Extremal Rational Elliptic Threefolds

Arthur Prendergast-Smith

An elliptic fibration is a proper morphism $f: X \rightarrow Y$ of normal projective varieties whose generic fibre E is a regular curve of genus 1 . The Mordell-Weil rank of such a fibration is defined to be the rank of the abelian group $\mathrm{Pic}^{0} E$ of degree- 0 line bundles on E. In particular, f is called extremal if its Mordell-Weil rank is 0 .

The simplest nontrivial elliptic fibration is a rational elliptic surface $f: X \rightarrow \mathbf{P}^{1}$. There is a complete classification of extremal rational elliptic surfaces due to Miranda and Persson in characteristic 0 [14] and to Lang in positive characteristic [12; 13]. (See also Cossec and Dolgachev [4, Sec. 5.6].) The purpose of the present paper is to produce a corresponding classification of a certain class of extremal rational elliptic threefolds. For reference, the results are shown in Table 1.

Let us say a bit more about exactly which objects we are classifying. It is a classical fact that any rational elliptic surface is the blowup of \mathbf{P}^{2} at the base locus (a 0 -dimensional subscheme of degree 9) of a pencil of cubic curves. This description allows one to compute the Mordell-Weil rank in terms of reducibility properties of curves in the pencil [17, Thm. 5.2]. In dimension 3, the analogous situation is to consider a net (2-dimensional linear system) of quadric surfaces in \mathbf{P}^{3}. The base locus of such a net is a 0 -dimensional subscheme of degree 8. We will see in what follows that, under a certain nondegeneracy assumption on the net, blowing up at the base locus gives an elliptic fibration $f: X \rightarrow \mathbf{P}^{2}$, and then we can compute the Mordell-Weil rank of f in terms of reducibility properties of quadrics in the net. To exploit this, we will consider in this paper only elliptic threefolds obtained by blowing up the base locus of a net of quadrics in \mathbf{P}^{3}. Table 1 gives a list of all nets of quadrics (up to projective equivalence) that give rise to extremal elliptic threefolds in this way.

The classification may be of interest for several reasons. First, it is a natural counterpart of the results of Miranda-Persson and Lang on extremal rational elliptic surfaces. It is perhaps surprising to see that the situation for threefolds, in which the classification contains only a small finite number of cases, is simpler than that for surfaces. Second, the method of proof uses the theory of root systems in an essential way. This gives a further demonstration of the strong connectionelaborated in [6] and [4]-between root systems and configurations of points in projective space. Finally, the classification provides "test specimens" for the cone

Received March 13, 2009. Revision received August 13, 2009.

Table 1 List of Extremal Nets

Root lattice	$\operatorname{Pic}^{0}(E)$	Type of net	Standard form
E_{7}	0	$\{8\}_{1}$	$\begin{gathered} Q_{1}=Z^{2} \\ Q_{2}=X(Y+W)+Y W \\ Q_{3}=X Z+(Y+W)^{2} \end{gathered}$
A_{7}	$\mathbf{Z} / 2 \mathbf{Z}$	$\begin{gathered} \{8\}_{2} \\ \{4,4\}_{1} \end{gathered}$	$\begin{gathered} Q_{1}=Y Z+W^{2} \\ Q_{2}=X Z+Y W \\ Q_{3}=X W-Y^{2}+Z^{2} \\ Q_{1}=Z W \\ Q_{2}=X Z+Y W \\ Q_{3}=X Y+Z^{2}+W^{2} \end{gathered}$
$D_{6} \oplus A_{1}$	$\mathbf{Z} / 2 \mathbf{Z}$	$\begin{aligned} & \{6,2\} \\ & \{4,4\}_{2} \end{aligned}$	$\begin{gathered} Q_{1}=Y Z \\ Q_{2}=X Z+W^{2} \\ Q_{3}=X Y+Z^{2} \\ Q_{1}=X Y \\ Q_{2}=Z^{2} \\ Q_{3}=(X+Y) Z+W^{2} \end{gathered}$
$A_{5} \oplus A_{2}$	$\mathbf{Z} / 3 \mathbf{Z}$	$\begin{gathered} \{5,3\} \\ \{3,3,2\}_{1} \end{gathered}$	$\begin{gathered} Q_{1}=Y Z \\ Q_{2}=X W+Z^{2} \\ Q_{3}=X Y+W^{2} \\ Q_{1}=Y Z \\ Q_{2}=X(Z+W) \\ Q_{3}=X Y+W^{2} \end{gathered}$
$D_{4} \oplus 3 A_{1}$	$(\mathbf{Z} / 2 \mathbf{Z})^{2}$	$\{4,2,2\}$	$\begin{gathered} Q_{1}=X(Y+Z) \\ Q_{2}=Y Z \\ Q_{3}=(X+Y) Z+W^{2} \end{gathered}$
$2 A_{3} \oplus A_{1}$	$\mathbf{Z} / 4 \mathbf{Z}$	$\begin{gathered} \{4,4\}_{3} \\ \{3,3,2\}_{2} \\ \{2,2,2,2\} \end{gathered}$	$\begin{gathered} Q_{1}=X Y \\ Q_{2}=X Z+W^{2} \\ Q_{3}=Y W+Z^{2} \\ Q_{1}=X Y \\ Q_{2}=Z W \\ Q_{3}=(X+Y) Z+W^{2} \\ Q_{1}=X Y \\ Q_{2}=Z W \\ Q_{3}=(X+Y)(Z+W) \end{gathered}$
$7 A_{1}$	$(\mathbf{Z} / 2 \mathbf{Z})^{3}$	$\begin{aligned} & \{1,1,1,1,1,1,1,1\} \\ & (\text { char } k=2 \text { only }) \end{aligned}$	$\begin{aligned} & Q_{1}=(X+Y+Z) W \\ & Q_{2}=(X+Y+W) Z \\ & Q_{3}=(X+Z+W) Y \end{aligned}$

Notes: The root lattices and Mordell-Weil groups are obtained in Section 3. The admissible types of nets are obtained in Section 4. Standard forms are obtained in Section 5 .
conjecture in birational geometry [17, Conj. 8.1]. That conjecture predicts that the threefolds appearing in the classification should be particularly simple from the point of view of birational geometry. (More precisely, they have finitely generated Cox ring.) We will not explore this direction in the present work, but we plan to do so in a forthcoming paper.

The main results of this paper are as follows. Theorem 2.1 relates the MordellWeil rank of an elliptic fibration obtained from a net of quadrics to reducibility properties of quadrics in the net. Theorem 3.2 shows that, for an extremal fibration, the configuration of reducible quadrics in the net is constrained by a (fixed) finite root system. These two theorems combine to yield Theorem 4.1, which gives a list of the possible configurations of reducible quadrics for an extremal fibration. In Section 5 we use the combinatorial data produced by Theorem 4.1 to determine all extremal nets up to projective equivalence. Finally, in Section 6 we relate our extremal elliptic threefolds to extremal quartic plane curves via the discriminant.

Acknowledgments. Thanks to Burt Totaro for many helpful comments and suggestions and to the reviewer for several interesting additions.

Notation, Conventions, Definitions. We work throughout over an algebraically closed field k. In general the characteristic of k is not specified, though in some contexts we will exclude characteristics 2 and 3.

The term extremal fibration will always refer to an extremal elliptic fibration $f: X \rightarrow \mathbf{P}^{2}$ obtained by blowing up the base locus (in the sense described below) of a net of quadrics in \mathbf{P}^{3} that satisfies Assumption 1. A net of quadrics is called extremal if the corresponding morphism $X \rightarrow \mathbf{P}^{2}$ is an extremal fibration.

If Q_{1}, Q_{2}, Q_{3} are quadrics in \mathbf{P}^{3}, we write $\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$ to denote the net they span; that is, $\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle=\left\{\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}: \lambda_{i} \in k, \lambda_{1}, \lambda_{2}, \lambda_{3}\right.$ not all 0$\}$. Similarly, $\left\langle Q_{1}, Q_{2}\right\rangle$ denotes the pencil spanned by Q_{1} and Q_{2}.

A basepoint of a net N of quadrics can refer either to a point $p \in \mathbf{P}^{3}$ in the set-theoretic intersection $\bigcap_{Q \in N} Q$ of all quadrics in the net or to a common tangent direction of the net (of any order). If we intend only a point $p \in \bigcap_{Q \in N} Q$ then we will use the term \mathbf{P}^{3}-basepoint. The multiplicity of a \mathbf{P}^{3}-basepoint p_{i} will be denoted by m_{i}. A net N is of type $\left\{m_{1}, \ldots, m_{n}\right\}$ if it has \mathbf{P}^{3}-basepoints p_{1}, \ldots, p_{n} of multiplicities m_{1}, \ldots, m_{n}.

We will use the notation $X_{m_{1}, \ldots, m_{n}}$ to denote a threefold obtained from \mathbf{P}^{3} by blowing up at the base locus of any extremal net of type $\left\{m_{1}, \ldots, m_{n}\right\}$. Note that for a given type $\left\{m_{1}, \ldots, m_{n}\right\}$ there may exist nonisomorphic spaces $X_{m_{1}, \ldots, m_{n}}$.

We abuse terminology by using the term rank-2 quadric to refer to a quadric in \mathbf{P}^{3} that is the union of two distinct planes, even in characteristic 2.

We denote by h the pullback to X of the hyperplane divisor class on \mathbf{P}^{3} and by e_{i} the pullback to X of the exceptional divisor E_{i} of the blowup of the basepoint $p_{i}(i=1, \ldots, 8)$. For brevity, we will denote the class $h-e_{i}-e_{j}-e_{k}-e_{l}$ by $h_{i j k l}$ and the class $e_{i}-e_{j}$ by $e_{i j}$ or sometimes (for clarity) $e_{i, j}$. We denote by l the class in $N_{1}(X)$ represented by the pullback of a line in \mathbf{P}^{3} and by l_{i} the class of the pullback of a line in the exceptional divisor e_{i}.

1. Preliminaries

In this section we explain how to obtain an elliptic fibration from a net of quadrics in \mathbf{P}^{3} under a certain nondegeneracy assumption on the net. We then point out some simple consequences of this assumption that we will use later in the paper.

First let us consider what restriction is needed on a net of quadrics in \mathbf{P}^{3} to ensure that it gives an elliptic fibration as defined previously. Given any net with a chosen set of generators, say $N=\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$, we get a rational map $\mathbf{P}^{3} \rightarrow \mathbf{P}^{2}$: explicitly, the map is $p \mapsto\left[Q_{1}(p), Q_{2}(p), Q_{3}(p)\right]$. This map is defined outside the base locus of N, so we would like to "blow up at the base locus" (in some sense) to get a morphism $f: X \rightarrow \mathbf{P}^{2}$ from a smooth threefold to \mathbf{P}^{2}. Furthermore, since we are interested in elliptic fibrations, we want the generic fibre of f to be a smooth curve of genus 1 . If the base locus of the net is reduced (i.e., if it consists of eight distinct points) then we can blow up these eight points in the usual way, and we do in fact get an elliptic fibration. But the condition of reduced base locus is too restrictive for our purposes-it is proved in [16] that there is only one such net that gives an extremal fibration-so we would like to relax it as much as possible.

Consider, however, the net spanned by the following three quadrics in \mathbf{P}^{3} with homogeneous coordinates $[X, Y, Z, W]$:

$$
Q_{1}=X(X-W), \quad Q_{2}=Y(Y-W), \quad Q_{3}=Z W
$$

This net has four basepoints of multiplicity 1 at $[X, Y, Z, W]=[0,0,0,1]$, $[1,0,0,1],[0,1,0,1],[1,1,0,1]$ and one basepoint of multiplicity 4 at $p=$ $[0,0,1,0]$. Therefore we get a rational map $\mathbf{P}^{3} \rightarrow \mathbf{P}^{2}$ defined outside these five points. We want to resolve the indeterminacy of this rational map to get a morphism $f: X \rightarrow \mathbf{P}^{2}$ that is an elliptic fibration. Suppose we are in the characteristic-0 case: then we can blow up along points and curves to get a morphism (though not uniquely). Bertini's theorem then tells us that the general fibre of f is smooth. On the other hand, the general fibre is birational to a quartic curve $C=Q \cap Q^{\prime}$, the intersection of two quadrics in the net. One can check that any such C is singular at p and hence is rational. Therefore the general fibre of f is rational.

Since we are interested only in elliptic fibrations, we want to exclude troublesome examples like this one. What went wrong? The problem is that the differentials $d Q_{1}$ and $d Q_{2}$ are both zero at p, so no intersection $Q \cap Q^{\prime}$ of two quadrics in the net can be smooth at p. Since the generic fibre of $f: X \rightarrow \mathbf{P}^{2}$ is birational to a singular quartic of the form $Q \cap Q^{\prime}$ (a rational curve), we never get an elliptic fibration in this case. Therefore, in what follows we assume that all nets of quadrics in \mathbf{P}^{3} satisfy the following assumption.

Assumption 1. There exist quadrics Q, Q^{\prime} in the net such that the intersection $Q \cap Q^{\prime}$ is smooth at the base locus of the net. Equivalently, for each \mathbf{P}^{3}-basepoint p of the net, there is at most one quadric in the net singular at p.

Under this assumption we obtain an elliptic fibration as follows. Choose a quartic curve of the form $C=Q \cap Q^{\prime}$ that is smooth at the base locus and a quadric $Q^{\prime \prime}$, not in the pencil spanned by Q and Q^{\prime}, that also is smooth at the base locus. (This
is possible since smoothness at a given point is an open condition on quadrics.) Since C is smooth, its higher tangent directions uniquely define the basepoints infinitely near to any multiple basepoint of the net. Blowing up repeatedly at these basepoints, we obtain a threefold X on which the proper transforms of C and $Q^{\prime \prime}$ are disjoint, and hence a morphism $f: X \rightarrow \mathbf{P}^{2}$.

For $f: X \rightarrow Y$ the blowup of a point in a smooth variety of dimension n, we have the formula $K_{X}=f^{*}\left(K_{Y}\right)+(n-1) E$, where E is the exceptional divisor of the blowup. Applying this in the case where X is obtained from \mathbf{P}^{3} by blowing up eight points, we get $K_{X}=-4 h+2 e_{1}+\cdots+2 e_{8}$. So the class $-\frac{1}{2} K_{X}=$ $2 h-e_{1}-\cdots-e_{8}$ is represented by the proper transform on X of any quadric in the net smooth at the base locus. This means that the morphism $f: X \rightarrow \mathbf{P}^{2}$ from the previous paragraph is the same as the one given by the basepoint-free linear system $\left|-\frac{1}{2} K_{X}\right|$. The generic fibre E of f need not be smooth, but it is a regular scheme. Also, adjunction tells us the canonical bundle K_{E} is trivial, so E has arithmetic genus 1 . Hence f is an elliptic fibration, as claimed.

Remark. It is customary to refer to a fibration as above whose generic fibre is regular but not smooth as a quasi-elliptic fibration, but since the arguments of this paper apply equally well in both the elliptic and quasi-elliptic cases, we abuse terminology and refer to both as elliptic fibrations. Many facts about quasi-elliptic fibrations are known: for instance, they exist only if the base field has characteristic 2 or 3; also, the geometric generic fibre $E\left(\overline{k\left(\mathbf{P}^{2}\right)}\right)$ is always a cuspidal rational curve [4, Prop. 5.1.2]. Note that the final net in Table 1, which is extremal only in characteristic 2, gives a quasi-elliptic fibration.

Remark. It is a classical fact that the fibrations $f: X \rightarrow \mathbf{P}^{2}$ correspond to nets of cubic curves in the plane. In one direction, projecting from one basepoint of our net N of quadrics transforms the net of quartic curves in \mathbf{P}^{3} dual to N to a net of cubic curves in \mathbf{P}^{2} with seven basepoints; in the other, blowing up the seven basepoints of such a net and taking the universal family \mathcal{X} of elliptic curves over the resulting surface, we get an elliptic fibration $\mathcal{X} \rightarrow \mathbf{P}^{2}$ birational to our original fibration $f: X \rightarrow \mathbf{P}^{2}$. For more details on this correspondence see [5, Sec. 6.3.3].

Here are some straightforward consequences of Assumption 1.
Lemma 1.1. Given a net of quadrics satisfying Assumption 1, no three of the basepoints are collinear and no five are coplanar. More precisely, suppose X is the threefold obtained from such a net by blowing up its base locus as just described. Then no class $l-\sum_{k=1}^{3} l_{i_{k}}$ in $N_{1}(X)$ or $h-\sum_{k=1}^{5} e_{j_{k}}$ in $N^{1}(X)$ is represented by an effective cycle.

Proof. For any choice of distinct indices we have $-K_{X} \circ\left(l-\sum_{k=1}^{3} l_{i_{k}}\right)=-1$ (where \circ denotes intersection of cycles on X), but this is impossible for an effective cycle since $-K_{X}$ is basepoint-free.

For the second claim, suppose there were an effective cycle $h-\sum_{k=1}^{5} e_{j_{k}}$ in $N^{1}(X)$; its image in \mathbf{P}^{3} would be a plane P. Choose any quartic curve $C=Q \cap Q^{\prime}$,
an intersection of two quadrics in the net, that is smooth at the base locus; such a curve exists by Assumption 1. Its proper transform \tilde{C} on X has class $4 l-\sum_{i=1}^{8} l_{i}$. Therefore $\left(h-\sum_{k=1}^{5} e_{j_{k}}\right) \circ \tilde{C}=-1$, implying that any such C is contained in P. But smoothness of C at a finite set of points is an open condition on Q and Q^{\prime}, so this is impossible.

Lemma 1.2. Given a net of quadrics satisfying Assumption 1, we have the following facts.

- There is at most one double plane in the net.
- There are at most n irreducible cones with vertices at basepoints of the net, where n is the number of distinct \mathbf{P}^{3}-basepoints of the net.
- There are finitely many rank-2 quadrics in the net.

Proof. Any double plane is singular at all \mathbf{P}^{3}-basepoints, so by Assumption 1 we get the first claim. For the second, Assumption 1 implies there is at most one cone with vertex at a given \mathbf{P}^{3}-basepoint p_{i}.

For the final claim, suppose there is a curve of rank-2 quadrics in the net. Then every pencil in the net contains a reducible quadric; hence the pencil's base locus is a reducible quartic in \mathbf{P}^{3}. But each fibre of $f: X \rightarrow \mathbf{P}^{2}$ is birational to the base locus of some pencil in the net and so must be reducible. This contradicts regularity of the generic fibre.

2. Rank of the Elliptic Fibration

In this section, we derive a formula for the rank of an elliptic fibration $f: X \rightarrow \mathbf{P}^{2}$ obtained from a net of quadrics in \mathbf{P}^{3} in terms of the number of distinct \mathbf{P}^{3} basepoints of the net and the number of quadrics of rank 2 in the net. This generalizes [17, Thm. 7.2], which gives the formula for a net with eight distinct \mathbf{P}^{3} basepoints.

