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Polarized Complexity-1 T -Varieties

Nathan Owen Ilten & Hendrik Süss

Introduction

It is well known that there is a correspondence between polarized toric varieties and
lattice polytopes. The main result of this paper is to generalize this to the setting
of normal varieties with effective complexity-1 torus action—that is, complexity-1
T-varieties. In order to do so, we introduce so-called divisorial polytopes. In short,
a divisorial polytope on a smooth projective curve Y in a lattice M is a piecewise
affine concave function

� =
∑
P∈Y

�P · P : � → DivQY

from some polytope in MQ to the group of Q-divisors on Y such that:

(i) deg�(u) > 0 for u from the interior of �;
(ii) deg�(u) > 0 or �(u) ∼ 0 for u a vertex of �; and

(iii) the graph of �P has integral vertices for every P ∈ Y.

We then show that, similarly to the toric case, there is a correspondence between
polarized complexity-1T-varieties and divisorial polytopes. We also describe how
the smoothness, degree, and Hilbert polynomial of a polarized T-variety can be
determined from the corresponding divisorial polytope.

There are two other logical approaches to describing a polarized complexity-1
T-variety. Indeed, T-invariant Cartier divisors on complexity-1 T-varieties were
described in terms of divisorial fans and support functions in [PS], which also
included a characterization of ampleness. On the other hand, a sufficiently high
multiple of some polarizing line bundle gives a map to projective space such that
the corresponding affine cone is a complexity-1 T-variety describable by a poly-
hedral divisor D. We compare these two approaches with our divisorial polytopes
and show how to pass from one description to another.

We also present two other results. First, we show how the complicated combina-
torial data of a divisorial fan used to describe a general T-variety can be simplified
to a so-called marked fansy divisor for complete complexity-1 T-varieties. Sec-
ond, we address the problem of finding minimal generators for the multigraded
C-algebra corresponding to a polyhedral divisor D on a curve. This then gives us
a method to determine whether projective embeddings of complexity-1T-varieties
are, in fact, projectively normal.
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We begin in Section 1 by recalling the construction of T-varieties from [AHS].
We specialize to the complexity-1 case and introduce marked fansy divisors. In
Section 2, we then recall the description of T-invariant Cartier divisors. Section 3
is dedicated to divisorial polytopes. Here we prove the correspondence between
divisorial polytopes and polarized complexity-1 T-varieties and also discuss prop-
erties of divisorial polytopes. In Section 4, we compare support functions and di-
visorial polytopes with polyhedral divisors corresponding to affine cones. Finally,
in Section 5 we describe how to find minimal generators for affine complexity-1
T-varieties.

We remark that, even though this paper looks only at complexity-1 T-varieties,
we believe that the correspondence between polarized T-varieties and divisorial
polytopes should generalize to higher-complexity torus actions. To generalize the
preceding definition of divisorial polytopes, we first replace Y by any normal pro-
jective variety; then the degree conditions in (i) and (ii) are replaced, respectively,
by ampleness and semiampleness.

1. Polyhedral Divisors and T -Varieties

We recall several notions from [AHS] and then specialize these to the case of
complexity-1 T-varieties. As usual, let N be a lattice with dual M and let NQ and
MQ be the associated Q vector spaces. For any polyhedron � ⊂ NQ , let tail(�)

denote its tailcone—that is, the cone of unbounded directions in �. Thus, � can
be written as the Minkowski sum of some bounded polyhedron and its tailcone.
For any polyhedron � ⊂ NQ and vector u in the dual of its tailcone, let face(�, u)
be the set of � on which u attains its minimum. A face of � is then defined to be
any subset of � of the form face(�, u), or the empty set.

Let Y be a normal semiprojective variety over C and let σ ⊂ NQ be a pointed
polyhedral cone. By σ∨ we denote the dual cone of σ.

Definition. A polyhedral divisor on Y with tailcone σ is a formal finite sum

D =
∑
P

�P · P,

where P runs over all prime divisors on Y and �P is a polyhedron with tailcone σ.

By “finite” we mean that only finitely many coefficients differ from the tailcone.
Note that the empty set is also allowed as a coefficient. If Y is a complete curve
then we define the degree of a polyhedral divisor by

deg D :=
∑
P

�P ,

where summation is via Minkowski addition. If Y is an affine curve, we define the
degree as deg D = ∅.
We can evaluate a polyhedral divisor for every element u∈ σ∨ ∩M via

D(u) :=
∑
P

min
v∈�P

〈v, u〉P
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in order to obtain an ordinary divisor D(u) on the locus of D, which is defined as
Loc D := Y \ (⋃

�P=∅ P
)
.

Definition. A polyhedral divisor D is called proper if D(u) is a semiample Q-
Cartier divisor for all u∈ σ∨ and if D(u) is big for all u in the interior of σ∨. If Y
is a curve, note that D is proper exactly when deg D � σ, and for all u ∈ σ∨ with
minv∈deg D〈v, u〉 = 0 it follows that a multiple of D(u) is principal.

To a proper polyhedral divisor we associate an M-graded C-algebra and conse-
quently an affine scheme admitting a T N = N ⊗ C∗-action:

X(D) := Spec
⊕

u∈σ∨∩M
H 0(Y, D(u)).

This construction gives a normal variety of dimension dimNQ + dimY together
with an effective T N -action.

Remark. If D is a nonproper polyhedral divisor, we can still associate an M-
graded C-algebra as just described and consequently an affine scheme X(D) with
T N -action. However, the resulting algebra need not be finitely generated; simi-
larly, we can’t say anything about the dimension of X(D) or the effectiveness of
the T N -action.

In order to glue together the affine varieties with T N -action, we require some fur-
ther definitions.

Definition. Let D = ∑
P �P · P and D ′ = ∑

P �′P · P be two polyhedral di-
visors on Y with respective tailcones σ and σ ′.
• We define their intersection by

D ∩D ′ :=
∑
P

(�P ∩�′P) · P.

