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Introduction

Every automorphism of the complex projective plane P2 is linear and therefore
behaves quite simply when iterated. It is natural to seek other rational complex
surfaces—for instance, those obtained from P2 by successive blowing up—that
admit automorphisms with more interesting dynamics. Until recently, very few
examples with positive entropy seem to have been known (see e.g. the introduc-
tion to [Ca]).

Bedford and Kim [BeK2] found some new examples by studying an explicit fam-
ily of Cremona transformations—namely, birational self-maps of P2. McMullen
[Mc] gave a more synthetic construction of some similar examples. To this end he
used the theory of infinite Coxeter groups, some results of Nagata [N1; N2] about
Cremona transformations, and important properties of plane cubic curves. In this
paper, we construct many more examples of positive entropy automorphisms on
rational surfaces. Whereas [Mc] seeks automorphisms with essentially arbitrary
topological behavior, we limit our search to automorphisms that might conceiv-
ably be induced by Cremona transformations of polynomial degree 2 (quadratic
transformations for short). This restriction allows us be more explicit about the
automorphisms we find and to make do with less technology, using only the group
law for cubic curves (suitably interpreted when the curve is singular or reducible)
in place of Coxeter theory and Nagata’s theorems.

A quadratic transformation f : P2 → P2 always acts by blowing up three
(indeterminacy) points I(f ) = {p+1 ,p+2 ,p+3 } in P2 and blowing down the (excep-
tional) lines joining them. Typically, the points and the lines are distinct, but in
general they can occur with multiplicity (see Section 1.2). Regardless, f −1 is also
a quadratic transformation and I(f −1) = {p−1 ,p−2 ,p−3 } consists of the images of
the three exceptional lines.

Under certain fairly checkable circumstances, a quadratic transformation f will
lift to an automorphism of some rational surface X obtained from P2 by a finite
sequence of point blowups. Namely, suppose there are integers n1, n2, n3 ∈N and
a permutation σ ∈
3 such that f nj−1(p−j ) = p+σj for j = 1, 2, 3. We assume that
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the nj are taken to be minimal and, for simplicity, we also assume for the moment
that f k(p−j ) �= f 
(p−i ) for any k, 
 ≥ 0 and i �= j. Then we can, in effect, cancel
all indeterminate and exceptional behavior of f by blowing up the finite sequences
p−j , f(p−j ), . . . , f nj−1(p−j ). That is, if X is the rational surface that results from
blowing up these segments, then f lifts to an automorphism f̂ : X→ X. General
theorems of Gromov [G] and Yomdin [Y] imply directly that the entropy of this
automorphism is log λ1, where the first dynamical degree λ1 is the spectral radius
of the induced pullback operator f̂ ∗ on H 2(X, R).

Bedford and Kim observed (see the discussion surrounding Proposition 2.1)
that the action f̂ ∗ is entirely determined by n1, n2, n3 and σ. Hence we say that
det(f̂ ∗ − λ id) is the characteristic polynomial “for the orbit data n1, n2, n3, σ”.
If the nj are large enough (see [BeK1, Thm. 5.1])—for example, nj ≥ 3 with strict
inequality for at least one j ∈ {1, 2, 3}—then the characteristic polynomial has a
root outside the unit disk and hence f̂ has positive entropy.

Accordingly, one way to find positive entropy automorphisms induced by qua-
dratic transformations would be to begin with some fixed quadratic transforma-
tion q (e.g., q(x, y) = (1/x,1/y)) and then look for T ∈Aut(P2) such that f =
T � q realizes the orbit data n1, n2, n3, σ ; in other words, such that f nj−1(p−j ) =
p+σj for j = 1, 2, 3. This imposes essentially six conditions on f , so it seems plau-
sible that some T in the 8-parameter family Aut(P2) will serve. However, the
degrees of the equations governing T increase exponentially with the nj , and it
therefore seems daunting to try to understand their solutions directly.

A key idea in [Mc], which we follow here, is to look only at Cremona transfor-
mations f that preserve some fixed cubic curve C. Various aspects of such trans-
formations have been studied in several recent papers [BPV; DJS; P1; P2]. We say
that f properly fixes C if f(C) = C and no singular point of C is indeterminate
for f or f −1. Then f preserves both regular and singular points Creg,Csing ⊂ C

separately, and degree considerations imply that I(f ), I(f −1) ⊂ C. As a Rie-
mann surface, each connected component of Creg is equivalent to C/� for some
(possibly rank 0 or rank 1) lattice � ⊂ C. The equivalence is not uniquely de-
termined, and we assume it is chosen in a geometrically meaningful way so that
the conclusion of Theorem 1.1 will apply. Under this equivalence, we have that
the restriction of f to any component of Creg is covered by an affine transforma-
tion z �→ az + b of C with multiplier a ∈ C∗ satisfying a� = �. Theorem 1.3
describes the prevalence and nature of the quadratic transformations that properly
fix a given cubic C. For C irreducible, the theorem can be stated as follows.

Theorem 1. Let C ⊂ P2 be an irreducible cubic curve. Suppose we are given
points p+1 ,p+2 ,p+3 ∈ Creg, a multiplier a ∈ C∗, and a translation b ∈ Creg. Then
there exists at most one quadratic transformation f properly fixing C with I(f ) =
{p+1 ,p+2 ,p+3 } and f |Creg : z �→ az + b. This f exists if and only if the follow-
ing hold :

• p+1 + p+2 + p+3 �= 0;
• a is a multiplier for Creg; and
• a(p+1 + p+2 + p+3 ) = 3b.



Cremona Transformations, Surface Automorphisms, and Plane Cubics 411

Finally, the points of indeterminacy for f −1 are given by p−j = ap+j − 2b,
j = 1, 2, 3.

In the hypotheses and conclusions of this theorem, addition depends on our identi-
fication of Creg with the group (C/�,+). The condition

∑
p+j �= 0 is equivalent to

saying that I(f ) is not equal to the divisor obtained by intersecting C with a line.
The third item constrains the translation b for f |Creg up to addition of an inflection
point on Creg. It should be pointed out that the ideas underlying Theorem 1 are not
especially new. Indeed, something similar to this theorem was used by Penrose
and Smith [PeSm] to better understand a restricted version of the family studied
in [BeK2].

Here we apply Theorem 1 to study quadratic transformations that fix each of
the three basic types of irreducible cubics and also to identify those transforma-
tions that lift to automorphisms on some blowup of P2. Our first conclusion is as
follows.

Theorem 2. Let n1, n2, n3 ∈ N and σ ∈ 
3 be orbit data whose characteristic
polynomial has a root outside the unit circle. Suppose that C is an irreducible
cubic curve and f is a quadratic transformation that properly fixes C and realizes
the orbit data. Then C is one of the following:

• the cuspidal cubic y = x3; or
• a torus C/� with � = Z+ iZ or � = Z+ e2πi/6Z.

Both cases occur, but only finitely many sets of orbit data can be realized in the
second case.

When C is a torus, the multiplier of the restriction f |C is necessarily a root of
unity. The problem with the nodal cubic and tori without additional symmetries
is that the multiplier of a realization must be±1, which implies (see Corollary 2.3
and Theorem 2.4) that all roots of the characteristic polynomial lie on the unit cir-
cle. In the case of tori with square or hexagonal symmetries, where multipliers
can be i or eπi/3, one does get realizations lifting to automorphisms with positive
entropy. An interesting feature of these examples is that, by passing to a fourth or
sixth iterate, one obtains a positive entropy automorphism of a rational surface X

that nevertheless fixes the original cubic curveC pointwise. We note that the group
of Cremona transformations fixing a cubic was considered in [B].

In general, realizations of orbit data by transformations whose multipliers are
roots of unity seem to be somewhat sporadic, and we do not know how to charac-
terize them systematically. We have a better understanding when the multiplier is
not a root of unity.

Theorem 3. Suppose in Theorem 2 that the multiplier a of f |Creg is not a root of
unity. Then:

(i) C is cuspidal;
(ii) a is a root of the characteristic polynomial for the given orbit data;

(iii) if n1 = n2 = n3, then σ is the identity; and
(iv) if ni = nj for i �= j, then σ does not interchange i and j.
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Conversely, if these conditions are met by C and a then there is a quadratic trans-
formation f , unique up to conjugacy by a linear transformation fixing C, such that
f realizes the given orbit data, properly fixes C, and has multiplier a on Creg.

Consequently, f lifts to an automorphism on some rational surface π : X → P2

whose entropy is log λ1, where λ1 > 1 is Galois conjugate to a.

This result is reminiscent of those proved in [Mc, Sec. 7]. In particular, the spe-
cial cases discussed in Section 11 of that paper are included here. These fix a cusp
cubic and realize orbit data of the form n1 = n2 = 1, n3 ≥ 8, with σ cyclic. On
the other hand, some of the maps in Theorem 3 do not appear in [Mc]. For in-
stance, if n1 = n2 = n3 ≥ 4 and σ = id then I(f ) degenerates to a single point,
which is not permitted in McMullen’s analysis. To use the terminology from [Mc],
the coincidence of two points in I(f ) implies the existence of a “geometric nodal
root” for the action f̂ ∗ of the induced automorphism.

We also consider quadratic transformations fixing reducible cubics C by relying
on the more general version (Theorem 1.3) of Theorem 1. If C is reducible with
one singularity, then things turn out much as they did for the cuspidal cubic. The
arguments used to prove Theorem 3 remain valid once one accounts for the facts
that f permutes the components of Creg and that this permutation must be compat-
ible with the one prescribed in the given orbit data. The end result (Theorem 4.1)
is that one can realize somewhat fewer, though still infinitely many, different sets
of orbit data.

When C has two or three singular points, things turn out differently. Any qua-
dratic transformation f that properly fixes C must have multiplier f |Creg equal to
±1. Nevertheless, by judiciously choosing the translations for f |Creg we are still
able to realize infinitely many sets of orbit data. We treat the case #Csing = 3 more
thoroughly (see Theorem 4.4).

Theorem 4. Let n1, n2, n3 ≥ 1 and σ ∈ 
3 be orbit data whose characteristic
polynomial has a root outside the unit circle. If the orbit data is realized by some
quadratic transformation f that properly fixes C = {xyz = 0}, then σ = id and
f maps each component of Creg to itself with multiplier 1. Conversely, when σ =
id and n1, n2, n3 ≥ 6, there exists at least one such realization.

The proof amounts to an extended exercise in arithmetic modulo 1. Unlike The-
orem 3, the conclusion gives little idea of how many different realizations are
possible. We simply show that, for any given orbit data, there are finitely many
quadratic transformations that might serve as realizations; we then find one can-
didate from among these that works.

We deal more briefly with the case where C has two irreducible components
meeting transversely; that is, C = {(xy − z2)z = 0}. We show that one can
realize only two broad types of orbit data on this curve and then give examples of
each type.

The remainder of the paper is organized as follows. Section 1 provides back-
ground on plane cubics and quadratic transformations, culminating in the proof of
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Theorem 1.3. Section 2 begins by considering when and how a quadratic transfor-
mation can be lifted to an automorphism f̂ : X̂�. It then discusses the nature of
the associated operator f̂ ∗ : H 2(X, R)→ H 2(X, R), which can be written down
very explicitly and fairly simply in terms of the given orbit data. In Section 3 we
seek automorphisms induced by quadratic transformations that properly fix irre-
ducible cubics, and in Section 4 we treat the reducible case. The Appendix to this
paper, which was contributed by Igor Dolgachev, gives a detailed treatment of the
group law on reduced plane cubics that includes the case of singular and reducible
curves.

Acknowledgments. First and foremost, we would like to thank Igor Dolgachev
for his extensive help concerning the geometry of plane cubics. We would also
like to thank Eric Riedl, Kyounghee Kim, and Eric Bedford for their comments
and attention as this paper was written.