Theorem 2.1. Suppose $f: X \rightarrow \mathbf{P}^{2}$ is an elliptic fibration arising from a net of quadrics in \mathbf{P}^{3}. Then the rank ρ of the Mordell-Weil group of the generic fibre of f is given by

$$
\rho=n-d-1,
$$

where n is the number of distinct \mathbf{P}^{3}-basepoints of the net and d the number of quadrics of rank 2 in the net. In particular, f is extremal if and only if $d=n-1$.

Proof. The rank of an elliptic threefold $f: X \rightarrow S$ is given by the Shioda-TateWazir formula [9, Thm. 2.3]. Let us derive this formula in our case $S=\mathbf{P}^{2}$. To do this, we imitate the proof of [17, Thm. 7.2]. We have a surjective homomorphism r : Pic $X \rightarrow$ Pic E given by restriction of divisors, so rank Pic $E=$ rank Pic X - rank ker r. Since we know that $\operatorname{Pic} E=\operatorname{Pic}^{0} E \oplus \mathbf{Z}$, this gives $\operatorname{rank} \operatorname{Pic}^{0} E=\operatorname{rank} \operatorname{Pic} X-\operatorname{rank} \operatorname{ker} r-1=8-\operatorname{rank} \operatorname{ker} r$. So we need to calculate the rank of the kernel of the restriction homomorphism.

The kernel of r is generated by the classes of all irreducible divisors in X that do not map onto \mathbf{P}^{2} under f. If λ is the class of a line in \mathbf{P}^{2}, then $f^{*}(\lambda)=-\frac{1}{2} K_{X}$, so the pullback of any irreducible divisor in \mathbf{P}^{2} is a multiple of $-\frac{1}{2} K_{X}$. Therefore the kernel of the restriction homomorphism is generated by $-\frac{1}{2} K_{X}$ together with r_{F} classes for every irreducible divisor F in \mathbf{P}^{2} whose preimage in X consists of $r_{F}+1$ irreducible components, say $\sum_{j=1}^{r_{F}+1} m_{F_{j}} D_{F_{j}}$. I claim that the divisors $D_{F_{j}}$ for any F and $1 \leq j \leq r_{F}$ are linearly independent in Pic $X \otimes \mathbf{Q}$. This follows from the corresponding fact about a morphism from a surface to a curve [2, Lemma II.8.2] by restricting to the inverse image of a general line in \mathbf{P}^{2}. So the Mordell-Weil group $\operatorname{Pic}^{0} E$ has rank $8-1-\sum r_{F}$. We must show this can be written as $n-d-1$, where n is the number of distinct \mathbf{P}^{3}-basepoints of the net and d the number of rank-2 quadrics in the net.

The map $f: X \rightarrow \mathbf{P}^{2}$ is given by resolving the indeterminacy of the rational $\operatorname{map} \mathbf{P}^{3} \rightarrow \mathbf{P}^{2}: p \mapsto\left[Q_{1}(p), Q_{2}(p), Q_{3}(p)\right]$, where Q_{i} is any (fixed) basis for the net of quadrics. So a fibre of f is (at least away from the base locus of the net) the intersection $Q \cap Q^{\prime}$ of two quadrics in the net and hence is a quartic curve. Let us refer to the corresponding quartic curve $Q \cap Q^{\prime}$ in \mathbf{P}^{3} as the pseudofibre of f over the given point.

If the intersection $Q \cap Q^{\prime}$ is smooth at the base locus, then the pseudofibre $Q \cap Q^{\prime}$ is isomorphic to the corresponding fibre of f. If such a fibre contains a line, then this must be the line through two of the basepoints p_{i}. So there are only finitely many fibres smooth at the base locus that contain a line. The only other possibility for a reducible pseudofibre smooth at the base locus is that it be the union $C_{1} \cup C_{2}$ of two smooth conic curves in \mathbf{P}^{3}. But each curve C_{i} is contained in a plane P_{i} in \mathbf{P}^{3}; the union $P_{1} \cup P_{2}$ is therefore a rank-2 quadric in the net that is smooth at the base locus.

Note this implies in particular that if a reducible divisor Δ in \mathbf{P}^{3} contains a pseudofibre smooth at the base locus and maps to a curve in \mathbf{P}^{2}, then in fact it maps to a line in \mathbf{P}^{2}. To see this, assume without loss of generality that Δ is a union of pseudofibres. Every pseudofibre contained in Δ and smooth at the base locus is contained in some rank-2 quadric Q, whose image in \mathbf{P}^{2} is a line, and Lemma 1.2 shows there are finitely many such Q. These pseudofibres are dense in Δ, so the image of Δ is contained in a finite union of lines in \mathbf{P}^{2}. If different pseudofibres were contained in different rank-2 quadrics, the image of Δ would be a union of distinct lines and hence reducible, but this contradicts our assumption. Therefore the image of Δ in \mathbf{P}^{2} is a line, as required.

So the only possibilities for reducible pseudofibres that are smooth at the base locus are exactly those described in [17]. Let us therefore consider pseudofibres $Q \cap Q^{\prime}$ that are not smooth at the base locus.

Suppose Q is a quadric in the net smooth at the base locus, and suppose a pseudofibre $Q \cap Q^{\prime}$ is singular at a \mathbf{P}^{3}-basepoint p_{i}. This means that the differentials $d Q$ and $d Q^{\prime}$ are linearly dependent at p_{i}, so (multiplying by a constant if necessary) $d\left(Q-Q^{\prime}\right)=0$ at p_{i}. By Assumption 1, this implies that $Q-Q^{\prime}$ is the unique quadric Q_{i} in the net singular at p_{i} or, put another way, that $Q^{\prime}=\lambda Q+\mu Q_{i}$. So
the pseudofibre $Q \cap Q^{\prime}$ is singular at p_{i} if and only if Q^{\prime} belongs to the pencil $\lambda Q+\mu Q_{i}$, implying that $Q \cap Q^{\prime}=Q \cap Q_{i}$.

Now suppose $C \subset \mathbf{P}^{2}$ is a curve over which all pseudofibres of f are singular at a \mathbf{P}^{3}-basepoint p_{i}. Fix a quadric Q in the net that is smooth at the base locus. Over any point of $f(Q) \cap C$ the pseudofibre of f is singular at p_{i}. Over a point $q \in f(Q) \cap C$ the pseudofibre is an intersection $Q \cap Q^{\prime}$, and by the previous paragraph we can take $Q^{\prime}=Q_{i}$. Therefore $q=f(Q) \cap f\left(Q_{i}\right)$. This holds for all $q \in f(Q) \cap C$, so we have $f(Q) \cap C=f(Q) \cap f\left(Q_{i}\right)$. Since this is true for any quadric Q in the net smooth at p_{i} (which Q constitute a Zariski-open set in the net), we must have $C=f\left(Q_{i}\right)$. We conclude that the only subvarieties of \mathbf{P}^{2} over which all the pseudofibres of f are singular at the base locus are the lines $f\left(Q_{i}\right)$, the images of the finitely many quadrics Q_{i} in the net singular at the base locus.

Suppose D is a reducible effective divisor in X whose image $f(D) \subset \mathbf{P}^{2}$ is an irreducible curve C; without loss of generality, we can assume $D=f^{-1}(f(D))$ that is, D is a union of fibres. Contracting the exceptional divisors E_{i} in X, the image of D is an effective divisor $\Delta \in \mathbf{P}^{3}$. If some pseudofibre contained in Δ is smooth at the base locus, then (as explained before) Δ must be a supported on a rank-2 quadric in the net. If the pseudofibre over every point of C is singular at the base locus then the previous paragraph implies that C must be one of the lines $f\left(Q_{i}\right)$ in \mathbf{P}^{2}, so Δ is supported on Q_{i}.

We therefore have three types of contribution to the rank of ker r : first, the class $-\frac{1}{2} K_{X}$; second, reducible quadrics in the net smooth at the base locus, each of which adds 1 to the rank of the kernel; third, the quadrics Q_{i} singular at the base locus. Let us analyze the contribution of these Q_{i} to the rank of the kernel.

First, suppose Q_{i} is an irreducible reduced cone with vertex at p_{i}. The corresponding divisor $f^{-1}\left(f\left(Q_{i}\right)\right)$ on X has m_{i} components in total—namely, the class of the proper transform of the cone together with $m_{i}-1$ classes of the form $e_{j, j+1}$. The preimage of any line in \mathbf{P}^{2} has class $-\frac{1}{2} K_{X}$ in Pic X, so the classes of these m_{i} components sum to $-\frac{1}{2} K_{X}$. Therefore Q_{i} contributes $m_{i}-1$ to the rank of ker r.

Next suppose that Q_{i} is a rank-2 quadric in the net singular at the base locus. The singular locus of Q_{i} is a line in \mathbf{P}^{3} and therefore contains at most two basepoints of the net by Lemma 1.1. The corresponding divisor $f^{-1}\left(f\left(Q_{i}\right)\right)$ on X has $2+\left(m_{i}-1\right)$ components if Q_{i} is singular at one basepoint p_{i} and $2+\left(m_{i}-1\right)+\left(m_{j}-1\right)$ components if Q_{i} is singular at two basepoints p_{i} and p_{j}. Again, in both cases the classes of these components sum to $-\frac{1}{2} K_{X}$. So in the first case we get a contribution of $1+\left(m_{i}-1\right)$ to the rank of $\operatorname{ker} r$ and in the second case a contribution of $1+\left(m_{i}-1\right)+\left(m_{j}-1\right)$.

Finally, consider the case of a nonreduced quadric Q_{i}-that is, a double plane $2 P$. In this case, all quadrics in the net except Q_{i} must be smooth at the base locus, by Assumption 1. The (reduced) plane P passes through some subset of the basepoints, including all of the \mathbf{P}^{3}-basepoints (which are therefore all multiple). The proper transform of P on X has class $h-e_{i_{1}}-\cdots-e_{i_{j}}$ in Pic X for some set of distinct indices. Therefore the proper transform of Q_{i} on X has class $2\left(h-e_{i_{1}}-\cdots-e_{i_{j}}\right)$. On the other hand, this proper transform must be disjoint
from some smooth fibre C that has class $4 l-\sum_{i} l_{i}$. We conclude that j, the number of indices in the expression for the class of P, must be equal to 4. Again, the divisor $f^{-1}\left(f\left(Q_{i}\right)\right)$ has class $-\frac{1}{2} K_{X}=2 h-\sum_{i} e_{i}$. We can rewrite this as a sum of effective classes as follows:

$$
2 h-\sum_{i} e_{i}=2\left(h-e_{i_{1}}-\cdots-e_{i_{j}}\right)+\sum_{p_{k}} \sum_{p_{l}} e_{l, l+1}+R,
$$

where the first sum is taken over the \mathbf{P}^{3}-basepoints p_{k} and the second over all basepoints p_{l} infinitely near to p_{k}, except the highest, and where R is a sum of terms of the form $e_{l, l+1}$ that have already appeared in sum. The number of distinct terms in this sum is $1+\sum_{p_{i}}\left(m_{i}-1\right)$, with the sum taken over all \mathbf{P}^{3}-basepoints p_{i}. Hence the contribution to the rank of $\operatorname{ker} r$ is $\sum_{\text {all } \mathbf{P}^{3} \text {-basepoints } p_{i}}\left(m_{i}-1\right)$.
(It may help to think about the fibre of f over a general point of $f\left(Q_{i}\right)$; this is one of the degenerations of elliptic curves described by Kodaira in [11]. For instance, if our net has a single basepoint of multiplicity 8 and a double plane $Q_{i}=$ $2 P$, then the fibre over the generic point of $f\left(Q_{i}\right)$ is a curve of type III* in Kodaira's notation.)

Let us now show that the preceding arguments together give the formula claimed. In the case of no double plane in the net, the total contribution to the rank of ker r from quadrics singular at the base locus is

$$
\sum_{p_{i}}\left(m_{i}-1\right)+\sum_{p_{j}} 1+\left(m_{j}-1\right)+\sum_{p_{k}, p_{l}} 1+\left(m_{n}-1\right)+\left(m_{l}-1\right)
$$

where the first sum is taken over multiple \mathbf{P}^{3}-basepoints at which the singular quadric is an irreducible cone, the second over multiple basepoints at which the singular quadric is rank-2 singular at one basepoint, and the third is taken over pairs of multiple \mathbf{P}^{3}-basepoints both lying on the singular locus of the same rank-2 quadric. Since every multiple \mathbf{P}^{3}-basepoint is of one of these three types, summing yields

$$
d_{\text {sing }}+\sum_{\text {multiple }} \mathbf{P}^{3} \text {-basepoints } p_{i}\left(m_{i}-1\right),
$$

where $d_{\text {sing }}$ is the number of rank-2 quadrics in the net singular at the base locus. Finally-including rank-2 quadrics smooth at the base locus, each of which contributes 1 to the rank, and the class $-\frac{1}{2} K_{X}$-we get

$$
\text { rank ker } r=1+d+\sum_{\text {multiple } \mathbf{P}^{3} \text {-basepoints } p_{i}}\left(m_{i}-1\right) .
$$

In the case of a double plane in the net, we know that all rank-2 quadrics in the net must be smooth at the base locus (hence each contributes 1 to the rank of $\operatorname{ker} r$) and also that there are no cones in the net with vertex at a basepoint. So using the formula from a few paragraphs back and including $-\frac{1}{2} K_{X}$ again, we get rank ker $r=1+d+\sum_{\text {multiple }} \mathbf{P}^{3}$-basepoints $p_{i}\left(m_{i}-1\right)$. (Recall that in this case all \mathbf{P}^{3}-basepoints are multiple, so we are summing over the same set as before.)

Now computing the rank ρ of $\operatorname{Pic}^{0} E$ as $\rho=8-\operatorname{rank} \operatorname{ker} r$, we get in both cases

$$
\begin{aligned}
\rho & =8-\left(1+d+\sum_{\text {multiple } \mathbf{P}^{3} \text {-basepoints } p_{i}}\left(m_{i}-1\right)\right) \\
& =7-d-\sum_{\text {all } \mathbf{P}^{3} \text {-basepoints } p_{i}}\left(m_{i}-1\right) \\
& =7-d-8+n \\
& =n-d-1
\end{aligned}
$$

as claimed.

3. Extremal Fibrations and Root Systems

In this section, we will show that the possibilities for an extremal fibration are constrained by a certain root system. Together with the rank formula from Section 2, this will lead to a combinatorial classification of extremal fibrations in Section 4.

More precisely, suppose $f: X \rightarrow \mathbf{P}^{2}$ is an extremal fibration. Call an irreducible divisor in X vertical if it is mapped by f to a curve in \mathbf{P}^{2}; we saw in the previous section that the only vertical divisors are components of divisors $f^{-1}(L)$, where L is a line in \mathbf{P}^{2}. We will prove that the possible configurations of vertical divisors are constrained by maximal-rank subsystems of the root system E_{7}. Before explaining this, let us state the following lemma. A proof can be found for instance in [7, Thm. 6.1.2, Table 5].

Lemma 3.1. The only root subsystems of E_{7} of finite index are the following: (a) E_{7}, (b) A_{7}, (c) $D_{6} \oplus A_{1}$, (d) $A_{5} \oplus A_{2}$, (e) $D_{4} \oplus 3 A_{1}$, (f) $2 A_{3} \oplus A_{1}$, (g) $7 A_{1}$.

We define a bilinear form denoted by \cdot on Pic X as follows:
Pic $X \otimes \operatorname{Pic} X \rightarrow \mathbf{Z}$

$$
D_{1} \otimes D_{2} \mapsto D_{1} \cdot D_{2}:=D_{1} \circ D_{2} \circ\left(-\frac{1}{2} K_{X}\right),
$$

where, as before, \circ denotes intersection of algebraic cycles on X. For any $D \in$ Pic X, we have $D \cdot\left(-\frac{1}{2} K_{X}\right)=D \circ\left(4 l-\sum_{i} l_{i}\right)$, so a divisor belongs to the corank-1 sublattice K_{X}^{\perp} if and only if it has degree 0 on any fibre of f. That means the surjection $r: \operatorname{Pic} X \rightarrow \operatorname{Pic} E$ restricts to a surjection $r: K_{X}^{\perp} \rightarrow \operatorname{Pic}^{0} E$. So the latter group is finite-that is, f is extremal-if and only if the kernel of r has finite index in K_{X}^{\perp}. But the kernel of r is generated by the classes of vertical divisors. So given an extremal fibration X, the lattice $\operatorname{Vert}(X) \subset$ Pic X spanned by classes of vertical divisors must be a finite-index sublattice of K_{X}^{\perp}.

It is easy to check that the vectors $h_{1234}, e_{12}, e_{23}, \ldots, e_{78}$ form a system of simple roots of K_{X}^{\perp} under the bilinear form defined previously and hence that K_{X}^{\perp} is isomorphic to the affine root system \tilde{E}_{7}. At first sight, the appearance of root systems in this context may seem surprising, but there is an explanation. The preceding definition shows that $D_{1} \cdot D_{2}$ actually computes the intersection number
of the curves $D_{1} \cap Q$ and $D_{2} \cap Q$ inside Q, the proper transform of a general quadric in the net. Now $\left.f\right|_{Q}: Q \rightarrow f(Q) \cong \mathbf{P}^{1}$ is a rational elliptic surface, so classical results [2, p. 201] on elliptic surfaces tell us that the intersection form on the classes of curves lying in fibres of $\left.f\right|_{Q}$ defines the structure of a root system. Therefore the original form defined on Pic X also defines a root system. (For an extensive discussion of the connection between point sets in projective space and root systems, see [6, Chap. 5].)

Define the radical $\operatorname{Rad} \Lambda$ of a lattice Λ to be the subgroup of elements $\lambda \in \Lambda$ such that $\lambda \cdot x=0$ for all $x \in \Lambda$. Then $\operatorname{Rad}\left(K_{X}^{\perp}\right)$ is spanned by the class $-\frac{1}{2} K_{X}$, and $K_{X}^{\perp} / \operatorname{Rad}\left(K_{X}^{\perp}\right) \cong \tilde{E}_{7} / \operatorname{Rad}\left(\tilde{E}_{7}\right) \cong E_{7}$. For any extremal fibration X, the sublattice $\operatorname{Vert}(X) \subset K_{X}^{\perp}$ spanned by classes of vertical divisors contains the class $-\frac{1}{2} K_{X}$, so $\operatorname{Vert}(X) /\left(-\frac{1}{2} K_{X}\right)$ injects into E_{7} as a subsystem of finite index.

