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Cut Ideals of K4-Minor Free Graphs
Are Generated by Quadrics

Alexander Engström

1. Introduction

In this paper we prove a conjecture of Sturmfels and Sullivant [12] about toric
ideals used in algebraic statistics. A new connection between commutative alge-
bra and statistics was made by Diaconis and Sturmfels [5] when they introduced
the fundamental notion of Markov basis. To explain the connection, we use the first
example from the Oberwolfach lectures on algebraic statistics by Drton, Strum-
fels, and Sullivant [7].

Example 1.1. In a contingency table, both data and some marginals are reported.
In Table 1, these marginals are the row and column sums. In order to test statisti-
cally the hypothesis that the verdicts are from a distribution independent of race,
one must sample from a set of tables with the same marginals as Table 1. The usual
way to sample is by a random walk on the set of tables with prescribed marginals,
stopping when some test indicates that enough information has been collected.
The nontrivial task is to find good steps (Markov moves) for the random walk, and
here commutative algebra enters the picture.

Encode the numbers in Table 1 with monomials as in Table 2. The data entries in
Table 2 are collected in the monomial q19

11q
141
12 q

17
21q

149
22 ∈ K[q11, q12, q21, q22 ] and the

marginal entries in the monomial r160
1∗ r166

2∗ r 36∗1 r
290∗2 ∈ K[r1∗ , r2∗ , r∗1, r∗2 ]. The cal-

culations that translate row and column sums into the algebraic setting are given
by the ring homomorphism

Table 1 Data on death penalty verdicts
[1, 5.2.2]

Defendant’s race Yes No Total

White 19 141 160
Black 17 149 166

Total 36 290 326
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Table 2 The commutative algebra
version of Table 1

q19
11 q141

12 r160
1∗

q17
21 q149

22 r166
2∗

r 36
∗1 r 290

∗2

φ : K[q11, q12, q21, q22 ] → K[r1∗ , r2∗ , r∗1, r∗2 ]
defined by

φ(qab) = ra∗ r∗b.
The fibers of r160

1∗ r166
2∗ r 36∗1 r

290∗2 are all monomials corresponding to tables with the
same marginals as in Table 1, and that is the set of tables for which we need to find
steps. The kernel of the map φ is a toric ideal, and a generating set of that ideal pro-
vides us with steps between the monomials in the fiber. In this easy example, the
kernel is generated by q11q22 − q12q21 and, for instance, provide a Markov move
from q19

11q
141
12 q

17
21q

149
22 to q20

11 q
140
12 q

16
21q

150
22 , since their difference is a monomial multi-

plied by q11q22 − q12q21. All monomials in the fiber can be reached by Markov
moves using q11q22 − q12q21, and the statisticians are able to sample from the set
of tables with the same marginals as Table 1.

The benefit of translating problems from statistics to commutative algebra, as in
Example 1.1, is a well-developed toolbox for finding generators of ideals—most
prominently, using Gröbner basis.

Many statistical models are described by graphs, with a random variable for
every vertex and marginals described by edges. If we flipped a coin for every ver-
tex in a graph, then the vertex set would be partitioned into two parts: heads and
tails. A partition of a graph into two parts is called a cut, and many questions in
statistics, computer science, and optimization theory are naturally formulated (or
easily transformed into) questions about cuts. There is also a rich geometric the-
ory associated with cuts, as surveyed by Deza and Laurent [4].

Definition 1.2. For a graph G, the partition of V(G) into A and B is the cut
A | B = B | A. The edge set {ab ∈ E(G) : a ∈ A, b ∈ B} induced by the cut
A | B is also denoted A | B when no confusion can arise.

