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On Moduli Spaces of Parabolic Vector Bundles
of Rank 2 over CP1
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& Chanchal Kumar

1. Introduction

Let S ⊂ CP1 be a finite subset such that #S ≥ 5. Fix an integer d. Let MS(d ) =
MS be the moduli space of parabolic semistable vector bundles E∗ → CP1 of
rank 2 and degree d with parabolic structure over S such that for each point s ∈ S
the parabolic weights of E∗ at s are 0 and 1/2. In [4], geometric realizations of
the variety MS were obtained by the third author (under the assumption that #S
is even).

Our aim here is to address the following Torelli type question:

Take two subsets S1 and S2 such that the variety MS1 is isomorphic to
MS2 . Does this imply that the multi-pointed curve (CP1, S1) is isomor-
phic to (CP1, S2)?

The following theorem proved here (see Theorem 4.2) shows that this indeed is
the case.

Theorem 1.1. Take two finite subsets S1 and S2 of CP1 of cardinality ≥ 5. The
variety MS1 is isomorphic to MS2 if and only if there is an automorphism

ϕ : CP1 → CP1

such that ϕ(S1) = S2.

If #S = 4, then the moduli space MS is isomorphic to CP1. Therefore, the
assumption in Theorem 1.1 that there are at least five parabolic points is necessary.

Acknowledgments. The first and the third author wish to thank the Harish–
Chandra Research Institute, Allahabad, for hospitality.

2. Hitchin Map and Unstable Locus

Let
S ⊂ CP1

be a finite subset of the complex projective line such that
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n := #S ≥ 5.

Fix an integer d. We consider parabolic vector bundles

E∗ → CP1

satisfying the following conditions:

• rank(E∗) = 2;
• degree(E) = d, where E is the vector bundle underlying E∗;
• the parabolic divisor of E∗ is S; and
• for each point s ∈ S, the parabolic weights of Es are {0,1/2}.
Therefore,

par-deg(E∗) = d + n

2
,

where par-deg(E∗) is the parabolic degree of E∗.
Let MS = MS(d ) denote the moduli space of parabolic semistable vector bun-

dles of the type just described; see [5]. This moduli space MS is a normal projec-
tive variety, defined over C, of dimension n− 3.

Let
Ms

S ⊂ MS (2.1)

be the Zariski open dense subset that parameterizes the stable parabolic vector
bundles of the given type. The complement MS \ Ms

S is a finite set because there
are only finitely many polystable parabolic vector bundles of the given type. This
open subset Ms

S coincides with the smooth locus of MS.

We note that if #S = n is odd then, for any E∗ ∈ MS ,

par-deg(E∗)
rank(E)

= a

2
+ 1

4
,

where a is an integer. Since the parabolic degree of a line subbundle of E is an
integral multiple of 1/2, it follows that E∗ is actually parabolic stable. Conse-
quently, MS is a smooth projective variety whenever n is odd.

Let E∗ be any parabolic vector bundle of the numerical type considered here (it
need not be parabolic semistable). A Higgs field on E∗ is a section

θ ∈H 0(CP1, End(E)⊗KCP1 ⊗ OCP1(S)),

where E, as before, is the vector bundle underlying E∗ such that, for each point
s ∈ S, the endomorphism

θ(s)∈ End(Es)

is nilpotent with respect to the quasiparabolic filtration of Es (see [1, Sec. 6] for
more details); if � ⊂ Es is the quasiparabolic filtration, then the nilpotency con-
dition means that θ(s)(Es) ⊂ � and θ(s)(�) = 0. Note that from the Poincaré
adjunction formula it follows that the fiber of the line bundleKCP1 ⊗OCP1(S) over
any point s ∈ S is identified with C. A parabolic Higgs bundle is a pair of the form
(E∗ , θ), where E∗ is a parabolic vector bundle and θ is a Higgs field on E∗.
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Remark 2.1. If θ is a Higgs field on E∗ , then trace(θ) is a section of KCP1 be-
cause θ(s) is nilpotent for each s ∈ S. Since H 0(CP1,KCP1) = 0, we conclude
that trace(θ) = 0.

