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Stable Base Locus Decompositions
of Kontsevich Moduli Spaces

Dawei Chen & Izzet Coskun

1. Introduction

Many problems in algebraic geometry require different compactifications of the
same moduli space. Important invariants such as intersection numbers and vol-
umes of divisors are easier to compute in certain models. Moreover, the interplay
between different models often leads to nontrivial relations among invariants, such
as wall-crossing formulas in Gromov–Witten theory. The minimal model program
gives a unifying framework for constructing different birational models of a moduli
space. Surprisingly many of the models that occur in the program also have mod-
ular interpretations. In this article, we illustrate this point by studying the minimal
model program for the Kontsevich moduli spaces of stable maps M0,0(G(k, n), d)
for d = 2 or 3. We determine the stable base locus decomposition of the effective
cone, describe the models corresponding to the chambers in the decomposition,
and provide a modular interpretation for many of the models.

The effective cone of a projective variety can be decomposed into chambers
depending on the stable base locus of the corresponding linear series. This de-
composition dictates the different birational models of the variety that arise while
running the minimal model program and has been studied in detail in [ELMNP1]
and [ELMNP2]. In general, especially when the dimension of the Neron–Severi
space is 3 or more, it is very hard to compute the decomposition. In this paper,
we completely determine the stable base locus decomposition of the Kontsevich
moduli spaces M0,0(G(k, n), d) for d = 2 or 3. We prove the following.

Theorem 1.1. Let d ≤ k ≤ n − d. The stable base locus decomposition of the
effective cone of M0,0(G(k, n), d) for d = 2 or 3 is a finite, rational, polyhedral
decomposition. For d = 2, the decomposition has 8 chambers. For d = 3, the
decomposition has 22 chambers.

Theorem 3.6 describes in detail the decomposition for M0,0(G(k, n), 2), and The-
orems 4.8 and 5.2 contain a detailed description for M0,0(G(k, n), 3). We also
describe in detail the birational models that correspond to each chamber in the de-
composition and give modular interpretations for many of the models. A corollary
of our analysis is the following.

Received February 10, 2009. Revision received July 2, 2009.
During the preparation of this article, the second author was partially supported by NSF Grant no. DMS-

0737581 and a Sloan Research Fellowship.

435



436 Dawei Chen & Izzet Coskun

Corollary 1.2. For d = 2 or 3, M0,0(G(k, n), d) is a Mori dream space.

This corollary, at least for small k and n, also follows from [BCHMc] (see Re-
mark 2.4).

Let X be a complex, projective, homogeneous variety. Throughout this paper
we work over the field of complex numbers C. Let β be the homology class of a
curve on X. Recall that the Kontsevich moduli space of m-pointed, genus-0 stable
maps M0,m(X,β) is a compactification of the space of m-pointed rational curves
onX with class β, parameterizing isomorphism classes of maps (C,p1, . . . ,pm, f )
such that the following three conditions hold.

(1) The domain curveC is a proper, connected, at-worst-nodal curve of arithmetic
genus 0.

(2) The marked points p1, . . . ,pm are smooth, distinct points on C.
(3) f∗[C] = β and any component of C contracted by f has at least three nodes

or marked points.

Here M0,m(X,β) is a smooth stack and the corresponding coarse moduli space
is Q-factorial with finite quotient singularities. Furthermore, linear and numerical
equivalence coincide in Pic(M0,m(G(k, n), d)) ⊗ Q. We can therefore construct
Q-Cartier divisors by specifying codimension-1 conditions on M0,m(G(k, n), d)
and calculate their classes by the method of test curves.

The study of the stable cone decomposition of M0,0(G(k, n), d) has two com-
ponents. On the one hand, we construct effective divisors in a given numerical
equivalence class and thereby limit the stable base locus. On the other hand, we
construct moving curve classes on subvarieties of M0,0(G(k, n), d) that have neg-
ative intersection with a divisor class, thereby showing that the stable base locus
has to contain those varieties. This analysis requires a good understanding of the
cones of ample and effective divisors on Kontsevich moduli spaces, which have
been studied in [CoHaS1; CoHaS2] when the target is P n and in [CoS] when the
target is G(k, n).

Whend = 2 or 3, one can run the minimal model program for M0,0(P
d, d) to ob-

tain a complete description of the birational models Proj
(⊕

m≥0 H
0(O(mD))

)
for

every integral effective divisor. Note that M0,0(P
2, 2) is isomorphic to the space

of complete conics or, equivalently, to the blow-up of P 5 along a Veronese surface.
Also, M0,0(P

2, 2) admits two divisorial contractions to P 5 and (P 5)∗ obtained by
projection from the space of complete conics to the spaces of conics and dual con-
ics, respectively. The resulting models can be given functorial interpretations: P 5

can be interpreted either as the Chow variety or the Hilbert scheme Hilb2x+1(P
2)

of conics in P2; (P 5)∗ can be interpreted as the moduli space of weighted stable
maps M0,0(P

2,1, 1) constructed by Andrei and Magdalena Anca Mustaţǎ [MuM].
The reader can informally think of the space of weighted k-stable maps as replac-
ing degree-e ≤ d − k tails of a stable map by base points of multiplicity e.

