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The Generalized Oka–Grauert Principle
for 1-Convex Manifolds

Jasna Prezelj & Marko Slapar

1. Introduction and Main Theorem

Let Y be a complex manifold satisfying the convex approximation property (CAP)
and let X be an arbitrary Stein manifold. Then the Oka–Grauert (or homotopic)
principle holds for mappings X → Y ([F2]; the name Oka manifold has recently
been suggested for such manifolds Y ). This means that each homotopy class of
mappings X → Y admits a holomorphic representative.

Manifolds satisfying CAP are in some sense “large”. As an example of a man-
ifold failing to satisfy CAP, consider the annulus Y = {z ∈ C, 1/2 < |z| < 2}.
Let X = {z, 1/3 < |z| < 3}. There are plenty of continuous mappings from X

to Y but no nontrivial holomorphic ones. The reason is that Y is “too small” for
X. If we are free to change the holomorphic structure on X, then we can find for
every continuous mapping f0 : X → Y another Stein structure J1 on X that is ho-
motopic to the initial one as well as a holomorphic mapping f1 : (X, J1) → Y in
the same homotopy class as f0. In general, the change of structure depends on
both Y and f0. In the simple example just given, the manifoldX is homotopically
equivalent to the unit circle S1 ⊂ X and we change the homotopic structure of X
simply by squeezing it diffeotopically into a small neighborhood of the unit cir-
cle. For a general Stein manifold X we can proceed analogously, replacing S1 by
a suitably fattened CW complex embedded in X and homotopically equivalent to
X to obtain the following.

Generalized Oka–Grauert Principle. Every continuous mapping X → Y

from a Stein manifold X to a complex manifold Y is homotopic to a holomor-
phic one provided that eitherY satisfies CAP or we are free to change the complex
structure onX [FS1]. In addition, we can also require that the structure is fixed on
a neighborhood of an analytic set X0 ⊂ X if the initial mapping is holomorphic
on a neighborhood of X0 [FS2].

It has recently been shown that, if X is 1-convex and Y satisfies CAP, then the
following version of the Oka–Grauert principle holds.

Relative Oka–Grauert Principle for Mappings. Every continuous map-
ping X → Y from a 1-convex manifold X to a complex manifold Y that satisfies
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CAP and that is already holomorphic on a neighborhood of the exceptional set is
homotopic to a holomorphic map, and the homotopy is fixed on the exceptional
set (cf. [LV; P]).

Recall that a complex space X is 1-convex if it possesses a plurisubharmonic ex-
haustion function that is strictly plurisubharmonic outside a compact set and that
the Remmert reductions of 1-convex spaces are Stein. It is therefore possible to
combine these two principles as follows.

Generalized Oka–Grauert Principle for 1-Convex Manifolds. Every
continuous mapping X → Y, from a 1-convex manifold X to a complex mani-
fold Y, that is already holomorphic on a neighborhood of the exceptional set is
homotopic to a holomorphic map provided that either Y satisfies CAP or we are
free to change the complex structure on X.

The main theorem of this paper may now be stated as follows.

Theorem 1.1 (Generalized Oka–Grauert principle for 1-convex manifolds). Let
(X, J0) be a 1-convex manifold of dimension at least 3, and let S be its exceptional
set. Let K ⊂ X be a holomorphically convex compact subset of X containing S,
let Y be a complex manifold, and let f0 : X → Y be a continuous mapping that
is holomorphic in a neighborhood of K. Then there exist a homotopy ft : X → Y

and a homotopy Jt of complex structures on X such that

(1) ft(x) = f0(x) for x ∈ S,
(2) Jt = J0 on a neighborhood of K,
(3) (X, J1) is 1-convex with the exceptional set S,
(4) the mappings ft are Jt -holomorphic on a neighborhood of K and approxi-

mate f0 on K as well as desired, and
(5) f1 is J1-holomorphic on X.

2. Technicalities

2.1. Handle Attaching in Stein Category

Let (X, J ) be a complex manifold with a complex structure J. A real immersed
submanifold i : � → X is totally real or J -real in X if at every point p ∈� we
have Tpi(�) ∩ J(Tpi(�)) = 0. The condition implies that dimR� ≤ dimCX.

