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First-Order Local Invariants of Stable Maps
from 3-Manifolds to R3

R. Oset Sinha & M. C. Romero Fuster

1. Introduction

The study of topological invariants of stable maps has been one of the main prob-
lems in singularity theory in the last decades. An important question concerns the
global study of stable maps between 3-manifolds. This is a very difficult problem
when one tries to study it in a general setting. Little is known from the global view-
point; even in the particular case of stable maps from the 3-sphere to Euclidean
3-space. In [19], Vassiliev introduced a method to define isotopy invariants for
stable maps in a fairly general context that has proved to be useful in the case of
knots (considered as stable maps from the circle to 3-space; see [18]). Such invari-
ants can be seen as locally constant functions on the considered subspace of stable
maps, and the method is based on analyzing the structure of the discriminant set
(subset of nonstable maps) in the total space of the maps in question. Vassiliev’s
techniques have also been used to study other subspaces of stable maps, such as
immersed closed plane curves [1; 2], stable maps between surfaces [16], stable
maps from surfaces into Euclidean 3-space [7], and stable maps from 3-manifolds
to the plane [20]. This method, although it does not provide all the global invari-
ants, does lead to an important set of invariants that contain all the information on
multilocal behavior of the stable maps. These invariants are, in fact, related to the
properties of the branch set (image of the singular set). To combine them with the
global invariants related to the topology of the singular set in the source manifold
(such as the graphs introduced in [8; 9; 10] for stable maps of surfaces into the
plane) is to take a first step toward a global classification in each particular case of
stable maps.

In order to apply this method to the case of stable maps from a closed 3-manifold
to R

3, we need to know all the codimension-1 and codimension-2 phenomena for
maps between 3-manifolds (or from R

3 to R
3, from a local viewpoint) as well as the

bifurcation diagrams for those of codimension 2. For this we have used the classi-
fication of corank-1 germs together with the information on bifurcation diagrams
contained in the papers by Goryunov [6] and Marar and Tari [13]. A sufficient list
of multigerms is obtained in Section 2.2 of this paper, and some of their bifurca-
tion diagrams are calculated in the Appendix (Section 8). In Section 3 we obtain
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a complete set of generators for the first-order integer invariants of Vassiliev type
for stable maps from a closed 3-manifold to R

3. This set comprises four invariants:

1. Is = number of swallowtail points;
2. It = number of triple points;
3. IA1A2 = number of intersection points of fold surfaces with cuspidal edges;
4. Iχ = Euler characteristic of the branch set.

The geometric interpretation of these invariants is discussed in Section 4. We will
see that all of them are, indeed, global invariants.

We observe that some of the first-order invariants are related to those obtained
by Goryunov for stable maps of surfaces to R

3 in [7]. The swallowtail points and
triple points in the branch sets correspond to the cross-caps and triple points in the
image sets of those maps. The existence of cuspidal edges in our case introduces
a new feature that leads to the invariant IA1A2 . Moreover, although Iχ appears in
Goryunov’s case, an important difference is that, for stable maps from a closed
3-manifold to R

3, Iχ is linearly independent (as shown in Section 5). It is most
interesting that the natural analogue of Goryunov’s linking invariant is not a local
invariant in this case. Neither is a dimension-3 analogue of the generalized Ben-
nequin invariant defined in [16].

In Section 6 we introduce some other global invariants, such as the number of
connected components of the singular set and the number of cuspidal edges, that
are independent of the four just listed. In fact, obtaining them requires refining
some of the 1-dimensional strata in order to distinguish between those that con-
nect or those that disconnect the singular set (or the cuspidal edges) from a global
point of view.

In Section 7 we discuss the particular case of fold maps, and in Section 8 we
give the proofs of the lemmas needed for Theorem 3.2.

Acknowledgments. The authors would like to thank V. Goryunov and R.Wik-
Atique for many valuable comments about the mathematics as well as D. Davis
for his help improving the English in the article.

2. Singularities of Maps from 3-Manifolds to RRR
3

We begin by recalling some basic definitions and results. Two smooth maps f and
g from a 3-manifold M to 3-space are called A-equivalent if there exist diffeo-
morphisms l and k such that l � f = g � k. A smooth map f is said to be stable if
all maps sufficiently close to f (in the Whitney C∞-topology) are A-equivalent
to f. The critical set 
f of a stable map f consists of disjoint embedded (critical)
surfaces. Each surface consists of fold points together with curves of cusp points
(i.e., points whose image is a cusp point of the branch set f(
f)) along which
there may be isolated swallowtail points. The following are normal forms for the
germs of f at these critical points (see [5]):

(a) f(x, y, z) = (x, y, z2), fold point;
(b) f(x, y, z) = (x, y, z3 + xz), cusp point;
(c) f(x, y, z) = (x, y, z4 + xz + yz2), swallowtail point.
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The branch set of a stable map may also have self-intersections as follows:

(d) transversal crossings of fold surfaces (along regular curves);
(e) transversal intersection of a cuspidal edge with a fold surface (at isolated

points);
(f ) isolated triple points formed by the intersection of three fold surfaces in gen-

eral position.

Figure 1 illustrates (a)–(f ) for the local geometry of the branch set of a sta-
ble map.

Figure 1 Branch sets of stable maps from R
3 to R

3

If f and g are A-equivalent then there is a diffeomorphism of the manifold car-
rying the critical set of f to the critical set of g, and similarly for the branch sets of
f and g. Clearly, any diffeomorphism invariant of the critical set or of the branch
set will be an A-invariant of f. The number of connected components of the sin-
gular set and the topological type of its complement are invariants.

Table 1, which is based on [6] and [13], lists normal forms for simple corank-1
monogerms of maps from R

3 to R
3 and includes all the A-classes of codimen-

sion 0 through codimension 5. Here the P(x, y) are polynomials in two variables
and µ(P ) denotes the Milnor number of P. Let On,p be the ring of smooth germs
(Rn, 0) → (Rp, 0); then, given f ∈ On,p, the A e-codimension of f is equal

to dimR

On,p

TA e ·f , where TA e · f = {∑n
i=1

∂f

∂xi
gi | g = (g1, . . . , gn) ∈ On,n

} +
{h � f | h ∈ Op,p}. We observe that, for n = p = 3, the A-codimension of the
germ in each case is the A e-codimension+3 except for the stable germs: the fold,
the cusp, and the swallowtail all have A e-codimension 0 but have A-codimension
1, 2, and 3 (respectively). We also observe that the A e-codimension coincides
with the codimension of the stratum of nonstable maps in C∞(M, R3) to which
the germ belongs as a map.