A parabolic Higgs bundle (E∗ , θ) is called stable (resp., semistable) if, for all line
subbundles L ⊂ E with θ(L) ⊂ L⊗KCP1 ⊗ OCP1(S), the inequality

par-deg(L∗) < par-deg(E∗)/2 (resp., par-deg(L∗) ≤ par-deg(E∗)/2)

holds, where L∗ is the parabolic line bundle defined by L equipped with the in-
duced parabolic structure.

Let NS(H ) denote the moduli space of semistable parabolic Higgs bundles of
rank 2 and degree d over CP1 with parabolic structure over S and having para-
bolic weights 0 and 1/2 at each point of S. This NS(H ) is a normal quasiprojective
variety defined over C of dimension 2n − 6. Consider the total space T ∗Ms

S of
the cotangent bundle of the moduli space Ms

S defined in (2.1). We have a natural
embedding

ι : T ∗Ms
S → NS(H ) (2.2)

because, for any E∗ ∈ Ms
S , the cotangent space T ∗

E∗ Ms
S is the space of all Higgs

fields on E∗. The image ι(T ∗Ms
S) is a Zariski open dense subset of NS(H ).

Let
H : NS(H ) → H 0(CP1, K⊗2

CP1 ⊗ OCP1(S)) (2.3)

be the Hitchin map that sends any (E∗ , θ) to trace(θ 2) [3]; the condition that θ(s)
is nilpotent ensures that trace(θ 2) lies inside the subspace

H 0(CP1, K⊗2
CP1 ⊗ OCP1(S)) ⊂ H 0(CP1, K⊗2

CP1 ⊗ OCP1(2S)).

Let
f : KCP1 ⊗ OCP1(S) → CP1 (2.4)

be the natural projection. For any v ∈H 0(CP1, K⊗2
CP1 ⊗ OCP1(S)), let

ρv : KCP1 ⊗ OCP1(S) → K⊗2
CP1 ⊗ OCP1(2S)

be the morphism of varieties defined by ω �→ ω⊗2 − v(f(ω)), where f is defined
in (2.4). The scheme-theoretic inverse image (ρv)−1(0X), where 0X is the image
of the zero section, is called the spectral curve for v.

For a general point

v ∈H 0(CP1, K⊗2
CP1 ⊗ OCP1(S)),

the corresponding spectral curve Cv in the total space ofKCP1 ⊗OCP1(S) is a con-
nected smooth projective curve of genus n− 3, and the fiber H −1(v) is identified
with Picd+n−2(Cv).

Consider the morphism
fv : Cv → CP1 (2.5)

obtained by restricting the projection f in (2.4). The parabolic vector bundle cor-
responding to any ξ ∈ Picd+n−2(Cv) has the direct image fv∗ξ as the underlying
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vector bundle. The subset of CP1 over which fv is ramified contains S. Therefore,
for any

ξ ∈ Picd+n−2(Cv)

and any s ∈ S, the fiber (fv∗ξ)s has a line given by the locally defined sections of
ξ that vanish at the reduced point f −1(s). The quasiparabolic filtration on fv∗ξ
over s is defined by this line.

Proposition 2.2. Take any v ∈ H 0(CP1, K⊗2
CP1 ⊗ OCP1(S)) such that the cor-

responding spectral curve Cv is smooth and connected. The codimension of the
complement

Picd+n−2(Cv) \ (ι(T ∗Ms
S) ∩ Picd+n−2(Cv)) ⊂ Picd+n−2(Cv)

is at least 2, where ι is the embedding in (2.2).

