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Equisingularity of Families of Hypersurfaces
and Applications to Mappings

Kevin Houston

1. Introduction

Notions of equisingularity for varieties date back many years, the modern era being
started effectively by Zariski. Much work has been done in this area; see [2] for
some recent significant and interesting results. A classical theorem of Teissier and
of Briançon and Speder gives conditions for equisingularity of a family of com-
plex hypersurfaces such that each member has an isolated singularity. In this case
the family is called Whitney equisingular if the singular set of the variety formed
by the family is a stratum in a Whitney stratification.

For any isolated hypersurface singularity we may associate a µ∗-sequence: The
intersection of the Milnor fibre of the singularity and a generic i-plane passing
through the singularity is homotopically equivalent to a wedge of spheres, the
number of which is denoted µi. This is a sequence of analytic invariants.

The result of Briançon–Speder–Teissier is that the µ∗-sequence is constant in
the family if and only if the family is Whitney equisingular.

A natural and long-standing question is: What happens in the nonisolated case?
More precisely, we assume that we can stratify a family so that outside the pa-
rameter axis of the family we have a Whitney stratification and seek conditions
that give an equivalence between a collection of topological invariants and Whit-
ney equisingularity of the parameter axis. In some sense this was answered in [31]
using the multiplicity of polar invariants. However, in many situations the number
of invariants is very large. We would like a small number of topological or alge-
braic invariants, defined in a simple manner, that control and are controlled by the
equisingularity of the family.

An important theorem of Gaffney and Gassler [12, Thm. 6.3] gives a partial re-
sult. They define the sequence χ∗ as the Euler characteristic of the Milnor fibres
that occur for the family. This is an obvious generalization of the µ∗-sequence,
since the Euler characteristic of the Milnor fibre is determined by the Milnor num-
ber in the isolated singularity case. The constancy of this sequence does not seem
to be sufficient to ensure Whitney equisingularity. Thus they define another se-
quence, called the relative polar multiplicities and denoted m∗ (see Section 3 for a
precise definition). In the case of isolated singularities, the constancy of µ∗ in the
family implies the constancy of m∗ in the family.
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The Gaffney–Gassler theorem is that Whitney equisingularity of a family im-
plies that the sequences (m∗ ,χ∗) are constant in the family. The aim of this paper
is to give further conditions to ensure a converse, which is done in Theorem 4.9.
Better than that, the number of invariants is reduced considerably in Theorem 5.9
to a certain selection from m∗ and χ∗.

The key condition in Theorem 4.9 is that the complex links of strata in the family
(outside the parameter axis) have nontrivial homology. There are plenty of exam-
ples of spaces with this condition. In fact, in the applications we have in mind
there is a plethora of examples. Many more need to be found, though.

In Section 2 we describe the basic notation used and make precise the definition
of equisingularity. Section 3 defines the relative polar invariant and Euler charac-
teristic sequences via the method of blowing up of ideals. Two further sequences,
the Lê numbers of Massey (denoted λ∗) and Damon’s higher multiplicities (de-
noted µ∗), are defined in Section 4. As one can see from the notation, the latter
is a generalization of the usual Milnor number. In fact, the sequence is equiva-
lent to m∗; only the indexing is different. The λ∗ sequence is closely related to
the χ∗ sequence—in a family, constancy of one implies constancy of the other. In
contrast to m∗ and Damon’s µ∗, however, λ∗ and χ∗ are not equal even after re-
indexing. Theorem 4.9 gives a partial converse to the Gaffney–Gassler theorem; in
other words, it gives the conditions under which (m∗ ,χ∗) constant implies Whit-
ney equisingularity.

The main theorem, Theorem 5.9, is given in Section 5. It gives conditions for
equivalence of different sequences and Whitney equisingularity. The theorem also
shows that one needs only a selection of invariants from two sequences; we do not
require every element from both sequences.

Section 6 gives applications of the main theorem to families of maps with iso-
lated instabilities such that the discriminant is a hypersurface. In this case we have
a large supply of hypersurfaces that satisfy an important condition of the main the-
orem: the complex link of strata are not homologically trivial. The equisingularity
of a family of maps—rather than merely equisingularity of their discriminants—is
considered for corank-1 multi-germs f : (Cn, x) → (Cp, 0). Ultimately, we can
produce theorems concerning topological triviality of families of maps.

Note that in the applications we treat the case of multi-germs. Despite not re-
quiring much more work and their great importance, particularly in the study of
images of maps, these have often been ignored in the past.

A number of remarks concerning the work of others and areas of possible re-
search are made in the final section.

2. Equisingularity and Basic Definitions

In this section we give some notation and basic definitions related to equisingularity
for the sets and the complex analytic maps that concern us.

Standard definitions from singularity theory, such as finite A-determinacy, can
be found in [8] and [32]. The zero set of a map F will be denoted V(F ), and
its singular set (i.e., the points in the domain where the rank of the differential is
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less than the codomain) will be denoted by �(F ). A differentiable map is called
corank 1 if its differential has corank at most 1 at all points. Note that, for conve-
nience, this includes the case of nonsingular maps.

Often we shall need to move from a germ and choose a representative, or a
smaller neighborhood, et cetera. This is entirely standard and is obvious when it
occurs and so no explicit mention will be made of the details, which would distract
from the exposition.

Definition 2.1. Let X be complex analytic set and Y a subset of X. We say that
X is Whitney equisingular alongY if Y is a stratum of some Whitney stratification
of X.

This notion has been the subject of considerable investigation; see [13] for a sur-
vey from ten years ago and [2] for more recent developments in the hypersurface
case. In the more general case of maps, Gaffney made many of the fundamental
definitions for the study of the equisingularity; see [9]. His work has been contin-
ued by him and others (see [10; 17; 19]).

The famous example of Briançon and Speder [6] shows that, even in the hyper-
surface case, the notion of equisingularity can be a delicate one.

Example 2.2 [6]. Let f(x, y, z, t) = z5 + ty6z+ y7x + x15. This is a family of
quasihomogeneous hypersurface singularities indexed by t such thatft : (C3, 0) →
(C, 0) has an isolated singularity at (0, 0, 0) and the Milnor number is constant for
all t.

Since �(f ) is a manifold, the obvious stratification of f −1(0) consists of the
manifolds f −1(0)\�(f ) and �(f ). However, this stratification is not Whitney
equisingular along �(f ) because the Whitney conditions fail at (0, 0, 0, 0). What
is most interesting is that the family is still topologically trivial.

This example shows that the Milnor number is insufficient to achieve a Whitney
stratification; the Briançon–Speder–Teissier theorem tells us we need to look at
generic slices of the hypersurfaces. Precise conditions to achieve topological triv-
iality are still the subject of current research.

3. Polar Invariants via Blowing Up

We shall consider what are called polar invariants, which are very important in
the study of equisingularity; see for example [31]. In this section we will consider
them as arising from the method of blowing up ideals and in the next from the
viewpoint of sheaf theory.

Let f : (CN+1, 0) → (C, 0) be a complex analytic function, and denote the
Jacobian ideal by J(f ):

J(f ) =
(
∂f

∂z0
, . . . ,

∂f

∂zN

)

for coordinates z0, . . . , zN in C
N+1.
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Definition 3.1. The blowup of C
N+1 along the Jacobian ideal, denoted

BlJ(f )C
N+1, is the closure in C

N+1 × P
N of the graph of the map

C
N+1\V(J(f )) → P

N, x 	→
(
∂f

∂z0
(x) : · · · :

∂f

∂zN
(x)

)
,

where V(J(f )) is the zero set of J(f ).