Table 1

Name Normal form A e-codimension

A1 (x, y, z2) 0

3µ(P ) (x, y, z3 + P(x, y)z) µ(P )

4k
1 (x, y, z4 + xz ± y kz2), k ≥ 1 k − 1

4k
2 (x, y, z4 + (y2 ± xk)z + xz2), k ≥ 2 k

51 (x, y, z5 + xz + yz2) 1

52 (x, y, z5 + xz + y2z2 + yz3) 2
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2.1. Monogerms of Codimension 1 and 2

According to Table 1, the corank-1 monogerms of A e-codimension 1 are given as
follows.

(i) Germs of type 31. This includes three different classes corresponding to
P(x, y) = x 2 + y2, P(x, y) = x 2 − y2, and P(x, y) = −x 2 − y2; we denote
them (respectively) as 3++

1 , 3+−
1 , and 3−−

1 .

(ii) Germs of type 42
1. Here there are two different classes corresponding to signs

+ or − in the normal form; these are denoted by 42+
1 and 42−

1 , respectively.
(iii) The germ 51.

Figure 2 shows the transitions in the branch set f(
f) for all the codimension-
1 germs just listed.

31
- -

31
++

31
+-

41
2+

41
2-

51
 

cuspidal
edge

Figure 2 Codimension-1 transitions for germs

The corank-1 monogerms lying in the codimension-2 stratum are the following.

(i) Germs of type 32. This includes two different classes corresponding to
P(x, y) = x 2 ± y3 and P(x, y) = −x 2 ± y3, which we denote by 3+

2 and 3−
2

(respectively).
(ii) The germ 43

1.
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(iii) Germs of type 42
2. This includes two different classes corresponding to the

signs+or− in the normal form; they are denoted by 42+
2 and 42−

2 , respectively.
(iv) The germ 52.

(v) The nonsimple germ 61, whose normal form is (x, y, z6 +yz2 +xz) (see [6]).

The corank-2 germs of A e-codimension 1 are the hyperbolic and elliptic um-
bilics, Uh and Ue (purse and pyramid, as in [3]), whose normal forms are:

(x, yz, y2 ± z2 + xy).

The corank-2 germs of A e-codimension 2 will not be needed for reasons that are
given later.

2.2. Multigerms of Codimension 1 and 2

Most of the normal forms of the multigerms can be obtained by augmentations,
monic and binary concatenations, or a third operation (which merges the two pre-
vious ones) of known classifications (see [4]). This does not yield a complete list,
however, and those that cannot be obtained in this way are known as primitive. In
order to find out what primitive multigerms may exist, we propose a geometrical
method based on the contact between the different branches. We then propose a
normal form (which, it can be proved, is of adequate codimension; since the bifur-
cation diagrams are topologically different from the other ones, they must belong
to different A-classes).

We shall see later on that, in order to determine the first-order invariants of Vas-
siliev type for stable maps from closed 3-manifolds to R

3, it is not necessary to
analyze the bifurcation sets of corank-2 multigerms (or monogerms). So in this
paper we study only corank-1 multigerms, which involve only Ak singularities
and for which it is known that their corresponding orbits in the multijet space are
defined by submersions in the stable case and by isolated complete intersection
singularities (ICIS) in the finitely determined case [6].

A multigerm can be viewed as a coupling of different germs fi : (R3, xi) →
(R3, y) with the xi all different and with the same image y ∈ R

3. In order to deter-
mine their codimension, we distinguish between the following phenomena.

(i) Simple conjunction of germs: there is no branch-to-branch tangency in the
critical value set.

(ii) Tangential conjunction of Morse type: at least two of the branches of the crit-
ical value set have Morse-type contact.

(iii) Degenerate tangential conjunction: at least two of the branches of the critical
value set have degenerate contact.

Here we understand “contact” in the sense of Montaldi’s work [14]. We thus as-
sociate a contact function to each pair of tangent strata (surfaces or curves, in our
case) whose singularities describe the contact type. Then we say that a contact be-
tween two strata (submanifolds) is nondegenerate (of Morse type) or degenerate
according as whether the corresponding contact function is of Morse type or not.

Denote by C(i1, . . . , ir ), CT (i1, . . . , ir ), and CDT (i1, . . . , ir ) the A-codimensions
of the simple, tangential, and degenerate tangential conjunctions of r germs with
respective A-codimensions i1, . . . , ir . We then have the following criteria:
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(i) C(i1, . . . , ir ) = i1 + · · · + ir;
(ii) CT (i1, . . . , ir ) ≥ i1 + · · · + ir + rt , where we suppose that each tangency af-

fects just two branches and rt depends on the number and type of tangencies;
(iii) CDT (i1, . . . , ir ) ≥ i1+· · ·+ ir +rt +rd , where we suppose that each tangency

affects just two branches, rt is as before, and rd depends on the number and
type of degenerate tangencies.

To justify these criteria, we use the following result. ConsiderS = {x1, . . . , xr} ⊂
R
n, y ∈ R

p, and f : (Rn, S) → (Rp, y) a nonstable multigerm of A-codimension s,
where s > n (since otherwise it would be stable). Assume that f is both k-
determined and A-simple. Suppose there exists a smooth submanifold X ⊂
rJ

k(Rn, Rp) such that, for all g : R
n → R

p and all {z1, . . . , zr} ⊂ R
n, we have that

rj
kg(z1, . . . , zr)∈X if and only if the multigerm of g in {z1, . . . , zr} is A-equivalent

to f.

Lemma 2.1. cod
rJ k(Rn,Rp)X = s + (r − 1)p.

Proof. This is proved by standard multijet and transversality techniques; for a de-
tailed account, see [17].

If the codimensions of the monogerms involved are i1, . . . , ir , then each one de-
fines a smooth submanifold in the appropriate jet space of respective codimensions
i1, . . . , ir . These submanifolds are defined (respectively) by i1, . . . , ir equations.

If we consider the submanifold X ⊂ rJ
k(Rn, Rp) defined by the equations that

define the multigerm—in other words, the equations that define each of the germs
involved (which are independent because they involve different variables) plus
the equations that arise from all the points having the same image in the target
space—then we have that the codimension of X is i1 + · · · + ir + (r − 1)p (the
(r − 1)p extra equations come from f(x1) = · · · = f(xr)). From Lemma 2.1 it
follows that the codimension of such a submanifold is s + (r − 1)p, so we deduce
that the A-codimension of the multigerm is s = i1 + · · · + ir .