1. Quadratic Transformations Fixing a Cubic

In this section, we recount some well-known facts about cubic curves and qua-
dratic Cremona transformations in the plane. Then we characterize those quadratic
transformations that “properly” fix a given cubic. We refer the reader to [DeC]
for more discussion of quadratic transformations.

1.1. The “Group Law” on Plane Cubics

Let C ⊂ P2 be a cubic curve; that is, C is defined by a degree-3 homogeneous
polynomial without repeated factors. Hence C has at most three irreducible com-
ponents V ⊂ Creg, each isomorphic after normalization to either a torus (when C

is irreducible and smooth) or P1 (in all other cases). We begin by recalling some
facts that are discussed at greater length in the Appendix.

The Picard group Pic(C) consists of linear equivalence classes [D] of Cartier
divisors D on C, and the subgroup Pic0(C) ⊂ Pic(C) consists of divisor classes
whose restrictions to each irreducible component have degree 0. In fact, one al-
ways has Pic0(C) ∼= C/� when � ⊂ C is a lattice of rank 2, 1, or 0 depending
(respectively) on whether C has no singularities, nodal singularities, or otherwise.
Moreover, for any irreducibleV ⊂ C and any choice of “origin” 0V ∈V, one has a
bijection κ : V ∩ Creg → Pic0(C) given by κ(p) = [p − 0V ] that allows us to re-
gard the smooth points V ∩ Creg in V as a group isomorphic to Pic0(C). We will
always use + to denote the group operation, even when � ∼= Z has rank 1 and
Pic0(C) ∼= C∗.

Having fixed the origins in each irreducible component of C, we will write
p1 + p2 ∼ p3 for any p1,p2,p3 ∈ Creg to mean that κ(p1) + κ(p2) = κ(p3);
in other words, the “∼” implies that any point p ∈ Creg that appears in the equa-
tion is implicitly identified with the point κ(p) ∈ Pic0(C). Note that we do not
require p1,p2,p3 to lie on the same irreducible component of C, even though we
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have not given Creg itself the structure of a group (this can be done; see the Ap-
pendix). We further caution that, with our convention, “∼” does not denote linear
equivalence. In fact, since the choice of origins 0V is a priori arbitrary, the equa-
tion p1+ p2 ∼ p3 need not have much geometric content at all. To make such
equations more meaningful, we will assume that the origins are chosen to satisfy

(∗) ∑
V⊂C(degV ) · 0V is the divisor cut out by a line L0 ⊂ P2.

This condition guarantees that three points p1,p2,p3 ⊂ Creg are the intersection
(with multiplicity) of C with a line L ⊂ P2 if and only if each irreducible V ⊂ C

contains degV of the points and x + y + z ∼ 0. More generally, we have the fol-
lowing classical fact.

Theorem 1.1. Suppose that the projection κ : Creg → Pic0(C) is chosen to sat-
isfy (∗). Then 3d (not necessarily distinct) points p1, . . . ,p3d ∈Creg constitute the
intersection of C with a curve of degree d if and only if :

• each irreducible V ⊂ C contains d · degV of the points; and
•

∑
pj ∼ 0.

Before continuing, let us quickly recapitulate this discussion in more analytic
terms. The various connected components V ∩ Creg of Creg are all isomorphic as
Riemann surfaces to the same surface C/�. These isomorphisms are determined
only up to affine transformations, but they may be chosen such that, for two lines
L0,L1 ⊂ Creg, the three points (counted with multiplicity) Lj ∩ C all lie in Creg

and are identified with three points summing to zero in C/�. Since this choice is
equivalent to condition (∗), it follows that Theorem 1.1 holds.

In all cases except that of a smooth cubic whose single irreducible component
is not rational, the projection κ : Creg → C/� ∼= Pic0(C) can be written down
quite explicitly. For instance, if C is a cusp cubic, then Pic0(C) ∼= C and we can
choose coordinates on P2 such that Creg = {y = x3 : x ∈ C}. We then define
κ(x, x3) = x. Or if C is a union of a conic and a secant line, then Pic0(C) ∼= C∗
and we may assume C = {z(z2 − xy) = 0}. A suitable projection is then given
by the mapping [1 : −t : 0], [t 2 : 1 : t] �→ t for all t ∈C∗.

We will say that T ∈ Aut(P2) fixes (or leaves invariant ) C if T(C) = C as
sets. That is, T restricts to an automorphism of C and therefore induces a map
T ∗ : Pic(C) → Pic(C) whose restriction to Pic0(C) is the group automorphism
given by t ∈ C/� �→ a−1t for some multiplier a ∈ C∗ satisfying a� = �.

Explicitly, the possible multipliers a ∈C∗ are as follows:

• if C is smooth and irreducible then a = ±1 generically, but a = ik when C =
C/(Z+ iZ) and a = e±πik/3 when C = C/(Z+ eπi/3Z);

• if C has nodal singularities, then a = ±1;
• in all other cases, any arbitrary a ∈C∗ is possible.

Now if V ⊂ C is any irreducible component and if p ∈V, then [T(p)− 0T(V )] =
[T(p)−T(0V )]+ [T(0V )−0T(V )] = a[p−0T(V )]+bV , where a is the multiplier
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corresponding to T ∗ and bV := [T(0V ) − 0T(V )] ∈ Pic0(C) is the translation for
T |V . More succinctly, using our convention above, we have that T : V → T(V )

is an “affine transformation” described by T(p) ∼ ap+ bV for all p ∈V. Since T
sends lines to lines and since we assume that condition (∗) holds, it follows that∑

V⊂C(degV ) · T(0V ) ∼ 0. Indeed it is shown in the Appendix (Corollary A.6)
that the following result holds.

Proposition 1.2. Let T ∈ Aut(P2) be a linear transformation fixing a cubic
curve C. Then the translations bV for the restrictions T |V of T to the various
irreducible components V ⊂ C satisfy

∑
(degV ) · bV ∼ 0. Conversely, given

translations subject to this condition and a multiplier a for Pic0(C), there exists a
unique T ∈Aut(P2) fixing each component V ⊂ C with multiplier a and transla-
tions bV .

When C is irreducible, the condition on the translations may be stated more sim-
ply by saying that the translation corresponds to an inflection point of Creg. If the
cubic C is union of three lines, then it is easy to find automorphisms of P2 that
permute the lines arbitrarily. Therefore, in this case the transformation T in the
final statement of the theorem can be chosen to permute the lines in any desired
fashion.

1.2. Quadratic Cremona Transformations

The most basic nonlinear Cremona (i.e. birational) transformation q : P2 → P2

can be expressed in homogeneous coordinates as [x : y : z] �→ [yz : zx : xy].
Geometrically, q acts by blowing up the points [0 : 0 : 1], [0 : 1 : 0], and [1 : 0 :
0] and then collapsing the lines {x = 0}, {y = 0}, and {z = 0} that join them.
A generic quadratic Cremona transformation can be obtained from q by pre- and
postcomposing with linear transformations f = L � q � L′.

In fact, every quadratic transformation (we henceforth omit the word ‘Cre-
mona’) f can be obtained geometrically by blowing up three points p+1 ,p+2 ,p+3
and collapsing three rational curves. We call the p+j indeterminacy points (al-
ternatively, base points or fundamental points) for f and let I(f ) denote the set
that comprises them. We call the contracted curves exceptional for f. If f is a
quadratic transformation, then so is f −1 and we have I(f −1) = {p−1 ,p−2 ,p−3 },
where each p−j is the image of one of the exceptional curves for f. The indices
1, 2, 3 assigned to points in I(f ) naturally determine an indexing of the points in
I(f −1). In the situation of the previous paragraph, this is given by declaring p−j
to be the image of the exceptional line that does not contain p+j . In the sequel,
however, we must allow our quadratic transformations to be degenerate, so we
briefly review the three possibilities for the geometry of a quadratic transforma-
tion f : P2 → P2.

• Generic case. The points p+1 ,p+2 ,p+3 ∈ P2 are distinct. They are all blown up
(in any order), and the lines joining them are then contracted.
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• Generic degenerate case. We have p+i = p+j �= p+k for {i, j, k} = {1, 2, 3}. In
this case, there is an exceptional line E−j , joining p+i and p+k , and another ex-
ceptional line E−k containing p+i . First, f blows up p+i and p+k , creating new
rational curves Ei and E+k . Then f blows up the point E−k ∩Ei (which lies over
p+j ). Next f contracts E−j ; finally, f contracts Ei and E−k .

• Degenerate degenerate case. We have p+1 = p+2 = p+3 . There is a single excep-
tional line E−k ⊂ P2 containing p+i . The transformation blows up p+i to create
a curve Ei, then blows up E−k ∩Ei to create Ej , and finally blows up some point
on Ej different from Ej ∩ E−k to create a curve E+k ; to descend back to P2, f
contracts E−k , Ej , and Ei in order.

In the degenerate cases, we will readily abuse notation by treating, for exam-
ple, p+k as a point in P2 and also identifying it with the infinitely near point that is
blown up to create E+k . In the first sense I(f ) contains no more than three points,
but in the second sense it always contains exactly three. The important thing is
that, in either sense, the points in I(f −1) are indexed so that p−k is the image of
E−k after contraction. We note also that, in each of the three cases, the geometry
of f and f −1 is the same; hence p+j is infinitely near to p+i if and only if p−j is in-
finitely near to p−i , and #I(f ) = #I(f −1) as sets in P2. In order to avoid tedious
case-by-case exposition in this paper, we will generally give complete arguments
only for the generic case where the points p+j are distinct and address other cases
only when they are conceptually different.

Given a curve C ⊂ P2 and a quadratic transformation f , we define f(C) :=
f(C \ I(f )) to be the proper transform of C by f. When C ∩ I(f ) = ∅, we have
that deg f(C) = 2 degC. In general,

deg f(C) = 2 degC −
∑

p∈I(f )
νp(C), (1)

where νp(C) is the multiplicity of C at p. Note that if p is infinitely near and
appears only in some modification π : X→ P2, then we take νp(C) to be the mul-
tiplicity at p of the proper transform of C by π−1.

We will say that C is fixed or invariant by f if f(C) = C. We will further say
that C is properly fixed by f if additionally all points in I(f )∩C and I(f −1)∩C

are regular for C. In this case, we have that f permutes the singular points of C,
preserves their type, and restricts to a well-defined automorphism of C. Now sup-
pose C is a cubic curve. As discussed prior to Proposition 1.2, the automorphism
f |C can be described by the multiplier a ∈C∗ for the action (f |C)∗ : Pic0(C)→
Pic0(C), the way it permutes the irreducible components V ⊂ C, and the trans-
lations bV = [f(0V ) − 0f(V )] ∈ Pic0(C) for each of these components. We note
that, unlike the situation with projective automorphisms, one can have deg f(V ) �=
degV for an irreducible component of V. The starting point for our work is the
following detailed description of the quadratic transformations properly fixing a
given cubic.
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Theorem 1.3. Let τ : C → C be an automorphism with multiplier a and trans-
lations bV , V ⊂ C. Given points p+1 ,p+2 ,p+3 ∈ P2, there exists a quadratic trans-
formation f : P2 → P2 properly fixingC with f |C = τ if and only if the following
two statements hold.

(i) For each irreducible V ⊂ C, we have #{j : p+j ∈V ∩ Creg} =
2 degV − deg τ(V ) and #{j : p−j ∈V } = 2 degV − deg τ−1(V );
in particular, I(f ) ⊂ Creg.

(ii)
∑

p+j ∼ a−1 ∑
V⊂C(degV ) · bV �= 0.