Proof. Take any ξ ∈ Picd+n−2(Cv) such that the corresponding parabolic vector
bundle is not stable. The parabolic vector bundle corresponding to ξ will be de-
noted by V∗. We recall that

V := fv∗ξ → CP1

is the holomorphic vector bundle underlyingV∗ , where fv is the projection in (2.5).
For convenience, write d+n− 2 = δ. SinceV∗ is not parabolic stable, we have

a short exact sequence of vector bundles

0 −→ L
σ−→ V −→ V/L −→ 0 (2.6)

such that, for the parabolic line bundle L∗ defined by the subbundle L equipped
with the induced parabolic structure, the inequality

par-deg(L∗) ≥ par-deg(V∗)/2 = (2d + n)/4 = (2δ − n+ 4)/4 (2.7)

holds. Set
L̂ := f ∗

v L.

Let
φ : L̂ → ξ (2.8)

be the composition of homomorphisms

L̂ = f ∗
v L

f ∗
v σ−−→ f ∗

vfv∗ξ −→ ξ,

where σ is the homomorphism in (2.6) and f ∗
vfv∗ξ → ξ is the natural homomor-

phism. Since φ does not vanish identically, we have

degree(L̂) ≤ degree(ξ) = δ. (2.9)

Take a point s ∈ S. IfL∗ has parabolic weight 1/2 at s, then the homomorphism
φ in (2.8) vanishes at the point f −1

v (s)∈Cv. Let

β ∈ 1

2
Z
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be the parabolic weight of L∗. From the preceding observation we have

#(Div(φ) ∩ f −1
v (S)) ≥ 2β. (2.10)

Using (2.7),

degree(L̂) = 2 · degree(L) ≥ 2 ·
(

2δ − n+ 4

4
− β

)
= δ − n− 4

2
− 2β. (2.11)

So,

degree(Div(φ)) = degree(ξ)− degree(L̂)

≤ δ − δ + n− 4

2
+ 2β = n− 4

2
+ 2β. (2.12)

Note that from (2.11) and (2.9),

δ

2
≥ degree(L) ≥ δ

2
− n− 4

4
− β.

Hence degree(L) can take only finitely many values. Since L̂ = f ∗
v L, the iso-

morphism class of L̂ is uniquely determined by the integer degree(L). Hence from
(2.10) and (2.12) we conclude that all ξ ∈ Picδ(Cv) such that corresponding para-
bolic vector bundle in MS is not stable are parameterized by a scheme of dimen-
sion ≤ [n/2] − 2, where [n/2] ∈ N is the integral part of n/2.

Hence the codimension of

Picd+n−2(Cv) \ (ι(T ∗Ms
S) ∩ Picd+n−2(Cv)) ⊂ Picd+n−2(Cv)

is at least n− 3 − ([n/2] − 2). Finally,

n− 3 − ([n/2] − 2) = n− [n/2] − 1 ≥ 2

(recall that n ≥ 5). This completes the proof of the proposition.

Take any algebraic functionψ on T ∗Ms
S . From Proposition 2.2 it follows thatψ is

constant on ι(T ∗Ms
S) ∩ Picd+n−2(Cv). Hence ψ factors through the Hitchin map

H |T ∗Ms
S

in (2.3).

3. Theta Divisor and the Pullback of the Anticanonical Bundle

As in Proposition 2.2, take v ∈ H 0(CP1, K⊗2
CP1 ⊗ OCP1(S)) such that the corre-

sponding spectral curve Cv is connected and smooth. Let

p : Z := ι(T ∗Ms
S) ∩ Picd+n−2(Cv) → Ms

S (3.1)

be the restriction of the natural projection T ∗Ms
S → Ms

S . From Proposition 2.2
we know that the inclusion map Z ↪→ Picd+n−2(Cv) induces an isomorphism of
Picard groups.

Let
$∈H 2(Picd+n−2(Cv), Z)

be the canonical polarization given by the cup product on H1(Cv , Z).
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Lemma 3.1. For the projection p in (3.1),

p∗c1(TMs
S) = 4n−3 ·$.

Proof. Fix a Weierstrass point x0 ∈ Cv; so the map fv in (2.5) is ramified at x0.