In the case of a Morse-type tangential conjunction, the same situation is ob-
tained but now there are extra equations arising from the tangency. One need only
make sure that these new equations are independent from the rest (i.e., that the
rank of the system of equations is equal to the number of equations) in order for
the codimension of the submanifold X to be equal to the number of equations.

Observe that for a map f : R
3 → R

3 the tangencies (degenerate, or otherwise)
to be considered will involve either two surfaces, a surface and a curve, or two
curves. According to Montaldi [14], in the case of either two surfaces or two
curves, the contact is measured by a function φ : R

2 → R and hence a Morse
tangential contact is determined by two conditions on the 1-jet of φ. In the case
of a surface and a curve, we have a contact function φ : R → R and so a Morse
tangential contact requires one condition on the 1-jet of φ at the contact point.
In order to ensure a degenerate contact we need, in each case, for the determi-
nant of the Hessian matrix of φ to vanish. This requirement imposes at least one
more condition on the 2-jet—and exactly one in the case where φ has a singularity
of A-codimension 1 (i.e., a fold). We call this a first-order degenerate tangency.
Clearly, these conditions on the derivatives of φ can be written as conditions on an
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appropriate k-jet of the map f. Hence more precision is possible and, for a tangen-
tial conjunction of r germs with A-codimensions i1, . . . , ir , we have the following
statements.

(ii)(a) If there is a unique Morse tangency between two fold surfaces in the branch
set, then CT (i1, . . . , ir ) = i1 + · · · + ir + 2.

(ii)(b) If there is a unique Morse tangency between two cuspidal edges or be-
tween two double fold curves in the branch set, then CT (i1, . . . , ir ) =
i1 + · · · + ir + 2.

(ii)(c) If there is a unique Morse tangency between a fold surface and either a cus-
pidal edge or a double fold curve in the branch set, then CT (i1, . . . , ir ) =
i1 + · · · + ir + 1.

In the case of a first-order degenerate tangency, we simply add 1 to each of the
preceding sums. Up to A-codimension 5 there exist only first-order degenerate
tangencies.

We shall employ the following notation for multigerms. Starting from stable
germs, we use A1 (fold), A2 (cusps), and A3 (swallowtails); we denote by AiAj

the simple conjunction of Ai and Aj and by Ak
i the simple conjunction of k germs

of type Ai (this is the standard Arnold notation). The tangential conjunctions are
indicated by the character T. For example, we denote by Tij a nondegenerate tan-
gency between the strata of singularities Ai and Aj in the branch set and by TAiA

k
j

a
nondegenerate tangency between the strata of points Ai and Ak

j in the branch set,
and so forth. We use DT to signify degenerate tangencies. Accordingly, A13+−

1
denotes a conjunction of a fold with a germ of type 3+−

1 ; A1TA1A
2
1

is a quadrigerm
determined by a conjunction of a fold (A1) with the trigerm TA1A

2
1
, which in turn

is given by a nondegenerate tangential conjunction of a fold surface and a double
fold curve; DT11 is a degenerate tangency between two fold surfaces; and DTA1A

2
1

is a degenerate tangency between a fold surface and a double fold curve.
As a consequence of these considerations, and taking into account that in our

case the A-codimension of a nonstable germ is given by the A e-codimension + 3,
we obtain a list of multigerms that are of A e-codimension 1 and 2.

Example 2.2. To find A e-codimension-1 bigerms (i.e., A-codimension 4), we
proceed as follows. Let i1 and i2 be the codimensions of the two monogerms in-
volved. From criterion (i) we have i1 + i2 = 4, which implies that either i1 = 1
and i2 = 3 (A1A3) or i1 = i2 = 2 (A2

2). From criterion (ii) we have i1 + i2 + rt =
4, which implies that either i1 = i2 = 1 and rt = 2 (T11) or i1 = 1, i2 = 2, and
rt = 1 (T12). There are no possibilities for criterion (iii).

Codimension-1 Multigerms.

(i) Bigerms.

1. A2
2 (simple conjunction of two cuspidal edges):

{
(x, y, z3 + xz),

(y, z3 ± yz, x).
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2. A1A3 (simple conjunction of a swallowtail with a fold surface):{
(x, y, z4 + xz2 + yz),

(x 2, y, z).

3. T11 (tangency between two fold surfaces):{
(x, y, z2),

(x, y, z2 + y2 ± x 2).

These can be of two different types:
(a) T e

11 (elliptic tangency with +);
(b) T h

11 (hyperbolic tangency with −).

4. T12 (tangency between a fold surface and a cuspidal edge):{
(x, y, z3 + yz),

(x, ±x 2 + y2, z).

These can be of two different types:
(a) T l

12 (lips-type transition with +; see Figure 3);
(b) T b

12 (beaks-type transition with −; see Figure 3).

(ii) Trigerms.

1. TA1A
2
1

(tangency between a fold surface and a double fold curve; although all
A1 strata have “equal rights”, the notation emphasizes that the tangency is be-
tween a surface and a curve): 


(x, y, z2),

(x, y, z2 + y),

(x, y2 + x 2, z).

2. A2
1A2 (simple conjunction of a cuspidal edge and a double fold curve):


(x, y, z3 + yz),

(x, x + y2, z),

(x 2, y, z).

(iii) Quadrigerms. A4
1 (simple conjunction of four fold surfaces):




(x, y, z2),

(x, y, z2 + y),

(x, y2 + x, z),

(x 2, y, z).

This classification is complete (see [4]). Figure 3 illustrates the codimension-1
transitions corresponding to corank-1 phenomena. For simplicity, some of the
transitions are represented by the stable situations occurring in both sides of the
considered codimension-1 stratum.

There are no corank-2 multigerms of codimension 1.
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A 2
2

A  A1    3

T12

l

T12

b

T11

h

T11

e

BIGERMS

A  A1    2
2

TA  A 1    1
 2

TRIGERMS

A 1
4

CUADRIGERMS

Figure 3 Codimension-1 transitions for multigerms

Codimension-2 Multigerms. For the sake of brevity, only the normal forms (to-
gether with their versal deformations) of the codimension-2 multigerms that are
used will be given (see the Appendix).

(i) Bigerms.

1. A131 (simple conjunction of a fold surface with a 31 germ):
(a) A13++

1 ;
(b) A13+−

1 ;
(c) A13−−

1 .

2. A142
1 (simple conjunction of a fold surface with a 42

1 germ):
(a) A142+

1 ;
(b) A142−

1 .