Therefore, given any extremal fibration X, the root system Vert $(X) /\left(-\frac{1}{2} K_{X}\right)$ must be one of the seven listed in Lemma 3.1. What does this tell us about the possible configurations of vertical divisors? We have noted that a vertical divisor in X must map to a line in \mathbf{P}^{2}. Given any line $L \subset \mathbf{P}^{2}$, the divisor $f^{*}(L) \subset X$ has class $-\frac{1}{2} K_{X}$ in Pic X. Suppose that $f^{*}(L)=-\frac{1}{2} K_{X}=\sum_{i=1}^{k} m_{i} D_{i}$ with D_{i} (distinct) irreducible and effective divisors, m_{i} natural numbers, and $k>1$. The classes $D_{i}(i=1, \ldots, k)$ are linearly independent in Pic $X \otimes \mathbf{Q}$ and hence span a sublattice Pic X of rank k that is contained in $\operatorname{Vert}(X)$. Passing to the quotient $\operatorname{Vert}(X) /\left(-\frac{1}{2} K_{X}\right) \subset E_{7}$, the images of these classes span a sublattice $\Lambda(L)$ of rank $k-1$. Moreover, by restricting to the preimage of a general line in \mathbf{P}^{2}, one can check that each such class has $D_{i}^{2}=-2$, so in fact their images span a subsystem.

By connectedness of the fibres of f, the Dynkin diagram of $\Lambda(L)$ is connected. Conversely, if D_{1} and D_{2} are components of $f^{*}\left(L_{1}\right)$ and $f^{*}\left(L_{2}\right)$ with the L_{i} distinct lines in \mathbf{P}^{2}, we have $D_{1} \cdot D_{2}=0$ because the restrictions of the D_{i} to the preimage of a general line in \mathbf{P}^{2} lie in different fibres and hence are disjoint. So the connected components Γ_{i} of the Dynkin diagram of Vert $(X) /\left(-\frac{1}{2} K_{X}\right)$ correspond exactly to the subsystems spanned by classes of divisors lying over the finitely many lines L_{i} in \mathbf{P}^{2} for which $f^{*}\left(L_{i}\right)$ is reducible. Note also that the number of nodes of Γ_{i} is 1 less than the number of components of $f^{*}\left(L_{i}\right)$, since the classes of those components sum to $-\frac{1}{2} K_{X} \equiv 0$ in $\operatorname{Vert}(X) /\left(-\frac{1}{2} K_{X}\right)$.

The upshot is that to determine the possible configurations of f-vertical divisors in X, we need to determine all graphs obtainable from the Dynkin diagrams of the subsystems in Lemma 3.1 by adding one node to each connected component. There is one extra condition: given a line $L \subset \mathbf{P}^{2}$ and the corresponding lattice $\Lambda(L) \subset \operatorname{Vert}(X)$ spanned by classes of irreducible components of $f^{*}(L)$, we know that $\Lambda(L)$ is negative semi-definite but not negative definite. (It contains $-\frac{1}{2} K_{X}$, which has square 0 .) Consequently it is isomorphic to an affine root system of rank $k-1$. So, we must add our nodes in such a way that each component of the resulting graph is the Dynkin diagram of some affine root system. (See for instance [10] for a classification of these.) The result is the following.

1. E_{7} : Here we are adding just one node. The only possible outcome is \tilde{E}_{7}.
2. A_{7} : Adding one node, we can get either \tilde{A}_{7} or \tilde{E}_{7}.
3. $A_{5} \oplus A_{2}$: For $n \leq 6$, the only allowed way to add a node to A_{n} yields \tilde{A}_{n}. So in this case we get $\tilde{A}_{5} \oplus \tilde{A}_{2}$. (Here the symbol \oplus simply means the disjoint union of graphs.)
4. $2 A_{3} \oplus A_{1}$: As before, we get $2 \tilde{A}_{3} \oplus \tilde{A}_{1}$.
5. $D_{6} \oplus A_{1}$: The only allowed way to add a node to $D_{n}(n \geq 4)$ yields \tilde{D}_{n}. So here we get $\tilde{D}_{6} \oplus \tilde{A}_{1}$.
6. $D_{4} \oplus 3 A_{1}$: As before, we get $\tilde{D}_{4} \oplus 3 \tilde{A}_{1}$.
7. $7 A_{1}$: As before, we get $7 \tilde{A}_{1}$.

We can summarize our results as follows.
Theorem 3.2. Suppose $f: X \rightarrow \mathbf{P}^{2}$ is an extremal fibration. Then the lattice $\operatorname{Vert}(X) /\left(-\frac{1}{2} K_{X}\right)$ is isomorphic to a finite-index subsystem of E_{7}. A choice of finite-index subsystem determines the configuration of f-vertical divisors on X, and all possibilities are realized.

Proof. We have already proved the first claim. It remains to verify the second and third claims.

For the second claim, we must show that the finite-index subsystem Vert $(X) /$ $\left(-\frac{1}{2} K_{X}\right) \subset E_{7}$ determines the configuration of vertical divisors uniquely. In light of the preceding discussion, all we need show is that if $\operatorname{Vert}(X) /\left(-\frac{1}{2} K_{X}\right) \cong A_{7}$ then the configuration of vertical divisors is not \tilde{E}_{7}. If the configuration were \tilde{E}_{7}, we would have $\operatorname{Vert}(X) /\left(-\frac{1}{2} K_{X}\right)=\tilde{E}_{7} /\left(-\frac{1}{2} K_{X}\right)=E_{7}$, contrary to assumption. So the configuration of vertical divisors is uniquely determined by a choice of subsystem.

The last claim will be verified in Sections 4 and 5. In Section 4 we will determine the combinatorial possibilities for a net of quadrics whose associated configuration of f-vertical divisors is a given graph Γ on this list. Then in Section 5 we will exhibit standard forms for each permitted type of net, which shows in particular that they exist.

Corollary 3.3. Suppose that $f: X \rightarrow \mathbf{P}^{2}$ is an extremal fibration with generic fibre E. Then the Mordell-Weil group $\operatorname{Pic}^{0} E$ is determined by the configuration of vertical divisors and is given by Table 2. (The types corresponding to a given configuration will be derived in Section 4.)

Proof. We know from the earlier discussion that

$$
\operatorname{Pic}^{0} E \cong \tilde{E}_{7} / \operatorname{Vert}(X) \cong E_{7} /\left(\operatorname{Vert}(X) /\left(-\frac{1}{2} K_{X}\right)\right)
$$

Theorem 3.2 shows that the sublattice $\operatorname{Vert}(X) /\left(-\frac{1}{2} K_{X}\right)$ is determined by the configuration of vertical divisors. Moreover, computing the quotients of E_{7} by its seven finite-index sublattices is straightforward and gives the results shown.

Combined, Theorem 3.2 and Corollary 3.3 are an analogue of [4, Thm. 5.6.2], which classifies the possible configurations of reducible fibres on an extremal rational elliptic surface. It is perhaps surprising-and certainly pleasant-that the result for threefolds is no more complicated than that for surfaces.

Table 2

Vertical divisors	$\operatorname{Pic}^{0} E$	Types
\tilde{E}_{7}	0	$\{8\}_{1}$
\tilde{A}_{7}	$\mathbf{Z} / 2 \mathbf{Z}$	$\{8\}_{2},\{4,4\}_{1}$
$\tilde{D}_{6} \oplus \tilde{A}_{1}$	$\mathbf{Z} / 2 \mathbf{Z}$	$\{6,2\},\{4,4\}_{2}$
$\tilde{A}_{5} \oplus \tilde{A}_{2}$	$\mathbf{Z} / 3 \mathbf{Z}$	$\{5,3\},\{3,3,2\}_{1}$
$2 \tilde{A}_{3} \oplus \tilde{A}_{1}$	$\mathbf{Z} / 4 \mathbf{Z}$	$\{4,4\}_{3},\{3,3,2\}_{2},\{2,2,2,2\}$
$\tilde{D}_{4} \oplus 3 \tilde{A}_{1}$	$(\mathbf{Z} / 2 \mathbf{Z})^{2}$	$\{4,2,2\}$
$7 \tilde{A}_{1}$	$(\mathbf{Z} / 2 \mathbf{Z})^{3}$	$\{1,1,1,1,1,1,1,1\}$

4. Combinatorial Classification

In this section we use the list of possible configurations of vertical divisors from Section 3 together with the rank formula of Theorem 2.1 to determine the possible types of an extremal net. In fact, the list gives us more information: given an extremal net with its type and configuration of vertical divisors, we can say exactly which classes $D \in \operatorname{Pic}(X)$ are represented by vertical divisors.

Theorem 4.1. Suppose $f: X \rightarrow \mathbf{P}^{2}$ is an extremal fibration given by a net N of quadrics in \mathbf{P}^{3}. Then the type of N and the classes of irreducible vertical divisors in X are (up to permutation of indices) one of the cases shown in Figure 1.

Note that for some types $\left\{m_{1}, \ldots, m_{n}\right\}$ we get several possible configurations of reducible divisors: we use a subscript (as $\left\{m_{1}, \ldots, m_{n}\right\}_{i}$) to distinguish between these.

Before proving the theorem, we need some facts about the structure of the diagram that describes the configuration of vertical divisors. For brevity, let us denote by Γ_{X} the diagram of irreducible vertical divisors on an extremal fibration X and by $h^{0}\left(\Gamma_{X}\right)$ the number of connected components of Γ_{X}.

Lemma 4.2. Suppose X is an extremal fibration. If Γ_{X} has a component γ of type \tilde{A}_{1}, then the nodes of γ are either (a) the class c_{i} of a cone with vertex p_{i}, a basepoint of the net with multiplicity 2, and the class $e_{i, i+1}$ or (b) the classes $h_{\text {abcd }}$ and $h_{i j k l}$ of two planes whose union is a rank-2 quadric in the net smooth at the base locus (so that $\{\{a, b, c, d\},\{i, j, k, l\}\}$ is a partition of $\{1, \ldots, 8\}$).

In the first case we will say the \tilde{A}_{1} component is conical; in the second we will say it is smooth.

Proof. Note that irreducible vertical divisors D_{i} and D_{j} are nodes of an $\tilde{A}_{1}-$ component if and only if $D_{i} \cdot D_{j}=2$. To prove the lemma, we simply need to consider the intersection numbers of different types of vertical divisors.

First consider the class of a double plane. In any net containing a double plane, all other quadrics are smooth at the base locus (by Assumption 1). So the only

$\{8\}_{1}$

$\{4,4\}_{1}$

$\{4,4\}_{2}$

$\{3,3,2\}_{1}$

$\{3,3,2\}_{2}$

$\tilde{D}_{4} \oplus 3 \tilde{A}_{1}$

$\{8\}_{2}$

$\{6,2\}$

$$
\tilde{D}_{6} \oplus \tilde{A}_{1}
$$

$\tilde{A}_{5} \oplus \tilde{A}_{2}$
$\{5,3\}$

$2 \tilde{A}_{3} \oplus \tilde{A}_{1}$
$\{4,4\}_{3}$

$\{2,2,2,2\}$
 $7 \tilde{A}_{1}$
$\{1,1,1,1,1,1,1,1\}$

Figure 1 Configurations of vertical divisors on extremal fibrations
types of vertical divisors are classes of planes $h_{a b c d}$ and divisors $e_{i, i+1}$. But given any plane $h_{a b c d}$ that is a component of a quadric in the net, at least one of $\{a, b, c, d\}$ is the index of a \mathbf{P}^{3}-basepoint. If $h_{i j k l}$ is the class of a double plane, then all indices of \mathbf{P}^{3}-basepoints are contained in $\{i, j, k, l\}$. So \# $(\{a, b, c, d\} \cap\{i, j, k, l\}) \geq$ 1 and hence $h_{a b c d} \cdot h_{i j k l} \leq 1$. Also, $h_{a b c d} \cdot e_{i, i+1}=-1,0$, or 1 for any i. So the class of a double plane cannot be a node of a component of type \tilde{A}_{1}.

Next consider $h_{a b c d}$, the class of a component of a rank-2 quadric Q in the net that is singular at the base locus, say at p_{a}. Then the other component of Q has class $h_{a i j k}$ for some indices i, j, k, and we have $h_{a b c d} \cdot h_{a i j k} \leq 1$. Also, $h_{a b c d} \cdot e_{i, i+1}=$ $-1,0$, or 1 for any i. Finally, the class of a singular cone with vertex at p_{i} is $2 h-2 e_{i}-\sum_{k \neq i, j} e_{k}$ (where p_{j} is the highest-order basepoint infinitely near to p_{i}). Calculating then yields $h_{a b c d} \cdot c_{i} \leq 1$. So $h_{a b c d}$ cannot be a node of component of type \tilde{A}_{1}.

Next consider the class c_{i} of a singular cone with vertex at p_{i}. The argument in the previous paragraph shows that $c_{i} \cdot h_{a b c d} \leq 1$ for any class $h_{a b c d}$. If c_{ι} is the class of a cone with vertex at another basepoint p_{ι}, then $c_{i} \cdot c_{\iota}=$ $\left(2 h-2 e_{i}-\sum_{k \neq i, j} e_{k}\right) \cdot\left(2 h-2 e_{\iota}-\sum_{k \neq l, \lambda} e_{k}\right)$. But the first sum includes a term e_{l} (since p_{l} is not infinitely near to p_{i}) and the second includes e_{i}. So this is $8-2-2-\#(\{1, \ldots, 8\}-\{i, j, \iota, \lambda\})=0$. Also, $c_{i} \cdot e_{j, j+1}=2$ if and only if c_{i} contains a term $-2 e_{j}$ but no term e_{j+1}-that is, if and only if $i=j$ and p_{i} is a basepoint of multiplicity 2 . This gives the first case of the lemma.

Next consider the class $h_{a b c d}$ of a component of a quadric Q in the net smooth at the base locus. We have seen already that $h_{a b c d} \cdot c_{i}<2$ and $h_{a b c d} \cdot e_{i, i+1}<2$ for all i. Also, clearly $h_{a b c d} \cdot h_{i j k l}=2$ if and only if $\{a, b, c, d\} \cap\{i, j, k, l\}=\emptyset-$ that is, if and only if $h_{i j k l}$ is the class of the other component of Q. This gives the second case.

Finally, consider a class $e_{i, i+1}$. The only case not yet dealt with is $e_{i, i+1} \cdot e_{j, j+1}$. Again, one can check that the only possible values are $-2,0$, and 1 .

The following lemma was already proved in the discussion preceding Theorem 3.2. We repeat it here to fix notation and to emphasise the role of Theorem 2.1 in the classification argument that follows.

Lemma 4.3. Let X be an extremal fibration. Then the number of components $h^{0}\left(\Gamma_{X}\right)$ is equal to $A+B+C+D$, where
$A=$ number of double planes in the net;
$B=$ number of rank-2 quadrics in the net singular at some \mathbf{P}^{3}-basepoint;
$C=$ number of rank-2 quadrics in the net smooth at the base locus;
$D=$ number of cones in the net with vertex at some \mathbf{P}^{3}-basepoint.
In particular, since $B+C=d=n-1$ in the notation of Theorem 2.1, we have $n \leq h^{0}\left(\Gamma_{X}\right)+1$.

Proof of Theorem 4.1. We saw in the previous section that the graph Γ_{X} of irreducible vertical divisors on an extremal fibration X must be one of the seven
graphs in Figure 1. To prove the theorem, we will consider each of these graphs Γ in turn and determine for which types $\left\{m_{1}, \ldots, m_{n}\right\}$ of nets there can exist an extremal net of that type with configuration of vertical divisors equal to Γ. This process rests on several earlier results. First, Theorem 2.1 tells us how many rank-2 quadrics an extremal net of a given type must contain. Next, Lemma 4.2 narrows down the possibilities for a component of type \tilde{A}_{1} in any of the graphs. Finally, Lemma 4.3 allows us to ignore types $\left\{m_{1}, \ldots, m_{n}\right\}$ with more than $h^{0}(\Gamma)+1$ distinct \mathbf{P}^{3}-basepoints.

For the purposes of the proof, let us introduce some terminology. A simple chain is a connected graph consisting of nodes n_{1}, \ldots, n_{k}, edges (of multiplicity 1) joining n_{i} to n_{i+1} for $i=1, \ldots, k-1$, and no other edges. A simple k-chain is a simple chain with k nodes.

For any net of quadrics in \mathbf{P}^{3}, we adopt the following convention in labeling its basepoints. First choose a \mathbf{P}^{3}-basepoint and call it p_{1}. If p_{1} has multiplicity m_{1}, then we define p_{2} to be the basepoint in the exceptional divisor E_{1}, p_{3} to be the basepoint in the exceptional divisor E_{2}, and so on up to $p_{m_{1}}$. We then choose $p_{m_{1}+1}$ to be another \mathbf{P}^{3}-basepoint and repeat the procedure until we have exhausted all basepoints. So, for instance, if we have a net of type $\{5,2,1\}$ then its \mathbf{P}^{3}-basepoints will be labeled p_{1}, p_{6}, and p_{8}.

Suppose $Q=P_{1} \cup P_{2}$ is a rank-2 quadric in an extremal net with \mathbf{P}^{3}-basepoints $p_{1}, \ldots, p_{i_{k}}$. We will use the (somewhat imprecise) notation $Q=1^{m_{1}} 2^{m_{2}} \cdots k^{m_{n}}+$ $1^{\mu_{1}} 2^{\mu_{2}} \cdots k^{\mu_{k}}$ to indicate that the plane P_{1} (resp. P_{2}) has intersection multiplicities with a smooth quartic $C=Q_{1} \cap Q_{2}\left(Q_{1}, Q_{2}\right.$ quadrics that, together with Q, span the net) equal to m_{1}, \ldots, m_{n} (resp. μ_{1}, \ldots, μ_{k}) at $p_{1}, \ldots, p_{i_{k}}$. We refer to such an expression as the multiplicity data of Q. Note that there are various constraints on multiplicity data for rank-2 quadrics in the net. For one, the sums $\sum m_{i}$ and $\sum \mu_{j}$ of exponents appearing in each term must always be 4 , since any plane in \mathbf{P}^{3} intersects a quartic curve with multiplicity 4. Also, the "intersection" of the two terms must consist of at most two basepoints, since if two planes in \mathbf{P}^{3} share three noncollinear points p_{i} then they are equal. So, for example, an expression of the form $Q=1^{2} 2^{2}+1^{2} 2^{1} 3^{1}$ is not permitted.

Now let us consider each graph Γ from Figure 1 in turn.

1. First consider the case $\Gamma=7 \tilde{A}_{1}$. I claim that the only possible type in this case is $\{1,1,1,1,1,1,1,1\}$. To see this, note that the base locus of any net contains at most four multiple basepoints. So at most four of the \tilde{A}_{1}-components of Γ are conical, hence at least three are smooth. So there are at least three rank-2 quadrics in the net smooth at the base locus. I claim that any set $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ of three such quadrics must span the net.

