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Irregularity of the Bergman Projection
on Worm Domains in Cn

David Barrett & Sönmez Şahutoğlu

1. Introduction

Let � be a bounded domain in C
n and let A2(�) denote the Bergman space of

square-integrable holomorphic functions on �. The Bergman projection on � is
the orthogonal projection from L2(�) onto A2(�).

The Bergman projection is known to be regular in the sense that it maps Ws

to Ws for all s ≥ 0, where Ws denotes the Sobolev space of order s, on a large
class of smooth bounded pseudoconvex domains (throughout this paper a domain
is smooth if its boundary is a smooth manifold). Regularity is usually established
through the ∂̄-Neumann problem, the solution operator for the complex Laplacian
� = ∂̄ ∂̄∗ + ∂̄∗∂̄ on square-integrable (0, 1)-forms. For more information on this
matter we refer the reader to [BS3; S] and the references therein.

Irregularity of the Bergman projection is not understood nearly as well as regu-
larity. The story of irregularity goes back to the discovery of the worm domains in
C

2 by Diederich and Fornæss [DF]. Worm domains were constructed to show that
the closure of some smooth bounded pseudoconvex domains may not have Stein
neighborhood bases (a compact set K ⊂ C

n is said to have a Stein neighborhood
basis if for every open set U containing K there exists a pseudoconvex domain V
such that K ⊂ V ⊂ U). Indeed, Diederich and Fornæss showed that the closure
of a worm domain does not have a Stein neighborhood basis if the total wind-
ing is no less than π. It turned out that worm domains are also counterexamples
for regularity of the Bergman projection. In 1991, Kiselman [Ki] showed that the
Bergman projection does not satisfy Bell’s condition R on nonsmooth worm do-
mains (a domain � satisfies Bell’s condition R if the Bergman projection maps
C∞(�) to C∞(�)). In 1992, Barrett [Ba] showed that the Bergman projection
on a smooth worm domain does not map Ws into Ws if s ≥ π/(total winding).
On the other hand, Boas and Straube [BS2] showed that the Bergman projection
maps W k into W k if k ≤ π/(2 × total winding) and k is a positive integer or k =
1/2. Finally, in 1996 Christ [Ch] showed that the Bergman projections on smooth
worm domains with any positive winding do not satisfy Bell’s condition R. More
recently, Krantz and Peloso [KP1; KP2] studied the asymptotics for the Bergman
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kernel on the model domains in C
2 and derived Lp (ir)regularity for the Bergman

projection on worm domains in C
2.

In this paper we (i) construct smooth bounded pseudoconvex domains �αβ ⊂
C

n that are higher-dimensional generalizations of the worm domains in C
2 and

(ii) study the irregularity of the Bergman projection on these domains on Lp

Sobolev spaces for 1 ≤ p < ∞. We will use the method developed in [Ba] to
show that irregularity on L2 Sobolev spaces depends only on the total winding
whereas the irregularity on Lp spaces with p 
= 2 depends not only on the total
winding but also on the dimension n.

The two parameters α and β in �αβ represent the speed of the winding and the
thickness of the annulus, respectively. Both parameters play a role in the proof of
Theorem 1, but we find it interesting that the actual results depend only on the total
winding—whether this is achieved by fast winding along a thin annulus or slow
winding along a thick annulus.

The domains �αβ ⊂ C
n, n ≥ 3, are defined by

�αβ = {(z1, z ′, zn)∈ C
n : r(z1, z ′, zn) < 0}

with

r(z1, z ′, zn) = |z1 − e2iα ln|zn||2 + |z ′|2 − 1 + σ(|zn|2 − β2) + σ(1 − |zn|2);
here z ′ = (z2, . . . , zn−1), |z ′|2 = |z2|2 + · · · + |zn−1|2, the constants α > 0 and
β > 1, and

σ(t) =
{
Me−1/t, t > 0,
0, t ≤ 0

for some M > 0.
In Section 2 we show that �αβ is smoothly bounded and pseudoconvex when

M is sufficiently large. The main result of this paper is the following theorem.