3. A151 (simple conjunction of a fold surface with a 51 germ).
4. A2A3 (conjunction of a cusp and a swallowtail).
5. T13 (tangency between a fold surface and the limiting tangent vector of both

the cuspidal edges and the double fold curve of the swallowtail).
6. T 1

22 (degeneration of A2
2; the tangent vector to one of the cuspidal edges is con-

tained in the tangent plane in the limit of the other cuspidal edge—not T22,
because the tangency is not between the two cuspidal edges, which would be
codimension 3).
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7. T 1
12 (a degeneration of A1A2; the tangency is between the tangent plane of the

surface and the tangent plane in the limit at the cuspidal edge).
8. DT11 (degenerate tangential conjunction of two fold surfaces).
9. DT12 (degenerate tangential conjunction of a fold surface and a cuspidal edge).

(ii) Trigerms.

1. A1A
2
2 (simple conjunction of a fold surface and two cuspidal edges).

2. A2
1A3 (simple conjunction of two fold surfaces and a swallowtail point).

3. A1T11 (tangential conjunction of three fold surfaces). According to the type of
tangency of the two fold surfaces involved, we have:
(a) A1T

e
11 (elliptic tangency) or

(b) A1T
h

11 (hyperbolic tangency).
4. A1T12 (tangential conjunction of two fold surfaces and a cuspidal edge, where

the tangency involves one of the fold surfaces and the cuspidal edge). Again,
we have two possible types:
(a) A1T

l
12 (lips);

(b) A1T
b

12 (beaks).
5. DTA1A

2
1

(degenerate tangential conjunction between a fold surface and a double
fold curve; i.e., degenerate tangential conjunction of three fold surfaces).

6. T 1
A2

1A2
(degeneration of A2

1A2; the tangent vector to the double point curve is

contained in the tangent plane in the limit of the cuspidal edge).

(iii) Quadrigerms.

1. A3
1A2 (simple conjunction of a triple fold point and a cuspidal edge).

2. A1TA1A
2
1

(tangential conjunction of four fold surfaces).

(iv) Pentagerms. A5
1 (simple conjunction of five fold surfaces; i.e., quintuple

point).

Table 2 summarizes the germs and multigerms (up to codimension 2) obtained
with the method just described. Neither the corank-2 germs and multigerms of
codimension 2 nor any other possible multigerm of codimension 2 that this method
fails to obtain are included, since (as we shall see) they will not be needed.

3. First-Order Local Invariants of Vassiliev Type

LetM andN be smooth manifolds withM closed (compact and without boundary),
and denote by E(M,N) the subset of A-stable maps in C∞(M,N). Two smooth
maps f , g : M → N are stably isotopic if there exists an isotopy F : M× [0,1] →
N such that Ft : M → N (where Ft(x) = F(x, t)) is A-stable for all t ∈ [0,1],
F0 = f , and F1 = g. Equivalently, the maps f and g are stably isotopic if they lie
in the same path component of E(M,N).

Given a unitary commutative ring R, an isotopy invariant with values in R is a
locally constant function V : E(M,N) → R. This means that, for any pair f , g of
stably isotopic maps, V(f ) = V(g).

Vassiliev’s technique is based on analyzing an appropriate stratification of the
discriminant subset,+ = C∞(M,N)\E(M,N). In order to apply this method, the
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Table 2

Monogerms Bigerms Trigerms Quadrigerms Pentagerms

Stable

A1 A2
1 A3

1

A2 A1A2

A3

Codimension 1

3±±
1 A2

2 TA1A
2
1

A4
1

42±
1 A1A3 A2

1A2

51 T e
11, T

h
11

Ue,Uh T l
12, T b

12

Codimension 2

3±
2 A13±±

1 A1A
2
2 A3

1A2 A5
1

43
1 A142±

1 A2
1A3 A1TA1A

2
1

42±
2 A151 A1T

e
11,A1T

h
11

52 A2A3 A1T
l

12,A1T
b

12

61 T13 DTA1A
2
1

DT11 T 1
A2

1A2

DT12

T 1
22, T 1

12

subset + must have codimension 1 in C∞(M,N). Then the first-order invariants
are defined as follows. To each codimension-1 stratum we assign a coorientation
given by a criterion that distinguishes between positive and negative crossings of
a path transverse to the stratum. Next, to each codimension-1 stratum S ⊂ + we
assign a transition index ξS (elementary jump in [16]) whose jump is 1 whenever it
crosses the stratum S in a positive sense of the coorientation and is 0 whenever it
crosses any other stratum. A linear combination of indices with coefficients in R

determines a Vassiliev order-1 cocycle provided it satisfies the following compati-
bility condition: evaluating the cocycle over a generic closed path (i.e., a closed path
transverse to each of the strata of +) around any codimension-2 stratum, the result
must be zero. All the compatibility conditions together form the coherence system.

The order-1 invariants are obtained by integrating the order-1Vassiliev cocycles.
In order to evaluate an invariant associated to a given Vassiliev order-1 cocycle on
a given map f ∈ E(M,N), we first choose a distinguished map f0 in the same path
component of C∞(M,N) as f and associate to it some value, say 0 ∈ R. Next
we consider a generic path γ joining f to f0, which induces a generic homotopy
between f and f0. Then the value of the invariant over f is given by
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V(f ) := ξV (γ ) +V(f0) = 
inSi ξSi (γ ) +V(f0),

where ξV is the order-1 cocycle that represents the invariant V. Here ξSi (γ ) can
be viewed as the intersection index γ ∩ Si of the path γ with the stratum Si, and
nSi can be viewed as the jump of the invariant V when crossing the stratum Si.

Clearly, the compatibility condition guarantees that the result of this procedure
does not depend on the chosen generic path.

These invariants are local in the sense that their jumps are determined by the dif-
feomorphism type of the local deformation of the image of the map (if dimM <

dimN; otherwise, of the image of the singular set) at the moment of crossing the
discriminant.

We now apply this method in order to determine the first-order local integer-
valued invariants of stable maps between a closed 3-manifold and R

3.

3.1. Coorientation of Codimension-1 Strata

Before coorienting the codimension-1 strata, we shall distinguish between differ-
ent path components of some of the strata considered previously. In each case we
must account for the local variations of pre-images of the map in the branch set.
We observe that, whenever there is a cuspidal edge, the number of pre-images
always increases toward the “inner side” (see Figure 4). In particular, this im-
plies that none of the codimension-1 strata corresponding to monogerms need to
be refined into substrata, because the branch set of any map in the strata contains
cuspidal edges that determine the distribution of pre-images in a unique way.