LetW � X be a relatively compact domain defined byW = {ρ < 0}, where
ρ is a smooth real function defined in a neighborhood of ∂W and dρ 
= 0 on ∂W.
We say thatW (or ∂W ) is strongly pseudoconvex or J -convex if ddCρ is a posi-
tive form in a neighborhood of ∂W, meaning that ddCρ(ν, Jν) > 0 for every ν ∈
TX|∂W . So ddCρ defines a metric on TX|∂W and, in so doing, it also defines nor-
mal directions to ∂W. Now let W = {ρ < 0} be a J -convex relatively compact
domain in (X, J ) and let D = Dk ⊂ R

k be the closed unit ball with the bound-
ary S = S k−1. An embedding (immersion) of a pair G : (D, S) → (X\W, ∂W )
is a smooth embedding (immersion) G : D → X\W, G(S) = G(D) ∩ ∂W, with
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G transverse to ∂W. We say that G is normal to ∂W if dG maps normal vectors
from S = ∂D to normal vectors of ∂W and that G(S) is Legendrian in ∂W if dG
maps vectors tangent to S into the contact distribution T CW = T∂W ∩ JT∂W
along ∂W.

The following lemma, although not given in the manner just stated, is proved
in [E]; a complete proof can also be found in [FS1]. The main ingredients are the
Legendrization theorem of Gromov [Gro] and Duchamp [D] and the h-principle
of Gromov for totally real submanifolds of complex manifolds [Gro]. Lemma 2.1
functions just as well in an almost complex case.

Lemma 2.1. Let W be an open, relatively compact J -convex domain with a
smooth boundary in a complex manifold (X, J ) of the complex dimension n ≥ 3.
For 0 ≤ k ≤ n let (D, S) be the closed unit disc in R

k with the boundary sphere S
and G0 : (D, S) → (X\W, ∂W ) a smooth embedding. Then there exists a regular
homotopy of embeddings Gt : (D, S) → (X\W, ∂W ), 0 ≤ t ≤ 1, such that

(1) G1 is normal to ∂W,
(2) G1(S) is Legendrian in ∂W, and
(3) G1(D) is totally real in X.

If ∂W is real analytic in a neighborhood ofG0(S), thenG1 can also be made real
analytic.

Remark 2.2. In the complex dimension 2, Lemma 2.1 is also valid as stated if
the attaching disc D is 1-dimensional. If the disc D is 2-dimensional, one cannot
get the isotopy of embeddings but only a regular homotopy of immersions, so that
the ending map is an embedding near the boundary ofD but has special transverse
double points in the interior of D. By “special” we mean that the double point is
modeled by R

2 ∪ iR2 ⊂ C
2.

Once we have a real-analytic and totally real disc D attached normally (from the
outside) along a Legendrian curve to a boundary ∂W of a strictly pseudoconvex
domainW ⊂ X, we can use a holomorphic change of coordinates in a neighbor-
hood of ∂D coupled with a C1-small, real-analytic deformation of the boundary
∂W near ∂D to get model situations of straight discs attached to a quadratic do-
main in C

n. There we can use concrete functions to find strictly pseudoconvex
neighborhoods of W ∪D that preserve the topology of W ∪D. The construction
was first explained in [E] and later also in [FK]. More precisely, we have the fol-
lowing lemma.

Lemma 2.3. Let W be an open, relatively compact J -convex domain in a com-
plex manifold (X, J ). For 0 ≤ k ≤ n let (D, S) be the closed unit disc in R

k with
the boundary sphere S and G0 : (D, S) �→ (X\W, ∂W ) a smooth totally real em-
bedding with G(S) Legendrian. Let d be any smooth Riemannian metric on X
and let Dε be the ε-neighborhood of G(D) in X. Then, for every ε > 0, there
exists a relatively compact and strictly pseudoconvex Stein neighborhood W̃ of
W ∪ G(D) with a smooth boundary completely contained in W ∪Dε such that
W ∪G(D) is a smooth deformation retract of W̃ and W is Runge in W̃.
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2.2. Basics for 1-Convex Manifolds