The Mori theory of M0,0(P
3, 3) has been studied in [Ch]. We remark that

M0,0(P
3, 3) admits a divisorial contraction to the moduli space of weighted stable

maps M0,0(P
3, 2, 1) (see [MuM]) and a flipping contraction to the normalization

of the Chow variety. The flip is the component of the Hilbert scheme Hilb3x+1(P
3)
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whose general point parameterizes a twisted cubic curve. This component of the
Hilbert scheme admits a further divisorial contraction to the compactification of
the space of twisted cubics in G(3,10) by nets of quadrics vanishing on the curve.

The Mori theory of M0,0(G(2, 4), 2) can be similarly described in complete
detail and gives rise to some beautiful classical projective geometry. Accord-
ing to [MuM], M0,0(G(2, 4), 2) admits a divisorial contraction to the space of
weighted stable maps M0,0(G(2, 4),1, 1) and two intermediate contractions over
M0,0(G(2, 4),1, 1) that are flops of each other (see Theorem 3.8 for precise state-
ments). M0,0(G(2, 4), 2) admits a flipping contraction to the (normalization of )
the Chow variety. The flip of M0,0(G(2, 4), 2) over the Chow variety is the Hilbert
scheme Hilb2x+1(G(2, 4)), which is isomorphic to the blow-up of the Grassman-
nian G(3, 6) along (both components of ) the orthogonal Grassmannian OG(3, 6).
The Hilbert scheme admits a divisorial contraction to G(3, 6) blowing-down the
inverse image of OG(3, 6) and two intermediate contractions blowing-down the
inverse image of only one of the components of OG(3, 6). The latter two spaces
are flips of M0,0(G(2, 4), 2) over contractions of the (normalization of ) the Chow
variety (see Theorem 3.10 for precise statements).

As d gets larger, both the dimension of the Neron–Severi space and the number
of chambers in the decomposition of the effective cone of M0,0(G(k, n), d) grow.
Already for M0,0(G(3, 6), 3) there are more than 20 chambers in the decomposi-
tion. In general, we do not know whether the decomposition is finite polyhedral.
Birkar and colleagues [BCHMc] prove that a log-Fano variety is a Mori dream
space; in particular, the stable base locus decomposition is finite polyhedral. Al-
though the anticanonical class of M0,0(G(k, n), d) lies in the big cone, we do not
know whether M0,0(G(k, n), d) is log-Fano in general. Nevertheless, the meth-
ods of this paper can be used to obtain a rough description of the stable base locus
decomposition even when d > 3. For a discussion of the higher-degree case when
the target is projective space, see [ChCo].

The organization of this paper is as follows. In Section 2, we set the notation
and introduce divisor classes that will play an important role in our discussion. In
Section 3, we determine the stable base locus decomposition of M0,0(G(k, n), 2)
and describe the corresponding birational models. In Section 4, we carry out the
same analysis for M0,0(G(k, n), 3)with 3 ≤ k ≤ n−3. The description of the sta-
ble base locus decomposition of M0,0(G(2, n), 3) requires minor modifications.
We carry out the analysis in Section 5.

Acknowledgments. It is a pleasure to thank Joe Harris and Jason Starr for
many enlightening conversations over the years about the birational geometry of
Kontsevich moduli spaces. We thank the referee for many excellent suggestions.
We thank MSRI, where part of this work was completed, for the stimulating at-
mosphere and ideal working conditions.

2. Preliminary Definitions and Background

In this section, we introduce important ample and effective divisor classes on
the Kontsevich moduli space M0,0(G(k, n), d). We refer the reader to [CoHaS1;
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CoHaS2; CoS] for detailed information about the ample and effective cones of
Kontsevich moduli spaces.

Notation 2.1. LetG(k, n) denote the Grassmannian of k-dimensional subspaces
of an n-dimensional vector spaceV. Let λ denote a partition with k parts satisfy-
ing n − k ≥ λ1 ≥ · · · ≥ λk ≥ 0. Let λ∗ denote the partition dual to λ with parts
λ∗
i = n − k − λk−i+1. Let F• : F1 ⊂ · · · ⊂ Fn denote a flag in V. The Schubert

cycle σλ is the Poincaré dual of the class of the Schubert variety �λ defined by

�λ(F•) = {[W ] ∈G(k, n) | dim(W ∩ Fn−k+i−λi ) ≥ i}.
Schubert cycles form a Z-basis for the cohomology of G(k, n).

Let M0,0(G(k, n), d) denote the Kontsevich moduli space of stable maps to
G(k, n) of Plücker degree d. Let

π : M0,1(G(k, n), d) → M0,0(G(k, n), d)

be the forgetful morphism and let

e : M0,1(G(k, n), d) → G(k, n)

be the evaluation morphism. We now introduce the divisor classes that will be
crucial for our discussion.

1. LetHσ1,1 = π∗e∗(σ1,1) andHσ2 = π∗e∗(σ2). Geometrically,Hσ1,1 (resp.,Hσ2)

is the class of the divisor of maps f in M0,0(G(k, n), d) whose image intersects
a fixed Schubert cycle �1,1 (resp., �2).

2. Let T denote the class of the divisor of maps that are tangent to a fixed hyper-
plane section of G(k, n).

3. LetDdeg denote the class of the divisor Ddeg of maps in M0,0(G(k, k+d), d)
whose image is contained in a sub-Grassmannian G(k, k + d − 1) embedded in
G(k, k+d) by an inclusion of the ambient vector spaces. More generally, for n ≥
k+ d, let Ddeg denote the class of the divisor of maps f in M0,0(G(k, n), d) such
that the projection of the span of the linear spaces parameterized by the image of
f from a fixed linear space of dimension n− k− d has dimension less than k+ d.