Figure 4 Increasing of pre-images at a cuspidal edge

We substratify the remaining codimension-1 strata as indicated in Figure 5. In
order to distinguish among substrata, we use either + or −, different Greek charac-
ters (as in the case ofA2

1A2, where we distinguish amongA2
1A

α
2 ,A2

1A
β

2 , andA2
1A

γ

2),
or numerical indices (as in T

ej
11 with j = 0,1, 2). In the last case, the superscript

indicates the number of arrows pointing toward a newly created component in the
complement of the branch set when going through the transition.

Once this has been done, the criteria we use to coorient the different strata de-
pend on the variation of the number of swallowtails, triple points, or A1A2 points
or the number of connected components in the complement of the branch set (con-
sidered locally). Figure 6 shows the coorientation assigned to each codimension-1
stratum, with the long arrows pointing toward the positive direction in each case.
We observe that, for the strata T h+

11 , A2+
2 , and A4,2

1 , the branch sets obtained before
and after the transitions are locally diffeomorphic and hence are not coorientable.
The same thing occurs for Uh and Ue [3], so we assign an index of 0 to each of
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A 2
2-

A  A1    3
α

A  A1    3
β
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e
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2TA  A 1    1

2
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1

A 1
4,4A 1

4,2
A 1

4,3

Figure 5 Substratification of codimension-1 strata

them; they are not included in Figure 6. If the work were to be done for mod 2
invariants, then the coorientations would be unnecessary and thus no strata would
be assigned a zero index.

Remark 3.1. If the orientable case were to be considered, then a distinction be-
tween positive and negative cuspidal edges would be possible according to the
local degree of the map. In that case it would be possible to coorient the strata Uh

and Ue; this analysis has been done by V. Goryunov.
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Figure 6 Coorientation of codimension-1 strata

3.2. Compatibility Conditions and Invariants

In this section we calculate the coherent system. For this purpose we need the
bifurcation diagrams associated to a 2-parameter versal deformation of every
codimension-2 phenomenon. In the case of monogerms we can use the infor-
mation about bifurcation diagrams contained in [13]; to visualise the transitions in
the branch sets, we use the geometric design program Superficies II [15]. The bi-
furcation diagrams of the multigerms are obtained by direct calculation (see [17]
for details). The lemmas used to obtain the compatibility conditions are given in
the Appendix.

The variation of any first-order local invariant can be seen as a linear combina-
tion of indices attached to the different codimension-1 strata. Denoting by +S the
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transition index of S, we have that an invariant I can be expressed by a cocycle as
+I = 
nSi+Si, where nSi ∈R and the Si are the codimension-1 strata.

Now the compatibility conditions (vanishing of +I along any closed path in
C∞(M, R3)) force the existence of some relations between the different nSi , which
we investigate in the Appendix lemmas. Combining all those relations, we obtain
the following coherent system of equations:

(i) n3++
1

= n3+−
1

= n3−−
1

;
(ii) n42+

1
= n42−

1
;

(iii) nA2
1A

α
2

= n
A2

1A
β

2
= nA2

1A
γ

2
;

(iv) nA4,3
1

= nA4,4
1

= 0;
(v) nA1A

α
3

= nA1A
β

3
;

(vi) nT 0
A1A

2
1

= nT 1
A1A

2
1

= nT 2
A1A

2
1

= nT 3
A1A

2
1

;
(vii) nT b−

12
= nT b+

12
= nT l+

12
= nT l−

12
;

(viii) nT e0
11

= nT h−
11

= nT e2
11

= nT e1
11

= 0;
(ix) nA1A

α
3
+ nA1A

β

3
− nT b+

12
− nT 1

A1A
2
1

− nT l+
12

= 0;
(x) nA1A

α
3
+ nA1A

β

3
− nA2

1A
γ

2
− nA2−

2
= 0;

(xi) nT l+
12

+ nT l−
12

− nA2−
2

= 0;
(xii) n51 = n42+

1
+ nT b+

12
;

(xiii) nT h+
11

= nA2+
2

= nA4,2
1

= nUe = nUh = 0 (the non-coorientable strata).

Given all these relations, we arrive at the following result.

Theorem 3.2. Any 1-cocycle—that is, any integer-valued function I satisfying
+I = 0 on every generic homotopically trivial closed path in C∞(M, R3) for M
a closed 3-manifold—can be written (up to an additive constant) as a linear com-
bination of the following four generators:

+I1 = +31;
+I2 = +42

1 + +51;
+I3 = +T12 + +A1A3 + 2+A2−

2 + +51;
+I4 = 2+TA1A

2
1
+ +A1A3 + 2+A2

1A2.

Here +31, +42
1, +T12, +A1A3, +TA1A

2
1
, and +A2

1A2 denote the sums of the indices
of their corresponding substrata (e.g., +42

1 = +42+
1 + +42−

1 ).

4. Geometrical Interpretation of the Generators

For computational purposes it is convenient to give a geometrical-topological in-
terpretation of these invariants, which allows us to obtain the value of an invariant
on a given stable map f directly from its branch set—in other words, without the
need to find a generic path joining it with a distinguished map f0. We shall prove
the following result.
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Theorem 4.1. For M a closed 3-manifold, any first-order local invariant of
C∞(M, R3) stable maps is, modulo order-0 invariants (constants), a linear com-
bination of the following four invariants, whose cocycles are expressed in terms
of the generators.

(i) Is , the number of swallowtails:

+Is = 2+I2 = 2+42
1 + 2+51.

(ii) It , the number of triple points; its jump in terms of the transition indices is

+It = +I4 = 2+TA1A
2
1
+ +A1A3 + 2+A2

1A2.

(iii) IA1A2 , the number of A1A2 points (intersections of fold surfaces with cuspi-
dal edges):

+IA1A2 = 2+I3 = 2+T12 + 2+A1A3 + 4+A2−
2 + 2+51.

(iv) Iχ , the Euler characteristic of the branch set :

+Iχ = 2+I1 + +I2 + +I4

= 2+31 + +42
1 + +51 + 2+TA1A

2
1
+ +A1A3 + 2+A2

1A2.

Proof. The proof of the first three invariants is a matter of direct observation, as the
strata involved in I2, I4, and I3 are the only codimension-1 strata that create new
swallowtail points (in pairs), new triple points, and new A1A2 points (in pairs), re-
spectively. The proof of the fourth invariant is given next.