Theorem 1. The Bergman projection for �αβ does not map Wp,s(�αβ) into
Wp,s(�αβ) when 1 ≤ p < ∞ and s ≥ π

2α lnβ + n
(

1
p

− 1
2

)
.

Here Wp,s(�αβ) is the Sobolev space of order s with exponent p, and we write
Wp,s(�αβ) 
⊂ L2(�αβ) to indicate that the Wp,s bounds do not hold for the
Bergman projection onWp,s(�αβ) ∩ L2(�αβ). The denominator 2α lnβ appear-
ing in the theorem may be interpreted as the total amount of winding along the
annulus 1 < |zn| < β (see equation (1) in Section 3).

If we choose p = 2 then the amount of irregularity provided by a fixed amount
of winding is independent of the dimension.

Corollary 1. The Bergman projection for �αβ does not map W 2,s(�αβ) to
W 2,s(�αβ) when s ≥ π

2α lnβ .

Remark1. Suppose we have the Bergman projectionPU of a domainU bounded
onLp(U), wherep > 2. Then the duality and self-adjointness of the Bergman pro-
jection imply that PU is also bounded on Lq(U), where 1

p
+ 1

q
= 1. Furthermore,

interpolation implies that PU is bounded on Lr for all r ∈ [q,p].

Thus, when s = 0 and nα lnβ > π, Remark 1 and Theorem 1 together imply the
following corollary.
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Corollary 2. The Bergman projection for �αβ does not map Lp(�αβ) to
Lp(�αβ) when 0 < 1

p
≤ 1

2 − π
2nα lnβ or 1

2 + π
2nα lnβ ≤ 1

p
< 1.

Theorem 1 is proved in Section 4. The proof is based on model domain asymp-
totics developed in Section 3.

Acknowledgment. We would like to thank the referee for pointing out a mis-
take in an earlier version of this manuscript.

2. Geometry of Worm Domains

Proposition 1. The domain �αβ is smoothly bounded and pseudoconvex when-
ever M is sufficiently large.

Proof. We start by requiring M > e2. Then � ⊂ {
z ∈ C

n : |z1| < 3, |z ′| < 2,

1/2 < |zn| <
√
β2 + 1/2

}
and so � is bounded. Now, by considering z1-, z ′-,

and zn-derivatives in order, it is easy to check that the gradient of r(z) does not
vanish on {z∈ C

n : r(z) = 0}; hence � has smooth boundary.
It remains to show that �αβ is pseudoconvex. It suffices to check this locally.

We focus on the case |zn| ≥ (1 + β)/2; the case |zn| ≤ (1 + β)/2 is similar.
Multiplying r(z) by exp{Arg(z2α

n )}, we obtain the new defining function

r1(z) = r2(z) − 2 Re(z1z
−2αi
n ),

where

r2(z) = (|z1|2 + |z ′|2 + λ(zn)) exp{Arg(z2α
n )} and λ(zn) = σ(|zn|2 − β2).

Since 2 Re(z1z
−2αi
n ) is pluriharmonic it will suffice to show that r2 is plurisubhar-

monic. To simplify the notation, let A(z) = |z1|2 + |z ′|2 + λ(zn) and B(z) =
Arg(z2α

n ). Let W = ∑n
j=1wj

∂
∂zj

with wj constant. (In the following calculations,

Hf (W ) denotes the complex Hessian of f in the direction W.) Then W(r2) =
eB(W(A) + AW(B)) and so the Cauchy–Schwarz inequality implies that

−2 Re

(
w̄nBz̄n

n−1∑
j=1

wj z̄j

)
≤

n−1∑
j=1

|wj |2 + |w̄nBz̄n |2
n−1∑
j=1

|zj |2.

Using this inequality in the second line below yields

Hr2(W ) = eB
(
HA(W ) + 2 Re(W(A)W(B)) + A|W(B)|2 + AHB(W )

)
≥ |wn|2eB(λznz̄n + 2 Re(λznBz̄n) + λ|Bz̄n |2).

One can check that λzn(zn) = z̄nσ
′(|zn|2 − β2), |Bz̄n | = α

|zn| , and

λznz̄n(zn) = |zn|2σ ′′(|zn|2 − β2) + σ ′(|zn|2 − β2).