The main problem with 1-convex spaces is the lack of 1-convex neighborhoods
of graphs of holomorphic mappings f : X → Y. However, if we remove from
the graph the zero set of a holomorphic function g : X → C that is zero on the
exceptional set, we get a Stein space and so its graph has Stein neighborhoods.
In addition, we do not want our Stein neighborhoods to be too “thin” in the Y -
direction when approaching the graph of f over g−1(0); we prefer the width in the
Y -direction to decrease at most polynomially. Such neighborhoods will be called
conic along the graph of f over g−1(0). The existence of conic neighborhoods is
given by our next theorem.

Theorem 2.4 (Conic neighborhoods [P, Thm. 3.2]). Let X be a 1-convex com-
plex space with an exceptional set S. LetA ⊂ X be compact and holomorphically
convex with A ⊃ S and let Y be a complex manifold. Let f : X → Y be a con-
tinuous mapping that is holomorphic on a 1-convex neighborhood U of A, and
let g : X → C be a holomorphic function satisfying g(S) = 0. Then, for each
1-convex open set U ′ � U containing A, there exists a Stein neighborhood of the
graph "f of f over the set U ′ \ g−1(0) in X× Y that is conic along the graph "f
over g−1(0).

In the theory of 1-convex spaces there is a version of Cartan’s theorem B for rel-
atively compact, strictly pseudoconvex sets; there is also a version of Cartan’s
theorem A.

Theorem 2.5 (Theorem A for 1-convex spaces [P]). Let X be a 1-convex space
with an exceptional set S, let U � X, and let U be an open strictly pseudoconvex
set containing S. Let J = J (S) be the ideal sheaf generated by the set S, and let
Q be a coherent sheaf on X. Then there exists an n0 ∈ N such that, for n ≥ n0,
the sheaf QJ n is locally generated by "(U, QJ n) on U.

When Theorem 2.4 and Theorem 2.5 are combined, there are many important
consequences.

Corollary 2.6 (Existence of local sprays [P, Sec. 4]). Let X be a 1-convex
space, let U ′ � U � X be strictly pseudoconvex open sets containing the excep-
tional set S ofX, and let f : X → Y be a holomorphic mapping. Then there exists
a local spray on U ′ fixing S that dominates on U ′ \ S; in other words, there exists
a holomorphic map F : U ′ × Bn(0, δ) → Y such that (a) F(x, ·) : Bn(0, δ) → Y,
DtF(x, t) is surjective for t = 0 and x ∈ U ′ \ S and (b) F(x, 0) = f(x) and
F(x, t) = F(x, 0) for all x ∈ S.
Proof. Denote by V T(X × Y ) the kernel of the derivative of the projection
X × Y → Y, and let V be a conic Stein neighborhood of the graph of f over
U \ g−1(0) denoted by "f |U\g−1(0) for some holomorphic function g : X → C

with zeros on S. By Cartan’s theorem A for 1-convex spaces (Theorem 2.5), for
each sufficiently large k ∈ N there exist finitely many vector fields h1, . . . ,hn of
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the bundle V T(X × Y )|"f |U with zeros of order (at least) k on "f |(g−1(0)) gener-
atingV T |"f(U\g−1(0))

. We extend these vector fields onV and integrate them. Since
V is conic, the fields can be integrated for sufficiently small times t ≤ t0 for all
x ∈U ′ \ S (provided k is big enough). Because of the zeros on "f |(g−1(0)), we can
extend the flows of the fields on the graph of f over (g−1(0)); this yields a map
F : U ′ × Bn(0, δ) → Z that fulfills all the requirements.

2.3. Special Pseudoconvex Bumps

In this section we construct special pseudoconvex bumps similar to those con-
structed in [HL]. The main difference is that we have a strictly pseudoconvex open
set and a large disc attached to it.