A hyperplaneh in P
N can be pulled back by the natural projectionp : C

N+1×P
N →

P
N to a Cartier divisor H on BlJ(f )C

N+1 (provided BlJ(f )C
N+1 is not contained

in the product of C
N+1 and h). We call this a hyperplane on BlJ(f )C

N+1.

Let b : C
N+1×P

N → C
N+1 be the other natural projection. For suitably generic

hyperplanes h1, . . . ,hk in P
N, the multiplicity at the origin of b(H1 ∩ · · · ∩ Hk ∩

BlJ(f )C
N+1) is a well-defined invariant of f ; see [12].

Definition 3.2. For 1 ≤ k ≤ N, the kth relative polar multiplicity of f is the
multiplicity of the scheme b∗(H1 ∩ · · · ∩Hk ∩BlJ(f )C

N+1) at the origin. It is de-
noted by mk(f ).

From this we can define a sequence of invariantsm∗(f ). Full details of the preced-
ing construction and proofs of the various assertions can be found in [12], where
the authors also show that the situation can be generalized to ideals other than the
Jacobian.

We can now define another, perhaps more familiar, sequence of invariants; these
have a topological nature.

Definition 3.3 [13, p. 238]. Let f : (CN+1, 0) → (C, 0) be a complex analytic
function and let Li ⊆ C

N+1 be a generic i-dimensional linear subspace. Denote
the reduced Euler characteristic of the Milnor fibre of f |Li by χ̃ i(f ).

From this we can define a sequence

χ̃∗(f ) := (χ̃2(f ), . . . , χ̃N+1(f )).

In the case of an isolated singularity, this (effectively) reduces to the standard µ∗-
sequence in equisingularity theory.

Remark 3.4. It transpires that the number χ̃1(f ) is not needed in the theory in
[12] and so is omitted. This is because, in a family of hypersurfaces, χ̃2(f ) will
be the Euler characteristic of the Milnor fibre of a plane curve singularity; hence
constancy of this implies constancy of the multiplicity of the singularity, which
implies the constancy of χ̃1(f ).

Massey (see e.g. [27, p. 73]) shows how one can calculate the reduced Euler char-
acteristic in practice: it is equal to the alternating sum of the Lê numbers. His
definition of Lê numbers involves taking certain hyperplanes. The precise condi-
tions needed on these hyperplanes are not important here; what is important is that
they need not be generic. (The lack of genericity means that we can, in practice,
calculate the Lê numbers.)
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The generic Lê numbers—that is, those formed by taking generic hyperplanes—
can be defined using the blowing up setup as follows. Denote the exceptional divi-
sor of the blowup by E. Then, Gaffney and Gassler [12] define the kth Lê number,
λk(f ), to be the multiplicity of

b∗(H1 · · ·Hk−1 · E · BlJ(f )CN+1),

where · denotes intersection product and 1 ≤ k ≤ N. That these numbers coincide
with Massey’s definition is shown in [27, Thm. II.1.26]. Note, however, that this
defines the number by codimension whereas Massey defines the Lê numbers by di-
mension. To avoid confusion in this paper, for our invariants we will generally use
superscripts to denote dimension and subscripts to denote codimension. Hence,
in the Gaffney–Gassler notation of [12], λi(f ) is Massey’s λN−i+1(f ) (which we
shall define in the next section).

The significance of the invariants m∗(f ) and χ̃∗(f ) is made clear in [12].

Theorem 3.5 [12, Thm. 6.3]. Suppose that we have a family of maps ft :
(CN+1, 0) → (C, 0). Let F : (CN+1 × C, 0) → (C, 0) be given by F̄(x, t) =
ft(x), so that F(x, t) = (F̄(x, t, ), t) is a 1-parameter unfolding.

If V(F̄ ) admits a Whitney stratification with T = ({0}×C, 0) ⊂ (CN+1 ×C, 0)
as a stratum, then the map t 	→ (m∗(ft ), χ̃∗(ft )) is constant on T.

The main aim of this paper is to investigate extra conditions upon V(F̄ ) which
imply that the converse holds. Note that in [12] the authors do prove a partial con-
verse in their Theorem 6.2 by showing that the smooth part of V(F̄ ), the smooth
part of its critical locus �, and the components of the singular locus of codimen-
sion 1 in � are all Whitney regular over the parameter axis.

Note that, if ft is a family of isolated hypersurface singularities, then µ∗(ft )
constant is equivalent to χ̃∗(ft ) constant and these imply that m∗(ft ) is constant.
Hence, in this particular case we know by the Briançon–Speder–Teissier result
that (m∗(ft ), χ̃∗(ft )) constant does imply that there is a stratification such that T
is a Whitney stratum.

Definition 3.6. Given a family of maps, we wish to make precise what it means
for an invariant of the members to be constant in the family. We shall take this to
mean that there is an open contractible neighborhood of the origin in the param-
eter space over which the invariant is constant for elements of the family. This
definition saves us from constantly referring to the neighborhood.

4. Polar Invariants via Sheaf Theory

Using intersection theory and sheaf theory, Massey has given a different interpre-
tation of the blowing up we have just seen. The material in this section comes
mostly from [25; 26; 27]. The book [27] in particular contains useful appendices
on analytic cycles, intersection theory, and vanishing cycles for sheaves.

Suppose that F• is a complex of constructible sheaves on an analytic space X
and that f : X → C is a complex analytic function. Then we denote the vanishing
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cycles of F• by φf F•. See [27, Apx. B] for a full definition and important proper-
ties of this complex.

Goresky and MacPherson [14] developed a theory of Morse data on stratified
spaces with respect to constructible sheaves. We recall their definition of a non-
degenerate conormal vector. Let p be a point in the stratum S of X and let T ∗

S M

denote the set of all covectors ω ∈ T ∗
p M such that ω(TpS) = 0.

Definition 4.1 [14, p. 160]. A plane Q ⊆ Tp(M) is called a generalized tan-
gent space if Q = limi→∞ Tqi Sα , where S ⊂ Sα and qi is a sequence of points in
Sα converging to p.

Also, the set of nondegenerate normal covectors is the set

CS := {ω ∈ T ∗
S M | ω(Q) �= 0 for any generalized tangent space Q �= Tp(S)}.

Definition 4.2. Let X ⊂ C
N be a complex analytic space with a Whitney strat-

ification {Sα} such that the strata are connected. Let F• be a complex of sheaves
that is constructible with respect to this stratification.

Let x be a point in the d-dimensional stratum Sα. Let M be a normal slice to Sα
at x and let L : (CN, 0) → (C, 0) be a linear map such that dpL is a nondegenerate
covector.

Then, the characteristic normal Morse data for the pair (Sα , F•) is

m(Sα , F•) = (−1)N−1χ(φL|XF•)x = (−1)N−d−1χ(φL|M∩XF•
|M∩X)x ,

where χ denotes the Euler characteristic of the sheaf (at the point x ∈ Sα).

When F• is the constant sheaf C•
X we can write m(Sα) and call it simply the char-

acteristic normal Morse data of the stratum. In this case,

m(Sα) = (−1)N−dχ(Bε(x) ∩ X ∩ M,Bε(x) ∩ X ∩ M ∩ L−1(η)),

where Bε(x) is a sufficiently small open ball of radius ε centered at x and η �= 0 is
also sufficiently small. Note that Massey uses a different notation: our m(Sα , F•)

is his mα(F•); and our m(Sα) is his mα.