We remark that, because λ(zn) = λzn(zn) = λznz̄n(zn) = 0 for |zn| ≤ β, we can
assume without loss of generality that |zn| > β. Using the fact that β < |zn| <√
β2 + 1/2 and t = |zn|2 −β2 in the third line of the following display, we obtain
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λznz̄n + 2 Re(λznBz̄n) + λ|Bz̄n |2

≥ λznz̄n − 2α|λzn|
|zn|

≥ |zn|2σ ′′(|zn|2 − β2) + (1 − 2α)σ ′(|zn|2 − β2)

= Me−1/t

(
β2 + t

t 4
− 2(β2 + t)

t 3
+ 1 − 2α

t 2

)

= M(β2 + t)e−1/t

t 4

(
1 − 2t + (1 − 2α)t 2

β2 + t

)
.

We can choose M sufficiently large that z ∈�αβ ∩ {z ∈ C
n : |zn| ≥ β} implies t

is sufficiently small. That, in turn, implies

1 − 2t + (1 − 2α)t 2

β2 + t
> 0.

This inequality implies that λznz̄n + 2 Re(λznBz̄n)+λ|Bz̄n |2 ≥ 0 for z∈�αβ such
that |zn| ≥ (1+β)/2. Therefore, the domain�αβ is pseudoconvex for sufficiently
large M.

Remark 2. A similar calculation shows that the set of weakly pseudoconvex
points in the boundary is the set {(0, . . . , 0, zn)∈ C

n : 1 ≤ |zn| ≤ β}.
Remark 3. We note that regularity of the ∂̄-Neumann operator is closely con-
nected to regularity of the Bergman projection [BS1]. In particular, if the ∂̄-
Neumann operator of a smooth bounded pseudoconvex domain is globally reg-
ular then the Bergman projection satisfies Bell’s condition R. One can show that,
on the set {(0, . . . , 0, zn) ∈ C

n : 1 ≤ |zn| ≤ β}, the Levi form of r has only one
vanishing eigenvalue because the form has positive eigenvalues in the direction
transversal to the zn-axis. In this case, [ŞS, Thm. 1] implies that the ∂̄-Neumann
operator is not compact on (0, 1)-forms (recall that compactness of the ∂̄-Neumann
operator implies that it is globally regular by [KoN]). However, showing irregu-
larity of the Bergman projection in Sobolev scale requires more work.

3. Model Domains

In this section we define a family of simplified model domains and calculate the
asymptotics for the Bergman kernels of these model domains. We use a modified
version of the method developed in [Ba].

For λ > 0, let
τλ(z1, z ′, zn) = (2λ2z1, λz ′, zn),

rλ = λ2r � τ−1
λ ,

Dλ = τλ(�αβ).

Then for 1 ≤ |zn| ≤ β we have rλ ↘ r∞ as λ → ∞, where

r∞(z1, z ′, zn) = |z ′|2 − Re(z1e
−2αi ln|zn|);
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for |zn| outside this range we have rλ → ∞. It follows that the Dλ converge in an
appropriate sense to the limit domain

D = Dαβ = {(z1, z ′, zn)∈ C
n : Re(z1e

−2αi ln|zn|) > |z ′|2, 1 < |zn| < β}, (1)

where the limit is increasing over the annulus 1 ≤ |zn| ≤ β.

The Bergman projectionP ofD is defined byPf(z) = ∫
D
K(z,w)f(w) dV(w),

where f ∈ L2(D) and K : D × D → C is the Bergman kernel characterized by
the following conditions:

(i) K(z,w)∈A2(D) for fixed w ∈D;
(ii) K(w, z) = K(z,w);

(iii)
∫
D
K(z,w)f(w) dV(w) = f(z) for f ∈A2(D).

If f1, f2, . . . is an orthonormal basis for A2(D), then K(z,w) = ∑
j fj(z)fj(w).