Example 1.3. We toss four coins 76 times and obtain the statistic on eight dif-
ferent cuts, as reported in Table 3. The marginals are encoded with the path graph
1−2−3−4, and in Table 4 the cuts are tabulated together with how they cut the
edges. Table 5 reports the marginals of Table 3—that is, how many times the
different edges are cut. In algebraic statistics, the corresponding setup is two com-
mutative rings,

K

[
q{1,2,3,4}|∅, q{1,2,3}|{4}, q{1,2,4}|{3}, q{1,2}|{3,4},
q{1,3,4}|{2}, q{1,3}|{2,4}, q{1,4}|{2,3}, q{1}|{2,3,4}

]

and
K[s12, s23, s34, t12, t23, t34],
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Table 3 The number of cuts
of different types from

tossing four coins 76 times

Cut Number of occurrences

{1, 2, 3, 4} | ∅ 8
{1, 2, 3} | {4} 13
{1, 2, 4} | {3} 12
{1, 2} | {3, 4} 6
{1, 3, 4} | {2} 9
{1, 3} | {2, 4} 8
{1, 4} | {2, 3} 11
{1} | {2, 3, 4} 9

Table 4 The cuts of the path graph 1−2−3−4;
edges with vertices in different parts

(resp., the same part) are tabulated as 1 (resp., 0)

Cut Edge 12 Edge 23 Edge 34

{1, 2, 3, 4} | ∅ 0 0 0
{1, 2, 3} | {4} 0 0 1
{1, 2, 4} | {3} 0 1 1
{1, 2} | {3, 4} 0 1 0
{1, 3, 4} | {2} 1 1 0
{1, 3} | {2, 4} 1 1 1
{1, 4} | {2, 3} 1 0 1
{1} | {2, 3, 4} 1 0 0

Table 5 The edge cuts of the path graph
1−2−3−4 given the cut statistic in Table 3

Edge 12 Edge 23 Edge 34

# Cuts 37 35 44

together with a ring homomorphism φ : K[q] → K[s, t] defined by

φ(q{1,2,3,4}|∅) = t12 t23 t34, φ(q{1,2,3}|{4}) = t12 t23s34,

φ(q{1,2,4}|{3}) = t12 s23s34, φ(q{1,2}|{3,4}) = t12 s23 t34,

φ(q{1,3,4}|{2}) = s12 s23 t34, φ(q{1,3}|{2,4}) = s12 s23s34,

φ(q{1,4}|{2,3}) = s12 t23s34, φ(q{1}|{2,3,4}) = s12 t23 t34
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in accordance with Table 4, where sij denotes that the edge ij is separated and tij
that it is kept together by the cut. The kernel of φ is a toric ideal generated by the
binomials

q{1,3,4}|{2}q{1,2,3}|{4} − q{1,4}|{2,3}q{1,2}|{3,4},

q{1,3}|{2,4}q{1,2,3,4}|∅ − q{1}|{2,3,4}q{1,2,4}|{3},

q{1,2,4}|{3}q{1}|{2,3,4} − q{1,4}|{2,3}q{1,2}|{3,4},

q{1,3}|{2,4}q{1,2,3,4}|∅ − q{1,2,3}|{4}q{1,3,4}|{1}.

The toric ideal in Example 1.3 is the cut ideal of a path on four vertices. The theory
of cut ideals was initiated by Sturmfels and Sullivant [12].

Definition 1.4. The cut ideal of the graphG, IG, is the kernel of the ring homo-
morphism φG : K[q] → K[s, t] defined by

qA|B �→
∏

ij is in A|B
sij

∏
ij is not in A|B

tij ,

where
K[q] = K[qA|B : there is a cut A | B of G],

K[s, t] = K[sij , tij : ij is an edge of G].

The potential uses of cut ideals in statistics and the applied sciences are not ap-
parent from Example 1.3 because it’s too small. As described in [12], there are
applications in biology [11] that use, for example, the Jukes–Cantor model.

Based on theorems about similar constructions as well as computer calculations,
it is reasonable to believe that topological properties of G should be reflected in
algebraic properties of IG.

Theorem (conjectured by Sturmfels and Sullivant [12]). The cut ideal is gener-
ated by quadrics if and only if G is free of K4 minors.

Several partial results have been proved; for instance, Brennan and Chen [2]
showed this for subdivisions of books and outerplanar graphs. A ring graph is,
more or less, a bunch of disjoint cycles that are connected by a tree that touches
any cycle in at most one vertex. For ring graphs, the conjecture was proved by
Nagel and Petrović [10].

The conjecture follows as a corollary of Theorem 2.6, which is a fiber product–
type theorem. In the same way as the fiber product theorems in [3] and [12]
could be generalized in [13], we will present a more general form of Theorem 2.6
in [8]. Methods from this paper were used on ideals of graph homomorphisms in
Engström and Norén’s paper [9].