The transformation f is unique when it exists, and the points of indeterminacy
p−j ∈ I(f −1) then satisfy the following conditions.

(iii) Given j ∈ {1, 2, 3}, let L be the line defined by the two points I(f )\{p+j } and
let V ⊂ C be the irreducible component containing the third point in C ∩L;
then p−j ∈ τ(V ).

(iv) For each j ∈ {1, 2, 3} we have p−j − ap+j ∼ bj −∑
bV degV, where bj is the

translation for f on the component containing p+j .

Proof. Suppose first that there exists a quadratic transformation f with the desired
properties; namely, f properly fixes C with f |C = τ and I(f ) = {p+1 ,p+2 ,p+3 }.
Condition (i) is then a consequence of the degree equation (1). Condition (iii) fol-
lows from the relationship, described previously in this section, between points in
I(f ) and points in I(f −1).

To see that condition (ii) holds, note first that since the p+j are indeterminate
for f , they cannot be collinear. Hence

∑
p+j �∼ 0 by Theorem 1.1. Let L ⊂

P2 be a generic line. Then, by Theorem 1.1, we have p1 + p2 + p3 ∼ 0, where
p1,p2,p3 ∈ Creg are the points where L meets C. Now f −1(L) is a conic con-
taining the three points f −1(pj ) and (since L meets all exceptional lines for f −1

in generic points) the three points in I(f ). Thus
∑3

j=1 f
−1(pj )+∑3

j=1p
+
j ∼ 0.

Moreover, since τ(p) ∼ ap + bV for all p in an irreducible component V ⊂ C,
we see that f −1(pj ) = τ−1(pj ) ∼ a−1(pj − bj ), where bj is the translation for the
irreducible componentV ⊂ C containing τ−1(pj ). Each suchV contains degV of
the points pj , so we infer that

0 ∼
∑

p+j + a−1
∑

(pj − bj ) ∼
∑

p+j − a−1
∑
V⊂C

(degV )bV

as desired.
Condition (iv) follows from the same kind of reasoning. Taking j = 1, we

let L be a generic line passing through p+1 and let p2,p3 ∈ C be the remaining
points on L ∩ C. Then we have p+1 + p2 + p3 ∼ 0. By (1), the image f(L) is
also a line. Clearly L contains f(pj ) ∼ apj + bj for j = 2, 3, where this time
bj is translation for the irreducible component containing pj . Also, L intersects
the exceptional line through p+2 and p+3 at a generic point, so p−1 ∈ f(L). Hence
p−1 + f(p)+ f(q) ∼ 0. We combine this information to get
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0 ∼ p−1 + a(p2 + p3)+ b2 + b3

∼ p−1 − ap+1 − b1+
∑
V⊂C

bV ,

where the second line follows because L intersects each irreducible component
V ⊂ C in degV points. So condition (iv) holds. In summary, conditions (i)–(iv)
are necessary for the existence of f.

Turning to sufficiency, we suppose rather that the given automorphism τ and the
points p+j satisfy conditions (i) and (ii). The points p+j are not collinear, by condi-
tion (ii) and Theorem 1.1, so there exists a quadratic transformation f with I(f ) =
{p+1 ,p+2 ,p+3 }. It follows from the degree equation (1) that f(C) is a cubic curve
isomorphic to C. Therefore, f(C) = T(C) for some T ∈Aut(P2). Replacing f

with T −1 � f , we have that f properly fixes C. Further composing with a planar
automorphism that permutes linear components ofC, we may assume that f(V ) =
τ(V ) for each irreducible V ⊂ C.

Let ã ∈C∗ be the multiplier for the induced automorphism f |C. Multipliers for
the curve C form a group, so from Theorem 1.2 we obtain S ∈Aut(P2) fixing C

componentwise such that S(p) ∼ aã−1p for all p ∈ C. We replace f with S � f
to get ã = a. By the first part of the proof, the translations b̃V for f |C satisfy con-
dition (ii). In particular,

∑
(bV − b̃V ) = 0. Applying Theorem 1.2 again, we get

R ∈Aut(P2) fixing C componentwise and satisfying R(p) ∼ p + (bV − b̃V ) for
each irreducible V ⊂ C and all p ∈ f(V ). Trading f for R � f , we arrive finally
at a quadratic transformation with all the desired properties.

To see that this f is unique, note that if f̃ is another such transformation then
f � f̃ −1 is a planar automorphism that fixes C pointwise. In particular, f � f̃ −1

fixes three distinct points on any generic line in P2 and therefore fixes generic lines
pointwise. It follows that f = f̃ .

Let us close this section with a couple of remarks. When applying Theorem 1.3,
one can, of course, specify the points in I(f −1) rather than those in f. In this case,
condition (ii) in the theorem becomes

∑
p−j ∼ −

∑
(degV ) · bV , as one can see

by summing condition (iv) over j = 1, 2, 3 and combining it with the version of
condition (ii) appearing in the theorem.

If the cubic C is singular, then it is possible to write down algebraic formulas for
the quadratic transformations f in Theorem 1.3 (see [J] for some of these). How-
ever, these tend to be quite long, and it seems to us preferable in many instances to
take a more algorithmic point of view. Namely, if p ∈P2 is a point outside C and
not lying on an exceptional curve then, for any p+j ∈ I(f ), the line L joining p

and p+j meets Creg in two more points x and y. Additionally, the exceptional line
that maps to p−j meets L in a point q. The image f(L) is therefore also a line, and
it passes through f(x), f(y), and f(q) = p−j . These last three points are deter-
mined by I(f ) and f |C. So we can find f(L) explicitly. Since f |L : L→ f(L) is
a map between copies of P1 and since we know the images of three distinct points
under f |L, we can find an explicit formula for f |L and in particular for f(p).
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2. Automorphisms from Quadratic Transformations

In this section, we consider the issue of when and how a quadratic transformation
will lift to an automorphism on some blowup of P2. We also consider the linear
pullback actions induced by such automorphisms. Several of the results here are
assembled from other places and restated in a form that will be convenient for us.

2.1. Lifting to Automorphisms

Let us first describe the precise situation and manner in which a quadratic trans-
formation f can be lifted to an automorphism on a rational surface X obtained
from P2 by a sequence of blowups (see [BeK2] and [DF] for more on this). Sup-
pose there exist n1 ∈ N and σ1 ∈ {1, 2, 3} such that f n1−1(p−1 ) = p+σ1

. Relabeling
the points p−j and changing the index σ1 if necessary, we may further assume that:

• n1 is minimal (i.e., f j(p−1 ) /∈ I(f ) ∩ I(f −1) for any 0 < j < n1−1) and p−1 ∈
I(f ) only if n1 = 1;

• p−1 is not infinitely near to some other point in I(f −1); and
• p+σ1

is not infinitely near to some other point in I(f ).

Then, by blowing up the points p−1 , . . . , f n1−1(p−1 ), we obtain a rational surface X1

to which f lifts as a birational map f1 : X1 → X1 with only two points (count-
ing multiplicity) p−2 ,p−3 ∈ I(f −1

1 ). If now f
n2−1

1 (p−2 ) = p+σ2
for some n2 ∈N and

σ2 �= σ1, then we can repeat this process to obtain a map f2 : X2 → X2 with only
one point p−3 ∈ I(f −1

2 ). Finally, if f n3−1
2 (p−3 ) = p+σ3

then we blow up along this

last orbit segment and arrive at an automorphism f̂ : X→ X.

We call the integers n1, n2, n3 ≥ 1 together with the permutation σ ∈ 
3 the
orbit data associated to f , noting that the surface X is completely determined by
the orbit data and the points p−j ∈ I(f −1). Conversely, we say that the quadratic
transformation f realizes the orbit data n1, n2, n3, σ. It follows from general the-
orems of Yomdin and Gromov (see e.g. [Ca]) that the topological entropy of any
automorphism f̂ : X→ X of a rational surface X is log λ1, where λ1 is the largest
eigenvalue of the induced linear operator f̂ ∗ : H 2(X, R) → H 2(X, R). If f̂ is
the lift of a quadratic transformation as described above, then it is not difficult
to describe f̂ ∗ explicitly. Let H ∈ H 2(X, R) be the pullback to X of the class
of a generic line in P2. Let Ei,n ∈ H 2(X), 0 ≤ n ≤ ni − 1, be the class of the
exceptional divisor associated to the blowup of f n(p−i ). (Note that this divisor
will sometimes be reducible if there are infinitely near points blown up in con-
structing X.) Then H and the Ei,n give a basis for H 2(X, R) that is orthogonal
with respect to intersection and normalized by H 2 = 1 and E 2

i,n = −1. Under f̂ ∗
we have

H �→ 2H − E1,n1−1− E2,n2−1− E3,n3−1,

Ei,n �→ Ei,n−1 for 1≤ n ≤ ni − 1;
and under f̂∗ = (f̂ ∗)−1 we have
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H �→ 2H − E1,0 − E2,0 − E3,0,

Ei,n−1 �→ Ei,n for 1≤ n ≤ ni − 1.

Hence we arrive at the following result.

Proposition 2.1. With notation as before, we have f̂ ∗ = S � Q, where Q:
H 2(X)→ H 2(X) is given by

Q(H ) = 2H − E1,0 − E2,0 − E3,0,

Q(Ei,0) = H −
∑
j �=i

Ej,0, Q(Ei,n) = Ei,n for n > 0;

and S fixes H and permutes the Ei,j according to

Eσi,0 �→ Ei,ni−1, Ei,n �→ Ei,n−1 for n < ni − 1.

The characteristic polynomial P(λ) for f̂ ∗ has at most one root outside the unit
circle, and if it exists then this root is real and positive. Moreover, every root
λ = a of P(λ) is Galois conjugate over Z to its reciprocal a−1.

Proof. The decomposition f̂ ∗ = S � Q follows from the previous discussion.
The assertion about roots outside the unit circle is well known (see [Ca]) and fol-
lows from the fact that the intersection form on H 2(X, R) has exactly one positive
eigenvalue. Now if λ = eiθ is a root of P(λ) on the unit circle, then eiθ is Galois
conjugate to eiθ = (e iθ )−1 because f̂ ∗ preserves integral cohomology classes.
And if λ = a > 1 is a root of P(λ) then so is a−1, because f̂ ∗ and f̂∗ = (f̂ ∗)−1 are
adjoint with respect to intersection and thus have the same characteristic polyno-
mials. Since the product of the roots of the minimal polynomial for a−1 must be
an integer, it follows that a and a−1 are Galois conjugate over Z.

Proposition 2.1 implies that the action f̂ ∗ (and the hyperbolic spaceH 2(X, R)) de-
pends only on the orbit data associated tof. In fact, given any orbit datan1, n2, n3, σ
(whether or not it is realized by some quadratic transformation f ), one can con-
sider the (abstract) isometry

f̂ ∗ : V �→ V

of the hyperbolic z-space V = RH ⊕ij REij defined by the equations preceding
Proposition 2.1, and the characteristic polynomial of this isometry will still satisfy
the conclusions of the proposition.

We observe in passing that if σ is the identity permutation, then the permutation
S in the theorem decomposes into three cycles,

S = (E1,n1−1 . . . E1,0)(E1,n2−1 . . . E2,0)(E3,n3−1 . . . E3,0).