4. If k divides d, then let Dunb be the closure Dunb of the locus of maps f with
irreducible domains for which the pull-back of the tautological bundle f ∗(S) has
unbalanced splitting (i.e., f ∗(S) �= ⊕k

i=1 OP1(−d/k)).
5. If k does not divide d then let d = kq+ r, where r is the smallest nonnegative

integer that satisfies the equality. The subbundle of the pull-back of the tautologi-
cal bundle of rank k − r and degree −q(k − r) induces a rational map

φ : M0,0(G(k, k + d), d) ��� M0,0(F(k − r, k; k + d), q(k − r), d).

The natural projection πk−r : F(k − r, k; k + d) → G(k − r, k + d) from the
two-step flag variety to the Grassmannian induces a morphism

ψ : M0,0(F(k − r, k, k + d), q(k − r), d) → M0,0(G(k − r, k + d), q(k − r)).

The map whose linear spans intersect a linear space of codimension (q + 1)(k − r)

is a divisor D in M0,0(G(k − r, k + d), q(k − r)). Let Dunb = φ∗ψ∗([D]).
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We summarize the basic facts about the Picard group and about the cones of
numerically effective (nef ) and effective divisors in the following theorem.

Theorem 2.2. Let M0,0(G(k, n), d) denote the Kontsevich moduli space of sta-
ble maps to G(k, n) of Plücker degree d. Then the following statements hold.

(1) [Op, Thm. 1] The Picard group Pic(M0,0(G(k, n), d)) ⊗ Q is generated by
the divisor classes Hσ1,1,Hσ2 and the classes of the boundary divisors "k,d−k ,
1 ≤ k ≤ �d/2�.

(2) [CoS, Thm. 1.1] There is an explicit, injective linear map

v : Pic(M0,d/Sd)⊗ Q → Pic(M0,0(G(k, n), d))⊗ Q

that maps base-point-free divisors and nef divisors to base-point-free divisors
and nef divisors, respectively. A divisor class D in M0,0(G(k, n), d) is nef if
and only if D can be expressed as a nonnegative linear combination of Hσ1,1,
Hσ2, T, and v(D ′), where D ′ is a nef divisor in M0,d/Sd .

(3) [CoS, Thm. 1.2] A divisor class D in M0,0(G(k, k + d), d) is effective if and
only if it can be expressed as a nonnegative linear combination of Ddeg,Dunb

and the boundary divisors "k,d−k , 1 ≤ k ≤ �d/2�.
Remark 2.3. In part (2) of Theorem 2.2, M0,d denotes the Deligne–Mumford
moduli space of d-pointed, genus-0 stable curves. The symmetric group Sd on
d-letters acts on the labeling of the marked points.

If we identify the Neron–Severi space of M0,0(G(k, n), d)with the vector space
spanned by the divisor classes Hσ1,1,Hσ2 and the classes of the boundary divisors
"k,d−k , 1 ≤ k ≤ �d/2�, then the effective cone of M0,0(G(k, n), d) is contained
in the effective cone of M0,0(G(k, n+ 1), d), with equality if n ≥ k + d. Hence,
part (3) of Theorem 2.2 determines the effective cone of M0,0(G(k, n), d) for
every n ≥ k + d.

Remark 2.4. The canonical class of M0,0(G(k, n), d) can be easily derived from
[dJS, Thm. 1.1]:

K =
(
n

2
− k − 1 − n

2d

)
Hσ1,1 +

(
k − n

2
− 1 − n

2d

)
Hσ2

+
�d/2�∑
i=1

(
ni(d − i)

2d
− 2

)
"i,d−i .

For most of the cases we shall consider here, −K will not lie in the ample cone.

3. Degree-2 Maps to Grassmannians

In this section, we let 2 ≤ k ≤ n − 2 and discuss the stable base locus decompo-
sition of M0,0(G(k, n), 2). The divisor classes introduced in Section 2 have the
following expressions (see [CoS, Sec. 4, Sec. 5]) in terms of the basis Hσ1,1,Hσ2

and the boundary divisor " = "1,1:
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T = 1

2
(Hσ1,1 +Hσ2 +"),

Ddeg = 1

4
(−Hσ1,1 + 3Hσ2 −"),

Dunb = 1

4
(3Hσ1,1 −Hσ2 −").

Most questions about the divisor theory of M0,0(G(k, n), 2) can be reduced to
studying the divisor theory of M0,0(G(2, 4), 2). Let W be a 4-dimensional sub-
space of V. Let U be a (k − 2)-dimensional subspace of V such that U ∩W = 0.
Given a 2-dimensional subspace ' of W, the span of ' and U is a k-dimensional
subspace of V. Hence, there is an inclusion i : G(2, 4) → G(k, n) that induces a
morphism

φ : M0,0(G(2, 4), 2) → M0,0(G(k, n), 2).

It is easy to see that

φ∗(Hσ1,1) = Hσ1,1, φ∗(Hσ2) = Hσ2, φ∗(") = ".

We will see that, under this correspondence, the stable base locus decompositions
of M0,0(G(k, n), 2) and M0,0(G(2, 4), 2) coincide. Many of our constructions
will be extended from G(2, 4) to G(k, n) via the morphism φ. The reader who
wishes to specializeG(k, n) toG(2, 4) in this section will not lose much generality.