• We say D ′ ⊂ D if �′P ⊂ �P for every point P ∈ Y.

• For y ∈ Y a not necessarily closed point, we call Dy := ∑
P�y �P the slice of

D at P and denote it by Dy as well.

If D ′ ⊂ D and if both are proper, then we have the inclusion⊕
u∈σ∨∩M

H 0(Y, D ′(u)) ⊃
⊕

u∈σ∨∩M
H 0(Y, D(u)),

which corresponds to a dominant morphism X(D ′)→ X(D). We say that D ′ is a
face of D, written D ′ ≺ D, if this morphism is an open embedding.

Definition. A divisorial fan is a finite set S of proper polyhedral divisors such
that, for D, D ′ ∈ S, we have D � D ′ ∩D ≺ D ′ with D ′ ∩D also in S. The tailfan
of S is the set of all tail(D) for D ∈ S. For a not necessarily closed point y ∈ Y,
the polyhedral complex Sy defined by the polyhedra Dy , D ∈ S, is called a slice
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of S. The set S is called complete if all slices Sy are complete subdivisions of NQ

and if Y is complete.

We may glue the affine varieties X(D) via

X(D)← X(D ∩D ′)→ X(D ′).

This construction yields a normal scheme X(S ) of dimension dimNQ + dimY

with an effective torus action by T N ; furthermore, X(S ) is complete if and only
if S is complete. Note that all normal varieties with effective torus action can be
constructed in this manner.

For the rest of this section we will restrict to the case where Y is a curve; this is
thus the case of complexity-1 T-varieties. As we have already seen, the criterion
for properness of a polyhedral divisor simplifies nicely. This is true as well for
the face relation. Let D, D ′ be a polyhedral divisors on a curve Y with D proper.
In this case, we say D ′ � D if �′P is a face of �P for every point P ∈ Y and if
deg D ∩ σ ′ = deg D ′. We then have the following proposition.

Proposition 1.1. Let D, D ′ be polyhedral divisors on a curve Y with D proper.
Then D ′ ≺ D if and only if D ′ � D.

We shall need several lemmas to prove this proposition.

Lemma 1.2 (Refinement lemma). Let D be a polyhedral divisor with affine
locus Y, and let {Ui}i∈I be an affine covering of Y. The polyhedral divisors
D + ∅ · (Y \ Ui) =: D|Ui

≺ D define open subsets X(D|Ui
) ↪→ X(D), which

cover X := X(D).

Proof. Every global section f ∈ �(OY ) gives rise to a section f ∈ �(X, OX)0 =
�(OY ). By [AHS, Prop. 3.1] we have Xf = X(D + ∅ · div(f )). Hence, for prin-
cipal open subsets Ui = Yfi , the claim follows immediately.

Since Y is affine, by refining we can pass to a covering {U ′
j }j∈J of principal

open subsets and corresponding polyhedral divisors D|U ′
j
. Now the X(D|U ′

j
) de-

fine open subsets of X(D|Ui
) and of X as well and also (by the preceding con-

clusion) cover them. Since the inclusions X(D|U ′
j
) ↪→ X factor through the

X(D|Ui
), the former already define an open covering of X.

Lemma1.3 [AHS, Lemma 6.8]. Assume that Loc D ′ = Loc D\Z and that D ′
P =

face(DP , u) for some u ∈ σ∨ and all P ∈ Loc D ′. Then D ′ ⊂ D defines an open
embedding if there is a semiample divisor E with support Z and k · D(u) − E

semiample for k � 0.

Lemma 1.4. If D is proper and D ′ � D, then D ′ is proper, too, and the corre-
sponding morphism i : X(D ′)→ X(D) is an open embedding.

Proof. First we check the properness of D ′. For an affine locus there is noth-
ing to prove, so we shall assume that D ′ and D have complete loci. If deg D ′ =
deg D ∩ σ ′ then, by the properness of D, we get deg D ′ � σ ′. Now for every
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u′ ∈ (σ ′)∨ there exists a decomposition u′ = u − u′′ such that u ∈ σ∨ and u′′ ∈
σ∨ ∩ (σ ′)⊥. First, note that u �→ D ′(u) is by definition a concave map. Hence
D ′(u − u′′) ≥ D ′(u) + D ′(−u′′) holds. The inclusion deg D ′ ⊂ σ ′ implies the
equality D ′(−u′′) = −D ′(u′′). Moreover, the inclusion D ′ ⊂ D allows us to con-
clude that D ′(u) ≥ D(u) and D ′(u′′) ≥ D(u′′). But since deg D ′(u′′) = 0, it
follows that D(u′′) = D ′(u′′); in particular, deg D(u′′) = 0. All together we get
D(u′) ≥ D(u) − D(u′′). Since D(u) and −D(u′′) are semiample by the proper-
ness of D, the same is true for D ′(u′).

We now check that i is an open embedding. Suppose first that D has affine locus.
We shall assume additionally that �′P = face(�P , u) for some u∈ σ∨ and all P ∈
Loc D ′. Then i is indeed an open embedding by Lemma 1.3, since every divisor
is semiample on an affine variety. Dropping the additional assumption, we may
choose an open covering {Uj}j∈J of Y and refine D ′ by D ′|Uj

, as in Lemma 1.2,
such that (D ′|Uj

)P = face(DP , u) for some u and all P ∈ Y. Now we infer that
X(D ′|Uj

) → X(D) is an open embedding for every j and so, by the refinement
lemma, we are done.

For D of complete locus and D ′ not, we again begin by assuming that �′P =
face(�P , u) for some u ∈ σ∨ and all P ∈ Loc D ′; in this case, too, we obtain
our result by applying Lemma 1.3. We may choose any effective divisor with
support Y \ Loc D ′. The relation D ′ ≺ D implies that deg D(u) > 0. Hence,
deg(k ·D(u)−E) > 0 for k � 0. For the general case we may once again refine
D ′ as before to conclude that i is an open embedding.