If σ is an involution (swapping e.g. 1 and 2) then S decomposes into two cycles,

S = (E1,n1−1 . . . E1,0E2,n2−1 . . . E2,0)(E3,n3−1 . . . E3,0);
and if σ = (123) is cyclic, then S is cyclic:

S = (E1,ni−1 . . . E1,0E2,n1−1 . . . E2,0E3,n2−1 . . . E3,0).
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Bedford and Kim [BeK2] have computed P(λ) explicitly for any orbit data
n1, n2, n3, σ, and their formula will be useful to us in what follows (see the for-
tuitous coincidence in the proof of Theorem 3.5). Specifically, they show that
P(λ) = λ1+∑

njp(1/λ)+ (−1)ord σp(λ), where

p(λ) = 1− 2λ+
∑
j=σj

λ1+nj +
∑
j �=σj

λnj(1− λ). (2)

2.2. Some General Observations

The following fact is folklore among people working in complex dynamics. We
include the proof for the reader’s convenience.

Proposition 2.2. Let X be a rational surface obtained by blowing up n ≤ 9
points in P2 and let f : X → X be an automorphism. Then the topological en-
tropy of f vanishes. If n ≤ 8, then f k descends to a linear map of P2 for some
k ∈N.

Proof. Suppose that f has positive entropy log λ > 0. Then there exists [Ca] a
nontrivial real cohomology class θ ∈ H 2(X, R) with f ∗θ = λθ and θ 2 = 0.
Moreover, f∗KX = f ∗KX = KX, where KX is the class of a canonical divisor on
X. Intersecting KX and θ, we see that

〈θ,KX〉 = 〈f ∗θ, f ∗KX〉 = 〈λθ,KX〉.
Hence 〈θ,KX〉 = 0. Since the intersection form on X has signature (1, n− 1) and
since K2

X ≥ 0 for n ≤ 9, we infer that θ = cKX for some c < 0. But then f ∗θ =
θ �= λθ. This contradiction shows that f has zero entropy.

If n ≤ 8, then in fact K2
X > 0. Thus the intersection form is strictly negative on

the orthogonal complement H ⊂ H 2(X, R) of KX. Since H is finite dimensional
and invariant under f ∗ and since f ∗ preserves H 2(X, Z), it follows that f ∗ has fi-
nite order on H. Hence f k∗ = id for some k ∈N. In particular, f k preserves each
of the exceptional divisors in X that correspond to the n ≤ 8 points blown up in
P2. It follows that f k descends to a well-defined automorphism of P2.

Corollary 2.3. Suppose that f : P2 → P2 is a quadratic transformation that
properly fixes a cubic curve C ⊂ P2 and lifts to an automorphism f̂ of some mod-
ification X → P2. If the multiplier of f |C is −1 and if f fixes each irreducible
component of C, then f : P2 → P2 is linear. Similarly, if f fixes each irreducible
component of C and if the multiplier of f |C is a primitive cube root of unity, then
the topological entropy of f̂ vanishes.

Proof. Suppose f realizes orbit data n1, n2, n3 ≥ 1, σ ∈
3. If the multiplier of f
is −1 and f 2(V ) = V for each irreducible V ⊂ C, then it follows that f 2|C = id.
Hence nj = 1 or 2 for each j, and the surface X may be created by blowing up at
most six points in P2. The first assertion follows from Proposition 2.2. If the mul-
tiplier of f is a primitive cube root of unity then f 3 fixes C componentwise, and
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the same argument shows that X may be constructed by blowing up at most nine
points in P2. The second assertion follows likewise.

Theorem 2.4. Let f : P2 → P2 be a quadratic transformation properly fixing
a cubic curve C ⊂ P2. Suppose that f permutes the irreducible components of C
transitively and that f |C has multiplier 1. Let X be the rational surface obtained
by blowing up all points (with multiplicity) in I(f ), I(f −1), and f(I(f −1)). Then
f lifts to an automorphism f̂ : X→ X with an invariant elliptic fibration.

Of course, the topological entropy must vanish for the map in this theorem. A
more detailed analysis shows that either f 2 = id or ‖f̂ n∗‖ grows quadratically
with n and the invariant elliptic fibration is unique. See [Ca; Mc; PeSm] for more
about this phenomenon.

Proof of Theorem 2.4. We claim that, after conjugation by a planar automorphism,
we may assume that the translations bV for f on the irreducible componentsV ⊂ C

are independent of V. To see this, suppose that C has three irreducible compo-
nents that are permuted V1 → V2 → V3 → V1 by f. Let b1 be the corresponding
translations. Then choose b̃j ∈ Pic0(C) such that 3b̃1 = b3 − b1, 3b̃2 = b1− b2,
and 3b̃3 = b2 − b3. Depending on whether Pic0(C) ∼= C or Pic0(C) ∼= C∗, these
b̃j might or might not be unique, but in either case they can be chosen so that∑

b̃j = 0. Now Proposition 1.2 gives us T ∈ Aut(P2) fixing C componentwise
with multiplier 1 and translations b̃j . One checks directly that T �f �T −1 has mul-
tiplier 1 and translation b = bV satisfying 3b =∑

bj independent of V ⊂ C. The
case when C has two irreducible components can be verified similarly.

From Theorem 1.3, we obtain that p−j ∼ p+j − 2b for each p−j in I(f ). Hence
f 2(p−j ) ∼ p+j . In fact, if V ⊂ C is the component containing p+j , then p−j ∈
f(V ) when C has three irreducible components and p−j ∈V when C has two com-
ponents. In either case, we find that f 2(p−j ) ∈ V and so f 2(p−j ) = p+j . Since
3b �∼ 0, it follows that f(p−j ) �= p+j . If p−j = p+j for some j, then in fact 2b ∼ 0
and p−j = p+j for all j. Hence f is conjugate to the “standard” quadratic transfor-
mation q, and the theorem is trivial. Henceforth, we assume p−j �= p+j .

Suppose further, for the moment, that there are no pairs of indices j �= k such
that p−j = p+k or f(p−j ) = p+k . Then we may blow up the points p−j , f(p−j ),p+j
for each j to obtain a rational surface X to which f lifts as an automorphism. Fur-
thermore,

∑
p−j +

∑
(p−j + b)+∑

p+j ∼ −3b+ 0+ 3b = 0. Finally, one finds
by comparing degrees that, regardless of the number of components V ⊂ C, each
V contains precisely 3 degV of the points blown up. Hence there is a pencil of
cubic curves that contains C and whose basepoints are precisely the ones blown
up. Each curve C ′ in the pencil intersects each exceptional curve for f precisely
once and contains each point in I(f ) with multiplicity 1. Comparing degrees, we
see that f(C ′) is another cubic curve containing all the basepoints. We conclude
that the pencil lifts to an invariant elliptic fibration of X.

Now if it happens that p−j = p+k or f(p−j ) = p+k for one or more pairs of
indices j �= k, then we can reach the same conclusion as before except that con-
structing X will now require an iterated blowing up whose precise nature depends
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on which special case we are in. The important thing is that, since 2b, 3b �∼ 0,
one must always blow up nine evenly distributed points in Creg that sum to zero
in Pic0(X).

Proposition 2.5. Let P be the characteristic polynomial for the orbit data
n1, n2, n3, σ. If nj = 1 for some j = σ(j) that is fixed by σ, then all roots of
P lie on the unit circle; hence, by a theorem of Kronecker, they are roots of unity.

Proof. Suppose, for example, that j = 1 and that P has a root λ with magnitude
different from 1. Recalling the discussion after Proposition 2.1, we let f̂ ∗ : V → V

be the “abstract isometry” associated to the data 1, n2, n3, σ. Then f ∗v = λv for
some v ∈V.

Using that f∗ is both inverse and adjoint to f ∗, we find

〈v, v〉 = 〈v, f̂∗f̂ ∗v〉 = 〈f̂ ∗v, f̂ ∗v〉 = |λ|2〈v, v〉.
Therefore, 〈v, v〉 = 0. Now it follows from Proposition 2.1 that f̂∗(H − E1,0) =
H − E1,0. Hence

〈H − E1,0, v〉 = 〈f̂∗(H − E1,0), v〉 = 〈H − E1,0, f̂ ∗v〉 = λ〈H − E1,0, v〉.
We infer that 〈H−E1,0, v〉 = 0. SinceH−E1,0 also has vanishing self-intersection
and since the intersection form has exactly one positive eigenvalue, it follows that
v is a multiple of H − E1,0. Hence λ = 1, contrary to assumption.

3. Irreducible Cubics

Corollary 3.1. Suppose that f is a quadratic transformation properly fixing a
nodal irreducible cubic curve C. If f lifts to an automorphism on some modifica-
tion X→ P2, then the topological entropy of f vanishes.

Proof. Since Pic0(C) ∼= C∗, the multiplier of f |Creg is±1. Since C is irreducible,
the assertion follows from Corollary 2.3 and Theorem 2.4.

Corollary 3.2. Suppose that f is a quadratic transformation properly fixing a
smooth cubic curve C. If f has positive entropy and lifts to an automorphism of
some modification X→ P2, then either :

• C ∼= C/(Z+ iZ) and the multiplier for f |C is ±i; or
• C ∼= C/(Z+ eπi/3Z) and the multiplier for f |C is a primitive cube root of −1.

Proof. If we are not in one of the two cases described in the conclusion, then the
multiplier for f |C must be a square or cube root of 1. From Corollary 2.3 and
Theorem 2.4, we deduce that if f lifts to an automorphism then the entropy of f
is zero.

Example 3.3. Suppose C ∼= C/(Z+ iZ). Then, remarkably, there are quadratic
transformations properly fixing C and lifting to automorphisms with positive en-
tropy. For example, Theorem 1.3 gives us a quadratic transformation f properly
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fixing C with I(f ) = {p+1 ,p+2 ,p+3 } = {i/9, 4i/9, 7i/9} and such that f |C is given
by z �→ iz+ 5/9. Condition(iv) from the same theorem tells us that p−1 = ip+1 −
2b = 7/9, and similarly p−2 = 4/9 and p−3 = 1/9.

Iterating f gives

p−1 = 7/9 �→ 7i/9+ 5/9 �→ −7/9+ 5i/9 �→ 7i/9 = p+3 .

Similarly, f 3(p−2 ) = p+1 and f 3(p−3 ) = p+2 . In summary, f realizes the orbit
data σ : 1 �→ 3 �→ 2, n1 = n2 = n3 = 4.

After blowing up the twelve points f k(p−j ), 0 ≤ k ≤ 3, 1 ≤ j ≤ 3, we ob-
tain an automorphism f̂ : X→ X. By (2), the characteristic polynomial for f̂ ∗ is
P(λ) = λ13− 2λ12+ 3λ9− 3λ8+ 3λ5− 3λ4+ 2λ−1, which has largest root λ1 =
1.722 . . . . Hence f̂ has entropy log λ > 0.

We make two further observations about this example. First, the restriction of
f̂ : X → X to (the proper transform of) C is periodic with period 4. Hence f̂ 4

is an example of a positive entropy automorphism of a rational surface that fixes
a smooth elliptic curve pointwise. Second, since C has negative self-intersection
C2 = 9−12 in X and since f(C) = C, one can contract C equivariantly to obtain
an automorphism f̌ : X̌� with positive entropy on a normal (possibly not projec-
tive) surface with a simple elliptic singularity.

On the other hand, as Eric Riedl points out, not all orbit data that looks plausible
(i.e., nj ≤ 4) for the “square” torus is actually realizable.

Example 3.4. Let C = C/(Z+ iZ) again, and consider the orbit data n1 = n2 =
n3 = 4, σ = id. If f properly fixes C and realizes this data, then f |C : z �→ iz+b

for some b ∈ C and (f |C)3(p−j ) = p+j . Since (f |C)4 = id, this is equivalent to
f |C(p+j ) = p−j . Hence Theorem 1.3(iv) implies ap+j + b ∼ p−j ∼ ap+j − 2b,
which gives 3b = 0—contrary to the last assertion in the proposition.