Remark 3.1. The geometry of M0,0(G(2, 4), 2) is closely related to the geometry
of quadric surfaces in P3. The lines parameterized by a point in M0,0(G(2, 4), 2)
sweep out a degree-2 surface in P3. The maps parameterized by Ddeg correspond
to those that span a plane two-to-one. The maps parameterized by Dunb corre-
spond to those that sweep out a quadric cone.

Notation 3.2. We shall use Q[λ] to denote the closure of the locus of maps f
in M0,0(G(k, n), 2) with irreducible domain such that the map f factors through
the inclusion of some Schubert variety �λ in G(k, n).

Example 3.3. For example, Q[(1)∗ ] denotes the locus of maps two-to-one onto
a line in the Plücker embedding of G(k, n). The union of Q[(1, 1)∗ ] and Q[(2)∗ ]
in M0,0(G(k, n), 2) is the locus of maps f such that the span of f is contained in
G(k, n). The linear spaces parameterized by a general map in Q[(1, 1)∗ ] sweep
out a P k two-to-one. The linear spaces parameterized by a general map in Q[(2)∗ ]
sweep out a k-dimensional cone over a conic curve.

For our calculations of the stable base locus, we will introduce many curve classes
and compute their intersections with divisor classes. For the convenience of the
reader, we summarize this information in Table 1. The first column contains the
curve classes in the order that they will be introduced. The next three columns
contain the intersection numbers of these curve classes with the divisors Hσ1,1,
Hσ2, and ", respectively. Finally, the last column describes the subvariety of
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Table 1

Curve class C C ·Hσ1,1 C ·Hσ2 C ·" Deformations cover

C1 1 0 3 Q[(1, 1)∗ ]
C2 0 1 3 Q[(2)∗ ]
C3 1 1 2 M0,0(G(k, n), 2)
C4 2 0 0 Q[(1, 1)∗ ]
C5 0 2 0 Q[(2)∗ ]
C6 1 0 −1 "

C7 0 1 −1 "

C8 0 0 >0 Q[(1)∗ ]

M0,0(G(k, n), 2) covered by effective curves in that class. Readers may wish to
verify Theorem 3.6 for themselves using this table.

In order to understand the stable base locus decomposition of M0,0(G(k, n), 2),
we need one more divisor class. Set N = (

n
k

)
. Let p : M0,0(G(k, n), 2) ���

G(3,N) denote the rational map, defined away from the locus of double covers
of a line in G(k, n), sending a stable map to the P2 spanned by its image in the
Plücker embedding of G(k, n). This map gives rise to a well-defined map p∗ on
Picard groups. Let P = p∗(OG(3,N)(1)). Geometrically, P is the class of the clo-
sure of the locus of maps f such that the linear span of the image of f (viewed in
the Plücker embedding of G(k, n)) intersects a fixed codimension-3 linear space
in PN−1.

Lemma 3.4. The divisor class P is equal to

P = 1

4
(3Hσ1,1 + 3Hσ2 −").

Proof. The formula for the classP follows from [CoHaS1, Lemma 2.1]. However,
since we will later need the curve classes introduced here, we recall the proof. The
divisor class P can be computed by intersecting with test families. Let λ = (1, 1)∗
and µ = (2)∗ be the partitions dual to (1, 1) and (2), respectively. In the Plücker
embedding of G(k, n), both �λ and �µ are linear spaces of dimension 2. Let C1

and C2 be the curves in M0,0(G(k, n), 2) induced by a general pencil of conics in
a fixed �λ and �µ, respectively. Let C̃3 be the curve in M0,0(G(2, 4), 2) induced
by a general pencil of conics in a general codimension-2 linear section of G(2, 4)
in its Plücker embedding. Let C3 = φ(C̃3). The following intersection numbers
are easy to compute:

C1 ·Hσ1,1 = 1, C1 ·Hσ2 = 0, C1 ·" = 3, C1 · P = 0;
C2 ·Hσ1,1 = 0, C2 ·Hσ2 = 1, C2 ·" = 3, C2 · P = 0;
C3 ·Hσ1,1 = 1, C3 ·Hσ2 = 1, C3 ·" = 2, C3 · P = 1.
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Let aσλ + bσµ be the cohomology class of the surface swept out by the images of
the maps parameterized by a curve C in M0,0(G(k, n), 2). Then the intersection
number of C with Hσ1,1 (resp., Hσ2) is equal to a (resp., b). Since C1, C2, and C3

sweep out surfaces with cohomology class σλ, σµ, and σλ + σµ, respectively, the
intersection numbers of these curves with Hσ1,1 and Hσ2 are as claimed. A gen-
eral pencil of conics in the plane has three reducible elements. A general pencil
of conics in a quadric surface has two reducible elements. Since the total space of
the surfaces are smooth at the nodes, the intersections with the boundary divisor
are transverse. Therefore, the intersection numbers of the curves Ci with " are as
claimed. Finally, the intersection numbers of the curves Ci with P are clear. The
class P is determined by these intersection numbers.

Notation 3.5. For divisor classesD1 andD2, let c(D1D2) (resp., c(D1D2)) de-
note the open (resp., closed) cone in the Neron–Severi space spanned by positive
(resp., nonnegative) linear combinations of D1 and D2. Let c(D1D2) denote the
cone spanned by linear combinations

c(D1D2) = {aD1 + bD2 | a ≥ 0, b > 0}.
The domain in R3 bounded by the divisor classes D1,D2, . . . ,Dr is the open do-
main bounded by c(D1D2), c(D2D3), . . . , c(DrD1).