If not, the third quadric would belong to the pencil spanned by the other two; rescaling, we could write $Q_{3}=Q_{1}+Q_{2}$. By assumption, $Q_{1}=L_{1} \Lambda_{1}$ and $Q_{2}=$ $L_{2} \Lambda_{2}$, which are products of linear forms. I claim that the set $\left\{L_{1}, \Lambda_{1}, L_{2}\right\}$ is linearly independent. If not, we could write $\alpha L_{1}+\beta \Lambda_{1}+\gamma L_{2}=0$. None of the coefficients in this relation can be zero, since by assumption the components of Q_{1} and Q_{2} are all distinct (they give distinct elements of $\operatorname{Pic}(X)$). So we see that $L_{1}=L_{2}=0$ implies $\Lambda_{1}=0$, meaning that $Q_{1} \cap Q_{2}$ contains a line $L_{1}=\Lambda_{1}=0$
along which Q_{1} is singular. Intersecting with any other Q^{\prime} in the net but not in the pencil $\left\langle Q_{1}, Q_{2}\right\rangle$, we would get a point in the base locus at which Q_{1} is singular, which contradicts the fact that Q_{1} gives an \tilde{A}_{1}-component of smooth type. We conclude that $L_{1}, \Lambda_{1}, L_{2}$ are linearly independent. So changing coordinates, we can assume that $Q_{1}=X Y$ and $Q_{2}=Z L$, where L is a nonzero linear form that is not a multiple of X, Y, or Z. If the coefficient of W in L is zero, then both Q_{1} and Q_{2} are singular at $[0,0,0,1]$, violating Assumption 1 . So L must have nonzero coefficient of W; hence by changing coordinates $W \mapsto L$ we get $Q_{3}=X Y+Z W$, which is not reducible. This contradicts our assumption, and so we conclude that any such set $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ must span the net.

This means that, locally near each basepoint, the base locus $Q_{1} \cap Q_{2} \cap Q_{3}$ of the net is given by the intersection of three planes. If there were a multiple basepoint p_{i}, then the intersection of the three planes at p_{i} would not be transverse and hence would not be proper. So no multiple basepoint can exist, and the net must have type $\{1,1,1,1,1,1,1,1\}$.

Assume now we have an extremal net of type $\{1,1,1,1,1,1,1,1\}$. Since there are no multiple basepoints, the seven rank-2 quadrics in the net are smooth at the base locus. We must show that the classes of components of these quadrics are (up to permutation of indices) as shown in Figure 1.

To see this, note first that there are at most three classes of the form $h_{12 i j}$. If there were four or more, we would have to choose at least eight indices from the set $\{3,4,5,6,7,8\}$. Hence at least one index would be repeated-say (by relabeling) the index 3 . Then there would be two classes of the form $h_{123 j}$, which is impossible. So there at most three classes of the form $h_{12 i j}$ and hence, by symmetry, at most three classes of the form $h_{a b i j}$ for any pair $\{a, b\} \subset\{1, \ldots, 8\}$.

For each rank-2 quadric Q in the net, a given basepoint lies in exactly one component of Q; so, given an index $a \in\{1, \ldots, 8\}$, exactly 7 of the 14 classes $h_{i j k l}$ in the graph have $a \in\{i, j, k, l\}$. Consider the 7 classes $h_{a i j k}$: there are 21 indices to choose from $\{1, \ldots, 8\}-\{a\}$, with each index appearing at most three times (by the previous paragraph). The only possibility is that each index appears exactly three times.

Thus for any pair $\{a, b\} \in\{1, \ldots, 8\}$ there are exactly three nodes of the graph that have the form $h_{a b i j}$. Since no two classes $h_{a b i j}$ can share three indices, each index in the set $\{1, \ldots, 8\}-\{a, b\}$ appears in exactly one of these classes. Geometrically this means that, given three basepoints p_{a}, p_{b}, p_{c} of the net, the plane spanned by these three points is a component of a rank-2 quadric in the net and contains a fourth basepoint p_{d} of the net.

We can relabel basepoints if necessary so that p_{4} is the fourth basepoint on the plane spanned by $\left\{p_{1}, p_{2}, p_{3}\right\}, p_{6}$ is the fourth basepoint on the plane spanned by $\left\{p_{1}, p_{2}, p_{5}\right\}$, and p_{7} is the fourth basepoint on the plane spanned by $\left\{p_{1}, p_{3}, p_{5}\right\}$. This gives the classes h_{1234}, h_{1256}, and h_{1357} (and, since every node in the graph determines the node to which it is connected, the three classes joined to these) appearing in the diagram.

To determine the remaining classes, consider the plane spanned by $\left\{p_{1}, p_{2}, p_{7}\right\}$. No two classes $h_{i j k l}$ can share three indices, so this plane cannot contain p_{3}, p_{4},
p_{5}, or p_{6}. Therefore its fourth basepoint must be p_{8}, so there is a node h_{1278}. Similar arguments show we must have nodes h_{1368}, h_{1458}, and h_{1467}. Since every node in the graph determines the node to which it is connected, this completes the proof that the nodes of the graph (possibly after permuting indices) must be the configuration in Figure 1 labeled $\{1,1,1,1,1,1,1,1\}$.
2. The next case is $\Gamma=\tilde{D}_{4} \oplus 3 \tilde{A}_{1}$. Here $h^{0}(\Gamma)=4$, so we need only consider types with at most five basepoints. Also, note that if we had a basepoint p_{1} of multiplicity 5 or more then we would have effective divisors e_{12}, \ldots, e_{45}. This would imply that there is a subgraph of Γ that is a simple 4 -chain. But Γ has no such subgraph, so we need not consider types with basepoints of multiplicity 5 or more. The remaining types are $\{4,4\},\{4,3,1\},\{4,2,2\},\{4,2,1,1\},\{4,1,1,1,1\},\{3,3,2\}$, $\{3,3,1,1\},\{3,2,2,1\},\{3,2,1,1,1\},\{2,2,2,2\}$, and $\{2,2,2,1,1\}$.
(i) Type $\{4,4\}$: We can rule out this possibility as follows. We know $h^{0}(\Gamma)=$ $A+B+C+D=A+D+n-1=A+D+1$. But $A \leq 1$ and $D \leq 2$ by Lemma 1.2, and $A=1 \mathrm{implies} D=0$ (since if there is a double plane in the net, all other quadrics must be smooth at the base locus). Therefore $h^{0}\left(\Gamma_{X}\right) \leq 3$ for this type of net, so it does not yield Γ.
(ii) Type $\{4,3,1\}$: Since this type has no basepoint of multiplicity 2, Lemma 4.2 says there is no conical \tilde{A}_{1}-component. So all three of the \tilde{A}_{1}-components are smooth, implying there are at least three rank-2 quadrics in the net. This is impossible by Theorem 2.1, so this type does not give Γ.
(iii) Type $\{4,2,2\}$: The nodes e_{12}, e_{23}, e_{34} form a simple 3 -chain that must be contained in the \tilde{D}_{4}-component. The nodes e_{56} and e_{78} are disjoint from this chain, and from each other, so they must belong to two distinct $\tilde{A}_{1}-$ components-which are therefore conical, with nodes e_{56}, c_{5} and e_{78}, c_{7}. Since a conical \tilde{A}_{1}-component comes from a basepoint of multiplicity exactly 2 , the third such component must be smooth. So there must be a rank-2 quadric in the net smooth at the base locus. Clearly, the only possibility for the multiplicity data is $Q=1^{4}+2^{2} 3^{2}$. The corresponding nodes of the diagram are h_{1234} and h_{5678}. The other rank-2 quadric in the net must therefore be singular at the base locus, and its components must give the other two nodes in the \tilde{D}_{4}-component. Suppose a class $h_{a b c d}$ has $h_{a b c d} \cdot e_{12}=0$, $h_{a b c d} \cdot e_{23}=1$, and $h_{a b c d} \cdot e_{34}=0$. Then the set $\{a, b, c, d\}$ contains 1 and 2 but not 3 or 4 . Also, we have $h_{a b c d} \cdot e_{56}=h_{a b c d} \cdot e_{78}=0$, so $\{a, b, c, d\}$ must intersect both $\{5,6\}$ and $\{7,8\}$ in either zero or two elements. The only two possibilities are h_{1256} and h_{1278}. This gives the configuration in Figure 1 labeled $\{4,2,2\}$.
(iv) Type $\{4,2,1,1\}$: Here there is only one basepoint of multiplicity 2 and so at most one conical \tilde{A}_{1}-component. It is easy to see that the only possibility for a smooth \tilde{A}_{1}-component is $Q=1^{4}+2^{2} 3^{1} 4^{1}$, so we cannot obtain the remaining two such components. Hence a net of this type cannot yield Γ.
(v) Type $\{4,1,1,1,1\}$: Here there are no basepoints of multiplicity 2 , so all the \tilde{A}_{1}-components must be smooth. But again the only possibility is $Q=$ $1^{4}+2^{1} 3^{1} 4^{1} 5^{1}$, so we cannot get Γ from a net of this type.
(vi) Types $\{3,3,2\}$ and $\{3,3,1,1\}$: These types have two disjoint simple 2-chains with nodes e_{12}, e_{23} and e_{34}, e_{45}. But there is no way to embed two such chains disjointly in Γ, so these types cannot yield Γ.
(vii) Type $\{3,2,2,1\}$: In this case there are two basepoints of multiplicity 2 , giving nodes e_{45}, e_{67}, which are disjoint from the 2 -chain with nodes e_{12}, e_{23} and from each other. So these must give two distinct conical \tilde{A}_{1}-components. Also, there are three rank-2 quadrics in the net, giving six more nodes. Adding all these up gives twelve nodes in total, whereas Γ has only eleven nodes. So this type cannot yield Γ.
(viii) Type $\{3,2,1,1,1\}$: This is similar to the previous case. The basepoint of multiplicity 3 gives a simple 2 -chain with nodes e_{12}, e_{23} that must be contained in the \tilde{D}_{4}-component. The basepoint of multiplicity 2 gives a node e_{45} disjoint from this, so it must be a node of a conical \tilde{A}_{1}-component. The net has four rank-2 quadrics, giving eight more nodes. Adding these up yields twelve nodes, so this type cannot give Γ.
(ix) Type $\{2,2,2,2\}$: We cannot have three smooth \tilde{A}_{1}-components, for the same reason as in the case $\Gamma=7 \tilde{A}_{1}$. So one of these components must be conical; without loss of generality, we have a cone c_{1}. Then all other quadrics in the net are smooth at p_{1}. In particular, the three rank-2 quadrics in the net are all smooth at p_{1}. But then exactly the same argument as in the case $\Gamma=7 \tilde{A}_{1}$ shows the intersection is not proper.
(x) Type $\{2,2,2,1,1\}$: Just as in the previous case we must have a conical \tilde{A}_{1} component, so the four rank-2 quadrics in the net must all be smooth at p_{1}, say. Again this implies that the intersection is not proper.
3. The next graph to consider is $\Gamma=2 \tilde{A}_{3} \oplus \tilde{A}_{1}$. It has $h^{0}(\Gamma)=3$, so we need only consider nets with at most four basepoints. A basepoint of multiplicity at least 5 would give a simple 4 -chain embedded in Γ, so we know that all basepoints have multiplicity at most 4 . The remaining types are $\{4,4\},\{4,3,1\},\{4,2,2\},\{4,2,1,1\}$, $\{3,3,2\},\{3,3,1,1\},\{3,2,2,1\}$, and $\{2,2,2,2\}$.
(i) Type $\{4,4\}$: There is no basepoint of multiplicity 2 , so the \tilde{A}_{1}-component must be smooth. Its nodes are therefore h_{1234} and h_{5678}. Also there are two simple 3 -chains with nodes e_{12}, e_{23}, e_{34} and e_{56}, e_{67}, e_{78}. If the net had a double plane, it would have class h_{1256}. This node would be joined to e_{23} and e_{67}, giving a component of Γ with at least seven nodes, so such a double plane cannot exist. Since the unique rank-2 quadric in the net is smooth at the base locus, we must have cones c_{1} and c_{5}, and these give all nodes of Γ. The resulting diagram is shown in Figure 1 and labeled $\{4,4\}_{3}$.
(ii) Type $\{4,3,1\}$: Again the \tilde{A}_{1}-component must be smooth. Since there is only one such component, the other reducible quadric in the net is singular at some basepoint. If it were smooth at p_{1}, then its multiplicity data would be $Q=$ $1^{4}+2^{2} 3^{1}$ and hence would be smooth at the base locus. This is impossible, so Q must be singular at p_{1}. If it were smooth at p_{5}, then its multiplicity data would be $Q=1^{3} 3^{1}+1^{1} 2^{3}$ and so the corresponding nodes would be h_{1238} and h_{1567}. The first node would be joined to e_{34} and the second to e_{12}. This
would give a component of Γ with at least five nodes, which does not exist. Finally, if Q were singular at both p_{1} and p_{5} then it would look like $Q=$ $1^{3} 2^{1}+1^{1} 2^{2} 3^{1}$, giving nodes h_{1235} and h_{1568}. But the first node would be joined to both e_{34} and e_{56}, giving a component with at least six nodes, which again is impossible. So this type does not yield Γ.
(iii) Type $\{4,2,2\}$: We have a simple 3 -chain with nodes e_{12}, e_{23}, e_{34}-which must be contained in one of the \tilde{A}_{3}-components-and two other nodes e_{56}, e_{78} that are disjoint from this 3 -chain and from each other. If we assume first that the \tilde{A}_{1}-component is conical, then the remaining four nodes are the components of the two rank-2 quadrics in the net. So there must be a class $h_{a b c d}$ having intersection 1 with both e_{12} and e_{34} and intersection 0 with e_{23}, which is impossible. So we can assume the \tilde{A}_{1}-component is smooth; hence its nodes are h_{1234} and h_{5678}. There are three more nodes; two are components of the other rank-2 quadric in the net. If the third were the class of a double plane, it would be h_{1257}; this would have intersection 1 with e_{23}, which would therefore have degree 3 . Since the simple 3-chain is contained in an \tilde{A}_{3}-component and since all nodes of that component have degree 2 , that is impossible. So the last node must be the class of a cone, hence c_{5} or c_{7}. But either choice would yield another double edge of the graph, which is impossible. So this type cannot yield Γ.
(iv) Type $\{4,2,1,1\}$: First assume the \tilde{A}_{1}-component is conical. Then there are no rank-2 quadrics in the net smooth at the base locus, so all three rank-2 quadrics in the net are singular at some basepoint. No quadric in the net is singular at a basepoint of multiplicity 1 , so each of the three rank-2 quadrics is singular at one of the two multiple basepoints. But then two quadrics must be singular at the same basepoint, which contravenes Assumption 1. So this type cannot yield Γ.
(v) Type $\{3,3,2\}$: Here we have two disjoint simple 2-chains, with nodes e_{12}, e_{23} and e_{45}, e_{56}, and a node e_{78} not joined to either. It follows that e_{78} must be a node of the \tilde{A}_{1}-component, which is therefore conical with second node c_{7}. The four remaining nodes are the components of the two rank-2 quadrics in the net, so each is of type $h_{a b c d}$. Consider the node $h_{a b c d}$ of this type joined to e_{12} : it is not joined to e_{23}, so the set $\{a, b, c, d\}$ contains 1 but not 2 or 3 . It is also disjoint from e_{45} and e_{56}, so $\{a, b, c, d\}$ either contains or is disjoint from $\{4,5,6\}$. But it cannot be disjoint from a set of five elements, so we must have $\{a, b, c, d\}=\{1,4,5,6\}$. Similar arguments show that the remaining node in this component must be h_{1278} and that the two missing nodes in the other component are h_{1234} and h_{4578}. This gives the configuration shown in Figure 1 and labeled $\{3,3,2\}_{2}$.
(vi) Type $\{3,3,1,1\}$: There is no basepoint of multiplicity 2 , so the \tilde{A}_{1}-component must be smooth. Hence its nodes (possibly after swapping p_{7} and p_{8}) are h_{1237} and h_{4568}. We have two simple 2-chains with nodes e_{12}, e_{23} and e_{45}, e_{56}; the four remaining nodes must be the components of the two remaining rank2 quadrics in the net. If a class $h_{a b c d}$ is joined to e_{12} but not e_{23}, then 1 belongs
to $\{a, b, c, d\}$, but 2 and 3 do not. Also, $h_{a b c d}$ is not connected to e_{45} or e_{56}, so either $\{4,5,6\} \subset\{a, b, c, d\}$ or the two sets are disjoint. They cannot be disjoint because 2 and 3 are not in $\{a, b, c, d\}$, either; therefore, the node connected to e_{12} is h_{1456}. But then $h_{1456} \cdot h_{1237}=1$, which gives an illegal edge of the graph. So this type does not yield Γ.
(vii) Type $\{3,2,2,1\}$: Again we have a simple 2 -chain with nodes e_{12}, e_{23} and two nodes e_{45}, e_{67} not connected to that chain or each other. If the \tilde{A}_{1}-component were conical, we would have five nodes. The components of the three rank-2 quadrics in the net would give another six, making eleven altogether, which is a contradiction. So the \tilde{A}_{1}-component must be smooth. The only possibility for the multiplicity data of the corresponding rank-2 quadric is $Q=$ $1^{3} 4^{1}+2^{2} 3^{2}$, so the nodes of this \tilde{A}_{1}-component must be h_{1238} and h_{4567}.

The 2 -chain must be contained in an \tilde{A}_{3}-component, so there must be a node joined to e_{12} but not e_{23}. Since p_{1} has multiplicity 3 , the class of a cone in the net with vertex at p_{1} would be $c_{1}=2 h-2 e_{1}-e_{2}-e_{4}-\cdots-e_{8}$, which would give $c_{1} \cdot e_{23}=1$. So the node in question must be the class of a plane $h_{a b c d}$. By the same logic as before, the set $\{a, b, c, d\}$ contains 1 but not 2 or 3 , and since $h_{a b c d} \cdot e_{45}=h_{a b c d} \cdot e_{67}=0$, it must contain or be disjoint from the sets $\{4,5\}$ and $\{6,7\}$. So after relabeling basepoints if necessary, it is h_{1458}. One can check that the final node in that component of Γ must be h_{1267}.