Basic Notions of Cut Ideals. The largest degree of a minimal generator of IG
is µ(G). By [12, Cor. 3.3], the contraction of an edge or deletion of a vertex can-
not increase µ. In [12, Thm. 2.1] it is proved that if G is glued together from two
graphs G1 and G2 over a complete graph with zero, one, or two vertices, then the
cut ideal IG is generated by (i) lifts of generators of IG1 and IG2 and (ii) quadratic
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binomials for sorting cuts. The main theorem of this paper is a variation of [12,
Thm. 2.1] for the case of gluing over an edge.

2. Decompositions of Graphs and Ideals

The induced subgraph of G on S is denoted G[S ].

Definition 2.1. Let u, v be two vertices of G, and let A1 | B1, A2 | B2, . . . ,
An | Bn be a list of cuts. The height hu,v(q) of

q = qA1|B1qA2|B2 · · · qAn|Bn
with respect to u and v is the number of cuts in the list that put u and v in different
parts.

If there is an edge between u and v in G, then we will use hu,v(q) to denote the
degree of suv in φG(q). Another way to define the height of q with respect to u
and v is as the degree of suv in φG+uv(q), and that is a good way to think of it.

Definition 2.2. A set of generators

qAi,1|Bi,1qAi,2|Bi,2 · · · qAi,ni |Bi,ni
− qA′

i,1|B ′
i,1
qA′

i,2|B ′
i,2

· · · qA′
i,ni

|B ′
i,ni

of IG is slow-varying with respect to the vertices u and v of G if
∣∣hu,v(qAi,1|Bi,1 · · · qAi,ni |Bi,,ni

)− hu,v(qA′
i,1|B ′

i,1
· · · qA′

i,ni
|B ′
i,ni
)
∣∣ ≤ 2

for all i.

Lemma 2.3. If w1 − w2 − · · · − wk is a path in G, then

hw1,wk (qA|B) ≡
k−1∑
i=1

(swiwi+1 − degree of φG(qA|B))

modulo 2.

Proof. A walk on the path from w1 to wk crosses the cut an odd number of times
if and only if w1 and wk are in different parts.

Lemma 2.4. If there is a path in G from u to v and if φG(q) = φG(q
′), then

hu,v(q) ≡ hu,v(q
′) modulo 2.

Proof. Use Lemma 2.3.

Proposition 2.5. Any set of generators of IG validating µ(G) ≤ 2 is slow-
varying with respect to any vertex pair.

Proof. The statement’s truth is self-evident.

Theorem 2.6. Let G be a graph with two special nonadjacent vertices u and
v. Assume that G can almost be decomposed into a left and right part : there
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are L,R ⊆ V(G) such that L ∪ R = V(G), L ∩ R = {u, v}, and E(G) =
E(G[L]) ∪ E(G[R]).

If there is a path from u to v in both G[L] and G[R], and if there exist slow-
varying generators of both IG[L] and IG[R] with respect to u and v, then

µ(G) ≤ max{2µ(G[L])− 2, 2µ(G[R])− 2,µ(G[L] + uv),µ(G[R] + uv)}.
The cut ideal of G is generated by a union of

(i) lifts of generators of IG[L]+uv ,
(ii) lifts of generators of IG[R]+uv ,

(iii) joins of generators q1 − q2 of IG[L] and q3 − q4 of IG[R] such that
|hu,v(q1)− hu,v(q2)| = |hu,v(q3)− hu,v(q4)| = 2, and

(iv) quadratic binomials with which to reorder.

Proof. The basic part of this proof, which involves onlyG[L] andG[R], is in the
spirit of the proof of Theorem 2.1 in [12].

We will prove Theorem 2.6 by an explicit construction of generators for IG. Let

q =
n∏
i=1

qAi |Bi and q ′ =
n∏
i=1

qA′
i
|B ′
i

be two elements of K[qA|B : A � B = V(G)] with φG(q) = φG(q
′). If, for any

such q and q ′, we can construct a sequence of moves from q to q ′, then we can
generate IG. A move from q1 to q2 is a composition of a q3 with a binomial gen-
erator q4 − q5 such that

q1 − q2 = q3(q4 − q5).