Lemma 2.7. Let X be a 1-convex manifold with the exceptional set S, and let
ρ : X → R be a plurisubharmonic exhaustion function that is strictly plurisub-
harmonic outside a holomorphically convex compact set K ⊃ S. Let zero be a
regular value for ρ. Let A := {ρ ≤ 0} � X be a strictly pseudoconvex set con-
tainingK, and letD ⊂ X be a Legendrian disc attached to the boundary ofA.We
shall construct a compact set C ⊂ (A\ K) and a compact set B ⊃ D such that
the following statements hold.

(1) A ∪ B is strictly pseudoconvex.
(2) A and B have bases of strictly pseudoconvex open neighborhoods {UA} and

{UB} (respectively) such that {UA ∪ UB} is a basis of strictly pseudoconvex
open neighborhoods of A ∪ B; moreover, the sets UB are Stein.

(3) A ∩ B = C, and C is Runge in any of the neighborhoods UB.
(4) Separation property: (A \B) ∪ (B \A) = ∅ and (UA \UB) ∪ (UB \UA) = ∅.
Proof. The assertions derive from [HL, Lemma 2.3] and from our ability to re-
duce this situation to the model one with a straight disc attached to the quadratic
domain in C

n. For the set C we may take a (full and closed) ε-torus Tε around ∂D
intersected by A. Using the same methods as in [HL], we can smooth the edges
of Tε ∩A to obtain a strictly pseudoconvex set C with smooth boundary. Accord-
ing to Lemma 2.3, there is a 1-convex neighborhood U of (IntC)∪D containing
IntC. Let B := U. By definition, the set C shares a piece of boundary with A so
the setA∪B is strictly pseudoconvex and the separation property (4) holds. Since
zero is a regular value for ρ, we can produce a basis of neighborhoods {UA} and
{UB} with the listed properties simply by taking a family of sublevel sets {ρ ≤ εn}
for some sequence εn → 0.

3. Proof of the Main Theorem

The proof follows the one presented in [FS2] for the Stein case. The key idea in
[FS2] is the following. A suitably chosen strictly plurisubharmonic exhaustion
function for a Stein manifold X gives an increasing sequence of strictly pseudo-
convex sets {Xj} such that there is exactly one critical point in each of them. We
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move from Xj to Xj+1 in two steps: first we have to cross the critical point by at-
taching a suitable disc D to Xj and then approximate our initial function with the
one that is holomorphic on a neighborhood of D ∪Xj . Second, we must “fatten”
the union D ∪Xj in order to get to Xj+1. In the limit we get the desired structure
on X and a mapping homotopic to the initial one.

Before we start to explain the differences in our approach, let us mention that in
practice we construct something that looks like a fattened CW complex embedded
inX that is diffeotopically equivalent toX. Following the procedure just described
in the case when X is 1-convex, we try to cross the critical point of the suitable
exhaustion function by attaching a disc D to Xj−1. Recall that the disc is “large”
because it’s obtained by pushing down the small disc given by Morse theory so
that its boundary hits the boundary of Xj−1 in the proper way. If X were Stein
then at this point we could use [F1, Thm. 3.2] and get the desired neighborhood of
Xj−1 ∪D and the approximation. However, one of the essential ingredients of the
proof of [F1, Thm. 3.2] is that Xj is relatively compact and Stein. There seems to
be (at least for the authors) no obvious way to replace this with 1-convexity; the
Remmert reduction does not help. We must therefore effect the crossing via glu-
ing, following the idea of Henkin and Leiterer. In their notation, we would like
to attach to the set A = Xj a “bone” B ⊃ D such that [A,B,A ∪ B] is a (ver-
sion of a) special pseudoconvex bump. In [HL] the set B is a Stein neighborhood
of the disc such that it shares a piece of boundary with A, and then C is the inter-
section A ∩ B. In our case the situation is not local, so the only way to get Stein
neighborhoods and approximations is by using [F1,Thm. 3.2] and Lemma 2.3. Let
A,B,C be as in Lemma 2.7, and let f be holomorphic on A. By [F1, Thm. 3.2],
for the set C we obtain a thin bone B ′ together with the desired holomorphic ap-
proximation f ′ for f ; the better the approximation, the thinner the bone B ′. We
may assume that A∩B ′ = C. The gluing procedure for f and f ′ is performed by
solving the ∂̄-equation on the union A∪B so that the resulting function is a small
perturbation of the initial ones. The set on which we solve the ∂̄-equation must
be prescribed in advance because the norm of the operator solving this equation
depends on the set.