There are two remaining nodes with classes $h_{a b c d}$ and $h_{i j k l}$, which must both be joined to e_{45} and e_{67} but to no other nodes. So $\{a, b, c, d\}$ and $\{i, j, k, l\}$ both contain 4 and 6 but not 5 or 7 . Since neither node is joined to e_{12} or e_{23}, the two sets must also contain or be disjoint from $\{1,2,3\}$. But neither is possible, so this type does not yield Γ.
(viii) Type $\{2,2,2,2\}$: As before, if we have a conical \tilde{A}_{1}-component, say with node c_{1}, then the three rank-2 quadrics in the net are smooth at c_{1} and so the intersection is not proper. Hence the \tilde{A}_{1}-component must be smooth. Possibly relabeling basepoints, its nodes are h_{1234} and h_{5678}. The four components of the remaining rank-2 quadrics in the net (which must be singular at the base locus) give the four remaining nodes. Suppose e_{12} and e_{56} belonged to the same \tilde{A}_{3}-component. Then there would be a node $h_{a b c d}$ joined to e_{12} and e_{56} and to no other nodes. So the set $\{a, b, c, d\}$ must contain 1 and 5 but not 2 or 6 ; also, it must either contain or be disjoint from $\{3,4\}$ and $\{7,8\}$. If it contained $\{3,4\}$, then the intersection $h_{a b c d} \cdot h_{1234}$ would be -1 ; if it were $\underset{\tilde{A}}{ }$ disjoint from $\{3,4\}$, the intersection would be 1 . Since h_{1234} belongs to the \tilde{A}_{1}-component, neither is possible. The same argument shows that e_{12} and e_{78} cannot belong to the same component. Therefore, one \tilde{A}_{3}-component contains e_{12} and e_{34}, and the other contains e_{56} and e_{78}.

So there are two nodes $h_{a b c d}$ joined to e_{12} and e_{34} and no other nodes: it is not hard to see they must be h_{1356} and h_{1378}. Similarly, there are two nodes joined to e_{56} and e_{78} and no other nodes: they must be h_{1257} and h_{3457}. This gives the configuration shown in Figure 1 and labeled $\{2,2,2,2\}$.
4. The next graph to consider is $\Gamma=\tilde{A}_{5} \oplus \tilde{A}_{2}$. This has $h^{0}(\Gamma)=2$, so we need only consider types with at most three basepoints. Also, the maximum length of a simple chain embedded in this graph is 5 , so there can be no basepoint of multiplicity more than 6 . Also note that if a net has a basepoint p_{i} of multiplicity at least 5 , then all rank-2 quadrics in the net must be singular at that basepoint (otherwise we would have a smooth quadric intersecting a plane with multiplicity at least 5 at p_{i}). If the net has three basepoints then it has two rank-2 quadrics, which therefore must both be singular at p_{i}. But this contradicts Assumption 1. So we can ignore the types satisfying these two conditions-namely, $\{6,1,1\}$ and $\{5,2,1\}$. This leaves the following types to be considered: $\{6,2\},\{6,1,1\},\{5,3\}$, $\{5,2,1\},\{4,4\},\{4,3,1\},\{4,2,2\}$, and $\{3,3,2\}$.
(i) Type $\{6,2\}$: The unique rank-2 quadric in the net must have multiplicity data $Q=1^{4}+1^{2} 2^{2}$, so it is singular at p_{1} and smooth at p_{7}. Because it is singular at p_{1}, there is no double plane in this net; because it is smooth at p_{7}, there must be a cone in the net with vertex at p_{7}. But this would give a node joined to e_{78} by a double edge, which Γ does not possess. So this type does not yield Γ.
(ii) Type $\{5,3\}$: We have a simple 4 -chain with nodes e_{12}, \ldots, e_{45} and a simple 2 -chain with nodes e_{67}, e_{78} that is disjoint from it. The longer $\underset{\tilde{A}}{ }$ chain must be contained in the \tilde{A}_{5}-component and the shorter one in the \tilde{A}_{2}-component. The third node of the \tilde{A}_{2}-component cannot be a class $h_{a b c d}$, since we cannot have $h_{a b c d} \cdot e_{67}=h_{a b c d} \cdot e_{78}=1$. (If we did, we would have $h_{a b c d} \cdot\left(e_{6}-e_{8}\right)=$ 2, which is impossible.) So it must be the class of a cone and hence c_{6}. The two remaining nodes of the \tilde{A}_{5}-component must be the components of the unique rank-2 quadric Q in the net. The multiplicity data must be $Q=$ $1^{4}+1^{1} 3^{3}$, so these nodes are h_{1234} and h_{1678}. This gives the configuration shown in Figure 1 and labeled $\{5,3\}$.
(iii) Type $\{4,4\}$: We know that $h^{0}\left(\Gamma_{X}\right)=A+B+C+D=A+D+(n-1)=$ $A+D+1$, so to get $h^{0}=2$ we need $A+D=1$. First suppose $A=0$. There is a unique rank-2 quadric Q in the net; the only possibilities for the multiplicity data are $Q=1^{4}+2^{4}$ and $Q=1^{3} 2^{1}+1^{1} 2^{3}$. So Q is singular at neither or both of the basepoints. If neither, then there must be cones in the net with vertices at both basepoints and hence $D=2$; if both, then there are no cones singular at the base locus and hence $D=0$. Neither case gives $h^{0}=2$. On the other hand, if $A=1$ then the unique reducible reduced quadric in the net must be smooth at the base locus and so Γ_{X} must have an \tilde{A}_{1}-component, which Γ does not possess. Hence this type does not yield Γ.
(iv) Type $\{4,3,1\}$: We have a simple 3-chain with nodes e_{12}, e_{23}, e_{34} that must be contained in the \tilde{A}_{5}-component. So the simple 2 -chain with nodes e_{56}, e_{67} must be contained in the \tilde{A}_{2}-component. There are four more nodes, which are therefore the components $h_{a b c d}$ of the two rank-2 quadrics in the net. One of these must be the last node of the \tilde{A}_{2}-component, so must have $h_{a b c d} \cdot e_{56}=$ $h_{a b c d} \cdot e_{67}=1$. As before this is impossible, so this type does not yield Γ.
(v) Type $\{4,2,2\}$: We have a simple 3 -chain with nodes e_{12}, e_{23}, e_{34} and two nodes e_{56}, e_{78} not joined to this chain or to each other. Possibly after relabeling, e_{78} is a node of the \tilde{A}_{2}-component. Again counting nodes, the remaining two nodes of this component must be the classes $h_{a b c d}$ and $h_{i j k l}$ of components of rank-2 quadrics in the net. As before, $\{a, b, c, d\}$ and $\{i, j, k, l\}$ must both contain or be disjoint from $\{1,2,3,4\}$. So these index sets must be $\{1,2,3,4\}$ and $\{5,6,7,8\}$ and therefore $h_{a b c d} \cdot h_{i j k l}=2$, which is impossible. So this type does not yield Γ.
(vi) Type $\{3,3,2\}$: Here we have two simple 2-chains, with nodes e_{12}, e_{23} and e_{45}, e_{56}, and a node e_{78} disjoint from these chains. The four remaining nodes must be classes $h_{a b c d}$ of components of rank-2 quadrics in the net.

Suppose first that e_{78} is a node of the \tilde{A}_{2}-component. The other two nodes of that component must be classes $h_{a b c d}$ and $h_{i j k l}$, where $\{a, b, c, d\}$ and $\{i, j, k, l\}$ must both contain or be disjoint from $\{1,2,3\}$ and $\{4,5,6\}$ and must both contain 7 but not 8 , so they are h_{1237} and h_{4567}. What of the other two nodes? One is connected to e_{12} but not e_{23} : its class is $h_{a b c d}$, where the index set contains 1 but not 2 or 3 . If this node is joined to e_{45} then the index set contains 4 but not 5 or 6 , so the class must be h_{1478}. The other node is then h_{1245}. This gives the configuration shown in Figure 1 and labeled $\{3,3,2\}_{1}$.

If the node connected to e_{12} is also connected to e_{56}, then the index set contains 4 and 5 but not 6 as well as neither or both of 7 and 8 . But this is impossible, since we know it contains 1 but not 2 or 3 .

Next suppose that e_{78} belongs to the \tilde{A}_{5}-component. There is no way to embed two simple 2-chains and one other node disjointly in this component, so in this case one of the 2 -chains must belong to the \tilde{A}_{2}-component. Say it is the chain with nodes e_{45}, e_{56} : then there is a class $h_{a b c d}$ with $h_{a b c d} \cdot e_{45}=$ $h_{a b c d} \cdot e_{56}=1$, which again is impossible, and similarly for the other 2-chain.
5. The next graph to consider is $\tilde{D}_{6} \oplus \tilde{A}_{1}$. Again we need only consider types with no more than three basepoints and multiplicities no greater than 6 . Also, as before we can ignore types $\{6,1,1\}$ and $\{5,2,1\}$. The remaining types are $\{6,2\}$, $\{5,3\},\{4,4\},\{4,3,1\},\{4,2,2\}$, and $\{3,3,2\}$.
(i) Type $\{6,2\}$: We have a simple 5-chain with nodes e_{12}, \ldots, e_{56} and a node e_{78} disjoint from it. A simple 5-chain in \tilde{D}_{6} is joined to all nodes of that component, so e_{78} must be a node of the \tilde{A}_{1}-component, which is therefore conical, with the other node equal to c_{7}. The multiplicity data of the unique rank-2 quadric in the net must be $Q=1^{4}+1^{2} 2^{2}$, so the corresponding nodes are h_{1234} and h_{1278}. This gives the configuration shown in Figure 1 and labeled $\{6,2\}$.
(ii) Type $\{5,3\}$: Here there is a simple 4 -chain with nodes e_{12}, \ldots, e_{45} and a disjoint simple 2-chain with nodes e_{67}, e_{78}. But it is impossible to embed these two chains disjointly in Γ. So this type does not yield Γ.
(iii) Type $\{4,4\}$: We saw before that this type has $h^{0}(\Gamma)=2$ only if there is a double plane in the net. Such a plane has class h_{1256}. We have nodes e_{12}, e_{23},
e_{34}, e_{56}, e_{67}, and e_{78}; together with h_{1256}, these form the \tilde{D}_{6}-component. The unique rank-2 quadric in the net is smooth; hence it gives the \tilde{A}_{1}-component with nodes h_{1234} and h_{5678}. So this type yields the diagram shown in Figure 1 and labeled $\{4,4\}_{2}$.
(iv) Type $\{4,3,1\}$: This type has no basepoint of multiplicity 2 , so the \tilde{A}_{1}-component must be smooth, with nodes h_{1234} and h_{5678}. We have a simple 3-chain with nodes e_{12}, e_{23}, e_{34} and a disjoint simple 2 -chain with nodes e_{56}, e_{67}. The two remaining nodes must be the classes $h_{a b c d}$ of the components of the second rank-2 quadric in the net. There is a unique way (up to graph isomorphism) to embed a simple 3-chain and a simple 2-chain disjointly in \tilde{D}_{6}; hence, for $\{i, j\}=\{5,6\}$ or $\{7,8\}$, one of the classes $h_{a b c d}$ must satisfy $h_{a b c d} \cdot e_{i j}=1$ and $h_{a b c d} \cdot D=0$ for all other nodes D of the graph. In either case $\{a, b, c, d\}$ contains exactly two of $\{5,6,7\}$. Also, it cannot contain $\{1,2,3,4\}$ and so must be disjoint from it. But then $\{a, b, c, d\}$ contains at most three elements-a contradiction. So this type cannot yield Γ.
(v) Type $\{4,2,2\}$: This graph has a single \tilde{A}_{1}-component, so there is some rank-2 quadric in the net singular at the base locus (and therefore, by Assumption 1, no double plane). The multiplicity data of such a rank-2 quadric has the form $Q=1^{i} 2^{j} 3^{k}+1^{4-i} 2^{2-j} 3^{2-k}$. From this we see that Q cannot be singular at both basepoints of multiplicity 2 , for if it were then we would have $Q=1^{2} 2^{1} 3^{1}+1^{2} 2^{1} 3^{1}$, which cannot occur. So there must be cones in the net with vertices at p_{5} and p_{7}; hence there must be nodes c_{5} and c_{7} in Γ. These nodes are joined to e_{56} and e_{78} (respectively) by double edges; since there is only 1 double edge in Γ, we get a contradiction. So this type cannot yield Γ.
(vi) Type $\{3,3,2\}$: We have two disjoint simple 2-chains with nodes e_{12}, e_{23} and e_{45}, e_{56} and a node e_{78} disjoint from both chains. Any union of two disjoint simple 2-chains in $\tilde{D}_{6} \underset{\sim}{\sim}$ joined to every node, so we conclude that the node e_{78} must belong to the \tilde{A}_{1}-component. This component is then conical with node c_{7}; then, together with the components of the two rank-2 quadrics in the net, we get ten nodes rather than nine. So this type does not yield Γ.
6. The next graph to consider is \tilde{A}_{7}. Here we need only consider types with at most two basepoints, so the possible types are $\{8\},\{7,1\},\{6,2\},\{5,3\}$, and $\{4,4\}$.
(i) Type $\{8\}$: We have seven nodes e_{12}, \ldots, e_{78}. There are no rank-2 quadrics in the net, so the only issue is whether the quadric singular at the basepoint is a double plane or a cone. If it were a double plane then it would have class h_{1234}, meaning that the node e_{45} in the graph would have degree 3 . The graph \tilde{A}_{7} has no such node, so the final node must be a cone c_{1}. Hence the only possibility is the configuration shown in Figure 1 and labeled $\{8\}_{2}$.
(ii) Type $\{7,1\}$: The unique rank-2 quadric must have multiplicity data $Q=$ $1^{4}+1^{3} 2^{1}$, so the corresponding nodes must be h_{1234} and h_{1238}. These have intersection -1 , which is impossible. So this type cannot yield Γ-indeed, it cannot occur at all.
(iii) Type $\{6,2\}$: Here the unique rank-2 quadric has multiplicity data $Q=$ $1^{4}+1^{2} 2^{2}$, so the corresponding nodes are h_{1234} and h_{1278}. But $h_{1278} \cdot e_{23}=$ 1 and so e_{23} has degree 3 , which again is impossible for this graph. So this type does not yield Γ.
(iv) Type $\{5,3\}$: This type has $h^{0}\left(\Gamma_{X}\right)=A+B+C+D=A+D+(n-1)=$ $A+D+1$. In this case $h^{0}\left(\tilde{A}_{7}\right)=1$, so we must have $A=D=0$. Therefore, the unique rank-2 quadric in the net must be singular at both basepoints. But the only possible multiplicity data is $Q=1^{4}+1^{1} 2^{3}$, so Q is smooth at one basepoint. Hence this type does not yield Γ, or indeed any graph with $h^{0}=1$.
(v) Type $\{4,4\}$: This type has $h^{0}\left(\Gamma_{X}\right)=A+B+C+D=A+D+(n-1)=$ $A+D+1$. In this case $h^{0}\left(\tilde{A}_{7}\right)=1$, so we must have $A=D=0$. Therefore, the unique rank-2 quadric in the net must be singular at both basepoints. The multiplicity data of this quadric must be $Q=1^{3} 2^{1}+1^{1} 2^{3}$, so the corresponding nodes are h_{1235} and h_{1567}. Together with the 3 -chains e_{12}, e_{23}, e_{34} and e_{56}, e_{67}, e_{78}, these give the configuration shown in Figure 1 and labeled $\{4,4\}_{1}$. Note that this argument shows in fact that any net of type $\{4,4\}$ with $h^{0}\left(\Gamma_{X}\right)=1$ must have $\Gamma_{X}=\tilde{A}_{7}$.
7. The final graph to consider is \tilde{E}_{7}. Here we need only consider types with at most two basepoints. We have already shown that the type $\{7,1\}$ cannot occur, that the type $\{5,3\}$ cannot give $h^{0}\left(\Gamma_{X}\right)=1$, and that a net of type $\{4,4\}$ with $h^{0}\left(\Gamma_{X}\right)=1$ must have $\Gamma_{X}=\tilde{A}_{7}$. So the only types we need to consider are $\{8\}$ and $\{6,2\}$.
(i) Type $\{8\}$: As for the case $\Gamma=\tilde{A}_{7}$, the only issue is whether the quadric singular at the basepoint is a cone or a double plane. We saw that a cone gives $\Gamma_{X}=\tilde{A}_{7}$, so it must be a double plane with class h_{1234}. Hence the configuration is as shown in Figure 1 and labeled $\{8\}_{1}$.
(ii) Type $\{6,2\}$: We have a simple 5 -chain with nodes e_{12}, \ldots, e_{56}. The unique rank-2 quadric in the net must have multiplicity data $Q=1^{4}+1^{2} 2^{2}$, so the corresponding nodes are h_{1234} and h_{1278}. But then the nodes e_{23} and e_{45} both have degree 3 , which is impossible in \tilde{E}_{7}. So this type does not yield Γ.

5. Standard Forms for Extremal Nets

The aim of this section is to find standard forms for extremal nets of the possible types $\left\{m_{1}, \ldots, m_{n}\right\}$ determined in Theorem 4.1. More precisely, for each possible configuration $\left\{m_{1}, \ldots, m_{n}\right\}_{i}$ of irreducible vertical divisors shown in Figure 1, we give a unique standard form for extremal nets whose associated configuration is $\left\{m_{1}, \ldots, m_{n}\right\}_{i}$.

Note on Characteristic. We must note at this point that some of the arguments used to obtain the standard forms listed next are not valid in characteristics 2 and 3. Therefore, we claim only that these standard forms exist for nets in \mathbf{P}_{k}^{3} where char $k=0$ or $p \geq 5$. On the other hand, it is straightforward to check that in each case (except the last) the given net has the configuration of vertical divisors claimed, and that the net satisfies Assumption 1, for all characteristics. So our
standard forms prove the existence of extremal nets with each possible configuration, except $\{1,1,1,1,1,1,1,1\}$, in all characteristics.

1. $\{8\}_{1}$: The standard form is $Q_{1}=Z^{2}, Q_{2}=X(Y+W)+Y W$,

$$
Q_{3}=X Z+(Y+W)^{2}
$$

2. $\{8\}_{2}$: The standard form is $Q_{1}=Y Z+W^{2}, Q_{2}=X Z+Y W$,

$$
Q_{3}=X W-Y^{2}+Z^{2} .
$$

3. $\{6,2\}$: The standard form is $Q_{1}=Y Z, Q_{2}=X Z+W^{2}, Q_{3}=X Y+Z^{2}$.
4. $\{5,3\}$: The standard form is $Q_{1}=Y Z, Q_{2}=X W+Z^{2}, Q_{3}=X Y+W^{2}$.
5. $\{4,4\}_{1}$: The standard form is $Q_{1}=Z W, Q_{2}=X Z+Y W$,

$$
Q_{3}=X Y+Z^{2}+W^{2}
$$

6. $\{4,4\}_{2}$: The standard form is $Q_{1}=X Y, Q_{2}=Z^{2}, Q_{3}=(X+Y) Z+W^{2}$.
7. $\{4,4\}_{3}$: The standard form is $Q_{1}=X Y, Q_{2}=X Z+W^{2}, Q_{3}=Y W+Z^{2}$.
8. $\{4,2,2\}$: The standard form is $Q_{1}=X(Y+Z), Q_{2}=Y Z$, $Q_{3}=X Z+W^{2}$.
9. $\{3,3,2\}_{1}$: The standard form is $Q_{1}=X Y, Q_{2}=Z W$, $Q_{3}=(X+Y) Z+W^{2}$.
10. $\{3,3,2\}_{2}$: The standard form is $Q_{1}=Y Z, Q_{2}=X(Z+W)$, $Q_{3}=X Y+W^{2}$.
11. $\{2,2,2,2\}$: The standard form is $Q_{1}=X Y, Q_{2}=Z W$, $Q_{3}=(X+Y)(Z+W)$.
12. $\{1,1,1,1,1,1,1,1\}$: Extremal nets of this type exist only in characteristic 2 and have standard form $Q_{1}=(X+Y+Z) W, Q_{2}=(X+Y+W) Z$, $Q_{3}=(X+Z+W) Y$.