Finally, if D and D ′ both have complete loci then deg D ′ = degD ∩ σ ′ implies
that, for any u with σ ′ = face(σ, u), we have �′P = face(�P , u) for all P ∈ Y.

Now we can again use Lemma 1.3 with Z = ∅ and E = 0, since D(u) is semi-
ample by the properness condition.

Lemma 1.5. Let D, D ′ be two proper polyhedral divisors with D ′ ≺ D. Then
deg D ′ = σ ′ ∩ deg D.

Proof. If Loc(D) is affine, the claim is immediate. We can thus assume that Loc D
is complete for the rest of the proof. Recall from Proposition 3.4 and Definition 5.1
of [AHS] that D ′ ≺ D is equivalent to the following condition:

For every y ∈ Y, there exists a wy ∈ σ∨ ∩ M and a Dy in the linear
system |D(wy)| such that y /∈ supp(Dy), D ′

y = face(Dy ,wy), and
face(D ′

v ,wy) = face(Dv ,wy) for all v ∈ Y \ supp(Dy).

Now suppose that Loc(D ′) is affine. Then we must show that

σ ′ ∩ deg D = ∅. (1)

For each wy and Dy as before, the support of Dy cannot be empty because other-
wise Loc(D ′) = Loc(D). In particular, deg(D(wy)) > 0. Now, choosing y to be
some general point gives us wy such that σ ′ = face(σ,wy) with (deg D)(wy) > 0.
But this is equivalent to (1), since 〈σ ′,wy〉 = 0.

Suppose instead that Loc(D ′) is complete. Given an element v ∈ deg D ′, it fol-
lows from the properness of D ′ that v ∈ σ ′ and from D ′ ⊂ D that v ∈ deg D.
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Therefore, deg D ′ ⊂ deg D ∩ σ ′. For the other inclusion we choose an element
v = ∑

y vy ∈ deg D ∩ σ ′ with vy ∈Dy. Then we choose an element u ∈ σ∨ such
that D ′

z = face(Dz, u) for some z∈ Y, and this implies that σ ′ = face(σ, u). Since
〈vy , u〉 ≥ min〈Dy , u〉 holds we get 0 = ∑

y〈vy , u〉 ≥ ∑
y min〈Dy , u〉 ≥ 0, where

the first inequality follows from the fact that v ∈ σ ′ and the last inequality from
the properness of D. Hence 〈vy , u〉 = min〈Dy , u〉 holds for every y ∈ Y, and for
y = z we get vz ∈ D ′

z = face(Dz, u). Since this is true for every z ∈ Y, we con-
clude that v = ∑

z vz ∈∑
z D ′

Z = deg D ′.

Proof of Proposition 1.1. The proposition follows directly from Lemmas 1.1–
1.5. Indeed, Lemma 1.4 covers one direction. The other direction follows from
Lemma 1.5 coupled with the fact that, if D ′ ≺ D, then [AHS, Def. 5.1] ensures
that �′P is a face of �P for every point P ∈ Y.

Different divisorial fans S, S ′ can in fact yield the same T-variety X(S ) = X(S ′).
The differing divisorial fans simply correspond to different open affine cover-
ings. On the other hand, divisorial fans with identical slices might yield differing
T-varieties even in the complexity-1 case. However, for complete complexity-1
T-varieties, we can save the situation via the following definition.

Definition. A marked fansy divisor on a curveY is a formal sum! = ∑
!P ·P,

together with a fan " and some subset C ⊂ ", such that the following state-
ments hold.

(i) !P is a complete polyhedral subdivision of NQ , and tail(!P) = " for all
P ∈ Y.

(ii) For full-dimensional σ ∈C, the polyhedral divisor Dσ = ∑
�σ

P ·P is proper;
here �σ

P is the unique element of !P with tail(�σ
P) = σ.

(iii) For σ ∈ C of full dimension and τ ≺ σ, we have τ ∈ C if and only if
deg Dσ ∩ τ �= ∅.

(iv) If τ ≺ σ and τ ∈C, then σ ∈C.

We say that the elements of C are marked. The support of a fansy divisor is the
set of points P ∈ Y, where !P differs from the tailfan ".

Now, given any complete divisorial fan S on Y, we can associate a marked fansy
divisor by setting ! = ∑ SP · P and adding marks to the tailcones of all D ∈ S
with complete locus. We denote this marked fansy divisor !(S ).

Proposition 1.6. For any marked fansy divisor !, there exists a complete divi-
sorial fan S with ! = !(S ). If for two divisorial fans S, S ′ we have that !(S ) =
!(S ′), then X(S ) = X(S ′).

Proof. Assume that ! is supported at P1, . . . ,Pr. We construct a divisorial fan as
follows. Consider the set

S = {Dσ | σ ∈C} ∪ {
� · Pi +∑

j �=i ∅ · Pj | �∈!
(n)
Pi

, tail(�) /∈C
}
.

Now we obtain the divisorial fan S generated by S by adding all intersections of
the polyhedral divisors in S. This is indeed a divisorial fan since part (ii) of the
definition ensures that the polyhedral divisors with maximal tailcone are proper
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while parts (iii) and (iv) ensure that the intersection of two polyhedral divisors is
a face of both of them. Obviously we have !(S ) = !.

Now let S ′ be another divisorial fan with !(S ′) = !. We obtain a common re-
finement S ′′ of S and S ′ by considering all mutual intersections of divisors in S
and S ′. To get the correct marks, the polyhedral divisors with complete locus in
S ′ must be exactly the {Dσ | σ ∈C}. Hence, only polyhedral divisors with affine
locus get refined. Now the claim follows by the refinement lemma.

By Proposition 1.6, we can define X(!) to be X(S ) for any S with ! = !(S ).