In the gluing procedure we solve the ∂̄-equation on the union A ∪ B of the fol-
lowing type of forms. To explain the idea, assume that f and f ′ are functions.
Consider the form

ω = ∂̄(f + χ(f ′ − f ))

using a suitable cutoff function χ with support of dχ on C (see e.g. [FP1] for de-
tails). Formally, this form is defined on A∪B ′. But since its support is contained
in C, we can trivially extend it to A ∪ B. Now we solve the ∂̄-equation for the
form ω on A ∪ B and get a function that is holomorphic over A ∪ B ′. The sets
A ∪ B and A ∪ B ′ are homotopically equivalent, and from here we can continue
with the fattening procedure. The details are explained in what follows.

Using the Remmert reduction, choose a plurisubharmonic exhaustion func-
tion ρ : X → [0, ∞) such that ρ−1(0) = K and ρ is strictly plurisubharmonic
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outside K. Choose regular values c0 < c1 < c2 · · · for every j such that there is
exactly one critical point pj of ρ contained in ρ−1(cj−1, cj ), and let kj denote the
Morse index of pj (recall that kj ≤ n for all j). The sublevel sets Xj = ρ−1[0, cj )
are topologically obtained by attaching a handle of index kj to the domain Xj−1.

The handle in question is the thickening in X of the stable disc of pj of the gra-
dient flow of ρ. Assume that f is already holomorphic in a neighborhood of Xc0 .

We shall construct a sequence of complex structures Jj on X and a sequence of
maps fj : X → Y such that:

(1) for every j, the manifold (Xj , Jj ) is 1-convex with the exceptional set S;
(2) Jj = Jj−1 on a neighborhood of Xj−1;
(3) Xj−1 is Runge in (Xj , Jj );
(4) fj is Jj holomorphic on a neighborhood of Xj ;
(5) fj and fj−1 differ by less than ε2−j−1 on Xj−1 and are equal on S; and
(6) fj is homotopic to fj−1 by a homotopy that is (ε2−j−1)-close to fj−1 onXj−1.

At the j = 0 step we take J0 to be the original complex structure on X and f0

to be the original function. By assumption, f0 is holomorphic in a neighborhood
of X0.

Let us now assume that conditions (1)–(6) are met at the j−1 level. We setA =
Xj−1 and f0 = fj−1. Let M be the stable manifold for the critical point pj of the
gradient flow of ρ by using the metric associated with the positive Levi form ddcρ.

The discD = M ∩ (X\A) is a smooth disc attached transversely to the boundary
ofA. Using a small perturbation of our domain (or the function ρ), we can assume
that ∂A is real analytic in a neighborhood of ∂D. We use Lemma 2.1 withW = A

and J = Jj−1 to deform the disc (D, ∂D) with a small isotopy (Dt , ∂Dt) ↪→
(X\A, ∂A) of pairs to a real-analytic, totally real disc, which we again call D
(D ⊂ X\A), attached to ∂A along a real-analytic Legendrian curve. Let B and
C be as in Lemma 2.7. Recall that C = A ∩ B and that the boundary ∂C agrees
with ∂A near ∂D (see Figure 1).

Figure 1 A special pseudoconvex bump
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According to Corollary 2.6, there exists a local spray F on a neighborhood UA
of A that dominates on A\ S and keeps S fixed. According to [F1, Thm. 3.2] there
exist an open “thin bone” B ′ containing C ∪D, a Stein open set UB ′ ⊃ B ′, and a
mapG : UB ′ ×Bn(0, δ) → Y such thatG approximates F on C as well as desired.
There also exists a “gluing” map γ = (idx , c) : UC ×Bn(0, δ ′) → UC ×Bn(0, δ ′)
such that F = G � γ on UC × Bn(0, δ ′). The gluing map may be assumed to be
close to the identity map. If it is not, then we can approximate it on C by γ̃ =
(idx , c̃) : UB × C

n → UB × C
n well enough so that c̃ is fiberwise invertible over

UC and take G � γ̃ in the place of G, which gives (idx , c̃−1 � c) as a gluing map.
Near the zero section, the map γ has a decomposition γ = β � α−1, where

