

d−1∏
i=1

(bd − akd + ai). (51)

−b

−c −c+(2−k)a

−b+ka

a −a

Figure 8 A general edge in the web diagram of a toric Calabi–Yau 3-fold has normal
bundle OP1(−k)⊕ OP1(k − 2)
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If we multiply the two disk invariants, the result is

(−1)d+1

a2d−2d 2(d!)2

d−1∏
i=1

(bd − ai)(bd − akd + ai). (52)

We now compare (52) with the contribution to the closed GW potential of
OP1(−k)⊕ OP1(k − 2) given by a degree-d multiple cover. If k = 1 then we im-
mediately obtain the same expression (up to the appropriate sign factor). For k ≥
2, the contribution is

(−1)d+1

a2d−2d(d!)2

∏dk−1
i=1 (−bd + ai)∏d(k−2)

i=0 (d(b − a)− ia)
. (53)

We can use that

bd − ai = d(b − a)− ja ⇐⇒ i = d + j (54)

to write (53) as

(−1)d+1(−1)dk−1

a2d−2d(d!)2

d−1∏
i=1

(bd − ai)
∏dk−d
i=d (bd − ai)∏d(k−2)

j=0 (d(b − a)− ja)
dk−1∏

i=dk−d+1

(bd − ai)

= (−1)d+1(−1)dk−1

a2d−2d(d!)2

d−1∏
i=1

(bd − ai)(bd − a(dk − d + i)).

Reversing the index on the second term in the product yields

(−1)d(k+1)

a2d−2d(d!)2

d−1∏
i=1

(bd − ai)(bd − akd + ai). (55)

Comparing (52) with (55) proves Proposition 6.1 when the half-edges have the
same orientation. We conclude the proof by recalling that changing the orienta-
tion affects the disk invariants by a factor of (−1)d+1.

6.2. Orbifold Gluing

Gluing orbifold disks has another level of complexity that arises from the twisting
at the ramification points of the multiple covers. Here we simplify the scenario
and show that we can glue disk contributions of [C3/Z2 ] to obtain multiple cover
contributions of [O(−1)⊕ O(−1)/Z2 ] when using the weights in Figure 9.

t

0

0

−t
t −t

Figure 9 Special weights used to check the gluing of orbifold disk invariants
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Proposition 6.2. Orbifold GW invariants of [O(−1) ⊕ O(−1)/Z2 ] are ob-
tained by contracting open invariants with the same winding at each vertex and
then scaling the orbifold Poincaré pairing by a factor of (−1)dd.

Remark 6.3. The last part of this proposition means that, when open invari-
ants with a twisted (resp. untwisted) origin on one side of the edge are multiplied
by invariants with a twisted (resp. untwisted) origin on the other side, the prod-
uct is scaled by (−1)d2d. Then the two products are added to obtain the total
contribution.

Proof of Proposition 6.2. In Section 3 we computed disk invariants for the left ver-
tex. The right vertex with the given weights and orientation gives the same invari-
ants multiplied by a factor of (−1)d. In order to glue two orbifold disk invariants,
we must have matching windings and inverse twisting at the ramification points.
For the Z2 case, this means that either both origins are twisted or both are un-
twisted. The 0 weight at each vertex reduces the circumstance to two cases: either
the origins of the disks are marked and twisted; or they are both unmarked (and
hence untwisted). If we multiply two winding-d disk invariants that are twisted at
the origin, we get

(−1)d
(

1

2d

(2d − 1)!!

(2d)!!

)2

; (56)

if we multiply two winding-d disk invariants that are untwisted at the origin, we get

(−1)d
(

1

2d 2

)2

. (57)

We compare (56) and (57) to the contribution of d : 1 covers of the twisted P
1 in

the orbifold [O(−1)⊕ O(−1)/Z2 ].
First consider a d : 1 cover that is fully ramified over 0 and ∞ with twisted

marks at the ramification points. Since f maps into P
1 × BZ2, it classifies a dou-

ble cover of the source curve fully ramified over the twisted marked points. Pulling
back the tangent bundle to this double cover and considering only the weights of
Z2-invariant sections, we can compute the contribution as

1

2d

eH1(O(−2d)⊕ O(−2d))

eH 0(O(2d)) = 1

2d

(
(2d − 1)!!

(2d)!!

)2

, (58)

where the 2d in the denominator corresponds to the global automorphisms of the
covers. Now consider a d : 1 cover fully ramified over 0 and ∞ with no marked
points. Such a map classifies a double cover of the source curve with no ramifi-
cation (i.e., two disjoint copies of the source curve). If we pull back the tangent
bundle to the cover, then the Z2-invariant weights are the weights for one of the
disjoint copies. Taking into account global automorphisms and the infinitesimal
automorphisms at the ramified points of the source curve, one computes the con-
tribution to be
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1

2d

eH1(O(−d)⊕ O(−d))
eH 0(O(2d))

t

d

−t
d

= 1

2d 3
. (59)

The proof is concluded by comparing (56) with (58) and (57) with (59).