Definition 4.3. The space Bε(x) ∩X ∩M ∩L−1(η) in the pair above is called
the complex link of the stratum Sα.

For complete intersections, the number m(Sα) is very important.

Remark 4.4. If X is a complete intersection, then the complex link of a stratum
is homotopically equivalent to a wedge of spheres; see [14, p. 187; 22]. Provided
Sα is not a “top”, nonsingular stratum of X (i.e., a stratum of maximal dimen-
sion), it follows that m(Sα) is just the number of these spheres. See, for example,
[25, Exm. 6.5].

Thus, in the case of complete intersections, m(Sα) ≥ 0.

In the general case, Massey calls strata visible if they have the property that
m(Sα) �= 0. More important to us are the cases in which this number is posi-
tive. The latter property will be a vital assumption in later theorems and their
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applications and so, to preclude “empty theorems”, we must produce a significant
set of examples for which this holds.

Example 4.5. Let Sα be a component of the top strata of X. That is, Sα is open
in the nonsingular part of X. Then, since the normal slice reduces the normal data
to a point, the complex link of the stratum is empty and the homology of the nor-
mal Morse data is just the homology of a point. Hence, m(Sα) = 1.

We now come to some interesting cases that not only supply plenty of examples
but also are useful in applications (see Section 6).

Example 4.6 [15, Thm. 7.3]. Suppose that F : (Cn, x) → (Cp, 0), n ≥ p, is a
stable, corank-1 map such that n < p. If we stratify the image of F by stable type,
then m(Sα) = 1 for all strata Sα. (Stratification by stable type is described in detail
in [9, Sec. 6] and in Section 6 of this paper.)

Example 4.7 [7, p. 33]. Suppose that F : (Cn, x) → (Cp, 0) is a stable multi-
germ in Mather’s nice dimensions (see [8; 28]). If we stratify the discriminant of
F by stable type, then m(Sα) = 1.

This is because of the same reasoning that is behind the previous example.
Namely, the complex link is actually homotopically equivalent to the stabilization
of an A e-codimension-1 germ.

Example 4.8. Let X be a hypersurface with an isolated singularity at x. For the
trivial stratification {X\{x}, {x}} we have m({x}) = µ(X ∩ H ), where H is a
generic hyperplane.

We can now state a generalization of the Briançon–Speder–Teissier theorem that
is a partial converse to Gaffney and Gassler’s theorem.

Theorem 4.9. Suppose that ft is a family as in Theorem 3.5. Suppose further
that ft is reduced and X\T is Whitney stratified so that the characteristic normal
Morse data m(Sα) is nonzero (and hence positive) for all Sα ⊆ X\T.

Then, the following statements are equivalent.

(i) (m1(ft ), . . . ,mN(ft ), χ̃2(ft ), . . . , χ̃N+1(ft )) is constant in the family.
(ii) The stratum T is Whitney equisingular over all the strata Sα.

Proof. (ii) ⇒ (i): This is [12, Thm. 6.3], stated here as Theorem 3.5.
(i) ⇒ (ii): This follows from the argument of [13, Thm. 6.5]. Consider the

stratification of X\T. The set Sα is a complex analytic set and thus we can take a
Whitney stratification {Rβ} of X such that Sα is a union of strata.

For each Sα there exists a unique β such that Sα = Rβ. By [27, Part III,
Chap. 3], the exceptional divisor of the blowup of the Jacobian ideal of F is, as a
cycle, the sum of the projectivization of the conormal of strata in the stratification
{Rβ}, where each stratum has a multiplicity equal to m(Rβ). Thus, since m(Rβ) =
m(Sα) �= 0, the closure of Rβ is the image of a component of the exceptional di-
visor of the blowup.
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So by [13, Thm. 6.5] we know that Rβ satisfies the Whitney condition along T.

Actually, more than this is true because, in their proof, the authors use Teissier’s
Theorem V.1.2 in [31], which states that the nonsingular part of the closure of Rβ

is Whitney over T. Since Sα = Rβ , we deduce that Sα is Whitney over T.

Now recall the definition of polar varieties as described in [25]. Let M be the
affine space C

N+1, and let z = (z0, z1, . . . , zN) denote a choice of coordinates for
M. Define Li

z : M → C
i by Li

z(z) = (z0, . . . , zi−1).

Let Y be an analytic subset of M and let p ∈ Y.

Definition 4.10. Suppose that dimC �(Li+1
z |Y\�Y ) ≥ i. Then the ith absolute

polar variety with respect to the coordinates z at the point p, denoted 0i
z(Y ), is

0i
z(Y ) = closure(�(Li+1

z |Y\�Y )),

where �(f ) denotes the critical set of the map f and �Y denotes the singular set
of the set Y. If the dimension condition does not hold, then we define 0i

z(Y ) to be
the empty set.

If the coordinates are chosen to be sufficiently general, then we get the (generic)
absolute polar varieties of [31] and [24], which allows us to drop the z and write
0i(Y ).

The following definition arises from Section 7 and Theorem 0.5 of [25]. The
characteristic polar cycle of a complex of sheaves is defined there in a different
way, but is shown to be equal to the following in “good” situations.

Definition 4.11. Suppose that F• is a constructible sheaf with respect to the
Whitney stratification {Sα} of X ⊂ M, where X is a complex analytic set.

The kth characteristic polar cycle of F• (at p) is the cycle

1k(F•)p =
∑
Sα

m(Sα , F•)0k(Sα),

where the sum is over all Sα such that p ∈ Sα.

Since the coordinates are generic, there is a well-defined multiplicity for 0k(Sα)

and so we define the multiplicity of 1k(F•) at p, denoted by λkp(F•), to be

λkp(F•) := multp(1
k(F•)p) =

∑
Sα

m(Sα , F•)multp 0
k(Sα).

Example 4.12. Let f : (CN+1, 0) → (C, 0) be a complex analytic map and let
F• be the constant sheaf C•

V(f ) on the hypersurface X = V(f ) ⊂ C
N+1. Then

λk0(C
•
V(f )) =

∑
Sα

m(Sα)mult 0 0
k(Sα).

This example is very important: we will see in Lemma 4.16 that we can relate these
invariants to the relative polar multiplicities of f defined earlier.

We shall drop the reference to p in λkp(F•) because generally p will be the
origin.
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Example 4.13 [26, Chap. 10; 27, Apx. B]. Suppose that f : (CN+1, 0) → (C, 0)
is a complex analytic map on the manifold M = C

N+1. Let F• = φf C•
M. Then

λi(F•) at 0 is the ith Lê number of f at 0, λi(f ), as defined by Massey. (Recall that
the previously given Gaffney and Gassler version of this definition was indexed
by codimension whereas the indexing here is by dimension.)

Since the codimension of J(f ) in C
N+1 is at least 2, it follows that λN(f ) is

zero. This is because the sheaf φf C•
M is supported only on the critical points of f.

Remark 4.14. In the preceding example, note that Massey restricts the sheaf of
vanishing cycles to its support and shifts the resulting complex to ensure that it is
perverse.

Recall that if (X, x) is a complete intersection complex analytic set then the com-
plex link of x is a wedge of spheres of real dimension dimC X − 1.

Let f : (CN+1, 0) → (C, 0) be a complex analytic function. If H i is a plane of
dimension i through the origin, then V(f ) ∩ H i is a complete intersection.