4.1. The Euler Characteristic As a Vassiliev Invariant

Izumiya and Marar [12] proved that, given a stable C∞ mapping f : N → P from
a closed surface N to a 3-manifold P, the following formula holds:

χ(f(N )) = χ(N ) + T(f ) + C(f )

2
;

here T(f ) is the number of triple points of f andC(f ) is the number of cross-caps.
In [11] Houston remarked that, since T(f ) and C(f ) are Vassiliev invariants in
Goryunov’s case [7] and since χ(N ) is constant, it follows that χ(f(N )) is also a
Vassiliev invariant. However, since it is a linear combination of T(f ) and C(f ),
it adds no new information to Goryunov’s list.

In our case this formula may be reinterpreted as

χ(+) = χ(
f) + T(f ) + S(f )

2
,

where 
 is the singular set, + = f(
f) is the branch set, and S(f ) is the num-
ber of swallowtails. The difference is that here χ(
f) is not constant; in fact, the
three members of the 31 family change its value. Although 
f might be noncon-
nected (in which case some extra terms would be added on the right-hand side of
the formula), these considerations motivate our next theorem.

Theorem 4.2. The Euler characteristic of the branch set, χ(f(
f)), is a Vas-
siliev invariant (namely, Iχ ) whose cocycle in terms of the generators is given by
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Figure 7 Homotopy equivalences of the codimension-1 strata
before and after the transition

+Iχ = 2+I1 + +I2 + +I4

= 2+31 + +42
1 + +51 + 2+TA1A

2
1
+ +A1A3 + 2+A2

1A2.

Proof. We need to check that the variation of the Euler characteristic of the branch
set when crossing each codimension-1 strata is the same as the coefficient corre-
sponding to that strata in +Iχ .

In fact, the calculations may be done locally (in order for it to be a Vassiliev in-
variant this must be so) because, for compact sets, there is additivity of the Euler
characteristic χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B). Consider Br , a closed ball
of radius r. We can write

χ(+) = χ(+ ∩ Br) + χ(+\(+ ∩ intBr)) − χ(+ ∩ S 2
r ),

where S 2
r = ∂Br; since χ(+\(+∩ intBr)) and χ(+∩S 2

r ) do not vary when cross-
ing a codimension-1 strata, we need only check what happens to χ(+ ∩ Br).

Note that the branch set of any stabilization of a codimension-1 strata (the pic-
tures on the left and right of the transitions) is homotopy equivalent to S 2, S1, or
a collection of contractible components. Given that χ(S1) = 0, χ(S 2) = 2, and
χ(D) = 1 where D is contractible, the calculations are trivial.

Figure 7 shows all the homotopy equivalences of each stratum. Those that are
not equivalent to S1 or S 2 are a union of one or two contractible components. In
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Table 3

Name RHS LHS Calculation

3−−
1 2 pts S1 2 − 0 = 2

3++
1 S 2 ∅ 2 − 0 = 2

3−+
1 2 pts S1 2 − 0 = 2

42+
1 S 2 1 pt 2 − 1 = 1

42−
1 1 pt S1 1 − 0 = 1

51 S 2 1 pt 2 − 1 = 1

A2
2 S 2 2 pts 2 − 2 = 0

A1A3 S 2 1 pt 2 − 1 = 1

T l
12 S 2 2 pts 2 − 2 = 0

T b
12 S1 S1 0 − 0 = 0

T h
11 S1 S1 0 − 0 = 0

T e
11 S 2 2 pts 2 − 2 = 0

A2
1A2 S 2 S1 2 − 0 = 2

TA1A
2
1

S 2 S1 2 − 0 = 2

A4
1 S 2 S1 2 − 0 = 2

Table 3, which summarizes these equivalences, “pt” stands for point. All these
variations of the Euler characteristic of the branch set are equal to the correspond-
ing coefficients in +Iχ .

5. Independence of the Four Invariants

Theorem 5.1. The invariants obtained in Theorem 4.1 are linearly independent.

Proof. We use integer coefficients and write a linear combination of the four in-
variants as

aIs + bIt + cIA1A2 + dIχ = 0.

Then we evaluate this expression over four different examples of stable maps
fi : S3 → R

3, i = 2, . . . , 5, to obtain a linear system of five equations in the vari-
ables a, b, c, d (see Figure 8). The examples are constructed starting from the basic
fold map of S3 to 3-space, where the branch set is an embedded sphere of fold
points. The determinant of the matrix associated to the system is −8 �= 0, so the
only solution to this system is a = b = c = d = 0. Thus we have proved that the
invariants are independent in C∞(S3, R3).

Now consider a stable map f : S3 → R
3 and a map g : M → R

3 for M a
closed 3-manifold. We define the connected sum f 4g : S34M = M → R

3 as a
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Figure 8 The branch sets of fi and their construction

generalization of the horizontal surgery of stable maps from surfaces to the plane
defined in [10] and [16]. The resulting map’s branch set is the connected sum of
the branch sets of f and g. This map is obtained by removing one 3-ball in S3

and another one in M such that each contains a disk of a surface of its correspond-
ing singular set (without cuspidal edges or double fold curves). We then join the
manifolds at the removed 3-balls by an S 2 × I tube whose projection to R

3 is an
S1 × I tube that does not intersect any other part of the branch sets (I is an inter-
val). The original branch sets of f and g lie on different semispaces of R

3. It is
easy to see that Iχ(f 4g) = Iχ(f )+ Iχ(g)−2. We remark that Is , It , and IA1A2 are
additive. Evaluating the linear combination over four new examples fi4g : M →
R

3 and taking into account the foregoing considerations, we again obtain a linear
system where the determinant of the associated matrix is 12 + 6Is(g), which can
never be zero because Is(g) can never be negative. Hence the only solution to this
system is a = b = c = d = 0, which proves that the invariants are independent
in C∞(M, R3) for any closed 3-manifold M.

The proof of Theorem 5.1 explains why the corank-2 singularities of codimen-
sion 2 are not needed and why the codimension-2 multigerm classification does
not need to be complete. Any compatibility condition arising from their bifurca-
tion diagrams would be redundant, since they would be a linear combination of
the other compatibility conditions.

6. Nonlocal Invariants

If we subdivide certain codimension-1 strata (namely 3+−
1 , 42−

1 , T b
12, and T h

11) ac-
cording to whether the transition does or does not affect the number of connected
components of the cuspidal edges and self-intersection curves, then we can obtain
additional nonlocal invariants. The name of any of the four codimension-1 strata
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just mentioned, when followed by the letter a, stands for the subcase in which the
curves on the left-hand side of the transition belong to two different curve compo-
nents (after the transition, they become a single component); names followed by
the letter b stand for the other subcases. The invariants are

+I6 = +3++
1 − +3−−

1 + +3+−
1 b − +3+−

1 a + +42+
1 + +42−

1 b − +42−
1 a

and

+I7 = +T e
11 + +T l

12 + +T b
12b − +T b

12a + +T h
11b − +T h

11a + +A2−
2

+ +42+
1 + +42−

1 b − +42−
1 a + +51,

which are (respectively) the number of cuspidal edge curves and the number of
self-intersection closed curves.