Furthermore, every complete complexity-1T-variety can be described via a marked
fansy divisor. We thus can avoid divisorial fans and work instead with the some-
what more handy notion of marked fansy divisors.

Example. The subdivisions demarcated by the black vertical lines in Figure 1,
together with marks for both Q≥0 and Q≤0, give a marked fansy divisor ! on P1

with X(!) equal to the unique log del Pezzo surface of degree 2 with one A1 singu-
larity and two A3 singularities (see [S]). By further subdividing at the gray vertical
line, we get a marked fansy divisor !′. The corresponding T-variety comes to-
gether with a natural map ϕ : X(!′) → X(!), which is a resolution of the A1

singularity.

| |
0 1 2

| |
− 1

2
|

− 1
2

(a) !0 (b) !∞ (c) !1

Figure 1 The fansy divisor for a log del Pezzo surface

2. Invariant Cartier Divisors

Invariant Cartier divisors on complexity-1 T-varieties were described in [PS] in
combinatorial terms. We recall this description here, specializing to complete T-
varieties and replacing divisorial fans with marked fansy divisors. For any piece-
wise affine continuous function f : NQ → Q, set f 0(v) = limk→∞ f(k · v)/k for
any v ∈NQ. We call f 0 the linear part of f. Consider now some complete marked
fansy divisor ! on a smooth projective curve Y with tailfan ".

Definition. By SF(!) we denote the set of all formal sums of the form

h =
∑
P∈Y

hP ⊗ P,

where hP : NQ → Q are continuous functions such that:

(i) hP is piecewise affine with respect to the subdivision !P ;
(ii) hP is integral—that is, if k · v is a lattice point for k ∈ N and v ∈ N, then

k · hP (v)∈Z;
(iii) h0

P does not depend on P, so we denote this so-called linear part of h by h0;
(iv) hP �= h0 for only finitely many P.

We call an element of SF(!) a support function.
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Consider σ a full-dimensional cone in ". We define

h|σ(0) =
∑
P

aP · P

where the aP are determined by writing hP |�σ
P
(v) = 〈v, u〉 + aP . We then define

CaSF(!) to consist of all h ∈ SF(!) such that, for every marked σ ∈ ", h|σ(0)
is a principal divisor on Y. Both SF(!) and CaSF(!) have a natural group struc-
ture. There is a group isomorphism from CaSF(!) to the group T -CaDiv(X(!))

of T-invariant Cartier divisors on X(!); we denote the divisor associated to h by
Dh. We call a support function h ample if Dh is ample.

Proposition 2.1 [PS, 3.28]. Consider h∈CaSF(!). Then h is ample if and only
if (a) h is strictly concave and (b) for all unmarked σ ∈" with σ full-dimensional,
−degh|σ(0) > 0.

Given a support functionh∈CaSF(!), we define its weight polytope �h ⊂ MQ by

�h = {u∈MQ | h0(v) ≤ 〈v, u〉 ∀v ∈NQ}.
We then define the dual of h to be the piecewise affine concave function h∗ : �h →
DivQY given by

h∗ =
∑
P∈Y

h∗P · P, h∗P (u) = min
v∈!P
v vertex

〈v, u〉 − hP (v).

Proposition 2.2 [PS, 3.23]. For h∈CaSF(!) and X = X(!), we have

H 0(X,Dh)u =
{

H 0(Y,h∗(u)) if u∈�h ∩M,

0 if u /∈�h ∩M.

Example. Continuing the example from Section 1, the support function h pic-
tured in Figure 2 corresponds to a divisor on X(!′). In fact, using the formula for
canonical divisors from [PS], one easily checks that Dh = φ∗(−2K)− E, where
K is a canonical divisor on X(!) and E is the exceptional divisor of ϕ. Using
Proposition 2.1, we easily check that Dh is ample.

-1 0 1 2 3
-3

-2

-1

0

1

| ||

-1 0 1 2 3
-3

-2

-1

0

1

|

-1 0 1 2 3
-3

-2

-1

0

1

|

(a) h0 (b) h∞ (c) h1

Figure 2 The support function for ϕ∗(−2K)− E
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3. Divisorial Polytopes

Definition. A divisorial polytope (�, �) consists of a lattice polytope � ⊂ MQ

and a piecewise affine concave function

� =
∑

�P · P : � → DivQY

such that:

(i) deg�(u) > 0 for u in the interior of �;
(ii) deg�(u) > 0 or �(u) ∼ 0 for u a vertex of �; and

(iii) for all P ∈ Y, the graph of �P is integral (i.e., has its vertices in M × Z).

We often will call the pair (�, �) simply �.

The set of divisorial polytopes for fixed lattice M and fixed curve Y actually form
a natural semigroup. Indeed, for divisorial polytopes (� ′, � ′) and (� ′′, � ′′), we
define � ′ +� ′′ : (� ′ +� ′′)→ divQY via

(� ′ +� ′′)(u) =
∑

max
u′+u′′=u

u′∈� ′, u′′∈� ′′
� ′

P (u
′)+� ′

P (u
′′).

The neutral element is then obviously the constant function 0 on the 0 polytope.
For any k ∈N and divisorial polytope �, we similarly define k ·� to be the k-fold
sum of �.

Before proceeding to associate a marked fansy divisor and support function to
a divisorial polytope, we briefly recall the toric construction of a fan from a poly-
tope. Consider a polytope � ⊂ MQ. For every face F of �, we consider the cone
σF ⊂ NQ consisting of all v such that 〈v, ·〉 obtains its minimum at F ; these are
exactly the inner normal vectors at F. The cones σF form a fan—the normal fan of
�, which can be seen as spanned by the regions where the piecewise linear func-
tion minu∈�〈u, ·〉 is linear. The corresponding face to a given cone σ of the normal
fan we denote by Fσ . The described correspondence between faces of � and cones
of the normal fan is inclusion reversing, and it maps faces of dimension r to cones
of dimension dimN − r. Moreover, we have 〈u− u′ | u, u′ ∈F 〉 = σ⊥F .