Definition 4.15 (cf. [7]). The kth higher multiplicity is the number

µk(f ) = dimC Hk−1(Lk; C),

where Lk is the complex link of V(f ) ∩ H k+1 at 0 and 1 ≤ k ≤ N.

For sufficiently general H k, this is a well-defined invariant of V(f ).
These invariants are linked to the relative polar multiplicities by the following

lemma, whose three parts are effectively from [25, Exm. 8.4].

Lemma 4.16. Let f : (CN+1, 0) → (C, 0) be a complex analytic function, and let
ft be an analytic family of such functions.

(i) We have λ0(C•
V(f )) = µN(f ).

(ii) The numbers µi(ft ) are constant in a family for all 1 ≤ i ≤ N − r if and
only if the numbers λk(C•

V(ft )
) are constant in a family for all r + 1 ≤ k ≤

N − 1, where r is a nonnegative integer.
(iii) For all 1 ≤ i ≤ N we have µi(f ) = mN−i+1(f ).

Proof. For parts (i) and (ii) we note Massey’s statement in [25, Exm. 8.4] that

λ0(C•
V(f )) = µN(f ),

λ1(C•
V(f )) = µN(f ) + µN−1(f ),

λ2(C•
V(f )) = µN−1(f ) + µN−2(f ),

...

λi(C•
V(f )) = µN−i+1(f ) + µN−i(f ),

...

λN−1(C•
V(f )) = µ2(f ) + µ1(f ),

λN(C•
V(f )) = µ1(f ) + 1.
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Part (iii) is just the comment from the end of [25, Exm. 8.4]. See also Exam-
ples 6.5 and 6.10 of the same paper for further information.

Remark 4.17. Note that parts (i) and (ii) of Lemma 4.16 combine, such that the
numbers µi(ft ) are constant in a family for all 1 ≤ i ≤ N, if and only if the num-
bers λk(C•

V(ft )
) are constant in a family for all 0 ≤ k ≤ N − 1.

Example 4.18. Suppose that f : (CN+1, 0) → (C, 0) defines an isolated hyper-
surface singularity. Then Lemma 4.16 shows that µk(f ) coincides with the famil-
iar definition of µk(f ) in the µ∗-sequence of Teissier (apart from µN+1(f ), which
is missing). Therefore, from this and part (iii) of the lemma, we are justified in
calling Theorem 4.9 a generalization of the Briançon–Speder–Teissier theorem.

5. Reducing the Number of Invariants

We turn our attention once again to the main idea of the paper: using nontriviality of
normal Morse data outside of a stratum to give a converse to Gaffney and Gassler’s
theorem (stated previously as Theorem 3.5). This time we shall add an extra con-
dition to reduce even further the number of invariants required in Theorem 4.9.

An additional required condition is that, outside the stratum of interest, the fam-
ily of maps be locally trivial over the family’s parameter. At first sight this may
seem a strong condition, but it is found in the main examples of interest. In the
classic Briançon–Speder–Teissier result, for example, the family has a line of sin-
gularities; outside this line, at each point the space is a manifold and for each a
small neighborhood is the product of the parameter axis and a neighborhood of
the point p in the space above the projection to the axis.

In this section we assume the following. Let f : (CN+1, 0) → (C, 0) be a
reduced hypersurface and let F(x, t) = (F̄(x, t), t) be a 1-parameter unfolding
such that F̄(x, 0) = f(x). Take a representative of F̄, also denoted F̄, so that
F̄ : U → C is such that U ⊆ C

N+1 × C is an open contractible set.
Let X = V(F̄ ) and T = U ∩ ({0} × C), and let π : C

N+1 × C → C denote
the natural projection. We can identify T with its image in C under this map.
Let π−1(t) = Mt. For a stratum Sα of a stratification {Sα}α∈1 of X\T we define
Sα,t := Mt ∩ Sα. As usual, we assume that strata are connected.

Definition 5.1. We say F has a product structure over T if the following state-
ments hold.

(i) The stratification of X\T is Whitney regular with strata of dimension greater
than 1.

(ii) The set T is contractible.
(iii) The manifold Mt is transverse to Sα at every point (x, t)∈ Sα ⊂ X\T for all

strata Sα in the stratification of X\T.
(iv) For all α ∈1, Sα,0 �= ∅.
Note that Mt = C

N+1 × {t} is a slice such that {Sα,t }α∈1 with {0} is a Whitney
stratification of Xt := Mt ∩ X.
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Because of the product structure on X, we can say something about m(Sα , F•)

for various F•.

Lemma 5.2. Suppose that F has a product structure over T. Then

m(Sα,0) = m(Sα,t ) and

m(Sα,0,φf0C
•
C
N+1) = m(Sα,t ,φft C

•
C
N+1)

for all t in the family and for Sα,t �= {0}.
Proof. Since Sα,t = Sα ∩ Mt inherits its stratification from Sα , the complex link
of Sα,t is just the complex link of the stratum Sα. Therefore, m(Sα,0) = m(Sα,t )

because strata are connected and Sα,0 �= ∅.
For the second part, note that we have just shown that the characteristic normal

Morse data is, in effect, constant along T (recall that T is contractible); hence we
must show that, for points pt ∈ Sα,t and p0 ∈ Sα,0, there exist neighborhoods Ut

and U0 and a stratum-preserving homeomorphism h : Ut → U0 such that

h∗(φft C•
Mt

|Ut
) ∼= φf0C

•
M0

|U0

in the bounded constructible derived category. Note that φft C•
Mt

is constructible
for all t because C•

Mt
is constructible on Mt and note that Mt can be Whitney strat-

ified, soV(ft ) is a union of strata. Hence the stratification is Thom Aft (see [5] or
[30]) and therefore, by Thom’s second isotopy lemma, we have the triviality over
strata required for constructibility.

Next, the preceding isomorphism amounts to saying that, at every point, we can
find an isomorphism between the vanishing cycles of ft and f0 at corresponding
points in the homeomorphism of Ut and U0.

Since F has a product structure over T we have that, at every point outside T,
the fibres of F over T are topologically trivial and that this homeomorphism is
stratum preserving. By [22] we know that topologically equivalent hypersurface
singularities have homotopically equivalent Milnor fibres. Hence, the required re-
sult is true.

Perhaps the most important fact we can deduce from the assumption of a prod-
uct structure is that the multiplicity of the absolute polar varieties of the strata of
fibres is upper semicontinuous.

Proposition 5.3. Suppose that F has a product structure over T and that the
hypersurface defined by ft : (CN+1, 0) → (C, 0) and given by ft(x) = F(x, t) is
reduced for all t ∈ T. Then, for Sα,t �= {0}, we have that mult 0 0

k(Sα,t ) is upper
semicontinuous for 1 ≤ k ≤ dim Sα,t .

That is, for sufficiently small t we have

mult 0 0
k(Sα,t ) ≤ mult 0 0

k(Sα,0) for 1 ≤ k ≤ dim Sα,0.

Proof. First we need to define the relative ith polar variety, denoted 0i(Y,h), of
a closed complex analytic set Y ⊆ C

N+1 × C associated to a complex analytic
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function h : Y → C such that h−1(t) ⊆ Mt. This variety is defined similarly to
Definition 4.10, so we shall use the same notation from there. Note that the do-
main of Li is still C

N+1.

The set 0i
z(Y,h) is the closure of the union for all s of the set

�(Li
z|h−1(s)\(h−1(s)∩�Y ))

provided that the dimension of this closure is greater than or equal to i. If the di-
mension condition does not hold, then we define 0i

z(Y,h) to be the empty set. As
in the remarks following Definition 4.10, by taking sufficiently general projections
we can drop the reference to z and get the relative ith polar variety of a closed com-
plex analytic set Y associated to a complex analytic function h, denoted 0i(Y,h).