Theorem 3.6 and Figure 1 describe the eight chambers in the stable base locus de-
composition of M0,0(G(k, n), 2). In the figure, we draw a cross-section of the
3-dimensional cone and mark each chamber with the corresponding number that
describes the chamber in the theorem.

Figure 1 The stable base locus decomposition of M0,0(G(k, n), 2)

Theorem 3.6. The stable base locus decomposition partitions the effective cone
of M0,0(G(k, n), 2) into the following chambers.

(1) In the closed cone spanned by nonnegative linear combinations of Hσ1,1, Hσ2,
and T, the stable base locus is empty.
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(2) In the domain bounded by Hσ1,1, Hσ2, and P union c(Hσ1,1P) ∪ c(Hσ2P), the
stable base locus consists of the locus Q[(1)∗ ] of maps two-to-one onto a line
in G(k, n).

(3) In the domain bounded by Hσ2, Ddeg, and P union c(Hσ2Ddeg) ∪ c(PDdeg),
the stable base locus consists of the locus Q[(1, 1)∗ ].

(4) In the domain bounded by Hσ1,1, Dunb, and P union c(Hσ1,1Dunb)∪ c(PDunb),
the stable base locus consists of the locus Q[(2)∗ ].

(5) In the domain bounded by P, Ddeg, and Dunb union c(DdegDunb), the stable
base locus consists of the union Q[(1, 1)∗ ] ∪ Q[(2)∗ ].

(6) In the domain bounded by Hσ2, Ddeg, and " union c(Ddeg"), the stable base
locus consists of the union of the boundary divisor and Q[(1, 1)∗ ].

(7) In the domain bounded by Hσ1,1, Dunb, and " union c(Dunb"), the stable base
locus consists of the union of the boundary divisor and Q[(2)∗ ].

(8) Finally, in the domain bounded by Hσ1,1, T, Hσ2, and " union c(Hσ2") ∪
c(Hσ1,1"), the stable base locus consists of the boundary divisor.

Proof. The reader should notice the symmetry across the vertical axis in Figure 1.
The Grassmannians G(k, n) and G(n − k, n) are isomorphic. This isomorphism
induces an isomorphism

ψ : M0,0(G(k, n), 2) → M0,0(G(n− k, n), 2)

that interchanges Hσ1,1 and Dunb with Hσ2 and Ddeg, respectively, and gives rise
to the symmetry in the figure. The stable base locus of a divisor ψ∗(D) is equal
to the inverse image under ψ of the stable base locus of D. We will often group
the divisors that are symmetric under ψ and use the symmetry to simplify our
calculations.

Since the effective cone of M0,0(G(k, n), 2) is generated by nonnegative linear
combinations of Ddeg, Dunb, and ", the stable base locus of any divisor has to be
contained in the union of the stable base loci of Ddeg, Dunb, and the boundary di-
visor. We first check that the loci described in the theorem are in the stable base
locus of the claimed divisors. To show that a variety X is in the base locus of a lin-
ear system |D|, it suffices to cover X by curves C that have negative intersection
with D.

Express a general divisor D = aHσ1,1 + bHσ2 + c". Recall from the proof of
Lemma 3.4 that C1 and C2 are the curves induced by pencils of conics in �λ and
�µ, respectively, where λ = (1, 1)∗ and µ = (2)∗. The intersection numbers of C1

and C2 with D are

C1 ·D = a + 3c, C2 ·D = b + 3c.

Since curves in the class C1 (resp., C2) cover Q[(1, 1)∗ ] (resp., Q[(2)∗ ]), we con-
clude that Q[(1, 1)∗ ] (resp., Q[(2)∗ ]) is in the base locus of the linear system |D|
if a + 3c < 0 (resp., b + 3c < 0). In other words, Q[(1, 1)∗ ] is in the restricted
base locus of the divisors contained in the interior of the cone generated by Ddeg,
Dunb, and Ddeg +"/3 and in c(DunbDdeg). Similarly, Q[(2)∗ ] is in the restricted
base locus of a divisor contained in the interior of the cone generated by Ddeg,
Dunb, and Dunb +"/3 and in c(DdegDunb).
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Let C4 and C5 be the curves induced in M0,0(G(k, n), 2) by the 1-parameter
family of conics tangent to four general lines in a fixed �λ and �µ, respectively.
It is straightforward to see that

C4 ·D = 2a, C5 ·D = 2b.

Curves of type C4 and C5 cover Q[(1, 1)∗ ] and Q[(2)∗ ], respectively. Conse-
quently, if a < 0 (resp., b < 0) then Q[(1, 1)∗ ] (resp., Q[(2)∗ ]) is in the restricted
base locus of |D|. We conclude that Q[(1, 1)∗ ] is in the restricted base locus
of any divisor contained in the region bounded by Ddeg, ", Hσ2, and Dunb and
in c("Ddeg) ∪ c(DunbDdeg). Similarly, Q[(2)∗ ] is in the restricted base locus of
any divisor contained in the region bounded by Dunb, ", Hσ1,1, and Ddeg and in
c("Dunb) ∪ c(DdegDunb).

Next let C6 and C7 be the curves induced by attaching a line at the base point
of a pencil of lines in �λ and �µ, respectively. These curves have the following
intersection numbers with D:

C6 ·D = a − c, C7 ·D = b − c.