7. The Closed Crepant Resolution Conjecture via Gluing

In this section we deduce the Ruan–Bryan–Graber crepant resolution conjecture
for the orbifold X = [O(−1)⊕O(−1)/Z2 ] and its crepant resolution Y = KP1×P1

from the results established in previous sections.
We saw in Section 6.2 that there is symmetry in computing open invariants at the

two vertices of [O(−1)⊕ O(−1)/Z2 ] with the given C
∗-action. In other words,

the open potential for the right vertex in Figure 9 can be obtained from the open
potential of the left vertex under the change of variables

z → z̃

wd → −w̃d .
Remark 7.1. Throughout the rest of this section, variables with a tilde corre-
spond to formal variables on the right sides of the diagrams.

−2t

t

−t

0t

t

0t

2t

−t

−tt

t −t

Figure 10 Symmetry in the open potentials of the two open sets of KP1×P1

Refer to Figure 10 for the resolution. Computing disk invariants for the right half
of the diagram with the given orientations and weights leads to the exact same disk
invariants computed in Section 3. Therefore, the open potential on the right can
be obtained from the open potential on the left by the change of variables

q → q̃,

x → x̃,

y
(b)
d → ỹ

(t)
d ,

y
(t)
d → ỹ

(b)
d .

(60)

The setup for the crepant resolution conjecture is as follows. The Chen–Ruan
orbifold cohomology of [O(−1) ⊕ O(−1)/Z2 ] has two generators in degree 2:
the fiber over a point of P

1 and the class of the constant function on the twisted P
1.
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We assign the formal variables W and Z to correspond (respectively) to inser-
tions of these classes. Any map into the orbifold is classified by the degree on the
twisted P

1, so we need only one degree variable P. On the resolution, we have two
insertion variables that correspond to the fiber over a point in each P

1; let these be
denoted X and Y. We also have two degree variables corresponding to the degree
of a map on each P

1; denote themQ and U, whereQ corresponds to the P
1 that is

dual to the divisor corresponding to X.

Theorem 7.2. Under the change of variables

Q→ −1,

U → −P,

X → iZ,

Y → iZ +W,

(61)

the genus-0 GW potential of KP1×P1 transforms to the genus-0 GW potential of
[O(−1)⊕ O(−1)/Z2 ] up to unstable terms.

First we express the two potentials as a sum over the same set of labeled trees.
We then describe how one can extract the contribution to the GW potential from
each tree by multiplying vertex and edge contributions. The open crepant resolu-
tion statement proved in Section 5 verifies that the change of variables equates the
vertex contributions and edge contributions.

It is immediate (from the closed computation in Section 5) that the portion of
the computation corresponding to degree 0 maps into the orbifold. We therefore
focus on contributions with nonzero powers of U and P.

7.1. Closed Invariants of [O(−1)⊕ O(−1)/Z2 ]

The closed potential of the orbifold can be expressed as a sum over localization
trees:

• black (white) vertices of the tree correspond to components contracting to the
left (right) orbifold vertex;

• edges of the tree correspond to multiple covers of the twisted P
1 obtained by

gluing disks, where each edge is labeled with a positive integer denoting the
degree of the multiple cover.

By the gluing results of Section 6.2, closed GW invariants of the orbifold are ob-
tained by gluing open invariants along half-edges. For a given localization tree T
with more than one edge, the corresponding contribution to the GW potential is
given by

GWX(T ) =
∏

black vertices

V(v)
∏

edges e

E(e)
∏

white vertices

Ṽ (v). (62)

In this formula,V(v) and Ṽ (v) are the open invariants with winding profile cor-
responding to the edges meeting at v (with the formal variables z and z̃ replaced
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by Z). If v is univalent, then only the contribution from disks with twisted origin
is taken. The edge contribution is

E(e) = (−1)d2d(PeW)d

wdw̃d
, (63)

where e is an edge marked with d. The PeW term is from applying the divisor
equation to the new divisor class obtained by gluing, and the (−1)d2d term is the
gluing factor from Section 6.2.

In the case where T ′ is the tree with a unique edge labeled d, one must also take
into account the contribution from gluing two unmarked disks. That contribution
in this case is

GWX(T
′) = V(v1)E(e)Ṽ (v2)+ 1

2d 3
(PeW )d. (64)

7.2. Closed Invariants of KP1×P1

Again, the Gromov–Witten potential is expressed as a sum over localization graphs.
For each graph, collapsing all “vertical” edges (i.e. edges corresponding to multi-
ple covers of the vertical fixed fibers) produces essentially a tree as in Section 7.1,
with the extra labeling of a subset S of the edges corresponding to edges mapping
to the top invariant line. We forget this extra labeling to organize the potential as
a sum over the same trees of Section 7.1.