In [9] this set is denoted Pj(Y,h), where j is its codimension in Y. Similarly, the
absolute polar varieties of a set Z are denoted Pj(Z), where j is its codimension
in Z. In our setup we shall have Y = Sα , h = π, and Z = Sα,t .

Because we shall require the results from [9], we explicitly note the connection
between the notation there and here. We have

Pj(Sα ,π) = 0 dim Sα−j(Sα ,π) = 0 dim Sα,t+1−j(Sα ,π)

and
Pj(Sα,t ) = 0 dim Sα,t−j(Sα,t ).

In the following we shall assume without further comment that 1 ≤ k ≤ dim Sα,t .

By the assumption that F has a product structure, we can apply [9, Lemma 5.3]
and see that

Pj(Sα ,π) ∩ (CN+1 × {t}) = Pj(Sα,t )

for all t and for 0 ≤ j ≤ dim Sα,t − 1. In our notation this is

0k+1(Sα ,π) ∩ (CN+1 × {t}) = 0k(Sα,t ).

Therefore, since the multiplicity of a hyperplane slice of a closed analytic set Z is
greater than or equal to the multiplicity of Z [4, Prop. 7], it follows that

mult 0 0
k(Sα,0) ≥ mult(0,0) 0

k+1(Sα ,π).

(On the left-hand side we take the multiplicity at the origin in C
N+1; on the right,

we take the multiplicity at the origin in C
N+1 × C.)

Next, Teissier’s result [31, Prop. IV.6.1.1] regarding the upper semicontinuity of
the multiplicity of relative polar varieties associated to a map gives

mult(0,t) 0
k+1(Sα ,π) ≤ mult(0,0) 0

k+1(Sα ,π)

for all t in some neighborhood of 0 in C.

Finally, for all strata Sα of X we have that T ⊆ Sα. So, essentially by [31,
Prop.VI.2.1], there exists a contractible open neighborhoodW of (0, 0) in C

N+1×C

such that W ∩ (T \{(0, 0)}) is a Whitney stratum in the obvious stratification of
X ∩ W (that is, the one given by the stratification of (X\T ) ∩ W with the ad-
dition of (T \{(0, 0)}) ∩ W and {(0, 0)}). Hence, by [9, Thm. 5.6], for all (0, t) ∈
T \{(0, 0)} in this neighborhood we have
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mult 0 0
k(Sα,t ) = mult(0,t) 0

k+1(Sα ,π).

This provides the result

mult 0 0
k(Sα,t ) ≤ mult 0 0

k(Sα,0)

that we seek.

Now we can state a lemma that will be at the heart of our next theorem.

Lemma 5.4. Suppose the following.

(i) The map F has a product structure over T.
(ii) The hypersurface defined by ft : (CN+1, 0) → (C, 0) and given by ft(x) =

F(x, t) is reduced.
(iii) The characteristic normal Morse data m(Sα,0) is nonzero (and hence posi-

tive) for all Sα,0 �= {0}.
Then

µi(ft ) is constant for all 1 ≤ i ≤ N − r

implies that
λi(ft ) is constant for all r + 1 ≤ i ≤ N − 1,

where r is a nonnegative integer.

Proof. From the definition of λk(C•
V(ft )

) (and as the maps ft are reduced), at the
origin of C

N+1 × {0} we see that

λk(C•
V(ft )

) =
∑
Sα,t

m(Sα,t )mult 0 0
k(Sα,t ).

Since 00(Sα,t ) = ∅ for all Sα,t �= {0} and since 0k({0}) = ∅ for all k ≥ 1, this
reduces to

λk(C•
V(ft )

) =
∑

Sα,t �={0}
m(Sα,t )mult 0 0

k(Sα,t ) for k ≥ 1,

λ0(C•
V(ft )

) = m({0}) = µN(ft ).

The last equality comes from Lemma 4.16(i).
Because we have a product structure, it follows from Lemma 5.2 that

m(Sα,t ) = m(Sα,0)

for all t in the family.
By Proposition 5.3, mult 0 0

k(Sα,t ) is upper semicontinuous; since m(Sα,t ) �=
0, we can deduce that, for each k ≥ 1,

mult 0 0
k(Sα,t ) constant for all Sα,t �= {0} ⇐⇒ λk(C•

V(ft )
) constant. (∗)

Now consider the sheaf of vanishing cycles for ft ,φft C•
Mt
. Then, for 0 ≤ k ≤ N,

λk(φft C
•
Mt
) is the Lê number of ft , λk(ft ) (see Example 4.13), and we have



302 Kevin Houston

λk(φft C
•
Mt
) =

∑
Sα,t

m(Sα,t ,φft C
•
Mt
)mult 0 0

k(Sα,t ).

Since we have a product structure, it follows from Lemma 5.2 that

m(Sα,t ,φft C
•
Mt
)

is constant in the family. Therefore, for each k ≥ 1,

mult 0 0
k(Sα,t ) constant for all Sα,t �= {0} �⇒ λk(φft C

•
Mt
) constant. (∗∗)

Now Lemma 4.16(ii) together with (∗) and (∗∗) yields the statement.

Remark 5.5. Note that if we have constancy of all the µi(ft ) for 1 ≤ i ≤ N,
then we control all the Lê numbers except λ0(ft ). In view of the classic Briançon–
Speder–Teissier result, this is not surprising. The µi(ft ) are all the numbers in the
classical µ∗-sequence except the Milnor number of the original map ft , which is
just λ0(ft ) (see [26] or [27]).

Remark 5.6. In the proof of Lemma 5.4, a key reason for controlling the higher
multiplicities (and hence the relative polar multiplicities) is that the multiplicities
of the absolute polar varieties of the strata are kept constant. It is well known that
constancy of these (with some other conditions) can be used to control the Whit-
ney conditions; see [9] and [31].

This result is perhaps not surprising when one considers one of the main theo-
rems in [24]. In Théorème 4.1.1 of that paper, the µi(f ) (and hence λi(C•

V(f ))) are
connected to the terms χdα0 +1(X,Xα0) and χdα0 +2(X,Xα0), and the m(Sα) corre-
spond to the 1 − χdα+1(X,Xα).

It would be interesting to explore the connection with the work of [24] and make
it more explicit.

Remark 5.7. One of the assumptions of Lemma 5.4 is that the characteristic nor-
mal Morse data are positive. This leads to “constancy of the µi implies constancy
of the λi”. The same type of proof can be used to show that if them(Sα,t ,φft C•

C
N+1)

data are positive, then “constancy of the λi implies constancy of the µi”.
This may be of interest because there are cases where the m(Sα,t ,φft C•

C
N+1) are

positive—for example, the classical Briançon–Speder–Teissier result. Since there
are few other obvious examples, we have chosen not to state precisely this version
of the lemma. It would, however, be interesting to find more examples.

We state another useful lemma for relating invariants in families.

Lemma 5.8. Suppose that λi(ft ) is constant for all 1 ≤ i ≤ N − 1. Then

χ̃N+1(ft ) is constant ⇐⇒ λ0(ft ) is constant.