There is a unique Poincaré line bundle

L → Cv × Picd+n−2(Cv)

such that the restriction of L to {x0} × Picd+n−2(Cv) is a trivial line bundle. Con-
sider the direct image

W := (fv × IdPicd+n−2(Cv))∗L → CP1 × Picd+n−2(Cv). (3.2)

Since fv is ramified over S, for each point (s, ξ) ∈ S × Picd+n−2(Cv), the fiber
W(s,ξ) has a filtration

� ⊂ W(s,ξ)

given by the locally defined sections of L|Cv×{ξ} that vanish at the point ŝ :=
f −1
v (s)red ∈Cv. Therefore, the line � is naturally identified with the fiber (KCv )ŝ ⊗

L(ŝ,ξ), and the quotient line W(s,ξ)/� is identified with L(ŝ,ξ).

Let
E ⊂ End(W ) = W ⊗ W ∗ → CP1 × Picd+n−2(Cv) (3.3)

be the locally free subsheaf of End(W ) defined by the sheaf of trace-0 endo-
morphisms that preserve the aforementioned filtration over S × Picd+n−2(Cv).

Note that
End(W ) = ad(W )⊕ OCP1×Picd+n−2(Cv),

where ad(W ) is the subbundle of End(W ) defined by the sheaf of trace-0 endo-
morphisms. Let

ιŜ : Ŝ := f −1
v (S)red ↪→ Cv

be the inclusion map. So

A 0 := (ιŜ × IdPicd+n−2(Cv))∗(ιŜ × IdPicd+n−2(Cv))
∗KCv (3.4)

is a torsion sheaf on Cv × Picd+n−2(Cv) with support Ŝ × Picd+n−2(Cv). Note
that A 0 is the restriction to Ŝ × Picd+n−2(Cv) of the pullback of KCv to Cv ×
Picd+n−2(Cv). Using our description of the lines � and W(s,ξ)/�, from (3.3) we
get a short exact sequence of sheaves

0 → E → End(W ) → A 0 ⊕ OCP1×Picd+n−2(Cv) → 0, (3.5)

where A 0 is defined in (3.4).
Let

q : CP1 × Picd+n−2(Cv) → Picd+n−2(Cv) (3.6)

be the natural projection. Consider the map p in (3.1). The pulled-back tangent
bundle p∗TMs

S is identified with R1q∗E , where E is defined in (3.3). We note that

q∗E = 0
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because a stable parabolic vector bundle is simple, meaning that all automor-
phisms of a stable parabolic vector bundle preserving the quasiparabolic filtra-
tions are scalar multiplications.

Note that since the restriction of L to {x0}× Picd+n−2(Cv) is trivial, the restric-
tion of L to {x} × Picd+n−2(Cv) is topologically trivial for all x ∈Cv.

Since R1q∗E = p∗TMs
S and det q∗E is trivial, we conclude that

p∗ det TMs
S = p∗ ∧n−3

TMs
S = (detR1q∗E )⊗ (det q∗E )∗. (3.7)

From (3.5),

ci(R
jq∗E ) = ci(R

jq∗ End(W ))∈H 2i(Picd+n−2(Cv), Q)

for all i, j ≥ 0. Hence, from (3.7),

p∗c1(TMs
S) = c1(R

1q∗ End(W ))− c1(q∗ End(W )). (3.8)

Define
F := fv × IdPicd+n−2(Cv).

From the definition of W (see (3.2)) and the projection formula, we conclude that

End(W ) = F∗(L ⊗ F ∗W ∗). (3.9)

Let
q̂ : Cv × Picd+n−2(Cv) → Picd+n−2(Cv) (3.10)

be the natural projection. Since fv is a finite map, from (3.9) we have

(detR1q∗ End(W ))⊗ (det q∗ End(W ))∗

= detR1q̂∗(L ⊗ F ∗W ∗)⊗ (det q̂∗(L ⊗ F ∗W ∗))∗,

where q is the projection in (3.6).
Hence, from (3.8),

p∗c1(TMs
S) = c1(detR1q̂∗(L ⊗ F ∗W ∗))− c1(det q̂∗(L ⊗ F ∗W ∗)). (3.11)