The final irreducible case occurs when C has a cusp, and in this case it is much
easier to construct automorphisms. In order to state our result, let us make a con-
venient definition. Suppose we are given orbit data n1, n2, n3 ≥ 1 and a quadratic
transformation f properly fixing C. We will say that f tentatively realizes the
orbit data if (f |Creg)

nj−1(p−j ) = p+σj for each nj . We stress that this does not mean
that f realizes the orbit data in the fashion described in Section 2. For instance,
one might find that f n−1(p−1 ) = pσ+1 for some n < n1 so that f actually realizes
the orbit data n, n2, n3, σ instead of n1, n2, n3, σ. Tentative realization is, however,
a necessary precondition for realization.

Theorem 3.5. Let C be a cuspidal cubic curve, and let n1, n2, n3 ≥ 1 and σ ∈
3

be the orbit data. If f is a quadratic transformation properly fixing C that ten-
tatively realizes this orbit data, then the multiplier for f |Creg is a root of the cor-
responding characteristic polynomial P(λ). Conversely, there exists a tentative
realization f for each root λ = a of P(λ) that is not a root of unity, and f is
unique up to conjugacy by linear transformations that preserve C.
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Proof. Since a �= 1by hypothesis, the restriction f |Creg is given by f(p) ∼ ap+b,
which has a unique fixed point p0 ∼ b/(1 − a). We let p̃ = κ(p) − κ(p0) ∈
Pic0(C) ∼= C for any point p ∈ Creg. Hence f̃ k(p) = akp̃. Proposition 1.2 and
the fact that all a ∈C∗ are possible multipliers for C allow us to conjugate by T ∈
Aut(P2) to arrange that p0 ∼ 1

3 . Items (iii) and (iv) in Theorem 1.3 then become,
respectively,

•
∑

p̃−j = a − 2 and
• p̃−j = ap̃+j + a − 1 for j = 1, 2, 3.

Therefore, if the points p−j ∈ Creg satisfy the first of these conditions, then The-
orem 1.3 gives us a quadratic transformation f that properly fixes C with multi-
plier a and I(f −1) = {p−1 ,p−2 ,p−3 }. The second condition is just a restatement of
Theorem 1.3(iv).

Now f tentatively realizes the given orbit data if and only if anj−1p̃−j = p̃+σj
for j = 1, 2, 3. If σ is the identity permutation, then the second listed condition
shows that this is equivalent to

p̃−j =
a − 1

1− anj
, j = 1, 2, 3. (3)

The first condition in turn gives
∑

j
1

1−a
nj
= a−2

a−1 . One verifies readily that this is

equivalent to P(a) = 0, where P is the characteristic polynomial for the orbit data
n1, n2, n3, id. (This fortunate coincidence is largely accounted for in [Mc, Sec. 7],
whose arguments show that the multiplier a for a tentative realization must be a
root of P(λ) and conversely that each root of P(λ), disregarding multiplicity, gives
rise to at least one tentative realization.) This proves the theorem when σ = id.

The cases where σ is an involution or σ is cyclic are similar. If σ is the involu-
tion (swapping e.g. indices 1 and 2), then one finds that

p̃−1 =
(a − 1)(1+ an2)

1− an1+n2
, p̃−2 =

(a − 1)(1+ an1)

1− an1+n2
, p̃−3 =

a − 1

1− an3
, (4)

where a is a root of the characteristic polynomial associated to n1, n2, n3, σ. And
if σ is the cyclic permutation σ : 1 �→ 2 �→ 3, then

p̃−1 =
(a − 1)(1+ an3 + an2+n3)

1− an1+n2+n3
, p̃−2 =

(a − 1)(1+ an1 + an3+n1)

1− an1+n2+n3
,

p̃−3 =
(a − 1)(1+ an2 + an1+n2)

1− an1+n2+n3
.

(5)

As it turns out, most of the tentative realizations given by Theorem 3.5 actually do
realize the given orbit data.

Theorem 3.6. Suppose in Theorem 3.5 that a is a root of P(λ) that is not equal
to a root of unity, and let f be the tentative realization corresponding to a of the
given orbit data n1, n2, n3, σ. Then f realizes the orbit data if and only if we are
not in one of the following two cases:
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• σ �= id and n1 = n2 = n3;
• σ is an involution swapping indices i and j such that ni = nj .

Proof. The tentative realization f will necessarily realize some orbit data. The
problem occurs when the orbit of some point p−j intersects I(f ) too soon and/or
at the wrong point, so that the orbit data that is realized differs from the given data.

That is, we have f n−1(p−j ) = p+σi for some i, j and some positive n∈N, where
i �= j and/or n < ni. Using the notation from the proof of Theorem 3.5, this
becomes

anp̃−j = p̃+σi = anip̃−i . (6)

In particular, we may suppose that i �= j because a is not a root of unity. Since
p̃−i , p̃−j are given by rational expressions (over Z) in a, (6) amounts to a polyno-
mial equation satisfied by a. But a is a root of the characteristic polynomial for
the orbit data and so, by Proposition 2.1, is Galois conjugate to a−1. Hence (6)
remains true if we replace a with a−1 throughout.

Assume for now that σ = id or that σ exchanges two indices. Replacing a by
a−1 in the formula for p̃−j amounts to replacing p̃−j by p̃+σj = anj−1p̃−j . One can
verify this directly using the formulas (3) and (4). However, this follows also on
general principles because (given the normalization p0 ∼ 1/3) there is a unique
tentative realization g of the orbit data n1, n2, n3, σ corresponding to the multi-
plier a−1. Since σ = σ−1, one can relabel indices j �→ σ(j) and see that f −1 gives
such a realization. Hence g = f −1. The upshot is that a must satisfy the second
equation a−n+njp̃−j = p̃−σi. Combined with (6), this implies that ani+nj−2n = 1.
Since by hypothesis a is not a root of unity, it follows that ni + nj = 2n.

Suppose ni �= nj ; for example, ni < nj . Then we may write ni = n − k and
nj = n+ k for some k > 0. Thus the orbit of p−j contains that of p−i as follows:

p−j , . . . , f k(p−j ) = p−i , . . . , f nj−k−1(p−j ) = p+σi , . . . , f
nj−1(p+σj ).

So in the blowing up procedure used to lift the birational map f : P2 → P2 to an
automorphism f̂ : X → X, the orbit segment p−i , . . . ,p−σi is blown up before the
segment p−j , . . . ,p+σj . Hence despite the coincidence (6), f still realizes the given
orbit data.

If instead ni = nj = n, then (6) implies p−i = p−j . Without loss of general-
ity, we may assume that p−i is infinitely near to p−j . Then the symmetry of f and
f −1 implies that p+i is infinitely near to p+j , whereas ni = nj implies that p+σi is
infinitely near to p+σj . Hence, under our assumption that σ is the identity or a trans-
position, f realizes the given orbit data if and only if σ = id.

Turning to the remaining case, where σ : 1 �→ 2 �→ 3 is cyclic, we begin again
with (6). Without loss of generality, we further suppose that j = 1and i = 2. Then
(5) and (6) give us an(1 + an3 + an2+n3) = an2(1 + an1 + an1+n3). Replacing a

with a−1 in this equation also gives an1(1+an2 +an2+n3) = an(1+an3 +an1+n3).

Adding the two equations and simplifying, we obtain that (an+n3−1)(an1−an2) =
0. Since a is not a root of unity, we infer that either n = −n3 or n1 = n2.
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In the first case, we substitute a−n3 for an in (6) and find that

(an3 + 1)(an1+n2+n3 − 1) = 0,

which is impossible because a is not a root of unity and n1, n2, n3 ≥ 1. In the sec-
ond case, when n1 = n2, we rewrite (6) as

anp̃−1 = ap̃+σ2
= ap̃+3 = p̃−3 + 1− a.

Substituting our formulas (5) for p̃−1 and p̃−3 , we obtain that an(1+an3+an3+n2) =
an2(1+ an3 + an1+n3). Using n1 = n2, we obtain that either 1+ an3 + an1+n3 = 0
or (since a is not a root of unity) n = n2. In the first case, we replace a with a−1

and deduce finally that n1 = n3. In the second case, we return to (6) and find that
p̃−1 = p̃−2 , which again gives n1 = n3. Regardless, we arrive at the condition n1 =
n2 = n3. From here we obtain a contradiction following the same logic used to
rule out the possibility that ni = nj when σ transposes i and j.

4. Reducible Cubics

We now deal briefly with the cases where the cubic curve C is reducible with only
one singularity—that is, C consists of three distinct lines through a single point or
C consists of a smooth conic and one of its tangent lines. In either case, the com-
ponents of Creg are copies of C, and the story is much the same as it is for cuspidal
cubics. The only additional complication is that a quadratic transformation can-
not realize given orbit data unless the permutation it induces on the components
of C is compatible with the permutation σ in the orbit data.

Theorem 4.1. Let C be the plane cubic consisting of three lines meeting at a
single point. Let n1, n2, n3 ∈ N and σ ∈ 
3 be orbit data whose characteristic
polynomial P(λ) has a root outside the unit circle. Then the orbit data can be re-
alized by a quadratic transformation f that properly fixes C if and only if one of
the following is true:

• σ = id;
• σ is cyclic and either all nj ≡ 0 mod 3 or all nj ≡ 2 mod 3; or
• σ is a transposition (say, σ interchanges 1 and 2) and either n1 and n2 are odd

or no two nj are the same modulo 3 and n3 ≡ 0 mod 3.

If one of these holds, we can arrange for f |Creg to have multiplier a, where a is
any root of P that is not a root of unity. The choice of a determines f uniquely up
to linear conjugacy.

Proof. We only sketch the argument. LetVj ⊂ Creg denote the component contain-
ing p+j . Since a �= 1, the restriction f |Vj has a unique “fixed point” pj ∼ f(pj ).

Using Proposition 1.2, we may conjugate by an element of Aut(P2) to arrange
that zj = 1

3(a−1) for all j = 1, 2, 3. Hence f(p) ∼ a(p − pj ) + pj has the same
expression on each Vj .

Given orbit data whose characteristic polynomial P has a root a that is not a
root of unity, we can repeat the arguments used to prove Theorem 3.5 to prove
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that there exists a quadratic transformation f properly fixing C such that the mul-
tiplier of f |Creg is a and f nj−1(p−j ) ∼ p+j for each j = 1, 2, 3. Indeed, given a

and the fixed points pj , f is determined up to permutation of the Vj . Let us write
f(Vj ) = Vsj where s ∈
3.

Now each Vj contains one point of indeterminacy (say, p+j ∈ Vj ); hence p−j
lies in f(Vj ) = Vsj . Therefore, if σ = id then we also choose s = id and so
f nj−1(p−j ) ∼ p+j implies f nj−1(p−j ) = p+j . Hence f realizes the given orbit
data.

If σ is cyclic (say σ : 1 �→ 2 �→ 3), then certainly f must permute the Vj tran-
sitively. That is, s must also be cyclic. If s = σ, then p−j ∈Vσj . Hence f nj−1(p−j )

lies in Vj if and only if n ≡ 0 mod 3. In other words, when s = σ, the given orbit
data is realized by f if and only if each nj ≡ 0 mod 3. To realize orbit data for
which nj ≡ 2 mod 3, one may check that it is similarly necessary and sufficient
that s = σ−1. We note that the exceptional cases from Theorem 3.6 need not con-
cern us here, because different points of indeterminacy lie in different components
of Creg and so cannot coincide.

The case where σ is a transposition can be analyzed similarly. The case where
n1 and n2 are odd can be realized by a quadratic transformation f that swaps V1

and V2 while fixing V3. The other case can be achieved by letting f permute the
Vj cyclically.