Proof. By, for example, [27, p. 73], the reduced Euler characteristic of the Milnor
fibre of ft (which is equal to χ̃N+1(ft )) is equal to the alternating sum of the Lê
numbers λi(ft ). From this the lemma follows.
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The main theorem is that we can give a converse to Gaffney and Gassler’s Theo-
rem 6.3 (stated here as Theorem 3.5) with fewer invariants (cf. [16, Lemma 3.1]).
We return now to the setup for f and F from the start of this section.

Theorem 5.9. Suppose the following.

• The map F has a product structure over T.
• The hypersurface defined by ft : (CN+1, 0) → (C, 0) and given by ft(x) =
F̄(x, t) is reduced.

• The characteristic normal Morse data m(Sα,0) is nonzero (and hence positive)
for all Sα,0 �= {0}.

Then, the following statements are equivalent.

(i) (µ1(ft ), . . . ,µN(ft ), λ0(ft )) is constant in the family.
(ii) (µ1(ft ), . . . ,µN(ft ), χ̃N+1(ft )) is constant in the family.

(iii) (m1(ft ), . . . ,mN(ft ), λ0(ft ), . . . , λN−1(ft )) is constant in the family.
(iv) (m1(ft ), . . . ,mN(ft ), χ̃2(ft ), . . . , χ̃N+1(ft )) is constant in the family.
(v) The stratum T is Whitney equisingular over all the strata Sα.

Proof. (i) ⇒ (iii): We have µi(ft ) = mN−i+1(ft ) for all 1 ≤ i ≤ N − 1 by
Lemma 4.16. The implication then follows from Lemma 5.4 with r = 0.

(iii) ⇒ (i): This is obvious.
(iii) ⇔ (iv): This is shown on page 726 of [12].
(ii) ⇒ (iii): From Lemma 5.4 we know that µi(ft ) constant for all 1 ≤ i ≤ N

implies λk(ft ) constant for 1 ≤ k ≤ N −1. From Lemma 5.8 we then deduce that
λ0(ft ) is constant also.

(iv) ⇒ (ii): This is obvious given µi(ft ) = mN−i+1(ft ).

(iv) ⇔ (v): This is Theorem 4.9.

Remark 5.10. Ifm(Sα) = 0 for the stratum Sα , then one can see from the proof of
Lemma 5.4 that if—instead of assuming m(Sα) �= 0—we assume mult 0 0

k(Sα,t )

is constant in the family for all k, then the conclusion of the theorem still holds.
The statement of such a theorem would obviously be ugly, so we have chosen

to omit it. However, it is an obvious generalization that may be of some interest
in certain cases.

Remark 5.11. Since mi(ft ) = µN−i+1(ft ), there exist several other obvious
equivalences that could have been stated in Theorem 5.9.

Remark 5.12. It should be noted that (iii) ⇔ (iv) holds in more generality; see
[12, p. 726].

Remark 5.13. In light of Remark 5.7, if we replace the condition thatm(Sα,t ) > 0
with m(Sα,t ,φft C•

C
N+1) > 0, then we can produce the additional statement that

χ∗(ft ) constant is equivalent to T being a Whitney stratum. This allows us yet
another way to deduce the classical Briançon–Speder–Teissier result and again
demonstrates that we should find more examples where the m(Sα,t ,φft C•

C
N+1)> 0

condition holds.
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6. Applications

We now apply Theorem 5.9 to re-prove some old results and improve others as well
as to give some new results. In particular, we will consider what happens for equi-
singularity of families of finitely A-determined multi-germ maps ft : (Cn, S) →
(Cp, 0).

The Classic Briançon–Speder–Teissier Result

The first application is to show that Theorem 5.9 gives the classic Briançon–
Speder–Teissier result. The demonstration of this is included because we hope
that the proof will shed light on the application of the theorem to families of
finitely A-determined maps.

Theorem 6.1. Let F : (CN+1 × C, 0) → (C, 0 × 0) be family of maps ft(x) =
F(x, t) such that each ft defines a reduced isolated singularity at the origin. Then,
the singular set of F is Whitney over the nonsingular set if and only if µ∗(ft ) is
constant in the family. Here µi(ft ) is the classic Milnor number of ft restricted
to a generic i-plane in C

N+1.

Proof. Since the Milnor number µN+1(ft ) = µ(ft ) is constant, the set X = {x ∈
f −1
t (0) for some t} has singular set equal to T = {0} × C ⊂ C

N+1 × C. Thus
we can partition X into the manifolds by {X\T, T }. We have a product structure
along T because X\T is a manifold and X ∩ (CN+1 × {t}) = f −1

t (0) has a strat-
ification that is obviously Whitney. The normal Morse data of X\T is equal to 1
by Example 4.5.

The µ1(ft ), . . . ,µN(ft ) of Theorem 5.4 are the usual Milnor numbers (by Ex-
ample 4.18). The reduced Euler characteristic χ̃N+1(ft ) is (−1)NµN+1(ft ) because
the Milnor fibre of ft is a wedge of spheres, the number of which is µN+1(ft ).

Hence by Theorem 5.4, where (ii) ⇔ (v), we deduce the result.

Families of Finitely A-Determined Map Germs

So far the emphasis has been on hypersurfaces. We shall now generalize to a wider
class of maps. Suppose that we have a complex analytic multi-germ f : (Cn, x) →
(Cp, y), where x = {x1, . . . , xs} is a finite set of points in C

n. Such a map germ is
stable at y if all small perturbations of f are A-equivalent to f—in other words,
if there exist local diffeomorphisms of source and target between the perturbation
and f. See [8] or [32] for detailed definitions. We remark that unfoldings of stable
maps are stable.

Let J(f ) be the Jacobian of f and let �(f ) = {x ∈ C
n | rank df < p}. This is

the critical set of f. Define the discriminant of f , denoted <(f ), to be the image
germ of �(f ) under f. Note that for n < p this is just the image of f.

We say that f : (Cn, x) → (Cp, y) is finitely A-determined at y if there exists a
neighborhood U ⊆ C

p of y such that, for all z∈U\{y}, the germ

f ′ : (Cn, f −1(z) ∩ �(f )) → (Cp, z)



Equisingularity of Families of Hypersurfaces and Applications to Mappings 305

is stable. That is, f has an isolated instability at y. This definition is analogous to
isolated singularity in the case of spaces.

If we have a finitely A-determined multi-germ f : (Cn, x) → (Cp, 0), where
n ≥ p − 1, then the discriminant of f is a hypersurface (see [8, p. 446]). We
apply Theorem 5.9 in this context; that is, we show when the discriminant of fam-
ily of maps is Whitney equisingular. Later we will define equisingularity for maps
rather than just for complex analytic sets.

In order to apply Theorem 5.9 we stratify the discriminant by stable type. Good
references for proofs of the following are [8, Sec. 2.5] and [9, Sec. 6].

Let G : (Cn, x) → (Cp, 0) be a stable map. There exist open sets U ⊆ C
n and

W ⊆ C
p such thatG−1(W ) = U andG : U → W is a representative ofG. We can

partition <(G) by stable type. That is, y1 and y2 in C
p have the same stable type

if G1 : (Cn,G−1
1 (y1) ∩ �(G1)) → (Cp, y1) and G2 : (Cn,G−1

2 (y2) ∩ �(G2)) →
(Cp, y2) are A-equivalent. These sets are complex analytic manifolds.

We can take strata in U ⊂ C
n by taking the partition

G−1(S) ∩ �(G), G−1(S)\�(G)), and U\G−1(<(G)),

where S is a stratum in the discriminant.

Definition 6.2 [9]. A finitely A-determined multi-germ f has discrete stable
type if there exists a versal unfolding of f in which only a finite number of stable
types appear.