We can assume that hu,v(q) ≥ hu,v(q
′).

Main idea. To construct the sequence from q to q ′, we use sequences from qL
to q ′

L and from qR to q ′
R. (Note that qL is q induced on L, and likewise for qR.) If

we simply took a sequence from qL to q ′
L given by IG[L] and a corresponding one

on R and tried to glue them together, it would sometimes fail on the vertex pair u
and v. What goes wrong is that the number of cuts with u and v in different parts
might not be the same. That is, the height hu,v could be different on the left and
the right side. Yet we know that the height is the same for qL and qR at the start of
the sequence and also for q ′

L and q ′
R at the end of the sequence.

In the sequence qL, . . . , q ′
L , the number of cuts with u and v in different parts can

look like the fat gray line in Figure 1. If it changes, it does so by an even number
(per Lemma 2.3). It never changes by more than 2 because IG[L] is slow-varying.
Since the height of the sequence qR , . . . , q ′

R need not have the same shape as the
gray line, we must normalize the sequences.

How to normalize the sequence qL, . . . , q ′
L. We do this as described in Fig-

ure 1. Let q ′
L,h be the last element in the sequence with height h for h = hu,v(qL),

hu,v(qL)−2, . . . ,hu,v(q ′
L)+2,hu,v(q ′

L); let qL,h be the element after q ′
L,h+2 in the

sequence for h = hu,v(qL)− 2, . . . ,hu,v(q ′
L)+ 2,hu,v(q ′

L); and let qL,hu,v(qL) =
qL. In our normalized sequence we still go from q ′

L,h to qL,h−2 via a generator
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Figure 1 Vertical axis: height with respect to u, v

of IG[L]. But from qL,h to q ′
L,h we build up the sequence by using generators of

IG[L]+uv; this is possible because the heights of qL,h and q ′
L,h are the same. For

our normalized sequence, the height is never increasing.
Normalize qR , . . . , q ′

R in the same way. The plots of the heights for the nor-
malized sequences on L and R now look the same, so we can put the sequences
together without any conflicts regarding u and v.

Thus we need four kinds of moves:

(F1) all from IG[L]+uv;
(F2) all from IG[R]+uv;
(F3) those from IG[L] and IG[R] that change height by 2; and
(F4) reorderings to match cuts.

Let FL, FL+uv , FR , and FR+uv be the respective binomial generating sets of IG[L],
IG[L]+uv , IG[R], and IG[R]+uv. If the maximal degree of a binomial in FL or FR is
M, then extend FL to

F̃L = {q1(q2 − q3) : degree of q1q2 ≤ 2M − 2 and q2 − q3 ∈ FL}
and FR to

F̃R = {q1(q2 − q3) : degree of q1q2 ≤ 2M − 2 and q2 − q3 ∈ FR}.
The extension is needed to allow binomial generators of different degree from the
left and right side to be joined when the height decreases by 2. In the definitions
of F1, F2, and F3, any product of the type

m∏
i=1

qCi |Di

is assumed to have an order such that

hu,v(qC1|D1) ≥ · · · ≥ hu,v(qCm|Dm).
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Let

F1 =
{ m∏
i=1

qCi |Di −
m∏
i=1

qC ′
i
|D ′

i
∈ K[qG] :

m∏
i=1

qCi∩L|Di∩L −
m∏
i=1

qC ′
i
∩L|D ′

i
∩L ∈ FL+uv ,

Ci ∩ R = C ′
i ∩ R for i = 1, . . . ,m

}
;

F2 =
{ m∏
i=1

qCi |Di −
m∏
i=1

qC ′
i
|D ′

i
∈ K[qG] :

m∏
i=1

qCi∩R|Di∩R −
m∏
i=1

qC ′
i
∩R|D ′

i
∩R ∈ FR+uv ,

Ci ∩ L = C ′
i ∩ L for i = 1, . . . ,m

}
;