To study the Bergman kernel of D, we begin by performing a Fourier decom-
position. We define

(PJkf )(z1, z ′, zn) = 1

2n−1πn−1

∫
[−π,π]n−1

f(z1, eiSz ′, eitzn)e−iJSe−ikt dS dt, (2)

where k ∈ Z and

eiS = (e is1, . . . , eisn−2),

S = (s1, . . . , sn−2)∈ [−π,π]n−2,

J = (j1, . . . , jn−2)∈ N
n−2,

JS = j1s1 + · · · + jn−2 sn−2,

dS = ds1 · · · dsn−2.

Let us define the mapping ρSt (z1, z ′, zn) = (z1, eiSz ′, eitzn). Then PJk is the
orthogonal projection from A2(D) onto

A2
Jk(D) = {f ∈A2(D) : f � ρSt = eiJSe iktf for all S, t}.

Hence the Bergman space A2(D) can be written as the orthogonal sum

A2(D) =
⊕

J∈Nn−2, k∈Z

A2
Jk(D)

and the Bergman kernel K(z,w) for D satisfies

K(z,w) =
∑

J∈Nn−2, k∈Z

KJk(z,w),

where KJk(z,w) is the kernel for A2
Jk(D).

One can show that for f ∈A2
Jk(D) the function f(z1, z ′, zn)z

−j1
2 · · · z−jn−2

n−1 z−k
n is

locally independent of (z ′, zn). We notate such functions as functions of z1, where
it is understood that z1 ranges over the Riemann domain described by −π/2 <

Arg z1 < 2α lnβ + π/2.
Let |J | = j1 + · · · + jn−2. Then a square-integrable holomorphic function f

on D can be written as
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f(z) =
∑

J∈Nn−2, k∈Z

FJk(z),

where
FJk(z1, z ′, zn) = z

−(|J |+n)/2
1 fJk(z1)z

′Jzkn
and the sum converges locally uniformly.

Now we will calculate the L2-norm of FJk on D. Let z1 = r1e
iθ1, rj = |zj | for

j = 1, . . . , n, r ′ =
√
r 2

2 + · · · + r 2
n−1, and s = ln|zn|2. Then D is described by the

following inequalities:

0 < r1 < ∞,

0 < s < 2 lnβ,

|θ1 − αs| < π/2,

0 ≤ r ′ <
√
r1 cos(θ1 − αs).

We have

‖FJk‖2
D

=
∫
D

|fJk(r1e
iθ1)|2r−|J |−n+1

1 r
2j2+1
2 · · · r 2jn−2+1

n−1 r 2k+1
n dθ1 · · · dθn dr1 · · · drn

= CnJ

∫
0<r1<∞

|θ1−αs|<π/2
0<s<2 lnβ

|fJk(r1e
iθ1)|2 cos|J |+n−2(θ1 − αs)es(k+1)r−1

1 dθ1 dr1 ds

=
∫

0<|z1|<∞
−π/2<arg(z1)<2α lnβ+π/2

|fJk(z1)|2WJk(θ1)|z1|−2 dV(z1); (3)

here CnJ is a positive constant,

WJk(θ1) = CnJ

∫ ∞

−∞
cos|J |+n−2(θ1 − αt)χπ/2(θ1 − αt)e t(k+1)χlnβ(t − lnβ) dt,

and χa(t) is the characteristic function of the interval [−a, a] for a > 0. (The pos-
itivity of CnJ follows because we are integrating only over positive values of rj .)

Now we use a change of coordinates z = ln z1 in the last integral to obtain

‖FJk‖2
D =

∫
−∞<x<∞

−π/2<y<2α lnβ+π/2
|fJk(ez)|2WJk(y) dV(z)

=
∫

−∞<x<∞
−π/2<y<2α lnβ+π/2

|f̃Jk(z)|2WJk(y) dV(z), (4)

where z = x+ iy and f̃Jk(z) = fJk(e
z). Then f̃Jk is a square-integrable holomor-

phic function on Sαβ = {z ∈ C : −π/2 < Im(z) < π/2 + 2α lnβ} with weight
WJk. Furthermore, the Bergman kernel KJk for A2

Jk(D) can be calculated as

KJk(z,w) = K
αβ

Jk (ln z1, lnw1)
z ′Jzknw̄ ′Jw̄k

n

z
(|J |+n)/2
1 w̄

(|J |+n)/2
1

, (5)

whereKαβ

Jk is the Bergman kernel on Sαβ with weightWJk. (One way of seeing this
is to observe that (4) allows us to convert an orthonormal basis for the Bergman
space on Sαβ with weight WJk to an orthonormal basis for A2

Jk.)
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Let F(f ) denote the Fourier transform of f ; thus

F(f )(ξ) = 1√
2π

∫ ∞

−∞
f(t)e−iξt dt,

F −1(f )(x) = 1√
2π

∫ ∞

−∞
f(ξ)e iξt dξ.