Since deformations of the curves in the same class as C6 and C7 cover the bound-
ary divisor, we conclude that the boundary divisor is in the base locus of |D| if
a − c < 0 or if b − c < 0. Hence, the boundary divisor is in the base locus
of the divisors contained in the region bounded by Dunb, T, Ddeg, and " and in
c(Dunb") ∪ c(Ddeg").

Finally, consider the 1-parameter family C8 of two-to-one covers of a line l in
G(k, n) branched along a fixed point p ∈ l and a varying point q ∈ l. Then

C8 ·D = c.

Curves in the class C8 cover the locus of double covers of a line. Hence, if c < 0,
then the locus of double covers of a line have to be contained in the restricted base
locus. Note that since the locus of double covers of a line is contained in both
Q[(1, 1)∗ ] and Q[(2)∗ ], any divisor containing the latter in the base locus also
contains the locus of double covers. Hence, the locus of double covers is con-
tained in the base locus of every effective divisor contained in the complement of
the closed cone generated by Hσ1,1, Hσ2, and ". In particular, this locus is con-
tained in the base locus of divisors contained in the region bounded by Hσ1,1, Hσ2,
and P and in c(Hσ1,1P) ∪ c(Hσ2P).

We have verified that the loci described in the theorem are in the base locus
of the corresponding divisors. We will next show that the divisors listed in the
theorem contain only the listed loci in their stable base locus. The divisors Hσ1,1,
Hσ2, and T are base-point-free [CoS, Sec. 5]. Hence, for divisors contained in the
closed cone generated by Hσ1,1, Hσ2, and T, the base locus is empty.

Next, note that the base locus of the linear system |P | is exactly the locus
of double covers of a line. The rational map p in the definition of P is a mor-
phism in the complement of the locus of double covers of a line. If the image of a
map f is a degree-2 curve in G(k, n), then in the Plücker embedding of G(k, n)
the image spans a unique plane. In PN−1, we can always find a codimension-3 lin-
ear space 0 not intersecting '. Hence, f is not in the indeterminacy locus of the
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map to G(3,N) and there is a section of OG(3,N)(1) not containing the image of f.
It follows that f is not in the base locus of |P |. By the argument two paragraphs
previous, the locus of degree-2 maps onto a line is in the base locus of P. We con-
clude that in the region bounded by P, Hσ1,1, and Hσ2 and in c(Hσ2P)∪ c(Hσ1,1P),
the stable base locus consists of the locus of double covers of a line.

For a divisor contained in the region bounded by Dunb, P, and Hσ1,1 and in
c(PDunb) ∪ c(Hσ1,1Dunb), the stable base locus must be contained in the stable
base locus of Dunb since every divisor in this region is a nonnegative linear com-
bination of Dunb and base-point-free divisors. Similarly, for a divisor contained in
the region bounded by Ddeg, P, and Hσ2 and in c(PDdeg) ∪ c(Hσ2Ddeg), the base
locus must be contained in the stable base locus Ddeg. In the region bounded by
Ddeg, Dunb, and P and in c(DunbDdeg), the base locus must be contained in the
union of the stable base loci of Ddeg and Dunb. The (stable) base locus of Ddeg is
Q[(1, 1)∗ ] and the (stable) base locus of Dunb is Q[(2)∗ ]. The linear spaces pa-
rameterized by a degree-2 map toG(k, n) span a linear space of dimension at most
k + 2. As long as they span a linear space of dimension k + 2, then the projection
from a general linear space of codimension k + 2 still spans a linear space of di-
mension k + 2; hence the corresponding map is not in the base locus of Ddeg. By
symmetry, as long as the intersection of all the linear spaces parameterized by the
degree-2 map does not contain a (k − 1)-dimensional linear space, then the map
is not contained in the base locus of Dunb. Hence, the claims in parts (3), (4), and
(5) of the theorem follow. Similarly, in the region bounded by Dunb, ", and Hσ1,1

and in c(Dunb"), the base locus must be contained in the union of Q[(2)∗ ] and the
boundary divisor. In the region bounded by Ddeg, ", and Hσ2 and in c(Ddeg"),
the base locus must be contained in the union of Q[(1, 1)∗ ] and the boundary di-
visor. We conclude the equality in these two cases as well. Finally, in the region
bounded by ", Hσ1,1, and Hσ2, the base locus has to be contained in the bound-
ary divisor. Hence in the complement of the closed cone spanned by Hσ1,1, T, and
Hσ2, the base locus must equal the boundary divisor by the preceding calculations.
This completes the proof of the theorem.

Next, we describe the birational models of M0,0(G(k, n), 2) that correspond to
the chambers in the decomposition. For a big rational divisor class D whose sec-
tion ring is finitely generated, let φD denote the birational map

φD : M0,0(G(k, n), 2) ��� Proj

( ⊕
m≥0

(H 0(O(�mD�)))
)
.

Proposition 3.7. The Kontsevich moduli space M0,0(G(k, n), 2) admits the fol-
lowing morphisms.