Proposition 3.1. Let ! be a marked fansy divisor, and let g,h ∈ CaSF(!) be
ample. Then:

(i) (g∗, �g) and (h∗, �h) are divisorial polytopes;
(ii) (g + h)∗ = g∗ + h∗; and

(iii) if g∗ = h∗, then g = h.

Proof. Every maximal coneσ ∈ tail! corresponds to a vertexuσ of �g. Moreover,
the concaveness of g implies that −g|σ(0) = g∗(uσ ). Now the ampleness condi-
tion on g implies that deg g∗(uσ ) > 0 for unmarked σ, and the Cartier condition
implies that g∗(uσ ) ∼ 0 for marked σ. Since gP is integral, the same is true for the
graph of g∗P and the first claim follows. The remaining two claims are easily seen
from the definitions of g∗ and h∗.
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We now show how to associate a marked fansy divisor and support function to a di-
visorial polytope (�, �). We begin by setting �∗

P (v) = minu∈�(〈v, u〉 −�P (u)),
which is a piecewise affine concave function on NQ. Now let !P be the polyhe-
dral subdivision of NQ induced by �∗

P and take ! = ∑
!P · P. Furthermore, we

add a mark to an element σ ∈ tail(!) if (deg % �)|Fσ
≡ 0, where Fσ ≺ � is the

face where 〈·, v〉 takes its minimum for all v ∈ σ.

Theorem 3.2. With notation as in the construction just described, ! is a marked
fansy divisor and �∗ = ∑

�∗
P · P ∈CaSF(!) is a support function that satisfies

the following two properties:

(i) �∗ is ample;
(ii) (�∗∗, ��∗) = (�, �).

Thus, the construction induces a correspondence between divisorial polytopes and
pairs (X, L) of complexity-1 varieties with an invariant ample line bundle.

Proof. The maximal polyhedra in !P consist of those v such that the minimum of
(〈v, ·〉 −�P (·)) is realized by the same vertex u∈�. We will denote such a poly-
tope by �u

P . For w ∈�u
P and v ∈ σu we obviously have v + w ∈�u. Hence, the

tailfan of !P is exactly the normal fan of �.

Next we have to check that properties (ii)–(iv) for the markings of a fansy divi-
sor are fulfilled. For condition (iv) we must check that, for any marked cone, all
cones that contain it are also marked. By our setting of marks this corresponds to
the fact that if (deg %�)|F ≡ 0 holds then it is also true for all faces of F.

We now turn to conditions (ii) and (iii). Fix some vertexu of � with deg�(u) =
0, and let σ be the corresponding cone. We now consider some v /∈ σ. This im-
plies that 〈v, ·〉 does not become minimal at u. Since deg�(u′) ≥ 0, the minimum
of (〈v, ·〉 − deg�(·)) also cannot be realized at u and v /∈ ∑

P �u
P = deg Dσ.

Because deg�(u′) > 0 for some u′, we also infer that 0 /∈ deg Dσ. Hence we ob-
tain deg Dσ � σ.

We next assume that deg Dσ ∩ τ �= ∅ for some face τ of σ. We choose some
v ∈ deg Dσ ∩ τ. Since v ∈ deg Dσ we know that (〈v, ·〉 − deg�(·)) obtains its
minimum at u. Hence (〈v, u′ 〉 − deg�(u′)) ≥ (〈v, u〉 − deg�(u)) for any ele-
ment u′ ∈�. For u′ ∈ Fτ we get 〈v, u〉 = 〈v, u′ 〉 since u′ − u ∈ τ ⊥. This implies
that deg�(u′) = deg�(u) = 0. Therefore, (deg % �)|Fτ

≡ 0. By construction
of ! we thus have that τ is marked, too. For the other direction, assume that
(deg % �)|Fτ

≡ 0 for some τ ≺ σ ∈C. We choose any interior point v ∈ relint τ.
We know that the elements of deg Dσ are those v such that (〈v, ·〉 − �P (·)) takes
its minimum at u = Fσ . For any u′′ /∈ Fτ we then get 〈v, u′′ 〉 > 〈v, u〉 and hence
(〈k · v, u′′ 〉 − deg�(u′)) > (〈k · v, u〉 − deg�(u)) for k � 0. Since deg�(u′) =
deg�(u) holds for u′ ∈Fτ , we conclude that k · v ∈ deg Dσ ∩ τ. This proves (iii).

To finish the proof of (ii), assume that deg Dσ(w) = 0. We have to show that
a multiple of Dσ(w) is principal. Without loss of generality, we may assume that
τ = face(σ, u′) is a facet; thus τ = σ ∩σ ′ for another maximal cone σ ′ with corre-
sponding vertex u′. Now w = λ ·(u′−u) and u′−u∈ τ ⊥. By the last step we know
that deg Dσ ′ ∩τ �= ∅ and hence, for every P, there is a vP ∈�u

P ∩�u′
P . This implies
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that (〈vP , u〉−�P (u)) = (〈vP , u′ 〉 −�P (u
′)). Thus we obtain min〈�u

P , u′ − u〉 =
〈vP , u′ − u〉 = �P (u

′) − �P (u). Condition (ii) then follows from the fact that
�(u) and �(u′) are principal, since Dσ(λ · (u′ − u)) = λ · (�(u′)−�(u)).

Now �∗
P is strictly concave on !P by the construction of !. Furthermore, for

σ maximal we have �∗|σ(0) = −�(uσ ). Hence the ampleness follows from the
condition deg�(u) > 0 for σu unmarked. Finally, a simple calculation shows that
(�∗∗, ��∗) = (�, �).

Remark. Two divisorial polytopes (�, �) and (� ′, � ′) give rise to isomorphic
pairs (X, L) and (X ′, L′) if and only if there exist isomorphisms F : M ′ → M

and ϕ : Y → Y ′ as well as a linear map A from M ′ to the principal divisors on Y ′
such that

� = F(� ′) and � ′ = ϕ∗F ∗� + A.