Proposition 2. K
αβ

Jk is given by the integral

K
αβ

Jk (z,w) = 1√
2π

∫
R

ei(z−w̄)ξ

F(WJk)(−2iξ)
dξ. (6)

Proof. See [Ba] and [CSh, Lemma 6.5.1].

Note also that −π < Im(z − w̄) < π + 4α lnβ for z,w ∈ Sαβ.

Proposition 3. The Fourier transform of WJk is given by

F(WJk)(ξ)

= DnJ e
−iξπ/2 EJk(ξ)

(ξ + |J | + n − 2)(ξ + |J | + n − 4) · · · (ξ − |J | − n + 2)
, (7)

where

EJk(ξ) = (e iξπ − (−1)|J |+n)

(
e2(k+1−iαξ) lnβ − 1

k + 1 − iαξ

)
.

We postpone the proof of Proposition 3 until later in this section.
In order to apply residue methods to equation (6), we must find the zeros of

F(WJk)(−2iξ). Let us denote the set {s ∈ Z : −m ≤ s ≤ m} by I(m). From
Proposition 3 we see that if |J | + n is even then the zeros of F(WJk)(−2iξ) are
located at{

mi : m∈ Z \ I

( |J | + n − 2

2

)}
∪

{
mπi

2α lnβ
+ k + 1

2α
: m∈ Z \ {0}

}
whereas if |J | + n is odd then they are located at{
mi + i

2
: m∈ Z \

(
I

( |J | + n − 3

2

)
∪

{
−|J | + n − 1

2

})}

∪
{

mπi

2α lnβ
+ k + 1

2α
: m∈ Z \ {0}

}
.

For simplicity we focus on the case J = 0, k = −2; in so doing, we guarantee
that the zeros just enumerated are simple (see Remark 4 to follow).

Let ναβ = π
2α lnβ and µα = 1

2α > 0.

Proposition 4. The kernels K0,−2 satisfy

K0,−2(z,w) =
[ναβ−n/2]∑

7=0

C7z
7
1w̄

−7−n
1 z−2

n w̄−2
n

+ Cz
ναβ−n/2−iµα

1 w̄
−ναβ−n/2+iµα

1 z−2
n w̄−2

n + R(z,w), (8)
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where ε > 0, the constantsC andC7 are nonzero, and the remainder term R(z,w)
satisfies (

∂

∂z1

)m
R(z,w) = O(z

ναβ−n/2+ε−m

1 w̄
−ναβ−n/2−ε

1 )

uniformly on closed subannuli of 1 < |zn| < β.

Proof. We apply the residue theorem to the integral in (6) along the strip −ναβ−ε≤
Im ξ ≤ 0 to obtain

K
αβ

0,−2(z,w) =
[ναβ−n/2]∑

7=0

C7e
(7+n/2)(z−w̄) + Ce(ναβ−iµα)(z−w̄) + R̃(z,w)

for nonzeroC andC7, where R̃(z,w) and all of its derivatives areO(e(ναβ+ε)(z−w̄))

on closed substrips of Sαβ. If we plug the preceding equality into (5), the result
is (8).

Remark 4. We have focused on the case J = 0, k = −2 because this is the sim-
plest choice and avoids possible problems with double poles. Analogous formulas
hold for other values of k in the absence of double poles. When double poles do
occur, they contribute factors of ln(z1 − w̄1).

Lemma 1.
j∑

s=0

(
j

s

)
(−1)s

ξ + α(j − 2s)
= (−2α)jj!

(ξ + αj)(ξ + α(j − 2)) · · · (ξ − αj)
.