Let
η : Cv → Cv (3.12)

be the nontrivial Galois involution of the covering fv; so η is the hyperelliptic
involution. Define

η̂ := η × IdPicd+n−2(Cv). (3.13)

Let

Ŝ ⊂ f −1
v (S)red × Picd+n−2(Cv) ⊂ Cv × Picd+n−2(Cv) =: Z

be the reduced divisor. Consider the natural surjective homomorphism

F ∗W → L → 0

on Z. Its kernel is identified with η̂∗L ⊗ OZ(−Ŝ ), where η̂ is defined in (3.13).
Therefore, we have a short exact sequence of vector bundles over Z:

0 → L∗ → F ∗W ∗ → (η̂∗L∗)⊗ OZ(Ŝ ) → 0.
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Tensoring this with L, we get the short exact sequence of vector bundles

0 → OZ → L ⊗ F ∗W ∗ → L ⊗ (η̂∗L∗)⊗ OZ(Ŝ ) → 0. (3.14)

For a vector bundle E ′ → Cv × Picd+n−2(Cv) =: Z , define

Det(E ′) := (detR1q̂∗E ′)⊗ (det q̂∗E ′)∗,

where q̂ is the projection in (3.10).
Now, from (3.14) and (3.11),

p∗c1(TMs
S) = c1(Det(L ⊗ (η̂∗L∗)⊗ OZ(Ŝ ))). (3.15)

From the short exact sequence of coherent sheaves

0 → L ⊗ η̂∗L∗ → L ⊗ (η̂∗L∗)⊗ OZ(Ŝ ) → OŜ → 0

on Cv × Picd+n−2(Cv), we conclude that

Det(L ⊗ (η̂∗L∗)⊗ OZ(Ŝ )) = Det(L ⊗ η̂∗L∗).
So, from (3.15),

p∗c1(TMs
S) = c1(Det(L ⊗ η̂∗L∗)). (3.16)

Now note that the involution η̂ lifts to the line bundle L ⊗ η̂∗L. The isotropy
subgroups, for the action of Z/2Z , act trivially on the fibers of L ⊗ η̂∗L. Hence
L ⊗ η̂∗L descends to a line bundle on Z/η̂ = CP1 × Picd+n−2(Cv). Since the re-
striction of L to {x0} × Picd+n−2(Cv) is a trivial line bundle and x0 is fixed by
fv , the restriction of L ⊗ η̂∗L to {x0} × Picd+n−2(Cv) is also trivial. We further
note that any line bundle on CP1 × Picd+n−2(Cv) is of the form L1 � L2. Hence
L ⊗ η̂∗L is the pullback of a line bundle on CP1. In other words,

η̂∗L∗ = L ⊗ γ ∗OCP1(a), (3.17)

where a ∈ Z and γ is the composition of the projection Cv × Picd+n−2(Cv) → Cv
with the map fv.

From (3.16) and (3.17),

p∗c1(TMs
S) = c1(Det(L⊗2 ⊗ γ ∗OCP1(a))). (3.18)

We will now compare c1(Det(L⊗2)) with c1(Det(L⊗2 ⊗ γ ∗OCP1(a))).

First assume that a > 0. Fix a reduced effective divisor D0 ⊂ Cv such that
OCv(D0) = f ∗

v OCP1(a). Consider the short exact sequence of sheaves

0 → L⊗2 → L⊗2 ⊗ γ ∗OCP1(a) → (L⊗2 ⊗ γ ∗OCP1(a))|D0×Picd+n−2(Cv) → 0

onCv×Picd+n−2(Cv).We have seen that the restriction of L to {x}×Picd+n−2(Cv)

is topologically trivial for all x ∈ Cv. Therefore, from the preceding short exact
sequence of sheaves it follows that

c1(Det(L⊗2)) = c1(Det(L⊗2 ⊗ γ ∗OCP1(a)))∈H 2(Picd+n−2(Cv), Q).