Analogously, the variation in the number of components of the singular set and
of its complement also provides nonlocal invariants; see [8].

7. Fold Maps

If we consider the particular case of fold maps (i.e., maps without cuspidal edges
or swallowtail points) then the situation is simplified. Here we do not consider any
strata of codimension 1 or 2 that includes a cuspidal edge. Repeating the process
by which we obtain generators then yields our next theorem.

Theorem 7.1. Any 1-cocycle—that is, any integer-valued function I satisfying
+I = 0 on every generic homotopically trivial closed path in C∞

fold(M, R3)—can
be written, up to an additive constant, as a linear combination of the generators

2+TA1A
2
1

and +T
e0

11 − +T
e2

11 + +T h−
11 ,

where +TA1A
2
1

denotes the sum of the increments of each of its corresponding
substrata.

The first generator is a fold version of the number of triple points (here the num-
ber of triple points is equal to the Euler characteristic of the branch set, as follows
from the Izumiya–Marar formula reinterpreted in this situation). The second gen-
erator is a fold version of Goryunov’s linking invariant [7] and counts the number
of inverse self-tangencies in a generic regular homotopy.

However, one must note that C∞
fold(M, R3) is not connected. There is no way to

create a new component of the singular set once we have eliminated the 31 singular-
ities because of their cuspidal edges. If we denote by C∞

fold,k(M, R3) the connected
component of C∞

fold(M, R3) where the maps have k connected components in their
singular set, then the following statement results.

Corollary 7.2. The first-order Vassiliev invariants for C∞
fold,k(M, R3) are, mod-

ulo constants, a linear combination of the number of triple points and the number
of inverse self-tangencies in a generic regular homotopy from a distinguished map
in the same connected component.



First-Order Local Invariants of Stable Maps from 3-Manifolds to R
3 405

8. Appendix: Bifurcation Diagrams of the
Codimension-2 Strata

In this section we analyze the bifurcation diagrams of codimension-2 strata and
obtain the compatibility conditions from them.

Lemma 8.1. (a) n3++
1

= n3+−
1

= n3−−
1

; (b) n42+
1

= n42−
1
.

Proof. (a) Normal forms for the germs 3±
2 aref(x, y, z) = (x, y, z3+(±x 2+y3)z),

and a versal deformation is given by

F(x, y, z, u, v) = (x, y, z3 + (±x 2 + y3 + uy + v)z).

Analyzing the branch set fu,v(
fu,v ) for different values of u and v leads to the bi-
furcation sets shown in Figure 9. There the figures around it on the left-hand side
illustrate the transitions in the branch set, the dark lines correspond to cuspidal
edges, and the short lines on the codimension-1 strata mark the positive direction
of the coorientation. From the bifurcation set of 3+

2 the compatibility condition
becomes n3++

1
= n3+−

1
, and from 3−

2 we obtain n3+−
1

= n3−−
1
.

32
+

31
++

31
+ -

32
-

31
+-

31
- -

u

v

Figure 9 Bifurcation sets of 3±
2

(b) The normal form of 43
1 is f(x, y, z) = (x, y, z4 + xz ± y3z2), and a versal

deformation is

F(x, y, z, u, v) = (x, y, z4 + xz ± (y3 + uy + v)z2).

The bifurcation diagram for this germ is shown in Figure 10, where the three sur-
faces illustrate the branch sets for different values (u, v) of the parameters outside
the discriminant set. Again, the dark lines represent the cuspidal edges and the
singularities are swallowtail points. This leads to the equality n42+

1
= n42−

1
.

Lemma 8.2. nA2
1A

α
2

= n
A2

1A
β

2
= nA2

1A
γ

2
.

Proof. A versal deformation of A1T12 is given by


(x + u, y ± x 2 + v, z3 + yz),

(x, y2, z),

(x 2, y, z),

(1)



406 R. Oset Sinha & M. C. Romero Fuster

41
2+

41
2-

41
3

u

v

Figure 10 Bifurcation set of 43
1

where the + and − cases correspond (respectively) to A1T
b

12 and A1T
l

12. Figure 11
shows the different bifurcation diagrams. From the deformation of A1T

l+
12 we ob-

tain nA2
1A

α
2

= nA2
1A

γ

2
, and from that of A1T

b+
12 we get n

A2
1A

β

2
= nA2

1A
γ

2
. Analogous

results hold for A1T
b−

12 and A1T
l−

12 .

T12

l+

T12

b+

A1

A1

T 12
l+ T 12

l+

A  A1    2
2 β

A  A1    2
2 α

T 12
b+ T 12

b+

A  A1    2
2 γ

A  A1    2
2 β

u

v

x

y

z

x

y

z

Figure 11 Bifurcation sets of A1T
l+

12 and A1T
b+

12

Lemma 8.3. nA4,3
1

= nA4,4
1

= 0.

Proof. A 2-parameter deformation of A2
1A3 is given by


(x + u, y + v, z4 + yz + xz2),

(x, y2 + x, z),

(x, y2 − x, z).

(2)

In Figure 12, the different possible combinations of the arrows that point in
the direction of an increasing number of pre-images determine different substrata
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Figure 12 Bifurcation set of A2
1A3

of codimension 1 in the bifurcation set. We observe that the presence of cusps
uniquely determines the direction of the arrow in a neighborhood of the swal-
lowtail point. It follows from Lemma 8.2 that all the substrata A2

1A2 are equal;
therefore, the two branches that appear with opposite coorientations will not con-
tribute to the equation.

Independently of which A1A3 substrata appear, both substrata along u = v will
be of the same type and so will the two along u = −v; these pairs of substrata will
cancel out in the equation. Varying the arrows in the two planes will cause A4,2

1 ,
A4,3

1 , and A4,4
1 to appear, and since all other substrata cancel out we have nA4,2

1
=

nA4,3
1

= nA4,4
1

= 0.

Lemma 8.4. nA1A
α
3

= n
A1A

β

3
.

Proof. A versal deformation of the germ A142−
1 is{

(x, y, z4 + xz − (y2 + v)z2),

(x, y2 + u, z).
(3)

Figure 13 shows the bifurcation set. The bifurcation set of A142+
1 gives exactly the

same equation.