Remark. Let � ⊂ M ′
Q be a polytope in some lattice M ′. Consider an exact

sequence

0 → Z
F−→ M ′ G−→ M → 0

corresponding to the torus inclusion TM ↪→ TM ′ of codimension 1. We choose a
section s : M ↪→ M ′ and consider the map �� : G(�)→ Div(P1) given by

(��)0(u) = max{a ∈Q | FQ(a)+ s(u)∈� ∩G−1
Q (u)},

(��)∞(u) = −min{a ∈Q | FQ(a)+ s(u)∈� ∩G−1
Q (u)}.

Then (��,G(�)) is a divisorial polytope. Moreover, for �� the previous con-
struction yields exactly the toric variety and the ample divisor corresponding to �

but with the restricted torus action of TM.

Example. Consider the divisorial polytope � on the interval [−2, 2] pictured in
Figure 3. One easily checks that the corresponding marked fansy divisor is ex-
actly !′ from the example in Section 1 and that the corresponding support function
is exactly the function h from the example in Section 2. Conversely, one easily
checks that h∗ = �.
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Figure 3 A divisorial polytope on P
1
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We now describe how to read off simple geometric information about a projective
T-variety from the corresponding divisorial polytope. For the following, we fix
some divisorial polytope (�, �) with corresponding projective variety X and am-
ple divisor D. We first use our divisorial polytope to define some other polytopes.

Definition. For a finite set of points I ⊂ Y, define

�(�, I ) := Conv

({(
u,

∑
P∈I

�P (u)

) ∣∣∣∣ u∈�
}
∪

{(
u,

∑
P /∈I

−�P (u)

) ∣∣∣∣ u∈�
})

⊂ MQ ×Q.

For any point P ∈ Y, define

�̃(�,P) := Conv
(
{(u,�P (u)) | u∈�} ∪�×min

u∈�
�P (u)

)
⊂ MQ ×Q.

Note that, although �(�, I ) need not have lattice vertices, �̃(�,P) is always a
lattice polytope.

Proposition 3.3. Let m = dimMQ. Then

Dm+1 = (m+ 1)! · vol�(�, I )

for any set of points I ⊂ Y.

Proof. See [PS, Prop. 3.31].

For any polytope � with lattice vertex v, we say that � is smooth at v if the di-
rections of � at v form a lattice basis. Now, for any P ∈ Y, consider some v ∈�
with (v,�P (v)) a vertex of the graph of �P .

Definition. We say that � is smooth at (P, v) if:

(i) for deg�(v) > 0, �(�,P) is smooth at (v,�P (v)); or
(ii) for deg�(v) = 0, Y = P1 and there exist points P1,P2 ∈ Y such that, for all

pointsP �= P1,P2, (v,�P (v)) is contained in only one full-dimensional poly-
tope in ��P

(which additionally has integral slope) and the polytope �(�,P1)

is smooth at (v,�P1(v)).

Proposition 3.4. The T-variety X corresponding to (�, �) is smooth if and only
if, for every P ∈ Y and every v ∈� with (v,�P (v)) a vertex of ��P

, � is smooth
at (P, v).

Proof. The vertices (v,�P (v)) of the graphs of �P correspond to affine invari-
ant charts of the corresponding variety. If deg�(v) > 0 then the corresponding
chart has affine locus, and one easily checks that criterion (i) corresponds to the
hypothesis of Theorem 3.3 in [S]. On the other hand, if deg�(v) > 0 then the
corresponding chart has complete locus and the criterion (ii) corresponds to the
hypothesis of Proposition 3.1 in [S].

Finally, suppose that the divisor D is very ample and gives a projective embed-
ding. We are interested in the Hilbert polynomial HD of D. Recall that for natural
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numbers k sufficiently large, HD(k) = dimH 0(X, k ·D). On the other hand, re-
call that for any lattice polytope � of dimension d there is a unique polynomial E�

of degree d, called the Ehrhart polynomial of �, such that E�(k) is the number of
lattice points in k ·� for any k ∈N.

Definition. Let P be the set of all P ∈ Y such that �P is not trivial. We then
define the Ehrhart polynomial E� of the divisorial polytope � by

E�(k) = E�(k)+
∑
P∈P

(
E�̃(�,P)(k)− E�(k) ·

(
1− k ·min

u∈�
�P (u)

))
.

Remark. One easily checks that if � only has nontrivial coefficients for two
points P1 and P2, then E� = E�(�,P1).

Proposition 3.5. We have

E� ≥ HD ≥ E� − g(Y ) · E�.

Furthermore, if deg(�(u)) ≥ 2g(Y ) − 1 for all u ∈ � ∩ M, then HD =
E� − g(Y ) · E�. In particular, if Y = P1 then HD = E�.

Proof. For any k ∈ N, any P ∈ P, and any u ∈ k · � ∩ M, we have that
((k · �)P (u)) − k · minv∈� �P (v) + 1 is equal to the number of lattice points
in k · �̃(�,P) projecting to u. Summing over all u∈ k ·�∩M and P ∈P, we get∑
u∈k·�∩M

deg((k ·�)(u)) =
∑
P∈P

(
E�̃(�,P)(k)− E�(k) ·

(
1− k ·min

v∈�
�P (v)

))

and thus ∑
u∈k·�∩M

1+ deg((k ·�)(u)) = E�(k).

Now, for k large enough,

HD(k) =
∑

u∈k·�∩M
h0(Y, (k ·�)(u)).

Applying the Riemann–Roch theorem for curves, we have that

deg((k ·�)(u)) + 1− g(Y ) ≤ h0(Y, (k ·�)(u)) ≤ deg((k ·�)(u)) + 1

and the proposition follows.