F3 =
{ m∏
i=1

qCi |Di −
m∏
i=1

qC ′
i
|D ′

i
∈ K[qG] :

m∏
i=1

qCi∩L|Di∩L −
m∏
i=1

qC ′
i
∩L|D ′

i
∩L ∈ F̃L,

m∏
i=1

qCi∩R|Di∩R −
m∏
i=1

qC ′
i
∩R|D ′

i
∩R ∈ F̃R ,

hu,v

( m∏
i=1

qCi |Di

)
�= hu,v

( m∏
i=1

qCi |Di

)}
;

F4 =
{ 2∏
i=1

qCi |Di −
2∏
i=1

qC ′
i
|D ′

i
∈ K[qG] :

C1 ∩ L = C ′
1 ∩ L, C2 ∩ L = C ′

2 ∩ L,

C1 ∩ R = C ′
2 ∩ R, C2 ∩ R = C ′

1 ∩ R
}
.

We have that F = F1 ∪ F2 ∪ F3 ∪ F4 is a generating set of IG. From that we get

µ(G) ≤ max{2, 2µ(G[L])− 2, 2µ(G[R])− 2,µ(G[L] + uv),µ(G[R] + uv)}.
In G[L] there is an induced path from u to v with more than one edge. For the
path with two edges we have µ = 2 and thus, by contraction, µ ≥ 2 for any path;
this shows that µ(G[L]) ≥ 2. The 2 can be removed to yield

µ(G) ≤ max{2µ(G[L])− 2, 2µ(G[R])− 2,µ(G[L] +uv),µ(G[R] +uv)}.
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Corollary 2.7. Let H1 and H2 be two graphs on different vertex sets that sat-
isfy the following conditions:

• u1, v1 are two distinct nonadjacent vertices of H1;
• u2, v2 are two distinct nonadjacent vertices of H2;
• H1 and H2 are connected : and
• µ(H1),µ(H2),µ(H1 + u1v1),µ(H2 + u2v2) ≤ 2.

Then µ ≤ 2 for the graph obtained by gluing u1 = u2 and v1 = v2 in H1 ∪H2.

Proof. Insert Proposition 2.5 into Theorem 2.6.

The graphs withoutK4-minors are also called series-parallel graphs. Starting with
the complete graphs on less than four vertices, the connected series-parallel graphs
can be constructed by the gluing of two smaller ones: either in series over one ver-
tex or in parallel over two vertices (that may or may not be connected) [6].

Corollary 2.8 [12, Conj. 3.5]. The cut ideal is generated by quadrics if and
only if G is free of K4-minors.

Proof. We prove that if G is series-parallel then µ(G) ≤ 2; the other direction
was proved in [12]. We need only prove the statement for connected series-parallel
graphs.

The proof is by induction on the number of vertices of G. If there are fewer
than four vertices, then µ(G) ≤ 2 by explicit calculations in [12]. So assume that
G has at least four vertices. If G is constructed by two graphs H1 and H2 put in
series and glued at one vertex, then µ(G) = max{µ(H1),µ(H2)} ≤ 2 by the fiber
construction in [12]. However, ifG is constructed by two graphsH1 andH2 glued
parallel together in two vertices, then there are two cases.

Case 1: No matter how the subgraphs H1 and H2 are chosen to be glued to-
gether in parallel to create G, one of them will be only an edge. Assume that H2

is only the edge uv and that uv is not in H1. If H1 came from a parallel gluing of
H ′

1 andH ′′
1 at u and v, thenG could be parallel constructed fromH ′

1 andH ′′
1 +uv;

since none of these is only an edge, we have a contradiction. So H1 is from a se-
ries gluing at some vertexw /∈ {u, v}. Both graphs glued together to getH1 cannot
be only edges, for then G would be a triangle yet we assumed that G had more
than three vertices. Hence we can assume that the part ofH1 between v andw has
more than two vertices. But thenG can be formed as a parallel construction glued
at v and w when none of the parts is only an edge. That is the situation in Case 2.

Case 2: The graph G can be created by a parallel construction at u, v of two
graphsH1 andH2, and both of them have more than two vertices. If uv is an edge
of G, then µ(G) = max{µ(H1 + uv),µ(H2 + uv)} ≤ 2 because H1 and H2 are
series-parallel. If there is no edge between u and v inG, then we use thatH1,H2,
H1 + uv, and H2 + uv are series-parallel, together with Corollary 2.7, to obtain
µ(G) ≤ 2.
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