Next assume that a < 0, and consider the short exact sequence of sheaves

0 → L⊗2 ⊗ γ ∗OCP1(a) → L⊗2 → (L⊗2)|D0×Picd+n−2(Cv) → 0,
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whereD0 ⊂ Cv is a reduced effective divisor such that OCv(D0) = f ∗
v OCP1(−a).

Using this short exact sequence yields, as before, that

c1(Det(L⊗2)) = c1(Det(L⊗2 ⊗ γ ∗OCP1(a)))∈H 2(Picd+n−2(Cv), Q).

Therefore, from (3.18),

p∗c1(TMs
S) = c1(Det(L⊗2)). (3.19)

Take any Poincaré line bundle Lb on Cv × Picb(Cv) such that the restriction of
Lb to {x} × Picb(Cv) is topologically trivial for some (hence all) x ∈Cv. Let

qb : Cv × Picb(Cv) → Picb(Cv)

be the natural projection. Then it is known that

c1((detR1qb∗Lb)⊗ (det qb∗Lb)
∗)∈H 2(Picb(Cv), Q)

coincides with the canonical polarization on Picb(Cv).
Consider the map

ϕ0 : Picd+n−2(Cv) → Pic2(d+n−2)(Cv)

defined by ξ �→ ξ⊗2. The cited property of the canonical polarization implies that

c1(Det(L⊗2)) = ϕ∗
0$, (3.20)

where
$∈H 2(Pic2(d+n−2)(Cv), Q)

is the canonical polarization. Since dim Picd+n−2(Cv) = n − 3, from (3.19) and
(3.20) we conclude that

p∗c1(TMs
S) = 4n−3 ·$.

This completes the proof of the lemma.

A theorem due to Lefschetz asserts that r times a principal polarization on an
abelian variety is very ample if r ≥ 3 (see [2, p. 317]). Therefore, from Lemma 3.1
and Proposition 2.2 we conclude that the line bundle

p∗ det TMs
S ∈ Pic(Picd+n−2(Cv)) = Pic(Z )

is very ample (see (3.1) for Z ). Hence we can reconstruct Picd+n−2(Cv) from Z
by taking its closure in the complete linear system |p∗ det TMs

S |. Therefore, start-
ing from MS we can reconstruct the Hitchin fibration (see (2.3)) over a Zariski
open dense subset of H 0(CP1, K⊗2

CP1 ⊗ OCP1(S)).

If we know r times a principal polarization on an abelian variety, where r is
a given nonzero integer, then we can uniquely recover the principal polarization.
Therefore, the standard Torelli theorem gives the following.

Starting from MS we can reconstruct the family of spectral curves over
a Zariski open dense subset of H 0(CP1, K⊗2

CP1 ⊗ OCP1(S)).
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4. Infinitesimal Deformations of the Spectral Curve

The total space of the line bundleKCP1 ⊗OCP1(S)will be denoted by Y. Consider
the short exact sequence of vector bundles on Y,

0 −→ f ∗(KCP1 ⊗ OCP1(S)) −→ TY df−→ f ∗TCP1 −→ 0, (4.1)

where df is the differential of the projection f in (2.4). The sequence (4.1) im-
plies that ∧2

TY = f ∗OCP1(S). (4.2)

As in Section 3, take v ∈H 0(CP1, K⊗2
CP1 ⊗ OCP1(S)) such that the correspond-

ing spectral curve Cv is connected and smooth. Let

τ : Cv ↪→ Y (4.3)

be the inclusion map of the spectral curve.
As in Section 3, let

Ŝ = f −1
v (S)red ⊂ Cv (4.4)

be the reduced divisor, where fv as in (2.5) is the restriction of f to Cv. Let

NCv := (τ ∗TY )/TCv (4.5)

be the normal bundle, where τ is defined in (4.3).
Take any point s ∈ S. Note that all the spectral curves pass through the point

(s, 0)∈ Y. Also, the restriction of the projection f (see (2.4)) to any spectral curve
is ramified over s. Therefore, the tangent space, at v, of the family of spectral
curves is parameterized by

H 0(Cv , NCv ⊗OCv
OCv(−2Ŝ )),

where Ŝ is the divisor in (4.4), and NCv is the normal bundle in (4.5). Hence
the infinitesimal deformation map for the family of spectral curves is an injective
homomorphism

TvH
0(CP1, K⊗2

CP1 ⊗ OCP1(S)) → H 0(Cv , NCv ⊗ OCv(−2Ŝ )). (4.6)

We note that TvH 0(CP1, K⊗2
CP1 ⊗ OCP1(S)) = H 0(CP1, K⊗2

CP1 ⊗ OCP1(S)) and

dimH 0(CP1, K⊗2
CP1 ⊗ OCP1(S)) = n− 3.