α : UA × Bn(0, δ ′) → UA × Bn(0, δ ′) and β : UB × Bn(0, δ ′) → UB × Bn(0, δ ′)
are invertible on a neighborhood of the zero section over UC; note that UB is an
open neighborhood of B. Note also that the decomposition is made over the 1-
convex open set UA ∪ UB. The desired decomposition of γ is obtained from an
implicit function theorem [FP1, Prop. 5.2]. This theorem employs a solution of
a ∂̄-equation with uniform estimates on a neighborhood of strictly pseudoconvex
set A ∪ B for forms ω such that suppω ⊂ A ∩ B, where A ∪ B is a subset of a
Stein manifold (see Figure 2). Let us mention that this also works for Stein spaces.
In the 1-convex case, the same can be done with uniform estimates on the Rem-
mert reduction of a neighborhood of A ∪ B because the supports of the forms we
deal with do not intersect S. In addition, we can require that the solutions of the ∂̄
equation be zero on S without spoiling the uniform estimates (see [FP2] for de-
tails). We have F � α(x, 0) = G � β(x, 0) for x ∈UC. This defines a holomorphic
map f1 on A∪B ′ that is homotopic to f0 on A∪B ′. If B ′ is thin enough then, ac-
cording to Lemma 2.3, there exists a strictly pseudoconvex open neighbourhood
W̃ of A ∪D that is completely contained in A ∪ B ′. In addition, W̃ is diffeotopi-
cally equivalent to Xj . Outside W̃, the map f1 can be glued to the map f0 by a
homotopy ft to yield a continuous map f1 that is holomorphic on a neighborhood
of W̃, homotopic to f0, and approximating f0 on A. Since F(x, t) = F(x, 0) for
all x ∈ S, we also have ft(x) = f0(x) on S.

Figure 2 Support of the form ω
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All that is needed now is to use a diffeotopy Ht : X → X with H0 = Id,
H1(Xj ) = W̃, andHt = Id onXj−1. Such a diffeotopy exists becauseXj is a non-
critical extension of W̃. For every t ∈ [0,1], let Jt be the pullback of the almost
complex structure Jj−1 by the diffeomorphism Ht and let f1,t be pullbacks of f1

(as described previously) by Ht. We set Jj = J1 and fj = fj,t .

If there are only finitely many critical points for ρ, then we must make another
diffeotopy at the end in order to bring our whole manifold into the last sublevel
set. If there are infinitely many critical points, the Runge condition ensures that
the limiting complex structure on X does equip X with a structure of 1-convex
space with the singular set S.

4. The Case of Dimension 2

In the complex dimension 2, the situation is more complicated. The main dif-
ference is that Lemma 2.1 is no longer valid in the complex dimension 2 if the
attaching disc is also real 2-dimensional. This was already noted by Eliashberg in
[E] and was subsequently justified using Seiberg–Witten theory. For example, it is
not possible to attach a totally real disc from the outside to the boundary of a unit
ball in C

2 along a Legendrian curve. The obstruction essentially comes from the
adjunction inequality for Stein surfaces—which prohibits, for example, any non-
null homologous sphere from having self-intersection number larger than −2 (see
e.g. [Go1; N]).

If a 2-disc D is attached to the boundary of a strictly pseudoconvex domain in
a complex surface X along a Legendrian curve L, then the Lai indices [Lai] I± =
e± − h± giving the difference of signed elliptic and hyperbolic complex points on
D are invariant under the isotopy of embeddings that keeps the boundary fixed.
The indices are calculated from the first Chern class of X evaluated on D and the
relative self-intersection number ofD. As long as the I± both equal zero, one can
find an isotopy of the disc D through embeddings to a totally real disc by keep-
ing the boundary fixed. This is a result of Eliashberg and Harlamov [EHa]. The
indices I± can always be increased by an isotopy of embeddings that also moves
the boundary ∂D to a different Legendrian curve. However, it is not possible to
arbitrarily decrease the indices I±. Using Remark 2.2, we can remedy this by in-
troducing self-intersections (kinks) on the disc D; this means that, by a regular
homotopy of immersions, we can make the disc D be an immersed totally real
disc with its boundary circle an embedded Legendrian curve. The immersed disc
can be made to have only special double points so that the disc has tubular Stein
neighborhood basis.