We shall consider two main classes of discrete stable type maps: corank-1 maps
and those in Mather’s nice dimensions. Recall that a map is called corank 1 at a
point x if its differential is at most one less than maximal at that point. We say
that the map is corank 1 if it is corank 1 at all points. The precise conditions for a
map germ f : (Cn, 0) → (Cp, 0) to be in the nice dimensions are given in [28]. In
particular, maps with p ≤ 7 are in the nice dimensions.

Theorem 6.3. Suppose that G : (Cn, x) → (Cp, 0) is a stable map and that one
of the following holds:

(i) G is in the nice dimensions;
(ii) G is corank 1 and n < p.

Then, the stratification of G by stable type is Whitney regular and any Whitney
stratification of G is a refinement of this; that is, this stratification is canonical.

Proof. See [9, Lemma 7.2] or [8, Sec. 2.5].

We shall use this theorem without comment.

Definition 6.4. A stable type is called 0-stable if the stratification by stable type
has a 0-dimensional stratum.

Examples 6.5. The Whitney cross-cap (x, y) 	→ (x, y2, xy) is 0-stable. The
multi-germ from (C2, {x1, x2, x3}) to (C3, 0) that gives an ordinary triple point is
0-stable.
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By counting the “0-stables” that appeared in a stable perturbation of a map with
an isolated instability, Mond [29] produced interesting and useful invariants of
finitely A-determined maps f : (C2, 0) → (C3, 0).

Now suppose that we have a multi-germ f : (Cn, x) → (Cp, 0) with an isolated
instability at 0 ∈ C

p and that F(x, t) = (ft(x), t) is a 1-parameter unfolding of f
such that f0 = f and ft(x) = 0 for all x ∈ x.

Suppose that we have a representative F : U → W of F with F −1(W ) = U.

The parameter axes in source and target are, respectively,

S := ({x} × C) ∩ U ⊂ C
n × C and

T := ({0} × C) ∩W ⊂ C
p × C.

We would like stratifications of F so that these are strata. First we can aim to strat-
ify the discriminant of F so that T is a stratum. If n ≥ p−1, then the discriminant
is a hypersurface and so we can apply Theorem 5.9. A harder problem is to strat-
ify the map itself so that both S and T are strata. Here our strategy is to use a
stratification of the discriminant and pull it back to one on the source. We could
then apply Thom’s second isotopy lemma to show that the family is topologically
trivial.

Definition 6.6. We say that the 0-stables are constant in the family ft if there
does not exist a curve X(t) in <(F ) whose closure contains 0 ∈ C

p and such that
ft has a 0-stable at X(t).

Definition 6.7. The locus of instability ofF is the set of points (y, t)∈ (Cp×C,
0 × 0) such that the map F : (Cn × C,F −1(y, t) ∩ �(F )) → (Cp × C, (y, t)) is
not stable.

We can now define the types of unfoldings required for applying Theorem 5.9 to
discriminants. This was defined (for mono-germs) by Gaffney in [9].

Definition 6.8. Suppose that f : (Cn, x) → (Cp, 0) is finitely A-determined
(i.e., has an isolated instability) and has discrete stable type. Suppose that F is a
1-parameter unfolding with a representativeF : U →W such thatF |�(F )∩U →
W is proper and finite-to-one and F −1(0) ∩ �(F ) ∩ U = {(x1, 0), . . . , (xs , 0)}.

We call F an excellent unfolding if all of the following statements hold.

(i) F −1(W ) = U.

(ii) F(U ∩ �(F )\S) = W\T.
(iii) The locus of instability is T.
(iv) The 0-stables are constant in the family.
(v) If n = p, then the degree of the map ft is constant in the family.

Remarks 6.9. (1) In [9], Gaffney calls unfoldings good when all the conditions
except the 0-stable one hold.

(2) These conditions can often be checked by analyzing invariants of the mem-
bers of the family (see e.g. Prop. 6.6 or Thm. 8.7 of [9]). See [18] for the case of
corank-1 maps with n < p.
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(3) Representatives F : U → W such that F |�(F ) ∩ U → W is proper and
finite-to-one and F −1(0)∩�(F )∩U = {(x1, 0), . . . , (xs , 0)} can always be found;
see [8, p. 31].

Main Theorem on Families of Discriminants of Map Germs

We now come to the main theorem in the case that our family of hypersurfaces
arises as the discriminant of the unfolding of a finitely A-determined map germ.

We use the following notation. If f : (Cn, x) → (Cp, 0), n ≥ p−1, is a finitely
A-determined multi-germ, then the discriminant is a hypersurface. If F is a 1-
parameter unfolding of f of the form F(x, t) = (F̄(x, t), t), then we shall define
ft to be the family ft(x) = F̄(x, t) and define gt : (Cp, 0) → (C, 0) to be the fam-
ily of functions defining the discriminants of ft . We can choose g0 reduced so that
gt will be reduced for all t in some neighborhood of 0.

Theorem 6.10. Suppose that f : (Cn, x) → (Cp, 0), n ≥ p − 1, is a finitely
A-determined multi-germ of discrete stable type and that F is a 1-parameter un-
folding of f. Assume that the following conditions hold.

(i) The unfolding is excellent.
(ii) The characteristic normal Morse data is nonzero for strata that appear in the

stratification by stable types of the discriminant of F.

Then the discriminant of F is Whitney equisingular along the parameter axis T if
and only if the sequence (µ1(gt ), . . . ,µp−1(gt ), χ̃p(gt )) is constant in the family.

Proof. Because F is excellent, there are no 1-dimensional strata other than those
contained in the parameter axis. Furthermore, and again since F is excellent,
we know from Propositions 6.3, 6.4, and 6.5 of [9] that (a) the stratification of
F |U\F −1(T ) → W\T by stable types is a Whitney stratification and (b) the in-
duced stratification of ft : U ∩ (Cn × {t}) → W ∩ (Cp × {t}) is Whitney and has
a product structure over T at the origin.

Thus, by Theorem 5.9 applied to the family gt , we get the conclusion.

Remarks 6.11. (1) Obviously, by Theorem 5.9, other equivalent statements are
possible—for example, involving the Lê numbers of gt . The invariants chosen
here are the easiest to define and are clearly topological in nature.

(2) Note that, in analogy with the Briançon–Speder–Teissier result, we seem
to have the smallest number of invariants possible without making any further
assumptions.

We can now prove a result similar to [13, Thm. 6.6].

Corollary 6.12 (cf. [13]). Suppose that f : (Cn, x) → (Cp, 0) is a finitely A-
determined multi-germ and that F is an excellent 1-parameter unfolding of f.
Suppose also that f is in Mather’s nice dimensions with n ≥ p. Then the discrim-
inant of F is Whitney equisingular along the parameter axis T if and only if the
sequence (µ1(gt ), . . . ,µp−1(gt ), χ̃p(gt )) is constant in the family.
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Proof. Since f is in the nice dimensions, it is of discrete stable type. The stable
types appearing in any unfolding will obviously be in the nice dimensions, so
the complex links of the stable types are noncontractible by Example 4.7. Thus
the characteristic normal data is nonzero and so condition (ii) of Theorem 6.10 is
satisfied.

We can now state a theorem for the case of images with p = n + 1.

Corollary 6.13. Suppose that f : (Cn, x) → (Cn+1, 0) is a corank-1, finitely
A-determined multi-germ and that F is an excellent 1-parameter unfolding of f.
Then the image of F is Whitney equisingular along the parameter axis T if and
only if the sequence (µ1(gt ), . . . ,µn(gt ), χ̃n+1(gt )) is constant in the family.