We will prove that the homomorphism in (4.6) is an isomorphism by showing that

dimH 0(Cv , NCv ⊗ OCv(−2Ŝ )) = n− 3. (4.7)

Let
T ⊂ τ ∗TY (4.8)

be the inverse image ofNCv ⊗OCv
OCv(−2Ŝ ) ⊂ NCv by the quotient map τ ∗TY →

NCv in (4.5). In other words, T fits in the short exact sequence

0 → T → τ ∗TY → NCv/NCv ⊗OCv
OCv(−2Ŝ ) → 0. (4.9)
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Since (f � τ)∗OCP1(S) = f ∗
v OCP1(S) = OCv(2Ŝ ), from (4.2) and (4.9) it fol-

lows that ∧2 T = OCv . (4.10)

Consider the natural inclusion of TCv in τ ∗TY. From the construction of T in
(4.8) we conclude that this inclusion map yields a short exact sequence of vector
bundles

0 → TCv → T → NCv ⊗OCv
OCv(−2Ŝ ) → 0 (4.11)

over Cv. From (4.10) and (4.11) we know that

NCv ⊗OCv
OCv(−2Ŝ ) = KCv . (4.12)

Since genus(Cv) = n − 3, from the isomorphism in (4.12) we conclude that
(4.7) holds. Hence the injective homomorphism in (4.6) is an isomorphism. In
other words,

H 0(CP1, K⊗2
CP1 ⊗ OCP1(S)) = H 0(Cv , NCv ⊗ OCv(−2Ŝ ))

= H 0(Cv ,KCv). (4.13)

Let

0 → H 0(Cv , T ) → H 0(Cv , NCv ⊗ OCv(−2Ŝ ))

= H 0(Cv ,KCv)
α−→ H1(Cv , TCv) (4.14)

be the long exact sequence of cohomologies associated to the short exact sequence
of sheaves in (4.11) (see also (4.13)). The homomorphism α in (4.14) is the infini-
tesimal deformation map for the family of spectral curves.

Lemma 4.1. For the homomorphism α in (4.14),

dimα(H 0(Cv ,KCv)) = n− 4.

Proof. First note that dimH 0(Cv ,KCv) = n − 3. Also, kernel(α) �= 0, because
the automorphisms of the line bundleKCP1 ⊗OCP1(S) given by the nonzero scalar
multiplications produce deformations of the embedded spectral curve that do not
change the isomorphism class of the curve. Hence

dimα(H 0(Cv ,KCv)) ≤ n− 4.

Consider the short exact sequence of vector bundles on Y in (4.1). Let

0 → (f ∗
v KCP1)⊗ OCv(2Ŝ ) → τ ∗TY → f ∗

v TCP1 → 0

be the restriction of it to Cv; the divisor Ŝ is defined in (4.4), and τ is defined in
(4.3). This exact sequence gives a short exact sequence of vector bundles

0 → (f ∗
v KCP1)⊗ OCv(Ŝ ) → T → (f ∗

v TCP1)⊗ OCv(−Ŝ ) → 0, (4.15)

where T is defined in (4.8).
Since degree((f ∗

v TCP1)⊗ OCv(−Ŝ )) = 4 − n < 0, from (4.15) we have

H 0(Cv , T ) = H 0(Cv , (f
∗
v KCP1)⊗ OCv(Ŝ )). (4.16)

Let
DW ⊂ Cv
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be the set of Weierstrass points. So we have Ŝ ⊂ DW. The complement DW \ Ŝ
will be denoted by D ′. From the differential dfv of the map fv we have

f ∗
v KCP1 = KCv ⊗ OCv(−DW).