When C is the union of a smooth conic with one of its tangent lines, one has a re-
sult similar to Theorem 4.1. However, in this situation it will always be the case
that the conic portion of C contains more than one point of indeterminacy. Be-
cause such points of indeterminacy might coincide, it is necessary to hypothesize
away exceptional cases like those in Theorem 3.6. The upshot is that the analogue
of Theorem 4.1 for C equal to a conic and a tangent line is somewhat messy to
state. Since it is not conceptually different, we omit it.

4.1. Reducible Cubics with Nodal Singularities

Finally, we consider reducible cubics with more than one singularity. As before,
we devote most attention to the case of a cubic with three irreducible components.

Theorem 4.2. Suppose f : P2 → P2 is a quadratic transformation that prop-
erly fixes C = {xyz = 0} and lifts to an automorphism with positive entropy on
some blowup of P2. Then f fixes Creg componentwise and f |Creg has multiplier 1.
Hence f realizes orbit data of the form n1, n2, n3 ≥ 1, σ = id.

Proof. Since Pic0(C) ∼= C∗, the multiplier of f |Creg is±1. We claim that the mul-
tiplier of f is −1 if and only if f swaps two components of Creg and preserves
the other. Indeed, if f fixes {z = 0} while swapping {x = 0} and {y = 0} then,
in particular, f interchanges the points [0,1, 0] and [1, 0, 0]. Hence the multiplier
of f |Creg , which is the same as that of f |{z=0}, is −1. Similarly, if f fixes all three
components of Creg, then it also fixes all three singularities of C and we infer that
f has multiplier +1. Finally, if f cycles the components of Creg, then f 3 fixes
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Creg componentwise and we infer again that the multiplier of f |Creg , which is the
same as that of f 3|Creg , is +1. This proves our claim.

Suppose now that the multiplier is −1 and, without loss of generality, that f
fixes the component V ⊂ Creg containing p±1 . Hence f 2|V = id and σ1 = 1. It
follows that n1 = 1 or n1 = 2. If n1 = 2 then, on the one hand, we have p+1 ∼
−p+1 + b1, where b1 is the translation for f |V ; on the other hand, we have from
Theorem 1.3 that p−1 ∼ −p+1 − b2− b3, where b2, b3 ∈C∗ are the translations on
the other two components of Creg. We infer that b1+ b2 + b3 = 0 and, by Theo-
rem 1.3(ii), that

∑
p+j ∼ 0. This contradicts the fact that the points in I(f ) cannot

be collinear, so n1 = 1. From Proposition 2.5, it follows that the automorphism
induced by f has entropy 0, contrary to hypothesis.

Hence the multiplier for f |Creg is +1. If f permutes the components of Creg

cyclically, then Proposition 2.2 and Theorem 2.4 imply that f lifts to an automor-
phism with zero entropy, again counter to our hypothesis. We conclude that f
fixes C componentwise.

Having just ruled out many types of orbit data on C = {xyz = 0}, we consider
whether the remaining cases may be realized. Let n1, n2, n3 ≥ 1 and σ = id be
orbit data and let f be a quadratic transformation that fixes C componentwise with
multiplier 1. Then f(p) ∼ p+ bj on the component containing p±j . Theorem 1.3
gives p−j ∼ p+j +bj −b for b = b1+b2+b3; and f tentatively realizes the given
orbit data if p+j ∼ p−j + (nj − 1)bj . We infer that njbj = b for j = 1, 2, 3.

Note that these equations hold relative to the group structure on Pic0(C) ∼=
(C/Z,+). For convenience we will conflate equivalence classes and their repre-
sentatives here, regarding b and bj as elements of C instead of C/Z. The previous
equations must then be understood “modulo 1”; for example, njbj = b + mj for
some mj ∈Z. Solving for bj and summing over j gives

b

(
1−

∑ 1

nj

)
=

∑ mj

nj
,

which implies

bj = mj

nj
+ 1

nj

m1n2n3 +m2n3n1+m3n1n2

n1n2n3 − n1n2 − n2n3 − n3n1
. (7)

On the other hand, it is clear from Theorem 1.3 that if m1,m2,m3 ∈Z is any choice
of integers then we get a tentative realization of our orbit data.

Proposition 4.3. Let C = {xyz = 0} and n1, n2, n3, σ = id be orbit data. Then
this data may be tentatively realized by a quadratic transformation f properly fix-
ing C if and only if n1n2n3 �= n1n2 + n2n3 + n3n1. Any such f has translations
bj , j = 1, 2, 3, given by equation (7). Conversely, any choice of m1,m2,m3 ∈ Z
in (7) determines a tentative realization f that is unique up to linear conjugacy.

Proof. The preceding discussion shows that the restrictions on f are necessary
and sufficient for f to tentatively realize the orbit data. We need only argue that
there actually exists a quadratic transformation f that satisfies the restrictions.
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For this we rely on the existence portion of Theorem 1.3. Note that the foregoing
discussion also shows that, although the conditions f nj−1(p−j ) = p+j constrain
the translations bj , they do not (otherwise) constrain the points p±j . Hence we
need only adhere to conditions (i) and (ii) in Theorem 1.3, choosing p+j so that∑

p+j ∼ b and then p−j ∼ p+j + bj − b. In fact, by Proposition 1.2 we can always
conjugate by a linear transformation to obtain p+1 ∼ p+2 ∼ 0 and p+3 ∼ b.

Since the points of indeterminacy for f lie in different components of C, the only
way the transformations f in the proposition can fail to realize the given orbit data
is if f k(p−j ) = p+j for some 0 ≤ k ≤ nj − 2. This happens if and only if f 
p−j =
p−j ; that is, 
bj ∈Z for some 0 < 
 < nj − 2.

Theorem 4.4. Let C = {xyz = 0} and consider orbit data of the form n1 ≥
n2 ≥ n3 ≥ 2, σ = id, for which the corresponding characteristic polynomial has
a root outside the unit circle. Then there exists a quadratic transformation that
properly fixes C and realizes this orbit data if and only if we are not in one of the
following cases:

• n2 + n3 ≤ 6;
• n3 = 2, and n1 = n2 = 5 or n1 = n2 = 6; or
• n1 = n2 = n3 = 4.

Proof. If a quadratic transformation f realizes orbit data n1 ≥ n2 ≥ n3, then it
must be one of the tentative realizations from Proposition 4.3. By Proposition 2.5,
we may assume that n3 ≥ 2. If n2 = n3 = 2, then (7) implies that 2b1 ∈ Z. So
n1 ≤ 2, and n1+ n2 + n3 ≤ 6 is too small.

Now if n2 = 3 and n3 = 2, then equation (7) gives

b1 = m1+ 2m2 + 3m3

n1− 6
.

Hence 
b1∈Z for 
 = n1− 6 ≤ n1− 2. That is, every tentative realization of the
orbit data n1, 3, 2, id fails to actually realize this data. The same argument rules
out orbit data with n2 = 4, n2 = 2, or n2 = n3 = 3.

We are left with three remaining bad cases. The data n1 = n2 = 5 and n3 = 2 is
ruled out in the same way as the previous cases. Suppose n1 = n2 = n3 = 4. This
time (7) tells us that, for any tentative realization, the translations are given by

bj = mj + (m1+m2 +m3)

4
,

where m1,m2,m3 ∈Z. Thus the numerator will be even for some j, which implies
(nj − 2)bj = 2bj ∈Z. Hence the data is not realized. Similar arguments rule out
the data n1 = n2 = 6, n3 = 2.

Turning to the good cases, we first assume n2 > n1 ≥ 4. We set m1 = 1 and
m2 = m3 = 0, and we take f to be the tentative realization from Proposition 4.3.
Then (7) gives
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0 < b1 = n2n3 − n2 − n3

n1(n2n3 − n2 + n3 − n2n3)− n2n3
= 1

n1− 1

1−n−1
2 −n−1

3

<
1

n1− 2
.

Hence 0 < 
b1 < 1 for all 0 < 
 ≤ n1 − 2. Similarly, we find for j = 2, 3 that
0 < 
bj < 1 for all 0 < 
 < nj −2. We conclude that f actually realizes the given
orbit data.

The same argument works when n1 > n2 = n3 = 4 except that we set m2 = 1
and m1 = m3 = 0 when choosing f. It works for n2 > n3 = 3 if we set m1 = 1,
m2 = 0, and m3 = −1; and it works for n1 > n2 ≥ 5 and n1 �= n2 if we set m1 = 1
and m2 = −1.

The final case we need to consider is n3 = 2 and n1 = n2 ≥ 7. This time we set
m1 = 1 and m2 = m3 = 0. It follows that 0 < 
b2 < 1 for all 0 < 
 ≤ n2 − 2.
It also follows that b3 /∈ Z. For b1, however, things are a bit more delicate. One
shows here that 0 < 
b1 < 1 for all 0 < 
 ≤ n1 − 3 but 1 < (n1 − 3)b1 < 2.
Regardless, the data is realizable.

Of course, each realization f given by Theorem 4.4 lifts to an automorphism
f̂ : X → X on the rational surface X obtained by blowing up orbit segments
p−j , . . . , f nj−1(p−j ). These automorphisms are broadly similar to those in Exam-
ple 3.3. That is, some iterate f̂ k restricts to the identity on the proper transform
Ĉ of C in X. And in a different direction, the intersection form is negative def-
inite for divisors supported on Ĉ and so, by Grauert’s theorem [Ba+, p. 91], one
can collapse Ĉ to a point and obtain a normal surface Y with a cusp singularity to
which f̂ descends as an automorphism.

The other reducible cubic curve with nodal singularities is the one with two
components C = {z(xy − z2) = 0}. As with {xyz = 0}, there are infinitely
many sets of orbit data that can be realized by quadratic transformations fixing C

and also infinitely many that cannot be realized. Rather than give the complete
story, we make some broad observations and give examples indicating the range
of possibilities.

Theorem 4.5. Suppose that C = {z(xy − z2)} is the reducible cubic with two
singularities. If f is a quadratic transformation realizing orbit data n1, n2, n3, σ
whose characteristic polynomial has a root outside the unit circle, then f fixes C
componentwise and f |Creg has multiplier 1. Moreover, either

• σ is a transposition or
• σ = id and two of the nj are equal.

Proof. The possible multipliers for C are±1. Let b, c ∈C∗ denote the translations
of f on {xy − z2} and {z = 0}, respectively.

Suppose that the multiplier is −1. Then, by Corollary 2.3, f switches the two
components ofCreg. Now f 2(p) ∼ p+(b−c) on the conic {xy−z2} and f 2(p) ∼
p+ (c−b) on {z = 0}. Moreover, degree considerations force all points p±j of in-
determinacy for f and f −1 to lie on this conic. Hence from Theorem 1.3 we have
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p−j +p+j ∼ b− c for j = 1, 2, 3; and
∑

p−j ∼
∑

p+j ∼ −2b− c. Combining all
the formulas gives

−3(b + c) ∼
∑

(p+j + p−j ) ∼ −2b − 4c,

which implies that b − c = 0. Hence f 2 = id on C. It follows that f can realize
only the orbit data for which all orbit lengths satisfy nj ≤ 2. Proposition 2.2 now
implies that all roots of the characteristic polynomial have magnitude 1, contrary
to hypothesis.

We can assume therefore that f |Creg has multiplier+1. Theorem 2.4 implies that
f fixes C componentwise. Comparing degrees, we find that {xy − z2} contains
two points (say, p+1 ,p+2 ) of I(f ) and that {z = 0} contains p+3 . Since the compo-
nents map to themselves, it follows that p−1 ,p−2 ∈ {xy = z2} and p−3 ∈ {z = 0}.
Theorem 1.3 gives

p−1 − p+1 ∼ p−2 − p+2 ∼ −b − c, p+3 − p−3 ∼ −2b,
∑

p−j ∼ −2b − c.