The remainder of this section gives a detailed derivation of the standard forms listed above.

1. $\{8\}_{1}$: First suppose we have a net of type $\{8\}$ that contains a double plane. I claim we can put it in standard form $Q_{1}=Z^{2}, Q_{2}=X Y+X W+Y W$, $Q_{3}=X Z+(Y+W)^{2}$. To see this, first apply a projective transformation moving the unique basepoint to $[X, Y, Z, W]=[1,0,0,0]$. Next, applying an element of PGL(3) $\subset \operatorname{PGL}(4)$ fixing p_{1}, we can move the double plane so that (settheoretically) it becomes the plane $\{Z=0\}$. This gives Q_{1} the form we claimed.

Next consider Q_{2}. I claim that we can choose Q_{2} to be an irreducible reduced cone with vertex not lying on Q_{1}. To see this, consider the subset $S \subset \mathbf{P}^{3}$ consisting of all singular points of all quadrics in the net. I claim S is not contained in $\{Z=0\}$.

Suppose it were, and assume first that the set of singular quadrics spans the net. Choose two singular quadrics Q, Q^{\prime} that, together with Q_{1}, span the net. By assumption, Q and Q^{\prime} are singular at some point of $\{Z=0\}$. The intersection $Q_{1} \cap Q \cap Q^{\prime}$ is a single eightfold point p_{1}, which means that both $Q_{1} \cap Q$ and $Q_{1} \cap Q^{\prime}$ must be quadruple lines meeting at p_{1}. It is then not difficult to see that we can find a quadric in the pencil spanned by Q and Q^{\prime} that is singular at p_{1}. But this violates Assumption 1.

On the other hand, suppose that the set of singular quadrics is contained in a pencil. This pencil is spanned by Q_{1} and any other singular quadric Q_{2}, which by
assumption is a cone with vertex lying in the plane $\{Z=0\}$. We can move the vertex to $p_{2}=[0,1,0,0]$ without changing Q_{1} or p_{1}. Adding a multiple of Q_{1} to Q_{2} does not change the differential at a point of $\{Z=0\}$, so every quadric in the pencil (hence every singular quadric in the net) is singular at p_{2} (and nowhere else, unless it is $Q=Q_{1}$). Now choose any smooth quadric Q_{3} in the net, and consider the intersection $Q_{1} \cap Q_{2} \cap Q_{3}$. (Note that Q_{3} is not contained in the pencil $\left\langle Q_{1}, Q_{2}\right\rangle$, so this intersection is the set of \mathbf{P}^{3}-basepoints of the net.) If $Q_{1} \cap Q_{2}$ consisted (as a set) of two distinct lines $L_{1} \cup L_{2}$ in $\{Z=0\}$, with $L_{1}=\{Z=W=0\}$ the line through p_{1} and p_{2}, then $L_{2} \cap Q_{3}$ would give another basepoint of the net, contradicting our assumption. So $Q_{1} \cap Q_{2}$ must be a double line $\{Z=W=0\}$. Therefore the form defining Q_{2} looks like $Q_{2}=\alpha X Z+\beta Z^{2}+\gamma Z W+\delta W^{2}$. Subtracting a multiple of Q_{1}, we can assume $\beta=0$; since Q_{2} is an irreducible cone, neither α nor δ is zero. We can therefore scale X and W to obtain $\alpha=\delta=1$ without changing Q_{1}, p_{1}, or p_{2}. Now the restriction of the form Q_{3} to the line $\{Z=W=0\}$ must have a double root at p_{1}, so the coefficient of $X Y$ in Q_{3} must be zero. The coefficient of X^{2} in Q_{3} is also zero, since Q_{3} passes through p_{1}. Finally, we can subtract multiples of Q_{1} and Q_{2} from Q_{3} to make the coefficients of $X Z$ and Z^{2} zero without changing anything else. Note also that since p_{2} is not a basepoint of the net, the coefficient ε of Y^{2} in Q_{3} is nonzero. But now computing the determinant of a general member of the net $\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}$, we see that the discriminant locus is defined by a degree- 4 polynomial in the λ_{i} that is different from λ_{3}^{4}-specifically, the coefficient of $\lambda_{2}^{3} \lambda_{3}$ equals $-\varepsilon$, which is nonzero. In other words, the set of singular quadrics in the net is not contained in the pencil $\left\{\lambda_{3}=0\right\}=\left\langle Q_{1}, Q_{2}\right\rangle$, which contradicts our assumption.

So without loss of generality, we can choose Q_{2} to be an irreducible reduced cone with vertex not lying on Q_{1}. Applying a projective transformation fixing p_{1} and Q_{1}, we can bring this vertex to the point $p_{2}=[0,0,1,0]$. This implies that, in the equation defining Q_{2}, each monomial containing Z has coefficient zero. Since Q_{2} passes through p_{1}, the coefficient of X^{2} is zero also; hence $Q_{2}=$ $b_{2} X Y+c_{2} X W+d_{2} Y^{2}+e_{2} Y W+f_{2} W^{2}$ for some coefficients b_{2}, \ldots, f_{2}.

Next we can change coordinates in the plane $\{Z=0\}$ without affecting p_{1}, p_{2}, or Q_{1}. So, choose any two points in $Q_{1} \cap Q_{2}$ that do not span a line through p_{1} : we can move these to $[0,1,0,0]$ and $[0,0,0,1]$. In these coordinates $d_{2}=f_{2}=0$, so we have $Q_{2}=b_{2} X Y+c_{2} X W+e_{2} Y W$. Now Q_{2} is an irreducible reduced cone with vertex not lying on $\{Z=0\}$, so its intersection with this plane must be a smooth conic. So none of b_{2}, c_{2}, e_{2} can be zero. Dividing by b_{2}, we can write $Q_{2}=X Y+c_{2} X W+e_{2} Y W$. Changing coordinates $W \mapsto c_{2} W$, we get $Q_{2}=$ $X Y+X W+e_{2} Y W$. Finally, changing coordinates $Y \mapsto e_{2}^{-1} Y$ and $W \mapsto e_{2}^{-1} W$, we get $Q_{2}=e_{2}^{-1}(X Y+X W+Y W)$. (None of these coordinate changes affect p_{1}, p_{2}, Q_{1}, or the two points fixed previously.) So we have $Q_{2}=X Y+X W+Y W$, as claimed.

Finally we must deal with Q_{3}. First suppose it is a general quadric in the net: it has the form $Q_{3}=b_{3} X Y+c_{3} X Z+d_{3} X W+e_{3} Y^{2}+f_{3} Y Z+g_{3} Y W+h_{3} Z^{2}+$ $i_{3} Z W+j_{3} W^{2}$. We know that the plane curves $Q_{2} \cap\{Z=0\}$ and $Q_{3} \cap\{Z=0\}$ must have an intersection point of multiplicity 4 at p_{1}. This means the following.

Suppose we restrict to the affine chart $\{X=1\}$ inside $\{Z=0\}$. Then, on Q_{2}, we can express Y (say) as a power series in $W: Y=p(W)$. Now substituting $Y=$ $p(W)$ into the equation for Q_{3}, we get a power series $q_{3}(W)$, and the condition that p_{1} has multiplicity 4 means that q_{3} vanishes to order 4 at $W=0$. Since we already know that Q_{3} vanishes at p_{1}, this gives three additional equations in the coefficients of Q_{3}-namely, $d_{3}=b_{3}, g_{3}=b_{3}+2 e_{3}$, and $j_{3}=e_{3}$. Applying these conditions and replacing Q_{3} by $Q_{3}-b_{3} Q_{2}-h_{3} Q_{1}$, we can assume $Q_{3}=$ $e_{3} W^{2}+2 e_{3} W Y+e_{3} Y^{2}+i_{3} W Z+c_{3} X Z+f_{3} Y Z$, which simplifies to $Q_{3}=$ $e_{3}(Y+W)^{2}+Z\left(c_{3} X+f_{3} Y+i_{3} W\right)$. From this we see that e_{3} cannot be zero, for then Q_{3} would be reducible. So dividing across, we can assume $e_{3}=1$. Moreover, we see that the differential $d Q_{3}$ at p_{1} is just $c d Z$, so by Assumption 1 we have $c \neq 0$. Hence, changing coordinates $Z \mapsto c Z$, we can assume $c=1$. So we get $Q_{3}=(Y+W)^{2}+Z\left(X+f_{3} Y+i_{3} W\right)$. Finally, for a given choice of coefficients f_{3}, i_{3}, it is straightforward to find a projective transformation that takes the net spanned by Q_{1}, Q_{2}, and this Q_{3} to the net spanned by the standard quadrics described previously.
2. $\{8\}_{2}$: The next case is a net of type $\{8\}$ that does not contain a double plane. The unique quadric Q_{1} in the net that is singular at p_{1} is then a reduced irreducible cone. Again putting $p_{1}=[1,0,0,0]$, we see that Q_{1} is the cone over a smooth conic in $\{X=0\} \cong \mathbf{P}^{2}$. Standard arguments about smooth quadrics show that we can change coordinates so that $Q_{1}=Y Z+W^{2}$.

Since p_{1} is a multiple basepoint, there must be some tangent line $L \subset T_{p_{1}} \mathbf{P}^{3}$ shared by all quadrics in the net. Let p_{2} be the unique point of $Q_{1} \cap\{X=0\}$ such that $\overline{p_{1} p_{2}}$ has tangent direction L at p_{1}. We can apply a projective transformation in PGL(3) $\subset \operatorname{PGL}(4)$ to bring p_{2} to the point $[0,1,0,0]$.

Now, by Assumption 1, for any choice of generators Q_{2}, Q_{3} of the net, the differentials $d Q_{2}$ and $d Q_{3}$ are linearly independent at p_{1}. So given a plane $P \subset$ $T_{p_{1}} \mathbf{P}^{3}$ containing the line L, we can find a quadric Q in the net with P as its tangent plane at p_{1}. In particular we can choose Q so that its embedded tangent plane at p_{1} intersects Q_{1} in a double line. Moreover, this property is unchanged if we replace Q by $Q+\lambda Q_{1}$ (for any $\lambda \in k$). So without loss of generality, we can assume that Q_{2} has embedded tangent plane intersecting Q_{1} in a double line $2 L$ and that the coefficient of W^{2} in Q_{2} is zero. This means that Q_{2} is given by a form $Q_{2}=$ $X Z+b_{2} Y^{2}+c_{2} Y Z+d_{2} Y W+e_{2} Z^{2}+f_{2} Z W$. (We know the coefficient of $X Z$ is nonzero, since Q_{2} is smooth at p_{1}, so we can divide across by that coefficient.)

Now consider Q_{3}. We know that it passes through p_{1} and that its tangent space at p_{1} contains the line L. This implies that the coefficients of the monomials X^{2} and $X Y$ in Q_{3} vanish. Also, subtracting appropriate multiples of Q_{1} and Q_{2}, we can assume that the coefficients of W^{2} and $X Z$ in Q_{3} also vanish. Finally, since Q_{3} is smooth at p_{1}, the coefficient of $X W$ must be nonzero, so we can assume it is 1 . Putting these facts together, we obtain $Q_{3}=X W+e_{3} Y^{2}+f_{3} Y Z+g_{3} Y W+$ $h_{3} Z^{2}+i_{3} Z W+j_{3} W^{2}$.

We can now use the power-series method explained in the previous case to obtain equations in the coefficients of Q_{2} and Q_{3}. These are as follows: $b_{2}=0, b_{3}=0$, $e_{3}=-d_{2}, g_{3}=c_{2}+c_{3} d_{2}-g_{2}, i_{3}=e_{2}+c_{3} f_{2}$, and $j_{3}=f_{2}+f_{3}+c_{3}\left(-c_{2}+g_{2}\right)$.

Things seem pretty bleak, but actually our standard form is close at hand. Let us return to $Q_{2}=X Z+b_{2} Y^{2}+c_{2} Y Z+d_{2} Y W+e_{2} Z^{2}+f_{2} Z W$. We have $b_{2}=$ 0 (since p_{2} lies on q_{2}) and so-applying projective transformations that fix p_{1}, p_{2}, and Q_{1}-we can put Q_{2} in the form $Q_{2}=X Z+Y W$. We can then substitute $d_{2}=1$ and $c_{2}=e_{2}=f_{2}=0$ into the previous equations; the result is that we solve for $e_{3}, f_{3}, g_{3}, i_{3}$, and j_{3} in terms of c_{3}. Explicitly, we get $Q_{3}=$ $W X-Y^{2}+c_{3}(W Y+X Z)+h_{3} Z^{2}$. Finally, applying projective transformations that fix p_{1}, p_{2}, and Q_{1} and that map Q_{2} to some quadric in the pencil $\left\langle Q_{1}, Q_{2}\right\rangle$, we can put Q_{3} in the form $Q_{3}=X W-Y^{2}$ or $Q_{3}=X W-Y^{2}+Z^{2}$, according as $h_{3}=0$ or not. One can compute that if $Q_{3}=X W-Y^{2}$ then the base locus of the net is not 0 -dimensional, so the standard form is as claimed.
3. $\{6,2\}$: In this case there are two basepoints of the net, so without loss of generality we can assume these are $p_{1}=[1,0,0,0]$ and $p_{7}=[0,1,0,0]$. There is a unique rank-2 quadric in the net that we know is singular at p_{1} and smooth at p_{7}. Hence its equation is $Q_{1}=\left(a_{1} Y+b_{1} Z+c_{1} W\right)\left(d_{1} Z+e_{1} W\right)$, where the linear forms $a_{1} Y+b_{1} Z+c_{1} W$ and $d_{1} Z+e_{1} W$ are linearly independent. We can apply projective transformations fixing p_{1} and p_{7} to make this $Q_{1}=Y Z$.

Now p_{7} is a multiple basepoint of the net, so there must be some quadric in the net that is singular there. It cannot be a double plane, since this would also be singular at p_{1} and, by Assumption 1, only one quadric in our net may be singular at a given basepoint. So we can take Q_{2} to be an irreducible reduced cone with vertex p_{7}. Such a cone is given by a form with no monomials involving Y : we can write it as $Q_{2}=a_{2} X Z+b_{2} X W+e_{2} Z^{2}+f_{2} Z W+g_{2} W^{2}$. Note that a_{2} and b_{2} cannot both be zero, since Q_{2} cannot be singular at p_{1}.

Next, applying projective transformations fixing p_{1}, p_{7}, and Q_{1}, we can put Q_{2} in the form $Q_{2 a}=X W+Z^{2}$ or $Q_{2 b}=X Z+W^{2}$ according to whether $b_{2} \neq 0$ or $b_{2}=0$. (Note that no projective transformation fixing p_{1}, p_{7}, and Q_{1} takes the pencil $\left\langle Q_{1}, Q_{2 a}\right\rangle$ to the pencil $\left\langle Q_{1}, Q_{2 b}\right\rangle$; any such transformation would have to take $Q_{2 a}$ to $Q_{2 b}$, since they are the only quadrics in each pencil that are singular at p_{7}, but it is easy to show that no such transformation fixing p_{1}, p_{7}, and Q_{1} exists.)

What of Q_{3} ? We know it is a quadric containing p_{1} and p_{7}, so the coefficients of X^{2} and Y^{2} in Q_{3} must be zero. Moreover, we can subtract a multiple of Q_{1} to make the coefficient of $Y Z$ equal to zero, too. If $Q_{2}=Q_{2 a}$, we can subtract a multiple of Q_{2} to make the coefficient of Z^{2} equal zero; if $Q_{2}=$ $Q_{2 b}$, we can arrange that the coefficient of W^{2} be zero. So we get two possibilities: $Q_{3 a}=b_{3} X Y+c_{3} X Z+d_{3} X W+g_{3} Y W+i_{3} Z W+j_{3} W^{2}$ or $Q_{3 b}=$ $b_{3} X Y+c_{3} X Z+d_{3} X W+g_{3} Y W+h_{3} Z^{2}+i_{3} Z W$.

Our combinatorial classification showed that the curves $Q_{2} \cap\{Y=0\}$ and $Q_{3} \cap\{Y=0\}$ must have an intersection point of order 4 at p_{1}. As before, we can translate this condition into constraints on the coefficients of Q_{3}. In both cases, we get the conditions $c_{3}=d_{3}=i_{3}=0$.

If $Q_{2}=Q_{2 a}$ and $Q_{3}=Q_{3 a}$, we have $Q_{3 a}=b_{3} X Y+g_{3} Y W+j_{3} W^{2}$. We can then apply projective transformations fixing p_{1}, p_{7}, Q_{1}, and Q_{2} to put it in the form $Q_{3 a}=X Y+W^{2}$. But now we note the following: the intersection $Q_{2 a} \cap\{Z=0\}$
is a reducible conic $X W$, and $Q_{3 a} \cap\{Z=0\}$ is a smooth conic whose tangent line at p_{7} is $\{X=0\}$. So these two curves have intersection multiplicity 3 at p_{7}, meaning that this net is actually of type $\{5,3\}$.