41
2-

41
2-

A  A1    3
β A  A1    3

α

A141
2-

u

v

y

z

x

Figure 13 Bifurcation set of A142−
1
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Lemma 8.5. nT 0
A1A

2
1

= nT 1
A1A

2
1

= nT 2
A1A

2
1

= nT 3
A1A

2
1

.

Proof. In Figure 14 we show the bifurcation set of DTA1A
2
1
. A versal deformation

of it is 


(x, y, z2 + x3 + vx),

(x, y2, z),

(x, y, z2 + y + u).

(4)

TA  A 1    1
2

1
TA  A 1    1

2
2

TA  A 1    1
2

3 TA  A 1    1
2

0

DTA  A 1    1
2

T 11
e T 11

e

TA  A 1    1
2

0 TA  A 1    1
2

1

T11

e
A1

u

v

0

0 0

y
z

x

Figure 14 Bifurcation sets of DTA1A
2
1

and A1T
e0

11

Varying the arrows as shown in the figures, we obtain

nT 1
A1A

2
1

= nT 2
A1A

2
1

, nT 0
A1A

2
1

= nT 3
A1A

2
1

.

A versal deformation for A1T11 is


(x + u, y + v, z2 + x 2 + y2),

(x, y, z2),

(x 2, y, z).

(5)

We have nT 0
A1A

2
1

= nT 1
A1A

2
1

. This, together with the other two equations, gives the

desired result.

Lemma 8.6. nT b−
12

= nT b+
12

= nT l+
12

= nT l−
12
.

Proof. In Figure 15 we show the bifurcation set of DT12. A versal deformation of
it is
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T 12
l- T 12

l+

3 1
+ - 3 1

+ -

T 12
b+ T 12

l-

T 12
b- T 12

l+

DT 12 

3 1
+ -

A1

u

v

y

z
x

y

z

x

Figure 15 Bifurcation sets of DT12 and A13+−
1

{
(x, y + x3 + vx, z3 + yz),

(x, y2 + u, z).
(6)

Varying the arrow of the fold surface yields

nT b+
12

= nT l−
12

, nT l+
12

= nT b−
12
.

A versal deformation of A13+−
1 is

{
(x, y, z3 + (x 2 − y2 + v)z),

(x, y2 + u, z).
(7)

We have nT l−
12

= nT l+
12
. This, together with the other two equations, gives the de-

sired result.

Lemma 8.7 [7]. nT e0
11

= nT h−
11

= −nT e2
11

and nT e1
11

= 0.

Figure 16 corresponds to original pictures by Goryunov in [7] adapted to our
case, with modified notation. The only difference is that for Goryunov the picture
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T 11
e0 T 11

e2 T 11
e1

T 11
h- T 11

h- T 11
h+

Figure 16 Bifurcation set of DT11

A  A1    3

T 12
b-

α

A  A1    3
β

T 12
b-

TA  A 1    1
2

2

if

u

v

if

A  A1    3

T 12
b+

β

A  A1    3
α

T 12
b+

TA  A 1    1
2

1

Figure 17 Bifurcation set of T13

represents the image of the map whereas here it represents the branch set; how-
ever, the bifurcation diagrams are the same.

Lemma 8.8. nA1A
α
3
+ nA1A

β

3
− nT b+

12
− nT 1

A1A
2
1

− nT l+
12

= 0.

Proof. In Figure 17 we can see the bifurcation diagrams of T13. Note that the tan-
gency occurs between the fold surface and the limiting tangent vector of both the
cuspidal edges and the double fold curve of the swallowtail (this is a tangency be-
tween a surface and a curve, not between two surfaces). A versal deformation is
given by {

(x, y, z4 + yz − xz2),

(x + u, −x 2 − y2 − z2 + v, z).
(8)

By Lemmas 8.5 and 8.6 we have nT 1
A1A

2
1

= nT 2
A1A

2
1

, nT b−
12

= nT b+
12

, and nT l+
12

=
nT l−

12
, so the equations arising from the two bifurcation diagrams are the same.

Lemma 8.9. nA1A
α
3
+ nA1A

β

3
− nA2

1A
γ

2
− nA2−

2
= 0.
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A  A1    3

A  A1    2
2 γ

A 2
2-A 2

2+

β

A  A1    3
α

u

v

Figure 18 Bifurcation set of A2A3

Proof. A 2-parameter deformation of A2A3 is:{
(x + u, y + v, z4 + xz + yz2),

(x, y3 + xy, z).
(9)

Figure 18 shows the bifurcation diagram.

Lemma 8.10. nT l+
12

+ nT l−
12

− nA2−
2

= 0.

Proof. Figure 19 shows the bifurcation diagram of T 1
22. In the diagrams surround-

ing the bifurcation diagram, the line represents one of the cuspidal edges and the
cusp represents a section of the other one. A versal deformation is{

(x + vz, y3 − xy, z),

(x3 − xz − y2 + u, y, z).
(10)

The compatibility condition obtained is

nT l+
12

+ nT l−
12

− nA2−
2

− nA2+
2

= 0.

Since A2+
2 is non-coorientable, the required result follows.

A 2
2-

A 2
2+u

v

T 12
l+

T 12
b+

Figure 19 Bifurcation set of T 1
22
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Lemma 8.11. n51 = n42
1
+ nT12 , where 42

1 and T12 represent any of their corre-
sponding substrata.

Proof. The normal form of 52 is f(x, y, z) = (x, y, z5 + xz+ y2z2 + yz3), and a
versal deformation is

F(x, y, z, u, v) = (x, y, z5 + xz + (y2 + uy + v)z2 + yz3).

By [13] and some calculations for the multigerm strata, the bifurcation set is as
shown in Figure 20; in light of Lemmas 8.1 and 8.6, we make no distinction be-
tween the different substrata of 42

1 and of T12. The equality follows immediately.

u

v
52

51 51

41
2

41
2

T12

T12

Figure 20 Bifurcation set of 52

Lemma 8.12. nT e0
11

= 0.

Proof. Figure 21 shows the bifurcation diagram of T 1
12. The cusp represents a sec-

tion of the cuspidal edge and the line represents the plane. A versal deformation is{
(x 2 + vz, y, z),

(x3 − xz − y2 + u, y, z).
(11)

u

v

T 12

T 12 T 11

e 1

T 11

e 0

Figure 21 Bifurcation set of T 1
22
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Given Lemma 8.6, we do not distinguish between the different substrata of T12,
and by Lemma 8.7 we have nT e1

11
= 0. The desired equation follows directly.

The bifurcation sets corresponding to the remaining codimension-2 strata lead to
equations that are linear combinations of the equalities obtained here (possibly
zero).
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