The permutation σ in the orbit data must fix the index 3. Hence either σ = id or
σ switches the indices 1 and 2. Suppose we are in the former case. Then, for j =
1, 2, we have p+j −p−j ∼ (nj − 1)b. Combining this with the preceding formulas
gives (nj − 1)b ∼ c and hence (n2 − n1)b ∼ 0. So if n2 �= n1 then we see that
b ∼ m/n, where 0 < n < max{n1 − 1, n2 − 1} and 0 ≤ m < n are integers. So
if, say, n2 ≥ n1, we find f nj−n−1(p−2 ) ∼ p+2 and therefore f does not realize the
given orbit data. It follows that n2 = n1.

Example 4.6. We can realize the orbit data consisting of n1 = n2 = 5,
n3 = 4, and σ = id on C = {(xy − z2)z = 0} as follows. Choose p−1 ,p−2 ∈
{xy = z2} such that p−1 ∼ 0 ∈ C/Z and p−2 ∼ i, and choose p−3 ∈ {z = 0}
such that p−3 ∼ −i − 5/7. Then from Theorem 1.3 we obtain a quadratic trans-
formation f with I(f −1) = {p−1 ,p−2 ,p−3 } that properly fixes each component of
C, acting on {xy = z2} by f(p) ∼ p + 1/7 and on {z = 0} by f(p) ∼ p + 3/7.
Also, we obtain that the points in I(f ) satisfy p−3 = p+3 − 2/7 and that, for j =
1, 2, p−j ∼ p+j + 4/7. Since for each j the points p+j and p−j lie in the same
component of C, we infer that f 3(p−3 ) = p+3 and that f 4(p−j ) = p+j for j =
1, 2. Hence f tentatively realizes the given orbit data. Because all fourteen points
p−j , . . . , f nj−1(p−j ), j = 1, 2, 3, are distinct (as can be verified directly), we con-
clude that f realizes the give orbit data.

Example 4.7. Let p−1 ,p−2 ∈ {xy = z2} be given by p−1 ∼ 8/13 and p−2 ∼ 0,
and let p−3 ∈ {z = 0} be given by p−3 ∼ 12/13. Then from Theorem 1.3 we get a
unique quadratic transformation f with I(f −1) = {p−1 ,p−2 ,p−3 } that properly fixes
each component of C, acting by f(p) ∼ p + 3/13 on {xy = z2} and by f(p) ∼
p + 1/13 on {z = 0}. The points in I(f ) are given by p+1 ∼ 12/13, p+2 ∼ 4/13,
and p+3 ∼ 5/13. From this information, one verifies that f realizes the orbit data
n1 = 3, n2 = 4, n3 = 7, σ = (12).
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Appendix: The Group Law on a
Plane Cubic Curve

Igor Dolgachev

Let C be a reduced connected projective algebraic curve over an algebraically
closed field K. Let Pic(C) be the group of isomorphism classes of invertible
sheaves on C. The exact sequence of abelian groups associated with the exact se-
quence of abelian sheaves

1→ O∗
C → K∗

C → K∗
C/O∗

C → 1

identifies Pic(C) ∼= H1(C, O∗
C)with the group Div(C) = �(C, K∗

C/O∗
C) of Cartier

divisors modulo principal Cartier divisors div(f ), the images of f ∈�(C, K∗
C) in

Div(C). Here KC is the sheaf of total rings of fractions of the structure sheaf OC on
C. We employ the usual notation for linear equivalence of Cartier divisors D ∼ D ′
(note that this differs from the meaning of “∼” in the main text of this paper), let-
ting [D] denote the linear equivalence class of a Cartier divisor D.

For any D ∈ Div(C) and any closed point x ∈ C, a representative φx in K∗
C,x

of the image Dx of D in K∗
C,x/O∗

C,x is called a local equation of D at x. The
homomorphism Div(C)→ H1(C, O∗

C) assigns to a Cartier divisor D the isomor-
phism class of the invertible sheaf OC(D) whose sections over an open subset U
are elements f ∈ KC(U)∗ such that, for any x ∈ C, we have fxφx ∈ OC,x. The
correspondence D �→ OC(D) defines an isomorphism between the group of lin-
ear equivalence classes of Cartier divisors and the group of isomorphism classes
of invertible sheaves. Each group will be identified with the group Pic(C).

A Cartier divisor D is called effective if all its local equations can be chosen
from OC,x. An effective Cartier divisor can be considered as a closed subscheme
of C. The number h0(OD) = dimK H 0(C, OD) is called the degree of D and is de-
noted by degD. Every Cartier divisor D can be written uniquely as a difference
D1−D2 of effective divisors (one uses the additive notation for the group of divi-
sors). By definition, degD = degD1− degD2. The degree of a principal divisor
is equal to 0, and this allows one to define deg L for any invertible sheaf of C. An
equivalent definition (see [M]) is

deg L = χ(C, L)− χ(C, OC).

The Riemann–Roch theorem on C then becomes equivalent to the assertion that

deg: Pic(C)→ Z, L �→ deg L,

is a homomorphism of abelian groups.
A global section s : OC → L defines, after taking the transpose ts : L−1 → OC ,

a closed subscheme of C with the ideal sheaf ts(L−1). If its support is finite, then
s is an effective Cartier divisor denoted by div(s). In this case, OC(div(s)) ∼= L.
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A Cartier divisor supported in the set Creg of closed nonsingular points of C is
called a Weil divisor. It can be identified with an element of the free abelian group
generated by the set Creg.

Let V1, . . . ,Vr be the irreducible components of C. Denote by ιj : Vj ↪→ C the
corresponding closed embeddings. For any invertible sheaf L on C we denote by
degj L the degree of ι∗j L. The multi-degree vector

deg(L) = (deg1 L, . . . , degr L)∈Zr

defines a surjective homomorphism Pic(C)→ Zr. The kernel of this homomor-
phism is denoted by Pic0(C).

Next we assume that C is a connected reduced curve of arithmetic genus 1
lying on a nonsingular projective surface X. Recall that the arithmetic genus
pa(C) is defined to be equal to dimK H1(C, OC). Thus we have χ(C, OC) =
0 and hence χ(C, L) = deg L. The Serre duality theorem gives H1(C, L) ∼=
H 0(C, L−1⊗ ωC), where ωC is the canonical sheaf on C. By the adjunction for-
mula, ωC = ωX ⊗ OX(C) ⊗ OC , where ωX is the canonical sheaf on X. Since
H 0(C,ωC) ∼= H1(C, OC) ∼= K , we obtain that ωC has a nonzero section whose
restriction to each component is nonzero. The zero divisor of this section is an ef-
fective divisor of degree 0 and hence is the trivial divisor. Thus ωC

∼= OC. This
easily implies the following lemma.

Lemma A.1. Assume that degj L ≥ 0 for any irreducible component Vj of C.
Then

dimH 0(C, L) = deg L.

Moreover, each nonzero section has finite support.

The following lemma describes the structure of a reduced connected curve of arith-
metic genus 1. Its proof is standard (see [R, 4.8]) and so is omitted.

Lemma A.2. Let C be a connected reduced curve of arithmetic genus 1 lying on
a nonsingular projective surface X. Let V1, . . . ,Vr be its irreducible components.

(i) If r = 1 (i.e., C is irreducible), then eitherC is nonsingular orC has a unique
singular point, an ordinary node, or an ordinary cusp.

(ii) If r > 1, then each Vi is isomorphic to P1 and Vi · (C − Vi) = 2.

The structure of C makes it convenient to index the components of C by the cyclic
group Z/rZ so that each component Vi either intersects Vi−1 and Vi+1 transver-
sally at one point, or r = 2 and Vi is tangent to Vi+1, or r = 3 and Vi intersects
Vi−1 and Vi+1 transversally at the same point.

The following lemma is crucial for defining a group law on the set Creg.

Lemma A.3. Let L ∈ Pic(C) with deg ιi(L) = 1 and deg ιk(L) = 0 for k �= i.

Then
L ∼= OC(xi)

for a unique nonsingular closed point xi on Vi.
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Proof. Without loss of generality we may assume that i = 0. By Lemma A.1, we
have dimH 0(C, L) = 1. Let s be a nonzero section of L. Suppose ι∗j (s) �= 0 for
all j. Then s has only finitely many zeros; hence the divisor of zeros D satisfies
OC(D) ∼= L. This implies that degD = 1 and that D is a Weil divisor 1 · x0 for
some nonsingular point x0 ∈V0 (we use that, for any singular point y and φy from
the maximal ideal of OC,y , we have dim OC,x/(φy) ≥ 2).

Now assume that ι∗j (s) = 0 for some component Vj . Then ι∗j+1(s) and ι∗j−1(s)

vanish at the pointsVj ∩Vj+1 and Vj ∩Vj−1. Since a sheaf of degree 0 cannot have
a nonzero section vanishing at some point, we see that ιi(s) = 0 for any compo-
nent Vi intersecting Vj and different from V0. Replacing j with i and continuing
in this way, we may assume that j = 1. Thus the divisor of zeros of ι∗0(s) con-
tains the divisor of degree 2 equal to V0 ∩ (C \V0). Since deg ι∗0(L) = 1, this is
impossible.

Corollary A.4. Let Vj be an irreducible component of C and let oj be a point
on Vj . The map

κj : Vj ∩ Creg → Pic0(C), x �→ OC(x − o) or x �→ [x − oj ],

is bijective. If κj is used to define a structure of a group on Vj ∩ Creg, then this
group becomes isomorphic to the group of points on an elliptic curve (resp. the
multiplicative group K∗ of K , resp. the additive group K+ of K) if Vj is a smooth
curve of genus 1 (resp. an irreducible nodal curve or Vj intersects C \Vj at two
points, resp. an irreducible cuspidal curve or Vj intersects C \Vj at one point).

Proof. It follows from LemmaA.1 that the map κj is injective (no two closed points
are linearly equivalent on C). For any L∈ Pic0(C), the sheaf L⊗OC(oj ) has de-
gree 1 on Vj and degree 0 on other components. By Lemma A.3, L ∼= OC(oj ) is
isomorphic to OC(x) for a unique point x ∈Vj . This confirms the surjectivity of
the map κj .

The transfer of the group law on Pic0(C) defined by the map κj reads as follows:
x ⊕ y is the unique point on Vj ∩ Creg such that

x ⊕ y ∼ x + y − oj .

Assume first that C = V0 is irreducible. Let ν : Y → C be the normalization map.
If C is a nodal curve, then ν−1 = p1+p2 and we can identify OC , via ν∗, with the
subsheaf of OY of functions φ such that φ(p1) = φ(p2). Let f : Y → P1 be an
isomorphism such that f −1(0) = p1 and f −1(∞) = p2, where we choose projec-
tive coordinates [t0, t1] on P1 and denote 0 = [1, 0] and ∞ = [0,1]. The rational
functionf identifies the fields of rational functionsR(C) = �(C, KC) andR(Y ) =
�(Y, KY ) on C and Y. Any nonsingular point x ∈C is identified with a point [t0, t1]
on P1 \{0,∞}. The latter set is identified with K∗ by sending [t0, t1] to t = t1/t0 ∈
K∗. Now choose o = o0 = 1. Then, for any x, y, z∈Creg, we have x + y ∼ o+ z

if and only if there exists a rational function r(t) = (t − x)(t − y)/(t − 1)(t − z)

with r(0) = r(∞). The latter condition implies that xy/z = 1; hence z = x⊕y =
xy. This defines an isomorphism of groups Creg

∼= K∗.
With similar notation, if C is a cuspidal curve then ν−1 = 2p for some point

p ∈ Y. We may identify OC with the subsheaf of OY of functions φ such that
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φ−φ(p)∈m2
Y,p. Now we identifyCreg with P1\{∞} and take o = 0. Then x+y ∼

o+z if and only if there exists a rational function r(t) = (t−x)(t−y)/(t−1)(t−z)

such that r − r(∞) = r(t)− 1 has zero at∞ of order 2. It is easy to see that this
gives the condition z = x ⊕ y = x + y. Thus we have defined an isomorphism of
groups Creg

∼= K+.
Now let us assume thatC is reducible and thatVi ·(C−Vi) consists of two points.