Example. We apply Propositions 3.1–3.5 to the divisorial polytope � from Fig-
ure 3. Regardless of the set of points I ⊂ Y, we always have vol�(�, I ) = 3
and thus that the corresponding divisor D has self-intersection number 6. We can
also see that the corresponding projective surface is not smooth: � is not smooth
at (P,±2) for any point P ∈ Y. Finally, we will see in Section 5 that D is very
ample, so we can calculate the Hilbert polynomial of D. Indeed, we have

E�(k) = 4k + 1,

E�̃(�,0) = 11k2 + 6k + 1,

E�̃(�,∞) = E�̃(�,1) = 4k2 + 4k + 1
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and thus
HD(k) = E�(k) = 3k2 + 2k + 1.

4. Affine Cones

Let ! be a marked fansy divisor on a curveY, and let h∈CaSF(!) be such that Dh

is globally generated. Then the sections of Dh determine a map f : X(!)→ P n;
we denote the image of f byX. Note thatX also comes with a natural complexity-1
T-action, but in general X need not be normal. By C(X) we denote the affine cone

over X with respect to this embedding; let C̃(X) be the normalization of C(X).

The following proposition tells us how to describe C̃(X) in terms of a polyhedral
divisor.

Proposition 4.1. With h as just described, set

D =
∑
P

Conv(�−hP ) · P,

where �−hP is the graph of −hP . If the map f is birational, then C̃(X) = X(D)

and D is a proper polyhedral divisor on Y.

Proof. The homogeneous coordinate ring ofX with respect to the given embedding
is A = ⊕

k≥0 S k(H 0(X(!),Dh)), where S k is the kth symmetric product. Thus,
C(X) = SpecA. Now the integral closure of A is Ã = ⊕

k≥0 H
0(X(!), k ·Dh);

this follows from [Ha, Exer. II.5.14(a)] and the fact that f is birational. Thus
C̃(X) = Spec Ã.

On the other hand, we claim that⊕
k≥0

H 0(X, k ·Dh) =
⊕

(u,k)∈tail(D)∩(M×Z)

H 0(Y, D((u, k))).

Indeed, H 0(X, k ·Dh) = ⊕
u∈�k·h H

0(Y, (k · h)∗(u)) by Proposition 2.2. Further-
more, �k·h = {u ∈ MQ | (u, k) ∈ tail D}. The claim then follows from the fact
that, for P ∈ Y,

D((u, k))P = min〈Conv(�−hP ), (u, k)〉 = min
v∈NQ

〈v, u〉 − k · hP (v) = (k · h)∗(u).
We thus have

C̃(X) = Spec
⊕

(u,k)∈tail(D)∩(M×Z)

H 0(Y, D((u, k))) = X(D).

Since f is birational, it follows that degh∗(u) > 0 for u in the interior of �h;
therefore, D is proper.

Remark. A sufficient criterion for f to be birational is that h∗(u) be very ample
for some u∈�h ∩M and that the set

{u∈�h ∩M | dimH 0(Y,h∗(u)) > 0}
generate the lattice M.
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Remark. Let X be the image in projective space of some complexity-1T-variety
X̃ via a birational map corresponding to an invariant, globally generated, am-
ple divisor D. Suppose now that the normalized affine cone over X is given by

C̃(X) = X(D), where D is a polyhedral divisor on some smooth projective curve
Y with corresponding lattice N ′. Choose some isomorphism N ′ ∼= N ⊕ Z , where
the second term in the direct sum corresponds to the natural C∗-action on the cone

C̃(X). Reversing Proposition 4.1, we can easily recover a marked fansy divisor !
and a support function h = ∑

hP · P such that X̃ = X(!) and D = Dh. Indeed,
let h : NQ → Q be defined by

−h(v)P = minπ2(π
−1
1 (v) ∩DP),

where πi is the projection of NQ ⊕ Q onto the ith factor. Let ! be the polyhe-
dral subdivision of N induced by the piecewise affine function h. We add marks
to a top-dimensional cone σ in the tailfan of ! if h|σ(0) is principal, and we
add marks to lower-dimensional cones τ if, for some full-dimensional marked σ,
τ ≺ σ and deg Dσ ∩ τ �= ∅. Then one easily checks that ! is a marked fansy di-
visor, h ∈ CaSF(!), X = X(!), and the embedding X ↪→ P n is given by the
linear system Dh. Note that this procedure for determining ! from D coincides
with a special case of the procedure in [AHe, Sec. 5], although we now also re-
tain information on the linear system Dh of the embedding. The description of the
corresponding divisorial polytope is even more simple: one easily checks that �h

is the projection of (MQ × {1}) ∩ tail D∨ onto MQ and that h∗(u) = D((u, 1)).

Example. It is not difficult to check that the divisor Dh coming from the sup-
port function h on !′ of Figure 2 is globally generated. In fact, it follows from
the proof of [PS, 3.27] that any semiample divisor Dh is globally generated if
h∗(u) is globally generated for all u ∈ �h. For Y = P1, this is always the case;
thus, Dh in our example is globally generated and defines a morphism to projec-
tive space with some T-invariant image X. Using the first remark following the
proof of Proposition 4.1, it is straightforward to check that this map is birational.

By the proposition, we then know that C̃(X) = X(D), where tail(D) is generated
by (−1, 2), (1, 2), D0 has vertices (−1, 2), (0, 1), (1, 2), and D∞ and D1 have sole
vertex (−1/2, 0).

5. Finding Generators

Recall that, for an affine toric variety coming from some pointed cone σ, a unique
set of minimal generators of the corresponding multigraded algebra can be deter-
mined by calculating a Hilbert basis of σ∨. The goal of this section is to present
a similar result for complexity-1 T-varieties. We can then use this result to deter-
mine when a projective embedding is projectively normal.

Let D be a proper polyhedral divisor with tailcone σ on a smooth projective
curve Y. For u∈ σ∨ ∩M we define Au := H 0(Y, (D(u))) and

A =
⊕

u∈σ∨∩M
Au.