(1) φtHσ1,1+(1−t)Hσ2
, for 0 < t < 1, is a morphism from M0,0(G(k, n), 2) to the

normalization of the Chow variety, which is an isomorphism in the comple-
ment of Q[(1)∗ ], the locus of double covers of a line inG(k, n), and contracts
Q[(1)∗ ] so that the locus of double covers with the same image line maps to
a point.
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(2) φHσ1,1
and φHσ2

give two morphisms from M0,0(G(k, n), 2) to two contrac-
tions of the normalization of the Chow variety, where φHσ1,1

(resp., φHσ2
), in

addition to the double covers of a line, also contracts the boundary divisor and
Q[(2)∗ ] (resp., Q[(1, 1)∗ ]). Any two maps f , f ′ in the boundary for which
the image is contained in the union of the same Schubert varieties�(2)∗ (resp.,
�(1,1)∗) map to the same point under φHσ1,1

(resp., φHσ2
). Similarly, the stable

maps in Q[(2)∗ ] (resp., Q[(1, 1)∗ ]) with image contained in a fixed Schubert
variety �(2)∗ (resp., �(1,1)∗) map to the same point under φHσ1,1

(resp., φHσ2
).

(3) If D is in the domain bounded by Hσ1,1, Hσ2, and T, then D is ample and gives
rise to an embedding of M0,0(G(k, n), 2).

Proof. By [CoS], the nef cone of M0,0(G(k, n), 2), which coincides with the
base-point-free cone, is the closed cone spanned by Hσ1,1, Hσ2, and T. We there-
fore obtain morphisms for sufficiently high and divisible multiples of each of the
rational divisors in this cone. The last part of the proposition follows by Kleiman’s
theorem, which asserts that the interior of the NEF cone is the ample cone.

The curves in the class C8 have intersection number 0 with any divisor of the
form tHσ1,1 + (1 − t)Hσ2 . Since these curves cover the locus of double covers of a
fixed line, we conclude that the maps obtained from these divisors contract the lo-
cus of double covers of a fixed line to a point. The class H of the divisor of maps
whose image intersects a codimension-2 linear space in projective space gives rise
to the Hilbert–Chow morphism on M0,0(P

N−1, 2). This morphism has image the
normalization of the Chow variety and is an isomorphism away from the locus of
maps two-to-one onto their image. The Plücker embedding of G(k, n) induces an
inclusion of M0,0(G(k, n), 2) in M0,0(P

N−1, 2). The pull-back of H under this
inclusion is Hσ1,1 +Hσ2 . By symmetry, there is no loss of generality in assuming
that 0 < t ≤ 1/2. We can write

tHσ1,1 + (1 − t)Hσ2 = t(Hσ1,1 +Hσ2)+ (1 − 2t)Hσ2 .

Since Hσ2 is base-point-free, the first part of the proposition follows.
The cases of φHσ1,1

and φHσ2
are almost identical, so we concentrate on φHσ1,1

.

Note that Hσ1,1 has intersection number 0 with the curve classes C5, C7, and C8.

Curves in the class C5 cover the locus Q[(2)∗ ]. Curves in the class C7 cover the
boundary divisor, and curves in the classC8 cover Q[(1)∗ ]. We conclude that these
loci are contracted by φHσ1,1

. Part (2) of the proposition follows from these con-
siderations. We observe that the locus of degree-2 curves whose span does not
lie in G(k, n) admits three distinct Chow compactifications depending on whether
one uses the codimension-2 class σ1,1, σ2, or aσ1,1 + bσ2 with a, b > 0. The three
models are the normalization of these Chow compactifications.

Theorem 3.8. (1) The birational model corresponding to the divisor T is the
space of weighted stable maps M0,0(G(k, n), 1, 1). Here φT is an isomorphism
away from the boundary divisor and contracts the locus of maps with reducible
domain f : C1 ∪ C2 → G(k, n) that have f(C1 ∩ C2) = p for some fixed p ∈
G(k, n) to a point.

(2) For D ∈ c(Hσ1,1T ) or D ∈ c(Hσ2T ), the morphism φD is an isomorphism
away from the boundary divisor. On the boundary divisor, for D ∈ c(Hσ1,1T )
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(resp., in c(Hσ2T )) the morphism contracts the locus of line pairs that are con-
tained in the same pair of intersecting linear spaces with class �n−k−1,...,n−k−1

(resp., �n−k,...,n−k) to a point. These morphisms are flops of each other over φT .

Proof. The curves in the class C6 (resp., C7) have intersection number 0 with a
divisor class D in c(Hσ1,1T ) (resp., with D in c(Hσ2T )). The descriptions of the
morphisms follow easily after noting that φD contracts these curves. Note that the
further contractions to the image of φT are small contractions. It is easy to check
that they are flopping contractions.

For the next lemma and theorem, we assume that the target is G(2, 4). Recall that
the Plücker map embeds G(2, 4) as a smooth quadric hypersurface in P 5. The
orthogonal Grassmannian OG(3, 6) parameterizes planes contained in a smooth
quadric hypersurface in P 5; hence it can be interpreted as parameterizing planes
contained in G(2, 4). Observe that OG(3, 6) has two isomorphic connected com-
ponents (distinguished depending on whether the plane has cohomology class σ1,1

or σ2).

Lemma 3.9. Let OGσ1,1(G(2, 4)) and OGσ2(G(2, 4)) denote the two connected
components of the orthogonal Grassmannian OG(3, 6) parameterizing projective
planes contained in the Plücker embedding of G(2, 4). Then the Hilbert scheme
Hilb2x+1(G(2, 4)) corresponding to the Hilbert polynomial 2x + 1 is isomorphic
to the blow-up of G(3, 6) along OG(3, 6). The blow-down morphism

π : Hilb2x+1(G(2, 4)) → G(3, 6)
factors through

π1,1 : Hilb2x+1(G(2, 4)) → BlOGσ1,1
G(3, 6)

and
π2 : Hilb2x+1(G(2, 4)) → BlOGσ2

G(3, 6).