Hence
(f ∗
v KCP1)⊗ OCv(Ŝ ) = KCv ⊗ OCv(−D ′). (4.17)

By Serre duality and the Riemann–Roch theorem,

dimH 0(Cv , KCv ⊗ OCv(−D ′)) = dimH 0(Cv , OCv(D
′)). (4.18)

Take a meromorphic function ζ on Cv that is holomorphic on Cv \D ′ and has
poles of order ≤ 1 on the points of D ′. So ζ − ζ � η vanishes on Ŝ, where η,
as in (3.12), is the hyperelliptic involution. Since #Ŝ > #D ′, we conclude that
ζ − ζ � η = 0. Therefore, ζ must be a constant function. In other words,

dimH 0(Cv , OCv(D
′)) = 1.

Hence, from (4.16), (4.17), and (4.18) we conclude that

H 0(Cv , T ) = 1.

Therefore, dim kernel(α) = 1, where α is the homomorphism in (4.14). This com-
pletes the proof of the lemma.

The hyperelliptic involution of a hyperelliptic curve is unique. The quotient by
the hyperelliptic involution of a hyperelliptic curve of genus n − 3 is a curve of
genus 0 equipped with 2n − 4 unordered marked points. The isomorphism class
of a hyperelliptic curve is uniquely recovered from the isomorphism class of the
corresponding multi-pointed curve of genus 0.

So, when the spectral curveCv moves in the family, the corresponding (2n−4)-
pointed curve of genus 0 moves. Since the n parabolic points S are contained in
the 2n − 4 marked points, the dimension of the image of the infinitesimal defor-
mation map is at most 2n − 4 − n = n − 4. From Lemma 4.1 we know that the
dimension of the image of the corresponding infinitesimal deformation map is, in
fact, n − 4. If a set T of n points other than the set of parabolic points can be
made to remain fixed in the family of isomorphism classes of genus-0 curves with
unordered 2n− 4 marked points given by the spectral curves, then first note that
the intersection of this set T with the set of parabolic points S has cardinality ≥
4. Hence, there are no nontrivial automorphisms of CP1 that fix (#S ∩ T ) points.
Therefore, the dimension of the image of the infinitesimal deformation map is at
most the cardinality of the complement (in the set of 2n− 4 ramification points)
of the union S ∪ T. If T is different from S, this contradicts the fact that the di-
mension of the image of the infinitesimal deformation map is n− 4.

From this it follows that we can recover the isomorphism class of the n-pointed
curve (CP1, S) starting from the family of spectral curves. More precisely, letM0,n

denote the moduli space of smooth curves of genus 0 with n unordered marked
points. From the parameter space of the smooth connected spectral curves, we
have a multi-valued forgetful map to M0,n that sends a spectral C to (C/〈ι〉, SC),
where



On Moduli Spaces of Parabolic Vector Bundles of Rank 2 over CP
1 479

ι : C → C

is the hyperelliptic involution and SC ⊂ C/〈ι〉 is a set of n points contained in
the image of the Weierstrass points of C. So this multi-valued map is actually(

2n−4
n

)
-valued. Among these

(
2n−4
n

)
(locally defined) functions, there is exactly

one function that is constant, and the image of the constant function coincides with
the point of M0,n given by (CP1, S).

We remarked at the end of Section 3 that the family of spectral curves over a
Zariski open subset can be recovered from MS. Hence we have proved the fol-
lowing theorem.

Theorem 4.2. Take two finite subsets S1 and S2 of CP1 of cardinality ≥ 5. Let
MS1(d ) (resp., MS2(d )) be the corresponding moduli spaces of semistable para-
bolic vector bundles of rank 2 and degree d. Then the variety MS1(d ) is isomorphic
to MS2(d ) if and only if there is an automorphism of CP1 that takes the subset S1

surjectively to S2.
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