By the results in Section 6.1, the contribution to the GW potential from all loci
corresponding to a given labeled tree T is

GWY (T ) =
∑

S⊂{edges}

( ∏
black vertices

V (S)(v)
∏

edges e

E ′(e)
∏

white vertices

Ṽ (S)(v)

)
. (65)

In (65), V (S)(v) and Ṽ (S)(v) are the open GW contributions from all fixed loci
with winding profile determined by the edges meeting v (we replace the formal
variables q, q̃ withQ and x, x̃ withX). If an adjacent edge is in S, this corresponds
to a disk mapping to the upper Lagrangian (and vice versa). Also,

E ′(e) =




−d(UeY )d
y
(t)
d ỹ

(t)
d

if e ∈ S,

−d(UeY )d
y
(b)
d ỹ

(b)
d

if e /∈ S;
(66)

here e is an edge labeled with d. The −d term is the gluing factor of Section 6.1,
and the UeY term comes from applying the divisor equation to the new divisor
class created by gluing.

Let V ′(v) and Ṽ ′(v) denote the open contributions corresponding to all fixed
loci with winding profile (d1, . . . , dn) given by the edges (e1, . . . , en) meeting v
(summing over all possibilities for the disks to map to the top edge or the bottom
edge). Using (24), we have:
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V (S)(v)=




y
(t)
d

y
(t)
d + y(b)d (QeX)d

(
V ′(v)− 1

d 2
y
(b)
d

)
, v univalent, e ∈ S,

y
(b)
d (Qe

X)d

y
(t)
d + y(b)d (QeX)d

(
V ′(v)− 1

d 2
y
(b)
d

)
+ 1

d 2
y
(b)
d , v univalent, e /∈ S,

∏
ei∈S y

(t)
di

∏
ei /∈S y

(b)
di
(QeX)di∏n

i=1(y
(t)
di

+ y(b)di (QeX)di )
V ′(v), otherwise;

Ṽ (S)(v)=




ỹ
(t)
d (Qe

X)d

ỹ
(t)
d + ỹ(b)d (QeX)d

(
V ′(v)− 1

d 2
ỹ
(t)
d

)
+ 1

d 2
ỹ
(t)
d , v univalent, e ∈ S,

ỹ
(b)
d

ỹ
(t)
d + ỹ(b)d (QeX)d

(
V ′(v)− 1

d 2
ỹ
(t)
d

)
, v univalent, e /∈ S,

∏
ei∈S ỹ

(t)
di
(QeX)di

∏
ei /∈S ỹ

(b)
di∏n

i=1(ỹ
(b)
di

+ ỹ(t)di (QeX)di )
V ′(v), otherwise.

Remark 7.3. In each of these formulas for the vertex contributions, the third case
is the generic case and the other two are adjusted to take into account the 0 ′ loci
of (17).

7.3. The Crepant Resolution Transformation

We shall verify the Ruan–Bryan–Graber crepant resolution conjecture by showing
that, after the prescribed change of variables,

GWY (T )→ GWX(T ) (67)
for every labeled tree T.

Even though our formulas for the vertex and edge contributions of GWX(T ) and
GWY (T ) involve winding variables, these variables cancel in the product. Hence
we can make any substituion for the winding variables without affecting the overall
product. Motivated by the open crepant resolution transformation, in the previous
formulas for GWY (T ) we make the following substitutions:

y
(b)
d → i

2
wd , ỹ

(b)
d → i

2
(e iZ)dw̃d ,

y
(t)
d → i

2
(−eiZ)dwd , ỹ

(t)
d → (−1)d

i

2
w̃d ,

Q→ −1, U → −P,

X → iZ Y → iZ +W.
By Theorem 5.1, this change of variables leads to V ′(v) → V(v) and Ṽ ′(v) →

Ṽ (v). So for any S ⊂ {edges}, we have:

V (S)(v)→




1
2V(v)− i

4d 2wd , v univalent, e ∈ S,

1
2V(v)+ i

4d 2wd , v univalent, e /∈ S,

1
2n V (v), otherwise;

(68)
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similarly,

Ṽ (S)(v)→




1
2Ṽ (v)+ i

4d 2 w̃d , v univalent, e ∈ S,

1
2Ṽ (v)− i

4d 2 w̃d , v univalent, e /∈ S,

1
2n Ṽ (v), otherwise.

(69)

Under this change of variables we also have

E ′(e)→ 2E(e). (70)

Given any tree T with more than one edge, the extra terms on the univalent ver-
tices cancel by summing over all contributions e ∈ S and e /∈ S. Therefore, from
(68)–(70) it follows that

GWY (T ) =
∑

S⊂{edges}

∏ 1

2
V(v)

∏
2E(e)

∏ 1

2
Ṽ (v) = 2#{edges}

∏
V(v)

∏
E(e)

∏
Ṽ (v)

2#{edges}

= GWX(T ). (71)

If T ′ is the tree with a unique edge labeled d, then

GWY (T
′) = V(v1)E(e)Ṽ (v2)+ 1

2d 3
(PeY )d = GWX(T

′). (72)

Equations (71) and (72) establish Theorem 7.2.
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