Thus, our goal is to find generators of the C-algebra A.
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Let g be the genus of Y and let c be the minimum of 0 and one less than the
number of P ∈ Y such that DP is not a lattice polyhedron. Then, for any u ∈
σ∨ ∩M,

deg(D(u)) ≥ deg D(u)− c.

We now take " be the coarsest common refinement of the set of all normal fans of
DP , where P is a point onY. Note that D is linear on each cone of ". Each cone τ

of " defines a subalgebra
Aτ :=

⊕
u∈τ∩M

Au.

Note that the union of all such subalgebras is again A. For any cone τ ∈", let τ ′
be a pointed cone and let uτ ∈M ∩ τ ∩ −τ be a weight such that τ = τ ′ + 〈uτ 〉.
Let HB(τ ′) be the Hilbert basis of τ ′; note that the semigroup τ ∩M is generated
by HB(τ ′)∪ {uτ }. Furthermore, for u∈HB(τ ′)∪ {uτ } we define αu ∈N to be the
smallest number such that:

(i) D(αu · u) is principal and (D(αu · u))) = D(αu · u); or
(ii) αu/2∈N, deg D(αu ·u)≥ 4g+ 2+2c, and (D((αu/2·u))))=D((αu/2)·u).
Observe that the properness of D guarantees that such an αu exists. Also, some
multiple of D(uτ ) must be principal because deg D(uτ ) = 0.

Finally, we set

Gτ :=
{ ∑

u∈HB(τ ′ )
ku · u

∣∣∣∣ 0 ≤ ku ≤ αu

}
∪ {αuτ

· uτ }.

Theorem 5.1. For τ ∈", the algebra Aτ is generated in degrees Gτ . In partic-
ular, A is generated in degrees GD := ⋃

τ∈" Gτ .

We will need the following lemma.

Lemma 5.2. Let D1,D2 be divisors on a smooth curve Y0. Then the natural map

H 0(Y,D1)×H 0(Y,D2)→ H 0(Y,D1 +D2)

is surjective if

(i) D1 is principal or
(ii) Y0 is complete, degD1 ≥ 2g + 1, and degD2 ≥ 2g.

Proof. The first case is immediate. The second case is due to Mumford [M].

Proof of Theorem 5.1. Fix some τ ∈" and consider u∈ τ ′ ∩M such that u /∈ Gτ .

Then there exist some u′ ∈ HB(τ ′) and u′′ ∈ τ ′ ∩M such that u = αu′u
′ + u′′.

Suppose first that D(αu′u
′) is principal. Then

(D(u)) = (D(αu′u
′)) + (D(u′′))

and it follows from Lemma 5.2(i) that Au is generated by Aαu′u′ and Au′′ . Now
suppose instead that degαu′D(u′) ≥ 4g + 2+ c. Then

(D(u)) = (D((αu′/2)u′)) + (D((αu′/2)u′ + u′′))
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and we have

deg(D((αu′/2)u′)) ≥ 2g + 1+ c,

deg(D((αu′/2)u′ + u′′)) ≥ 2g + 1+ c − c ≥ 2g + 1.

Thus, it follows from Lemma 5.2(ii) that Au is generated by A(αu′/2)u′ and
A(αu′/2)u′+u′′ . Continuing this argument by induction, we can conclude that Au is
generated in degrees lying in Gτ for any u∈ τ ′ ∩M.

Now consider any u ∈ τ ∩M such that u /∈ Gτ . We can write u = kαuτ
uτ + u′

for some u′ ∈ τ ′ ∩M and k ∈N. Then, once again by Lemma 5.2(i), Au is gener-
ated by Akαuτ u

′
τ

and Au′ ; but we have just shown that Au′ is generated by degrees
in Gτ . Hence we may conclude that Aτ is generated in degrees Gτ . The statement
concerning A follows immediately.

We can now use Theorem 5.1to give a finite list of generators of A. Note that we can
consider A 0 as a finitely generated C-algebra—say, with generators f 1

0 , . . . , f d0
0 .

Now, for u∈ GD and u �= 0, let f 1
u , . . . , f du

u generate Au as an A 0-module. Then
the following corollary is immediate.

Corollary 5.3. The algebra A is generated as a C-algebra by{
f i
u

}
u∈GD
1≤i≤du

.

The weight set GD and set of generators of A from Corollary 5.3 are in gen-
eral not minimal. Yet it is immediately clear that, if the tail cone of D is full-
dimensional, then

Gmin
D := GD

∖ {
u∈ GD

∣∣∣∣
∑

u′∈GD
u−u′∈σ∨

H 0(Y, (D(u′)))×H 0(Y, (D(u− u′)))

= H 0(Y, (D(u)))
}

is the unique minimal set of weights needed to generate A. This set can be con-
structed by checking a finite number of conditions.

Corollary 5.4. Let ! be a marked fansy divisor on a curve Y, and let h ∈
CaSF(!) be such that Dh is very ample. Then the corresponding embedding is
projectively normal if and only if all elements of Gmin

D have last coordinate equal
to 1, where D is defined as in Proposition 4.1.

Proof. The embedding is projectively normal if and only if A is generated in de-
gree 1 with respect to the relevant Z-grading.

Example. Consider the polyhedral divisor D from the example in Section 4. One
easily checks that GD = {(−2, 1), (−1, 1), (0, 1), (1, 1), (2, 1)}. Thus, the image X

of X(!) under the linear system |Dh| is projectively normal. It follows that Dh is
very ample and that the corresponding map is actually an embedding. Indeed, on
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the one hand, the quotient of C(X) by C∗ is clearly X; on the other hand, one can
also check by calculation that the quotient of C(X) by C∗ is X(!).

Remark. If Y is not a curve and instead we have Y = P n or Y = An, we can de-
fine a set GD similar to that in the preceding example and containing the weights
generating A. Indeed, in both cases we have statements similar to Lemma 5.2.
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