Proof. The map f is of discrete stable type because f0 is corank 1. Furthermore,
the stable types appearing in any unfolding will also be corank1. The complex links
of the stable types are nontrivial by Example 4.6, so condition (ii) of Theorem 6.10
is satisfied.

Remark 6.14. See [18] for conditions on members of the family to show that F
is an excellent unfolding.

Main Theorem on Families of Map Germs

We can stratify the map F so that the parameter axes S and T are strata. Gaffney
initiated this study of equisingularity of finitely A-determined maps (rather than
just hypersurfaces) in [9]. His statements were for mono-germs, but the extension
to multi-germs is fairly straightforward.

Definition 6.15. Let F : (Cn × C, x × 0) → (Cp × C, 0 × 0) be a family of
maps F(x, t) = (ft(x), t) such that each ft : (Cn, x) → (Cp, 0) has an isolated
instability at the origin.

We say that F is Whitney equisingular (along the parameter axes) if there is
a representative F : U → W such that U ⊆ C

n × C and W ⊆ C
p × C can be

Whitney stratified so that:

(i) F satisfies Thom’s AF condition; and
(ii) the parameter axes S = {x} × C ⊆ C

n × C and T = {0} × C ⊆ C
p × C are

strata.

Remark 6.16. By Thom’s second isotopy lemma, if a family is Whitney equi-
singular then it is topologically trivial.

For mono-germs, we can improve on the main theorem in [16].

Theorem 6.17 (cf. [16, Thm. 3.3]). Suppose that f : (Cn, 0) → (Cn+1, 0) is a
corank-1, finitely A-determined mono-germ and thatF is an excellent 1-parameter
unfolding of f. Then F is Whitney equisingular along the parameter axes S and T
if and only if the sequence (µ1(gt ), . . . ,µp−1(gt ), χ̃p(gt )) is constant in the family.
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Proof. Clearly, ifF is Whitney equisingular along S and T, then the image is Whit-
ney equisingular along T. Hence, by Corollary 6.13, the sequence is constant in
the family.

For the converse, the same corollary implies that if the sequence is constant then
the image is Whitney equisingular along T. The main theorem of [11] implies that
the source may also be Whitney stratified so that S is a stratum. Since Gaffney
proves this only for mono-germs, we must also be restricted to mono-germs.

The Thom AF condition follows automatically because if h : Y → Z is a fi-
nite complex analytic map—with Y and Z Whitney stratified so that strata map to
strata by local diffeomorphisms—then h satisfies the Thom Af condition because
the kernels in the definition of Thom AF are all {0}. The map F is finite and so
the submersions formed by taking restrictions to strata are, in fact, local diffeo-
morphisms. Hence, F is Whitney equisingular.

7. Final Remarks

Remark 7.1. In [9], in particular Propositions 8.4, 8.5, and 8.6, there are a num-
ber of formulas relating various polar multiplicities and other invariants. The polar
multiplicities appear with coefficient equal to ±1 in all these propositions. This
same behavior can be seen in the work of Jorge Pérez [19; 20] and Saia [21].

That these coefficients are equal to ±1 appear to be a reflection of the fact that,
in the case of C

n to C
p with n < p and corank 1, the stable types appearing have

characteristic normal data equal to 1 by Example 4.6.
More specifically, the alternating sum of the multiplicities of the characteristic

polar cycle of the constant sheaf C•
V(gt )

in Example 4.12 can often be written as
some other well-known invariant—for example, a Milnor number. Since

λk(C•
V(gt )

) =
∑
Sα,t

m(Sα,t )mult 0 0
k(Sα,t )

and since m(Sα,t ) = 1 (in the notation of Lemma 5.4), we get an alternating sum
of the polar multiplicities mult 0 0

k(Sα,t ).

Alternatively, it is well known (see e.g. [23]) that the alternating sum of polar
multiplicities is equal to the Euler obstruction. Hence corank-2 maps (and, in par-
ticular, their characteristic normal data) will need to be studied to determine the
precise explanation.

Remark 7.2. As remarked before, the analogy with the Briançon–Speder–Teissier
theorem shows that the number of invariants in Theorem 5.9 cannot be reduced
any further without extra conditions being imposed. More than this, it seems
likely that one needs the nontriviality of the complex links in the theorem. If
one has a contractible complex link of some stratum, then it is probable that one
can create examples where the (µ∗, χ̃N+1) sequence is constant yet the parameter
axis does not satisfy the Whitney conditions. Such an example therefore needs to
be found.
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It is difficult to express succinctly the reasons behind this strong probability in
the current space. The interested reader is directed to Section 4 of Part III (in par-
ticular, Prop. 4.10) in [27].

Remark 7.3. Although it is satisfying to reduce the number of required invariants
to p, it is unsatisfactory that they are not defined consistently. In (µ∗(gt ), χ̃p(gt ))

we have a mix of higher multiplicities and an Euler characteristic. On the other
hand, many other theorems give an even less consistent mix of polar multiplicities,
Milnor numbers, Lê numbers, and so on.

However, for equisingularity of maps it is possible to define still another se-
quence of invariants using the disentanglement of a map (see [17] and [7, Sec. 4]
for a discussion). This sequence is denoted by µi

I(ft ), 1 ≤ i ≤ p, since it depends
on the map ft and not on the function gt defining the discriminant. It is possible to
show that µi(gt ) = µi

I(ft ) for 1 ≤ i ≤ p−1. In low-dimensional examples it can
be shown that χ̃p+1(gt ) and µp

I (ft ) are connected though not equal; see [17]. Thus
Whitney equisingularity of these maps is controlled by the p invariants µ∗

I (ft ).

It would be interesting to prove in general that constancy of (µ∗(gt ), χ̃p(gt )) is
equivalent to constancy of µ∗

I (ft ).

Another reason for studying this is that µp

I (ft ) is involved in the control over an
unfolding being excellent (see [17; 18]).

Remark 7.4. Also of interest is to find when equisingularity of the discriminant
implies equisingularity of the map. For a family of corank-1 maps ft : (Cn, 0) →
(Cp, 0), n < p, Gaffney [11] shows that if the image is Whitney equisingular then
the family is Whitney equisingular. It would be good to know how generally this
claim is valid. It seems unlikely, particularly for n < p, that an unfolding should
have a source that is not Whitney stratified with S a stratum such that the image is
Whitney stratified with T a stratum. In other words: one would expect an image to
be more complicated than its source, and the map should not “repair” faults with
stratifications.

Furthermore, Gaffney has pointed out to me that, in the case of maps, one cares
about the topological triviality and so need not be restricted to Whitney stratifica-
tions. One could use the c-regular stratifications of Bekka [1] for source and target
because this would imply topological triviality of the family by Thom’s second
isotopy lemma (since the lemma holds for these types of stratifications). Alterna-
tively, one could attempt to find conditions under which Whitney equisingularity
of the discriminant implies c-regularity of the source; since Whitney stratification
is stronger than c-stratification, this would again imply topological triviality.

Remark 7.5. An alternative viewpoint to the methods described here is given in
[3]. The authors of that paper are concerned with families of mappings from C

2 to
C

3 and introduce the concept of equisingularity at the normalization. Since their
method gives a lot of information about families of maps, it would be interest-
ing to generalize to higher dimensions and combine their method with the one of
this paper.
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