Proof. The statement is true for j = 0.
Working inductively and recalling that

(
j
s

) = (
j−1
s−1

) + (
j−1
s

)
, we have

j∑
s=0

(
j

s

)
(−1)s

ξ + α(j − 2s)

=
j−1∑
s=0

(
j − 1
s

)
(−1)s

ξ + α(j − 2s)
+

j∑
s=1

(
j − 1
s − 1

)
(−1)s

ξ + α(j − 2s)

= (−2α)j−1(j − 1)!

(ξ + αj)(ξ + α(j − 2)) · · · (ξ + α(−j + 2))

− (−2α)j−1(j − 1)!

(ξ + α(j − 2))(ξ + α(j − 4)) · · · (ξ − αj)

= (−2α)j−1(j − 1)!

(ξ + α(j − 2)) · · · (ξ + α(−j + 2))

(
1

ξ + αj
− 1

ξ − αj

)

= (−2α)jj!

(ξ + αj)(ξ + α(j − 2)) · · · (ξ − αj)
.

Proof of Proposition 3. Write

WJk(y) = CnJ(WJk1 ∗WJk2)(y/α)
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for −π/2 < y < π/2 + 2α lnβ, where f ∗ g denotes the convolution of f and g

and where

WJk1(t) = cos|J |+n−2(αt)χπ/2(αt),

WJk2(t) = e t(k+1)χlnβ(t − lnβ).

To calculate the Fourier transform of WJk we first calculate

cosj(t) = 1

2j

j∑
s=0

(
j

s

)
ei(2s−j)t.

One can then calculate that

F(cosj(t)χπ/2(t))(ξ) = 1

i
√

2π 2j−1

j∑
s=0

(
j

s

)
(e i(ξ+j−2s)π/2 − e−i(ξ+j−2s)π/2)

2(ξ + j − 2s)
.

Lemma 1 now implies that

F(cosj(αt)χπ/2(αt))(ξ)

= 1

α
F(cosj(t)χπ/2(t))

(
ξ

α

)

= ij−1(e iξπ/2α − (−1)je−iξπ/2α)√
2π 2j

j∑
s=0

(
j

s

)
(−1)s

ξ + α(j − 2s)

= (−αi)jj! (e iξπ/2α − (−1)je−iξπ/2α)

i
√

2π(ξ + αj)(ξ + α(j − 2)) · · · (ξ − αj)
.

We also need to find the Fourier transform of ektχa(t − a):

F(ektχa(t − a))(ξ) = 1√
2π

e2a(k−iξ) − 1

k − iξ
.

Using F(f ∗ g) = √
2πF(f )F(g), we find that the Fourier transform of WJk is

given by (7).

4. Proof of Theorem 1

The proof of Theorem 1 follows immediately from Lemmas 3 and 4.

Lemma 2. If P is continuous on Wp,s(�αβ) then∥∥∥∥|rλ|t
(

∂

∂z1

)m
Pλf

∥∥∥∥
Lp(Dλ)

≤ C‖f ‖Wp,s(Dλ), (9)

where m is a nonnegative integer, 0 ≤ t < 1 such that m = s+ t, and the constant
C is independent of λ and f.

Proof. Assume that P maps Wp,s(�αβ) onto itself continuously and let Tλf =
f � τλ. Then one can check that
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∥∥∥∥
(
∂

∂z

)P(
∂

∂z̄

)Q
Tλf

∥∥∥∥
Lp(�αβ)

= 2p1+q1−2/pλ2p1+2q1+|P ′|+|Q′|−2n/p

∥∥∥∥
(
∂

∂z

)P(
∂

∂z̄

)Q
f

∥∥∥∥
Lp(Dλ)

;

in this equation, P = (p1, . . . ,pn), Q = (q1, . . . , qn), P ′ = (p2, . . . ,pn−1), Q′ =
(q2, . . . , qn−1), |P ′| = p1 + · · · + pn−1, and |Q′| = q1 + · · · + qn−1. Therefore,

‖Tλf ‖Wp,k(�αβ) ≤ 2k−2/pλ2k−2n/p‖f ‖Wp,k(Dλ).