It remains to consider the case where $Q_{2}=Q_{2 b}$ and $Q_{3}=Q_{3 b}$. In this case we get $Q_{3 b}=b_{3} X Y+g_{3} Y W+h_{3} Z^{2}$, and admissible projective transformations put this in one of two forms: $Q_{3 b}=X Y+Z^{2}\left(\right.$ if $\left.g_{3}=0\right)$ or $Q_{3 b}^{\prime}=X Y+Y W+Z^{2}$ (if $g_{3} \neq 0$). But in fact the resulting nets are projectively equivalent: the projective transformation $\phi \in \operatorname{PGL}(4, k)$ with matrix

$$
\phi=\left(\begin{array}{rrrr}
1 & 0 & -\frac{1}{4} & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{2} & 1
\end{array}\right)
$$

fixes p_{1}, p_{7}, Q_{1}, and Q_{2}, and one can write $Q_{3 b}^{\prime}=\frac{1}{4} \phi\left(Q_{1}\right)+\phi\left(Q_{3 b}\right)$. So ϕ maps the net $\left\langle Q_{1}, Q_{2}, Q_{3 b}\right\rangle$ to the net $\left\langle Q_{1}, Q_{2}, Q_{3 b}^{\prime}\right\rangle$. Hence all extremal nets of type $\{6,2\}$ have the standard form claimed.
4. $\{5,3\}$: The argument in this case goes through exactly as in the previous one. We have two basepoints, which we can choose to be $p_{1}=[1,0,0,0]$ and $p_{6}=$ [$0,1,0,0]$; there is a unique rank-2 quadric Q_{1} in the net, which we can transform to $Q_{1}=Y Z$; and there is a unique quadric in the net Q_{2} that is singular at p_{6}. Exactly the same argument as before shows that we can put this in the form $Q_{2}=$ $X W+Z^{2}$ and then put Q_{3} in the form $X Y+W^{2}$. So this type has the standard form we claimed.
5. $\{4,4\}_{1}$: In this case the net has a single rank-2 quadric Q_{1} with multiplicity data $1^{3} 2^{1}+1^{1} 2^{3}$. We can apply projective transformations to put the basepoints at $p_{1}=[1,0,0,0]$ and $p_{5}=[0,1,0,0]$ and to put Q_{1} in the form $Q_{1}=Z W$. Moreover, without loss of generality, the plane $\{Z=0\}$ has the correct tangent direction at p_{1} and $\{W=0\}$ has the correct tangent direction at p_{5}.

Now take two other quadrics Q_{2} and Q_{3} that, together with Q_{1}, span the net. We can write down quadratic forms defining these quadrics:

$$
\begin{aligned}
& Q_{2}=a_{2} X Y+b_{2} X Z+c_{2} X W+d_{2} Y Z+e_{2} Y W+f_{2} Z^{2}+g_{2} Z W+h_{2} W^{2} \\
& Q_{3}=a_{3} X Y+b_{3} X Z+c_{3} X W+d_{3} Y Z+e_{3} Y W+f_{3} Z^{2}+g_{3} Z W+h_{3} W^{2}
\end{aligned}
$$

Since Q_{1} is singular at both basepoints, the differentials $d Q_{2}$ and $d Q_{3}$ must be linearly independent at the basepoints by Assumption 1. In affine coordinates $\{X=1\}$ near p_{1}, their tangent spaces are $T_{p_{1}} Q_{2}=\left\{a_{2} Y+b_{2} Z+c_{2} W=0\right\}$ and $T_{p_{1}} Q_{3}=$ $\left\{a_{3} Y+b_{3} Z+c_{3} W=0\right\}$. When restricted to the plane $\{Z=0\}$ these tangent spaces must coincide, which means that $a_{2} Y+c_{2} W$ and $a_{3} Y+c_{3} W$ are linearly dependent. On the other hand, when restricted to the plane $W=0$ the tangent spaces are transverse, implying that $a_{2} Y+b_{2} Z$ and $a_{3} Y+b_{3} Z$ are linearly independent. The analogous argument near p_{5} states that $a_{2} X+d_{2} Z$ and $a_{3} X+d_{3} Z$ are linearly dependent whereas $a_{2} X+e_{2} W$ and $a_{3} X+e_{3} W$ are linearly independent. In particular we see that neither a_{2} nor a_{3} can be zero, so without loss of generality we can divide through the two forms Q_{2} and Q_{3} to get $a_{2}=a_{3}=1$. Then linear dependence implies $c_{2}=c_{3}$ and $d_{2}=d_{3}$. Now scaling Z and W (which does not affect Q_{1}), we can assume that $c_{2}=c_{3}=1$ and $d_{2}=d_{3}=1$.

Next consider the intersection $Q_{2} \cap Q_{3} \cap\{Z=0\}$; this should consist of p_{1} with multiplicity 3 and p_{5} with multiplicity 1 . Setting $Z=0$ and $X=1$ in the forms defining Q_{2} and Q_{3} and then setting $a_{2}=a_{3}=c_{2}=c_{3}=d_{2}=d_{3}=1$ as explained before, we get the forms

$$
\begin{aligned}
& q_{2}=Y+W+e_{2} Y W+h_{2} W^{2} \\
& q_{3}=Y+W+e_{3} Y W+h_{3} W^{2}
\end{aligned}
$$

Setting $q_{3}=0$, again we can solve for W as a power series in Y. Up to terms of order 4, this is $W=Y\left(-1+\left(e_{3}-h_{3}\right) Y\right)$. Substituting this into q_{2} yields $q_{2}(Y)=$ $Y^{2}\left(-e_{2}+e_{3}+h_{2}-h_{3}\right)$, and this vanishes to order 3 at $Y=0$ if and only if $e_{2}-e_{3}=h_{2}-h_{3}$.

Consider similarly the intersection $Q_{2} \cap Q_{3} \cap\{W=0\}$; this should consist of a simple point at p_{1} and a triple point at p_{5}. Setting $W=0$ and $Y=1$ in the forms defining Q_{2} and Q_{3}, we get

$$
\begin{aligned}
& q_{2}=X+Z+b_{2} X Z+f_{2} Z^{2} \\
& q_{3}=X+Z+b_{3} X Z+f_{3} Z^{2}
\end{aligned}
$$

By exactly the same reasoning as before, we get the equation $b_{2}-b_{3}=f_{2}-f_{3}$. So putting all these facts together and then subtracting multiples of Q_{1} from Q_{2} and Q_{3} to eliminate the monomials $Z W$ in each, we can write our quadrics as

$$
\begin{aligned}
Q_{2}= & X Y+b_{2} X Z+X W+Y Z+e_{2} Y W+f_{2} Z^{2}+h_{2} W^{2} \\
Q_{3}= & X Y+b_{3} X Z+X W+Y Z+e_{3} Y W+\left(f_{2}-b_{2}+b_{3}\right) Z^{2} \\
& +\left(h_{2}-e_{2}+e_{3}\right) W^{2}
\end{aligned}
$$

But now

$$
\begin{aligned}
Q:=Q_{2}-Q_{3} & =\left(b_{2}-b_{3}\right) X Z+\left(e_{2}-e_{3}\right) Y W+\left(b_{2}-b_{3}\right) Z^{2}+\left(e_{2}-e_{3}\right) W^{2} \\
& =\left(b_{2}-b_{3}\right) Z(X+Z)+\left(e_{2}-e_{3}\right) W(Y+W)
\end{aligned}
$$

Neither of the coefficients can be zero, since Q is not reducible. Scaling X and Z together and Y and W together, we can put Q in the form $Q=Z(X+Z)+$ $W(Y+W)$; after changing coordinates $X \mapsto X+Z$ and $Y \mapsto Y+W$, this becomes $Q=X Z+Y W$. (Note that none of these changes affect p_{1}, p_{5}, or Q_{1}.) We will take Q to be the second generator of our net, so we rename it Q_{2}; that is, we define $Q_{2}:=X Z+Y W$. Observe that the intersection $Q_{1} \cap Q_{2}$ is a union of lines with total degree 4 : the line $\{Y=Z=0\}$, the line $\{X=W=0\}$, and the line $\{Z=W=0\}$ with multiplicity 2 . Any other quadric Q that, together with Q_{1} and Q_{2}, spans the net must pass through p_{1} and p_{5} and hence must intersect $\{Z=W=0\}$ transversely at those two points. So the correct tangent direction at p_{1} is the line $\{Y=Z=0\}$ and that at p_{5} is the line $\{X=W=0\}$.

Now suppose Q_{3} is any other quadric that, together with Q_{1} and Q_{2}, spans the net. Since it passes through p_{1} and p_{5}, it has the form

$$
Q_{3}=a_{3} X Y+b_{3} X Z+c_{3} X W+d_{3} Y Z+e_{3} Y W+f_{3} Z^{2}+g_{3} Z W+h_{3} W^{2}
$$

We can subtract arbitrary multiples of Q_{1} and Q_{2} without affecting anything, so we may assume that the coefficient b_{3} of $X Z$ and the coefficient g_{3} of $Z W$ both
vanish. We know that if we restrict to the plane $Z=0$, then the tangent line to Q_{3} at p_{1} should be the line $\{Y=0\}$. So $a_{3} \neq 0$ and $c_{3}=0$. Similarly restricting to $\{W=0\}$, the tangent line should be $\{X=0\}$ and so $d_{3}=0$. Thus (dividing across by a_{3}) we get $Q_{3}=X Y+e_{3} Y W+f_{3} Z^{2}+h_{3} W^{2}$. Neither of the coefficients f_{3} and h_{3} can be zero: if $f_{3}=0$, then Q_{1}, Q_{2}, Q_{3} all contain the line $\{X=$ $W=0\}$; if $h_{3}=0$, they all contain $\{Y=Z=0\}$. By assumption our net has base locus of dimension 0 , so this is forbidden. With this restriction it is not difficult to see that, for any values of the coefficients e_{3}, f_{3}, h_{3}, the net $\left\langle Q_{1}, Q_{2}, Q_{3}=\right.$ $\left.X Y+e_{3} Y W+f_{3} Z^{2}+h_{3} W^{2}\right\rangle$ is projectively equivalent to the net $\left\langle Q_{1}, Q_{2}, Q_{3}=\right.$ $\left.X Y+Z^{2}+W^{2}\right\rangle$, and this gives the standard form claimed.
6. $\{4,4\}_{2}$: In this case the unique rank-2 quadric is smooth at both basepoints, so we can move the basepoints to $p_{1}=[1,0,0,0]$ and $p_{5}=[0,1,0,0]$ and then transform the rank-2 quadric to $Q_{1}=X Y$. In this case the net contains a double plane $Q_{2}=L^{2}$ (where L is a homogeneous linear form). It passes through both [$1,0,0,0]$ and $[0,1,0,0]$, so the coefficients of both X and Y in L must vanish; hence, by changing coordinates $Z \mapsto L(Z, W)$ (and $W \mapsto Z$ if $L=W$), we can assume that $Q_{2}=Z^{2}$.

Now consider the third generator of the net, which by Assumption 1 must be a quadric smooth at both basepoints. We can write it as $Q_{3}=b_{3} X Y+c_{3} X Z+$ $d_{3} X W+f_{3} Y Z+g_{3} Y W+h_{3} Z^{2}+i_{3} Z W+j_{3} W^{2}$ (the coefficients of X^{2} and Y^{2} are zero because Q_{3} passes through p_{1} and p_{5}). Moreover, $Q_{1} \cap Q_{2} \cap Q_{3}$ should have two points of multiplicity 4 at p_{1} and p_{5} : this implies that the double lines $Q_{2} \cap\{Y=0\}$ and $Q_{2} \cap\{X=0\}$ should be tangent to the curves $Q_{3} \cap\{Y=0\}$ and $Q_{3} \cap\{X=0\}$ at p_{1} and p_{5}, respectively. In suitable affine coordinates near these points, the tangent lines to Q_{3} inside these planes are defined by $c_{3} z+d_{3} w$ and $f_{3} z+g_{3} w$, respectively, so we get $d_{3}=g_{3}=0$ (and c_{3}, f_{3} nonzero). Finally, upon replacing Q_{3} by $Q_{3}-b_{3} Q_{1}-h_{3} Q_{2}$, we get $Q_{3}=c_{3} X Z+f_{3} Y Z+i_{3} Z W+j_{3} W^{2}$.

Note that of the four coefficients of Q_{3}, only i_{3} can be zero: if c_{3} were, Q_{3} would be a cone with vertex p_{1}; if f_{3} were, it would be a cone with vertex p_{5}; if j_{3} were, Q_{3} would be divisible by Z, which would make it a second rank-2 quadric in the net. If $i_{3}=0$, we get $Q_{3}=c_{3} X Z+f_{3} Y Z+j_{3} W^{2}$; changing variables $X \mapsto c_{3} X, Y \mapsto f_{3} Y$, and $W \mapsto \sqrt{j_{3}} W$, we get $Q_{3}=X Z+Y Z+W^{2}$ (without changing p_{1}, p_{5}, Q_{1}, or Q_{2}). If i_{3} is nonzero, then we can do a similar rescaling of variables to make $c_{3}=f_{3}=i_{3}=j_{3}=1$ and $Q_{3}=X Z+Y Z+Z W+W^{2}$. But then replacing Q_{3} by $Q_{3}+Q_{2} / 4$ yields $Q_{3}=X Z+Y Z+W^{2}+W Z+(Z / 2)^{2}$, and finally changing variables $W \mapsto W+Z / 2$ we get $Q_{3}=X Z+Y Z+W^{2}$ again. So a net of this type containing a double plane can always be put in this standard form, as claimed.
7. $\{4,4\}_{3}$: Again the unique rank-2 quadric in the net is smooth at both basepoints. We can move the basepoints by projective transformations to $p_{1}=[1,0,0,0]$ and $p_{5}=[0,1,0,0]$ and then transform the rank-2 quadric to $Q_{1}=X Y$.

The net contains no double plane. Therefore the unique quadrics in the net singular at the basepoints p_{1} and p_{5} must be irreducible reduced cones with vertices at p_{1} and p_{5}. Call these Q_{2} and Q_{3}, respectively; then $C_{2}:=Q_{2} \cap\{Y=0\}$ must be a reducible conic curve (i.e., the union of two lines in the plane $\{Y=0\}$, which
may be equal), and similarly for $C_{3}:=Q_{3} \cap\{X=0\}$. On the other hand, $\Gamma_{3}:=$ $Q_{3} \cap\{X=0\}$ and $\Gamma_{2}:=Q_{2} \cap\{Y=0\}$ are smooth conic curves in those planes, each meeting the reducible conic in the same plane in a single point of multiplicity 4. It follows that C_{2} (resp. C_{3}) is a double line that is tangent at p_{1} (resp. p_{5}) to the smooth conic $\Gamma_{3}\left(\right.$ resp. $\left.\Gamma_{2}\right)$.

Let us write $Q_{2}=a_{2} Y Z+b_{2} Y W+c_{2} Z^{2}+d_{2} Z W+e_{2} W^{2}$ and $Q_{3}=$ $a_{3} X Z+b_{3} X W+c_{3} Z^{2}+d_{3} Z W+e_{3} W^{2}$. The restriction of Q_{2} (resp. Q_{3}) to $\{Y=0\}$ (resp. $\{X=0\}$) is a double line, so we get $d_{2}= \pm 2 \sqrt{c_{2} e_{2}}$ and $d_{3}=$ $\pm 2 \sqrt{c_{3} e_{3}}$. Rewriting, we have $Q_{2}=Y\left(a_{2} Z+b_{2} W\right)+\left(\gamma_{2} Z+\varepsilon_{2} W\right)^{2}$ and $Q_{3}=$ $X\left(a_{3} Z+b_{3} W\right)+\left(\gamma_{3} Z+\varepsilon_{3} W\right)^{2}$ for some choice of square roots $\gamma_{i}, \varepsilon_{i}$ of c_{i}, e_{i} ($i=1,2$). If the forms $\gamma_{2} Z+\varepsilon_{2} W$ and $\gamma_{3} Z+\varepsilon_{3} W$ were linearly dependent, then Q_{2} and Q_{3} would have an intersection point on the line $\{X=Y=0\} \subset Q_{1}$, which is impossible since the net has only two basepoints. Therefore they must be linearly independent, so we can change variables in Z and W to make $Q_{2}=$ $Y\left(a_{2} Z+b_{2} W\right)+Z^{2}$ and $Q_{3}=X\left(a_{3} Z+b_{3} W\right)+W^{2}$. Now $Q_{2} \cap\{X=0\}$ should be tangent to the double line $Q_{3} \cap\{X=0\}=W^{2}$, so we get $a_{2}=0$; an identical argument gives $b_{3}=0$. Rescaling via $Y \mapsto b_{2} Y$ and $X \mapsto a_{3} X$, we get $Q_{2}=$ $Y W+Z^{2}$ and $Q_{3}=X Z+W^{2}$. Finally, we can swap Q_{2} and Q_{3}, and our net has the standard form we claimed.
8. $\{4,2,2\}$: In this case we have three distinct basepoints. By Lemma 1.1 these do not lie on a line, so we can move them to $p_{1}=[1,0,0,0], p_{5}=[0,1,0,0]$, and $p_{7}=[0,0,1,0]$. The combinatorial classification shows that Q_{1} can be taken to be a rank-2 quadric $P_{1} \cup P_{2}$, where P_{1} is a plane passing through p_{1} (but not through p_{5} or p_{7}) and P_{2} is a plane passing through p_{5} and p_{7} but not p_{1}. So we can write these as $P_{1}=b_{1} Y+c_{1} Z+d_{1} W$ and $P_{2}=a_{2} X+d_{2} W$ with $b_{1}, c_{1}, a_{2} \neq$ 0 . After changing coordinates $X \mapsto a_{2} X+d_{2} W, Y \mapsto b_{1} Y+d_{1} W$, and $Z \mapsto c_{1} Z$ (which does not affect p_{1}, p_{5}, or p_{7}), we obtain $Q_{1}=X(Y+Z)$.

Now for Q_{2}. It is a rank-2 quadric that consists of a plane Π_{1} passing through p_{1} and p_{5} and a plane Π_{2} passing through p_{1} and p_{7}. So we have $\Pi_{1}=c_{1} Z+d_{1} W$ and $\Pi_{2}=b_{2} Y+d_{2} W$ with c_{1} and b_{2} nonzero; dividing out, we can assume these coefficients both equal 1 . Each of these two planes should contain the tangent line at p_{1} that is the first basepoint infinitely near to p_{1}; hence, in terms of embedded tangent spaces, that tangent line is the intersection $\Pi_{1} \cap \Pi_{2}$. Moreover, we know that the plane P_{1} defined previously must also contain that tangent line. This means that the lines $P_{1} \cap \Pi_{1}=\left\{-Y+d_{1} W=0\right\}$ and $P_{1} \cap \Pi_{2}=$ $\left\{Y+d_{2} W=0\right\}$ are equal; hence $d_{2}=-d_{1}$. Now applying the transformations $Y \mapsto Y-d_{1} W$ and $Z \mapsto Z+d_{1} W$, we get $Q_{2}=Y Z$ with p_{1}, p_{5}, p_{7}, and Q_{1} unchanged.