We identify OC with the subsheaf of
∏ OVi

whose sections on an open subset U
are those (φ1, . . . ,φr), φi ∈ �(U ∩Vi, OVi

), such that φi(Vi ∩Vj ) = φj(Vi ∩Vj ).

We identify each Vi with P1 and assume that Vj = V0. If r > 2, we identify the
point V0 ∩ V1 with 0 and identify V0 ∩ V−1 with ∞. If r = 2, we set V0 ∩ V1 =
{0,∞}. Now we choose o0 = 1. For any x, y, z∈V0, we have x+y ∼ o+ z if and
only if there exist rational functions fi such that f0 = (t−x)(t−y)/(t−1)(t−z)

and such that the fi are constants for i �= 0 with r(0) = f1 = f2 = · · · = f−1 =
r(∞). This implies that xy = z and shows that V0 ∩ Creg is isomorphic to K∗.

We leave the case when Vj ∩ (C \Vj ) consists of one point to the reader.

Now let us define the group law on Creg. We fix some oj on each Vj ∩ Creg; the
group law will depend on this choice. We designate o0 to be the zero element.

By Lemma A.3, for any xi ∈Vi ∩ Creg and xj ∈Vj ∩ Creg we have

OC(xi + xj − oi − oj + oi+j ) ∼= OC(y)

for some unique point y ∈Vi+j ∩ Creg. We define the group law by setting

xi ⊕ xj := y.

In other words, by definition,

xi ⊕ xj ∼ xi + xj + oi+j − oi − oj .

It is immediately checked that the binary operation ⊕ satisfies the axioms of an
abelian group with the zero element equal to o0. In this way we equip the set Creg

with an abelian group law. The points V0 ∩ Creg form a subgroup of Creg with
cosets equal to Vi ∩ Creg. The quotient group is isomorphic to the cyclic group
Z/rZ. We have a group isomorphism

Creg
∼= Pic0(C)× Z/rZ ∼= V0 × Z/rZ.

Notice that the group Creg acquires (noncanonically) a structure of a commuta-
tive algebraic group with connected componentV0 isomorphic to Pic0(C). In fact,
Pic0(C) has the structure of a commutative algebraic group (the generalized Ja-
cobian of C) for any (even nonreduced) projective algebraic curve [O].

If C is a nonsingular curve then we immediately see that the group law coin-
cides with the usual group law on an elliptic curve as defined, for example, in [H].
The group law on the component V0 ∩ Creg is the same as the group law obtained
by the transfer of the group law on Pic0(C) by means of the map κ0 defined by the
point oj .

Let us describe the group Aut(C) of automorphisms of C in terms of the group
law on each component Vi ∩ Creg that is isomorphic to Pic(V0) considered as a
one-dimensional algebraic group. The group Aut(C) acts naturally on Pic(C) by
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L → (σ−1)∗L, σ ∈Aut(C). In divisorial notation, σ sends [D] to [σ(D)], where∑
mixi �→ ∑

miσ(x). This action preserves the degree and the multi-degree.
Thus it defines a homomorphism of groups

a : Aut(C)→ Aut(Pic0(C)).

The groupAut(Pic0(C)) in which Pic0(C) is considered as a one-dimensional alge-
braic group is, of course, well known. We have three different cases for Pic0(C):
an elliptic curve, K∗, or K. Note that our automorphisms are automorphisms of
the corresponding algebraic groups. In the first case,

Autgr(Pic0(C)) ∼=




Z/2Z if j(C) �= 0,1728;
Z/4Z if j(C) = 1728, char(K) �= 2, 3;
Z/6Z if j(C) = 0, char(K) �= 2, 3;
Z/12Z if j(C) = 0 = 1728, char(K) = 3;
Z/24Z if j(C) = 0 = 1728, char(K) = 2.

(See [Si, Chap. III, Sec. 10].) Here j(C) is the absolute invariant of C defined via
the Weierstrass equation. If K = C then Pic0(C) ∼= (C/�,+) for some discrete
subgroup �, and a group automorphism of Pic0(C) is given by z �→ λz for some
λ∈C∗ such that λ< = <.

We also have

Autgr(K
∗) ∼= Z/2Z, Autgr(K

+) ∼= K
∗.

Let σ ∈Aut(C). Then σ(Vi) = Vτ(i) for some permutation τ of {0, . . . , r − 1}.
Our identifications κi : Vi ∩ Creg → Pic0(C) induce maps

κτ(i) � σ � κ−1
i : Pic0(C)→ Pic0(C), [D] �→ aσ([D])+ σ(oi )− oτ(i),

for each index i. Each of these is an affine automorphism of Pic0(C) that is given
by composition of the group automorphism aσ just described with translation by
the divisor class

bi(σ) = [σ(oi )− oτ(i)].

We can therefore view the restriction of σ toVi ∩Creg as an “affine automorphism”
(aσ , bi(σ)),

σ(x) ∼ aσ([xi − oi])+ σ(oi ) = aσ([xi − oi])+ bi(σ), (A.1)

where bi(σ) := κ−1
τ(i)(bi(σ)) = σ(oi ). It is clear that σ is an affine automorphism

of the whole group Creg if and only if bi(σ) ∈ Pic0(C) is the same for all i ∈
Z/rZ. In other words, σ(oi )− oτ(i) is a constant function from Z/rZ to Pic0(C).

Likewise, σ defines a group automorphism of Creg if and only if the permutation
τ : Z/rZ → Z/rZ is a (group) automorphism and σ(oi ) = oτ(i) for each i.

Finally, let us discuss the special case of the group law on a reduced plane cubic
curve—that is, the case when X = P2. By the adjunction formula, such a curve
has arithmetic genus 1. So all of the above discussion applies with, of course,
r ≤ 3.
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Proposition A.5. Assume that C is not isomorphic to the irreducible cuspidal
cubic in characteristic 3 defined by the equation t0 t

2
2 + t 3

1 + t 2
1 t2 = 0. One can

choose the points oi in such a way that, for any x, y, z∈Creg with no two lying on
the same degree-1 component,

x ⊕ y ⊕ z = 0 ⇐⇒ x, y, z are collinear. (A.2)

Proof. Recall that an inflection point on a reduced plane algebraic curve is a non-
singular point such that there exists a line that intersects the curve at this point
with multiplicity ≥ 3. Suppose C is an irreducible cubic curve. If C is nonsin-
gular, then we can reduce the equation of C to its Weierstrass form (see [Si]) and
find the inflection point at infinity. If C is an irreducible nodal curve, we can re-
duce the equation of C to the form t0 t1t2 + t 3

1 − t 3
2 = 0. If char(K) �= 3 then we

find three inflection points (0,1, ε), where ε3 = 1. If char(K) = 3, there is only
one inflection point (0,1, 1).

If C is a cuspidal curve, then we can reduce it to the form t0 t
2
2+ t 3

1 = 0 provided
char(K) �= 3. If char(K) = 3, there is one more isomorphism class represented
by the curve t0 t

2
2 + t 3

1 + t 2
1 t2 = 0. The curve t0 t

2
2 + t 3

1 = 0 has the inflection point
(0, 0, 1). In the second case, there are no inflection points.

Choose the points oi such that the divisor
∑

oi degVi is cut out by a line 
0.

This means that o0 is an inflection point if C is irreducible or that the line 
0 is a
tangent line to the point oi on the componentVi of degree 1. We also chooseV0 to
be a line component if C is reducible.

Assume for the moment that C is irreducible. Then x ⊕ y ⊕ z = 0 means that
x + y + z ∼ 3o. From our choice of o we infer that OC(x + y + z) ∼= OC(3o) ∼=
OC(1). Hence x + y + z is cut out by a line. Reversing the logic then concludes
the proof for irreducible C.

Now assume that C is reducible and that x ∈Vix , . . . . Then x⊕y⊕z = 0 only if
ix + iy + iz = 0 in Z/rZ. Therefore, since no two of the points lie in the same lin-
ear component, we cannot have ix = iy = iz = 0. The same is true if we assume
instead that x + y + z is a divisor cut out by a line.

Similarly, if ix = iy �= iz, then r = 2 and we may assume that degV0 = 2,
degV1 = 1 and that x, y ∈ V0, z ∈ V1. So x ⊕ y ⊕ z = 0 becomes x + y + z ∼
2o0+ o1, and the argument concludes as in the irreducible case. We leave the case
where ix , iy , iz are all different to the reader.

Corollary A.6. An automorphism σ of a plane cubic C defined by affine auto-
morphisms (aσ , bi(σ)), i ∈ Z/rZ, is a projective automorphism if and only if∑

bi(σ) degVi is cut out by a line or, in other words, if and only if⊕
i∈Z/rZ

bi(σ) degVi = 0

in the group law on Creg.

Proof. Let OC(1) be the restriction of OP2(1) to C. An automorphism σ of C is
projective if and only if σ ∗(OC(1)) ∼= OC(1). Since OC(1) ∼= OC

(∑
oi degVi),

this is equivalent to the condition that
∑

σ(oi ) degVi is cut out by a line. But
(a(σ, bi(σ)(oi ) ∼ aσ([oi − oi])+ bi(σ) = bi(σ). This proves the assertion.
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Remark A.7. Let us look at Autgr(Creg) in more detail. We already know the
structure of this group in the case when C is irreducible. Assume that C = V0+V1

and thatV0 intersectsV1 transversally. Then the tangent line 〈o, o1〉 toV1 is mapped
under a group automorphism to the tangent line 〈o, σ(o1)〉. If char(K) �= 2, then
there are two tangent lines to a conic passing through a fixed point not on a conic.
If char(K) = 2, then there is a unique point such that each line passing through
this point is a tangent line. Since V0 contains o and is not tangent to V1, this case
does not occur. If σ(o1) = o1, then σ leaves four lines invariant: the component
V0, two tangent lines, and the line joining the tangency points (the polar line of o
with respect to V1). This implies that σ is the identity and easily shows that

Autgr(Creg) ∼= Autgr(V0 ∩ Creg)× Z/2Z ∼= (Z/2Z)2.

Next we assume thatV0 is tangent toV1. One can reduce the equation of C to the
form t1(t

2
0 − t1t2) = 0 and assume that o = (1, 0, a), where a = 0 if char(K) �= 2

and a = 0 or 1 otherwise. Easy computations yield the group of automor-
phisms of the curve C; they consist of projective transformations [x0, x1, x2 ] �→
[αx0, x1,α2x2 ] if char(K) �= 2 or if char(K) = 2 and a = 1. In the remaining case,
the group consists of transformations [x0, x1, x2 ] �→ [αx0+βx1, x1,β2x1+α2x2 ].
The natural homomorphism Autgr(Creg)→ Autgr(V0 ∩Creg) is surjective; its ker-
nel is trivial in the first case and isomorphic to K+ × Z/2Z in the second case.

Finally, assume that C is the union of three lines. We reduce the equation of
C to t0 t1t2 = 0 or t1t2(t1 + t2) = 0 and compute the group of projective auto-
morphisms leaving the point o = (0,1, 0) invariant. Easy computations show that
Autgr(Creg) → Autgr(V0 ∩ Creg) is surjective. Here the kernel is isomorphic to
Z/2Z in the first case and to K+ × Z/2Z in the second case.
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