By interpolation we also have ‖Tλf ‖Wp,s(�αβ) ≤ 2s−2/pλ2s−2n/p‖f ‖Wp,s(Dλ) for all
s > 0.

Let s = m − t, where m is a nonnegative integer and 0 ≤ t < 1. Then∥∥∥∥|r|t
(

∂

∂z1

)m
f

∥∥∥∥
Lp(�αβ)

≤ C1‖f ‖Wp,s(�αβ) (10)

for f holomorphic on �αβ (see e.g. [L]).
Let Pλ be the Bergman projection for Dλ. Then Pλ = T −1

λ PTλ and∥∥∥∥|rλ|t
(

∂

∂z1

)m
Pλf

∥∥∥∥
Lp(Dλ)

=
∥∥∥∥|rλ|t

(
∂

∂z1

)m
T −1
λ PTλf

∥∥∥∥
Lp(Dλ)

= 22/p−mλ2t+2n/p−2m

∥∥∥∥|r|t
(

∂

∂z1

)m
PTλf

∥∥∥∥
Lp(�αβ)

≤ C2λ
2t+2n/p−2m‖PTλf ‖Wp,s(�αβ)

≤ C3λ
2n/p−2s‖Tλf ‖Wp,s(�αβ)

≤ C4‖f ‖Wp,s(Dλ),

where the constants are independent of λ.

Lemma 3. If the estimate (9) holds on Dλ then∥∥∥∥|r∞|t
(

∂

∂z1

)m
P∞f

∥∥∥∥
Lp(D)

≤ C‖f ‖Wp,s(D),

where P∞ is the Bergman projection on D and the constant C is independent of f.

Proof. The proof follows that of [Ba, Lemma 1].

Lemma 4. Let s ≥ ναβ +n
(

1
p

− 1
2

)
, where ναβ = π

2α lnβ and s = m− t as before.

Then there exists an f ∈C∞
0 (D) such that |r∞|t( ∂

∂z1

)m
P∞f is not in Lp(D).

Proof. BecausePJk mapsWp,δ(D)∩Ap(D) ontoWp,δ(D)∩Ap

Jk(D) for all δ ≥ 0,
it is sufficient to prove that there exists an f ∈ C∞

0 (D) such that PJkP∞f /∈
Wp,s(D). Fix w ∈D, J = 0, and k = −2. Let f be a nonnegative smooth func-
tion with compact support in D such that f depends on |z − w| and

∫
D
f = 1.

Then K0,−2(·,w) = P0,−2P∞f. We can write s = m − t for m a nonnegative
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integer and 0 ≤ t < 1. In view of [10] adapted to D, it suffices to show that
|r∞(z)|t ∂m

∂zm1
K0,−2(z,w) /∈Lp(D) for fixed w. Proposition 4 implies that

∂m

∂zm1
K0,−2(z,w) = Cz

ναβ−n/2−iµα−m

1 + O(z
ναβ−n/2+ε−m

1 ).

Let

D ′ = {
(z1, z ′, zn)∈ C

n : Re(z1e
−2αi ln|zn|) > |z ′|2, 1 + δ < |zn| < β − δ,

|z1| < δ, |θ1 − 2α ln|zn|| < π/4
}

for suitably small δ > 0. Then |r∞| is comparable to |z1| on D ′ and∫
D

|r∞(z)|pt
∣∣∣∣ ∂m∂zm1

K0,−2(z,w)

∣∣∣∣p dV(z) ≥
∫
D ′

|r∞(z)|pt
∣∣∣∣ ∂m∂zm1

K0,−2(z,w)

∣∣∣∣p dV(z)
≥ c

∫ δ

0
r
pναβ+pt−pm+n−1−pn/2
1 dr1,

where c is a positive constant. The last integral in this expression is divergent if
s ≥ ναβ + n

(
1
p

− 1
2

)
. As a result,

|r∞(z)|t ∂
m

∂zm1
P0,−2P∞f = |r∞(z)|t ∂

m

∂zm1
K0,−2(z,w) /∈Lp(D)

for s ≥ ναβ + n
(

1
p

− 1
2

)
.
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