To prove an analogue of Theorem 1.1 in complex dimension 2, we proceed as
follows. As before, we decompose the manifold (X, J ) as an increasing union of
strictly pseudoconvex domains so as to get to the larger domain: one either adds
a handle of index 1 or a handle of index 2. If the critical point we must pass in
order to get to the next level has index 1, then there is no difference in the proof be-
cause Lemma 2.1 holds in this situation. Let us now explain the difference when



504 Jasna Prezelj & Marko Slapar

attaching an index-2 critical point. As noted before, the disc D attached to A is
in general not isotopic to a smooth disc D ′; hence the union C ∪ D ′ has strictly
pseudoconvex Stein neighborhoods, which was one of the essential ingredients in
the proof in higher dimensions. The idea of how to fix this is Gompf’s [Go2] and is
explained in more detail (in a similar context) in [FS1]. First we find an isotopy of
the discD (a stable manifold of the critical point) so that it is Legendrian and nor-
mal at the boundary. If we can simultaneously also make the disc D totally real,
then we can proceed just as in the higher-dimensional case. If not, we add a suffi-
cient number of positive standard kinks toD to get an immersed discD ′ such that
C∪D ′ has thin tubular Stein strictly pseudoconvex neighborhoods. Adding a stan-
dard positive kink toD means deleting a small disc inD and, along the boundary
circle, gluing back a small disc with exactly one positive transverse double point.

Although the relative homology class of D ′ is the same as that of D, tubular
neighborhoods of D ′ are not diffeomorphic to the thickening of D because we
have introduced extra generators in the π1 group. To fix this, one adds a trivi-
alizing disc for each of the kinks (see Figure 3), whereby the thickening again
becomes diffeomorphic to the thickening ofD. Unfortunately, each of the trivial-
izing discs also needs exactly one kink to have thin tubular Stein neighborhoods.
We therefore repeat the procedure. The limiting procedure (that in this case is nec-
essarily infinite) gives an (nonsmoothly) embedded disc D ′′ that agrees with D
near the boundary and has thin Stein neighborhoods homeomorphic but not nec-
essarily diffeomorphic to the tubular neighborhood ofD. These limiting discs are
called Casson handles and are an essential ingredient in the classification theory
of topological 4-manifolds [Fr; FrQ]. Since for each critical point of index 2 we
may have to perform infinitely many steps, we use a variant of Cantor’s diagonal
process: first we make just one step on the new critical point and then go back to
make one more step on each of the previous critical points before continuing to
the next critical point. The analogue of Theorem 1.1 is as follows.

Figure 3 A kinky disc with a trivializing 2-disc

Theorem 4.1 (Generalized Oka–Grauert principle for 1-convex surfaces). Let
(X, J ) be a 1-convex surface and let S be its exceptional set. Let K ⊂ X be
a holomorphically convex compact subset of X containing S, let Y be a com-
plex manifold, and let f : X → Y be a continuous mapping that is holomorphic
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in a neighborhood of K. Then there exist a 1-convex surface (X ′, J ′), a holomor-
phic map f ′ : X ′ → Y, and an orientation-preserving homeomorphism h : X → X

such that

(1) h is holomorphic in a neighborhood of K and h(S) is the singular set for X ′,
(2) f ′ � h is homotopic to f and f ′ � h|S = f |S , and
(3) f ′ � h = f approximates f on K as well as desired.

The point of this theorem is that we may need to change the smooth structure on
X. New results of Gompf (personal communication) indicate that the same theo-
rem as for higher-dimensional manifolds may hold in this case also.
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