Finally we must deal with Q_{3}. We know it passes through p_{1}, p_{5}, and p_{7}, so the coefficients of X^{2}, Y^{2}, and Z^{2} must be zero. So write $Q_{3}=a_{3} X Y+b_{3} X Z+$ $c_{3} X W+d_{3} Y Z+e_{3} Y W+f_{3} Z W+g_{3} W^{2}$. Moreover, we know the tangent direction that Q_{3} must have at the three basepoints. At p_{1}, the correct tangent line is that shared by Π_{1} and Π_{2} from the preceding paragraph-namely, $\{Y=Z=0\}$. Setting $X=1$ in the equation of Q_{3}, we get $a_{3} Y+b_{3} Z+c_{3} W+$ (quadratic terms). So we get the condition $c_{3}=0$. Now consider p_{5} : the correct tangent direction
there is that shared by the planes P_{1} and Π_{1}, and that is $\{X=Z=0\}$. Setting $Y=1$ in the equation of Q_{3}, we get $a_{3} X+d_{3} Z+e_{3} W+$ (quadratic terms), so the condition we get is $e_{3}=0$. Finally looking at p_{7}, the correct tangent direction is that shared by P_{1} and Π_{2}, and the same argument gives the condition $f_{3}=0$. So these three conditions give us $Q_{3}=a_{3} X Y+b_{3} X Z+d_{3} Y Z+g_{3} W^{2}$. But now by replacing Q_{3} by $Q_{3}-d_{3} Q_{2}-a_{3} Q_{1}$ we can eliminate the monomials $Y Z$ and $X Y$, giving $Q_{3}=b_{3} X Z+g_{3} W^{2}$. Neither coefficient can be zero: if b_{3} were zero, then Q_{3} would be a double plane and hence singular at p_{1}, but this would violate Assumption 1 because Q_{1} is singular there; if g_{3} were zero, then Q_{3} would be a third rank-2 quadric in the net. So both are nonzero; dividing across by b_{3} and scaling W (which does not affect the basepoints or Q_{1}, Q_{2}) we get $Q_{3}=X Z+W^{2}$, as claimed.
9. $\{3,3,2\}_{1}$: Again we can put the three basepoints at $p_{1}=[1,0,0,0], p_{4}=$ [$0,1,0,0]$, and $p_{7}=[0,0,1,0]$. In this case, the rank-2 quadrics in the net have multiplicity data $Q_{1}=1^{3} 3^{1}+2^{3} 3^{1}$ and $Q_{2}=1^{2} 2^{2}+1^{1} 2^{1} 3^{2}$. So they have equations $Q_{1}=\left(b_{1} Y+d_{1} W\right)\left(a_{2} X+d_{2} W\right)$ and $Q_{2}=\left(\gamma_{1} Z+\delta_{1} W\right) W$. None of the coefficients b_{1}, a_{2}, γ_{1} can be zero, for otherwise the corresponding planes would pass through more basepoints than specified by the combinatorial classification. So by changing coordinates $\left(X \mapsto a_{2} X+d_{2} W, Y \mapsto b_{1} Y+d_{1} W\right.$, and $Z^{\prime}=$ $\left.\gamma_{1} Z+\delta_{1} W\right)$ we obtain $Q_{1}=X Y$ and $Q_{2}=Z W$.

Now consider Q_{3}, any quadric in the net that forms a basis together with Q_{1} and Q_{2}. Such a Q_{3} must pass through p_{1}, p_{4}, and p_{7}. Moreover, Q_{1} is singular at one \mathbf{P}^{3}-basepoint and Q_{2} is singular at the other two, so Q_{3} is smooth at the base locus and has the correct tangent direction at each. But Q_{1} and Q_{2} define the correct tangent direction at p_{1} and p_{4}. Applying these conditions to the quadratic form defining Q_{3}, we see that the coefficients of the monomials $X^{2}, Y^{2}, Z^{2}, X W$, and $Y W$ must all be zero. So we can write $Q_{3}=a_{3} X Y+b_{3} X Z+c_{3} Y Z+d_{3} Z W+e_{3} W^{2}$.

These facts concerning the smoothness of Q_{3} at the base locus (and its tangent directions there) hold for any quadric in the net outside the pencil spanned by Q_{1} and Q_{2}. In particular they remain true if we replace Q_{3} by $Q_{3}-a_{3} Q_{1}-d_{3} Q_{2}$. So without loss of generality we obtain $Q_{3}=b_{3} X Z+c_{3} Y Z+e_{3} W^{2}$. Now we see that e_{3} must be nonzero, for otherwise Q_{3} would be reducible. Also, in affine coordinates near p_{1} and p_{4}, the tangent spaces to Q_{3} are given by $b_{3} z=0$ and $c_{3} z=0$, respectively. Smoothness at these points tells us that b_{3} and c_{3} are nonzero. So all three coefficients are nonzero; scaling the coordinates gives $Q_{3}=X Z+Y Z+W^{2}$, as claimed.
10. $\{3,3,2\}_{2}$: The combinatorial classification tells us in this case that one of the rank-2 quadrics in the net (let us call it Q_{1}) is the union of a plane P_{1} passing through p_{1} and p_{4} and a plane P_{2} passing through p_{1} and p_{7}. These are given by forms $P_{1}=c_{1} Z+d_{1} W$ and $P_{2}=b_{2} Y+d_{2} W$; exactly as in the previous case, we can transform these to $P_{1}=Z$ and $P_{2}=Y$. So $Q_{1}=Y Z$. Similarly. the other rank-2 quadric in the net (call it Q_{2}) is the union of a plane Π_{1} through p_{1} and p_{4} and a plane Π_{2} through p_{4} and p_{7}; by exactly the same argument, we can put this in the form $Q_{2}=X(Z+W)$.

What of Q_{3} ? As in the previous case, we know that the coefficients of the monomials X^{2}, Y^{2}, and Z^{2} in Q_{3} must be zero. Also, just as before, we can compute the
shared tangent directions of components of Q_{1} and Q_{2} at the basepoints: this tells us that the coefficients of $Y W$ and $Z W$ in Q_{3} are zero and that those of $X Z$ and $X W$ must be equal. So we get $Q_{3}=a_{3} X Y+b_{3}(X Z+X W)+c_{3} Y Z+d_{3} W^{2}$. But now replacing Q_{3} by $Q_{3}-b_{3} Q_{2}-c_{3} Q_{1}$, we get $Q_{3}=a_{3} X Y+d_{3} W^{2}$. Just as in the previous case, neither coefficient can be zero, so we can rescale via $X \mapsto$ $a_{3} X$ and $(W, Z) \mapsto \sqrt{d_{3}}(W, Z)$ (without moving the basepoints or $\left.Q_{1}, Q_{2}\right)$ to get $Q_{3}=X Y+W^{2}$, as claimed.
11. $\{2,2,2,2\}$: First note that the four \mathbf{P}^{3}-basepoints of the net cannot be coplanar. The proper transform of such a plane would have class h_{1357}, but the combinatorial classification shows there is an effective class h_{1257}; the corresponding planes in \mathbf{P}^{3} must then be equal, which means that in fact the class $h-e_{1}-e_{2}-e_{3}-e_{5}-e_{7}$ would be effective, which is impossible.

We know also that no three of the \mathbf{P}^{3}-basepoints are collinear. So we can move them to the coordinate points of $\mathbf{P}^{3}: p_{1}=[1,0,0,0], p_{3}=[0,1,0,0], p_{5}=$ $[0,0,1,0], p_{7}=[0,0,0,1]$. The combinatorial classification shows that the multiplicity data of the rank-2 quadrics in the net are as follows: $Q_{1}=1^{1} 2^{1} 3^{2}+1^{1} 2^{1} 4^{2}$, $Q_{2}=1^{2} 3^{1} 4^{1}+2^{2} 3^{1} 4^{1}, Q_{3}=1^{2} 2^{2}+3^{2} 4^{2}$. But then the components of Q_{1} and Q_{2} are determined: we have $Q_{1}=Z W$ and $Q_{2}=X Y$. We also get $Q_{3}=$ $(a X+b Y)(c Z+d W)$ with a, b, c, d all nonzero. But then we can scale the coordinates (without changing the p_{i} or $\left.Q_{1}, Q_{2}\right)$ to get $Q_{3}=(X+Y)(Z+W)$, as claimed.
12. $\{1,1,1,1,1,1,1,1\}$: The combinatorial classification from Section 4 showed that the four points $\left\{p_{1}, p_{2}, p_{3}, p_{5}\right\}$ do not lie in a plane in \mathbf{P}^{3}, so we can move them to the coordinate points: $p_{1}=[1,0,0,0], p_{2}=[0,1,0,0], p_{3}=[0,0,1,0], p_{5}=$ $[0,0,0,1]$. We know that p_{4} (resp. p_{6}, p_{7}) lies in the plane spanned by $\left\{p_{1}, p_{2}, p_{3}\right\}$ (resp. $\left\{p_{1}, p_{2}, p_{5}\right\},\left\{p_{1}, p_{3}, p_{5}\right\}$); thus we have that $p_{4}=\left[x_{4}, y_{4}, z_{4}, 0\right], p_{6}=$ [$\left.x_{6}, y_{6}, 0, w_{6}\right]$, and $p_{7}=\left[x_{7}, 0, z_{7}, w_{7}\right]$ and that the coordinates $x_{i}, y_{j}, z_{k}, w_{l}$ are all nonzero (since otherwise we would have three collinear basepoints, which is forbidden). Normalizing, we can write $p_{4}=\left[1, y_{4}, z_{4}, 0\right], p_{6}=\left[1, y_{6}, 0, w_{6}\right]$, and $p_{7}=\left[1,0, z_{7}, w_{7}\right]$.

What of p_{8} ? We know it does not belong to any of the planes $\{Y=0\},\{Z=0\}$, or $\{W=0\}$, since each of these already contains four basepoints. So it has coordinates $p_{4}=\left[x_{8}, y_{8}, z_{8}, w_{8}\right]$ with $y_{8} z_{8} w_{8} \neq 0$. On the other hand, we know that p_{8} lies in the plane spanned by $\left\{p_{2}, p_{3}, p_{5}\right\}$, so it must have $x_{8}=0$. Applying the projective transformation $[X, Y, Z, W] \mapsto\left[X, Y / y_{8}, Z / z_{8}, W / w_{8}\right]$ to \mathbf{P}^{3}, we bring p_{8} to $[0,1,1,1]$ without moving $p_{1}, p_{2}, p_{3}, p_{5}$ or changing the form of p_{4}, p_{6}, p_{7}.

We know from the combinatorial classification that the points $\left\{p_{1}, p_{4}, p_{5}, p_{8}\right\}$ are coplanar. This is equivalent to the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & y_{4} & z_{4} & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

(whose rows are the homogeneous coordinates of the four points) vanishing, which occurs if and only if $y_{4}=z_{4}$. Similar arguments show we must have $y_{6}=w_{6}$ and $z_{7}=w_{7}$.

Next, we use the fact that the points $\left\{p_{1}, p_{4}, p_{6}, p_{7}\right\}$ are coplanar. That means the determinant of the corresponding matrix must vanish: this determinant is $-2 y_{4} y_{6} z_{7}$, and we know y_{4}, y_{6}, z_{7} are all nonzero. This shows that an extremal net of this type can exist only if the characteristic of the base field is 2 .

To find the standard form in the case of characteristic 2 , we now use that the points $\left\{p_{5}, p_{6}, p_{7}, p_{8}\right\}$ are coplanar. Again we use vanishing of the determinant of the corresponding matrix: this determinant is $y_{6}+z_{7}$, so we get $y_{6}=z_{7}$. A similar argument shows that $y_{4}=y_{6}$. So our points have coordinates $p_{4}=[1, \xi, \xi, 0]$, $p_{6}=[1, \xi, 0, \xi]$, and $p_{7}=[1,0, \xi, \xi]$ for some nonzero $\xi \in k$. Applying the projective transformation $[X, Y, Z, W] \mapsto[X, Y / \xi, Z / \xi, W / \xi]$, the points p_{4}, p_{6}, p_{7} are transformed to $p_{4}=[1,1,1,0], p_{6}=[1,1,0,1], p_{7}=[1,0,1,1]$ while the other five points are left fixed.

Finally, consider the equations of the planes containing four of the basepoints. The plane containing $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ has equation $W=0$ and the plane containing $\left\{p_{5}, p_{6}, p_{7}, p_{8}\right\}$ has equation $X+Y+Z=0$. This gives a rank-2 quadric $Q_{1}=$ $(X+Y+Z) W=0$ in the net. The plane containing $\left\{p_{1}, p_{2}, p_{5}, p_{6}\right\}$ has equation $Z=0$ and the plane containing $\left\{p_{3}, p_{4}, p_{7}, p_{8}\right\}$ has equation $X+Y+W=0$, giving a rank-2 quadric $Q_{2}=(X+Y+W) Z=0$ in the net. The plane containing $\left\{p_{1}, p_{3}, p_{5}, p_{7}\right\}$ has equation $Y=0$ and the plane containing $\left\{p_{2}, p_{4}, p_{6}, p_{8}\right\}$ has equation $X+Z+W=0$, giving a rank-2 quadric $Q_{3}=(X+Z+W) Y=$ 0 in the net. This gives the standard form claimed.

6. Extremal Fibrations and Extremal Quartics

In this section we assume that the characteristic of the ground field k is not 2. (In particular, our remarks do not apply to the extremal net of type $\{1,1,1,1,1,1,1,1\}$.) Suppose we are given a net N of quadrics in \mathbf{P}^{3} with some fixed basis, say $N=$ $\left\langle\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}\right\rangle$. The discriminant form $\Delta_{N}=\operatorname{det}\left(\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}\right)$ defines a quartic curve in the plane $N \cong \mathbf{P}^{2}$. It seems reasonable to expect that extremality of the net N in the sense used heretofore should correspond to some extremality property of the quartic N.

To explain the correspondence, we first note that there is a natural connection between plane quartic curves and the root system E_{7}. To an isolated hypersurface singularity one can associate in a natural way a root system (see [1, Chap. 4] for details). For plane quartics, the ranks of the root systems associated to its various singular points sum to at most 7 , and in this case the direct sum of the root systems is a rank-7 root subsystem of E_{7}. So one can hope that, for an extremal net N, the quartic Δ_{N} is extremal in the sense that the associated root system has rank 7. Indeed, it seems natural to expect in this case that the root system associated to N in Table 1 and that associated to Δ_{N} should in fact be the same. This is what we verify next.

Table 3 lists, for each type of extremal net N, a defining equation for its discriminant quartic Δ_{N} and the root system associated to the singularities of Δ_{N}. (See e.g. [3] for details on how to identify root systems of singularities from equations.) In the table, $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are homogeneous coordinates on the net $N \cong \mathbf{P}^{2}$.

Table 3

Type	Δ_{N}	Singularities of Δ_{N}
$\{8\}_{1}$	$\lambda_{2}\left(4 \lambda_{1} \lambda_{2}^{2}+\lambda_{2} \lambda_{3}^{2}+4 \lambda_{3}^{3}\right)$	E_{7}
$\{8\}_{2}$	$\lambda_{2}^{4}+2 \lambda_{1} \lambda_{2}^{2} \lambda_{3}+\lambda_{1}^{2} \lambda_{3}^{2}+4 \lambda_{3}^{4}$	A_{7}
$\{4,4\}_{1}$	$\left(\lambda_{2}^{2}-\lambda_{1} \lambda_{3}+2 \lambda_{3}^{2}\right)\left(\lambda_{2}^{2}-\lambda_{1} \lambda_{3}-2 \lambda_{3}^{2}\right)$	A_{7}
$\{6,2\}$	$\lambda_{2} \lambda_{3}\left(\lambda_{1} \lambda_{2}-\lambda_{3}^{2}\right)$	$D_{6}+A_{1}$
$\{4,4\}_{2}$	$\lambda_{1} \lambda_{3}\left(\lambda_{1} \lambda_{2}-\lambda_{3}^{2}\right)$	$D_{6}+A_{1}$
$\{5,3\}$	$\lambda_{2}\left(\lambda_{1}^{2} \lambda_{2}-4 \lambda_{3}^{3}\right)$	$A_{5}+A_{2}$
$\{3,3,2\}_{1}$	$\lambda_{1}\left(\lambda_{1} \lambda_{2}^{2}-4 \lambda_{3}^{3}\right)$	$A_{5}+A_{2}$
$\{4,2,2\}$	$\lambda_{1} \lambda_{2} \lambda_{3}\left(\lambda_{1}+\lambda_{2}\right)$	$D_{4}+3 A_{1}$
$\{4,4\}_{3}$	$\lambda_{2} \lambda_{3}\left(\lambda_{1}^{2}-\lambda_{2} \lambda_{3}\right)$	$2 A_{3}+A_{1}$
$\{3,3,2\}_{2}$	$\lambda_{1} \lambda_{2}\left(\lambda_{1} \lambda_{2}+4 \lambda_{3}^{2}\right)$	$2 A_{3}+A_{1}$
$\{2,2,2,2\}$	$\lambda_{1} \lambda_{2}\left(\lambda_{1} \lambda_{2}-4 \lambda_{3}^{2}\right)$	$2 A_{3}+A_{1}$

We observe that in each case the root system associated to Δ_{N} is the same as that associated to N in Table 1. It would be interesting to find an explanation for this correspondence.

References

[1] V. Arnold, S. Guseĭn-Zade, and A. Varchenko, Singularities of differentiable maps, vol. II, Mongr. Math., 83, Birkhäuser, Boston, 1988.
[2] W. Barth, K. Hulek, C. Peters, and A. Van De Ven, Compact complex surfaces, 2nd ed., Ergeb. Math. Grenzgeb. (4), 4, Springer-Verlag, Berlin, 2004.
[3] J. Bruce and P. Giblin, A stratification of the space of plane quartic curves, Proc. London Math. Soc. (3) 42 (1981), 270-298.
[4] F. Cossec and I. Dolgachev, Enriques surfaces I, Progr. Math., 76, Birkhäuser, Boston, 1989.
[5] I. Dolgachev, Topics in classical algebraic geometry. Part I,〈http://www.math.lsa.umich.edu/idolga/lecturenotes.html〉.
[6] I. Dolgachev and D. Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988).
[7] V. Gorbatsevich, A. Onischik, and E. Vinberg. Lie groups and Lie algebras III, Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, 1994.
[8] R. Hartshorne. Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977.
[9] K. Hulek and R. Kloosterman, Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces, preprint, arXiv: 0806.2025.
[10] J. Humphreys, Reflection groups and coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990.
[11] K. Kodaira, On compact analytic surfaces II, III, Ann. of Math. (2) 77 (1963), 563-626; 78 (1963), 1-40.
[12] W. Lang, Extremal rational elliptic surfaces in characteristic p. I. Beauville surfaces, Math. Z. 207 (1991), 429-437.
[13] -, Extremal rational elliptic surfaces in characteristic p. II. Surfaces with three or fewer singular fibres, Ark. Mat. 32 (1994), 423-448.
[14] R. Miranda and U. Persson, On extremal rational elliptic surfaces, Math. Z. 193 (1986), 537-558.
[15] S. Mukai, Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group, preprint \#1343, 2001, Research Institute for Mathematical Sciences, Kyoto.
[16] A. Prendergast-Smith, Extremal rational elliptic threefolds, Ph.D. thesis, University of Cambridge, 2009.
[17] B. Totaro, Hilbert's fourteenth problem over finite fields, and a conjecture on the cone of curves, Compositio Math. 144 (2008), 1176-1198.

Leibniz Universität Hannover
Institut für Algebraische Geometrie
Welfengarten 1, D-30167
Germany
artie@math.uni-hannover.de