Proof. Consider the universal family I ⊂ G(3, 6)×P 5 over the Grassmannian ad-
mitting two natural projections φ1 and φ2 toG(3, 6) and P 5, respectively. The bun-
dle φ1∗φ∗

2OP 5(2) is naturally identified with Sym2 S ∗. Since OG(3, 6) is defined
by the vanishing of a general section of φ1∗φ∗

2OP 5(2), we can identify the normal
bundle of OG(3, 6) at a point ' of OG(3, 6) with Sym2 S ∗|'. Here Hilb2x+1(P

5)

is naturally identified with P(Sym2(S ∗)) → G(3, 6). Then Hilb2x+1(G(2, 4)) is
given by

{([C], [']) | ['] ∈G(3, 6), C ⊂ ' ∩G(2, 4), [C] ∈ Hilb2x+1(')}.
The projection to G(3, 6) is clearly an isomorphism away from OG(3, 6). Over
OG(3, 6), the fiber of the Hilbert scheme is identified with the projectivization of
Sym2 S ∗. It follows that Hilb2x+1(G(2, 4)) is isomorphic to the blow-up ofG(3, 6)
along OG(3, 6). Since OG(3, 6) has two connected components, this leads to two
exceptional divisors that can be blown down independently. The lemma follows
from these considerations.

Theorem 3.10. The rational maps corresponding to the divisors D in the cone
generated by Hσ1,1, Hσ2, and P are as follows.
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(1) Let 0 < t < 1. The Hilbert scheme Hilb2x+1(G(2, 4)) is the flip of
M0,0(G(2, 4), 2) over the Chow variety ChowtHσ1,1+(1−t)Hσ2

. For D in the
domain bounded by Hσ1,1, Hσ2, and P, the rational transformation φD equals
M0,0(G(2, 4), 2) ��� Hilb2x+1(G(2, 4)).

(2) For D ∈ c(Hσ1,1P), the rational transformation φD equals
M0,0(G(2, 4), 2) ��� BlOGσ1,1

G(3, 6).
(3) For D ∈ c(Hσ2P), the rational transformation φD equals

M0,0(G(2, 4), 2) ��� BlOGσ2
G(3, 6).

(4) The rational transformation φP equals M0,0(G(2, 4), 2) ��� G(3, 6).

Proof. Consider the incidence correspondence consisting of triples (C,C∗,')
where ' is a plane in P 5; C is a connected, arithmetic genus-0, degree-2 curve
in G(2, 4) ∩'; and C∗ is a dual conic of C in '. This incidence correspondence
admits a map both to M0,0(G(2, 4), 2) and to Hilb2x+1(G(2, 4)) by projection to
the first two factors and by projection to the first and third factors, respectively.
The projection to the first factor gives a morphism to the Chow variety. Note that
this projection is an isomorphism away from the locus where C is supported on a
line. The morphism to the Chow variety is a small contraction in the case of both
the Hilbert scheme and the Kontsevich moduli space. The fiber over a point cor-
responding to a double line in the morphism from the Hilbert scheme to the Chow
variety is isomorphic to P1 corresponding to the choice of plane ' everywhere
tangent to the Plücker embedding of G(2, 4) in P 5. The fiber over a point corre-
sponding to a double line in the morphism from M0,0(G(2, 4), 2) to the Chow
variety is isomorphic to P2 = Sym2(P1) corresponding to double covers of P1.

Note that, in both the Hilbert scheme and the Kontsevich moduli space, the mor-
phisms to the Chow variety are small contractions. The locus of double lines in the
Hilbert scheme (resp., in M0,0(G(2, 4), 2)) has codimension 3 (resp., 2). Finally,
note that for D in the domain bounded by Hσ1,1, Hσ2, and P, −D is ample on the
fibers of the projection of M0,0(G(2, 4), 2) to the Chow variety andD is ample on
the fibers of the projection of the Hilbert scheme to the Chow variety. We conclude
that Hilb2x+1(G(2, 4)) is the flip of M0,0(G(2, 4), 2) over the Chow variety. The
rest of the theorem follows from the previous lemma and the definition of P.

4. Degree-3 Maps to Grassmannians

Let 3 ≤ k ≤ n− 3. In this section, we study the stable base locus decomposition
of M0,0(G(k, n), 3). We begin by introducing the divisor classes that will play an
important role in our discussion. The Neron–Severi space is spanned by the divi-
sors Hσ1,1, Hσ2, and " = "1,2. In this basis, the divisors Ddeg, Dunb, and T have
the following expressions (see [CoS, Sec. 4, Sec. 5]):

T = 2

3
(Hσ1,1 +Hσ2 +"),

Ddeg = 1

3
(−Hσ1,1 + 2Hσ2 −"),

Dunb = 1

3
(2Hσ1,1 −Hσ2 −").
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Table 2

Curve class B ·Hσ1,1 B ·Hσ2 B ·" Covers subvariety

B1 2 0 4 C[(1,1, 1)∗ ]
B2 0 2 4 C[(3)∗ ]
B3 1 0 −1 "

B4 1 0 5 C[(1, 1)∗ ]
B5 0 1 5 C[(2)∗ ]
B6 0 0 >0 Q((1)∗)L
B7 0 0 >0 C[(1)∗ ]
B8 0 1 −1 "

B9 1 0 2 Q((1, 1)∗)L
B10 5 1 0 C[(2, 2, 1)∗ ]
B11 1 2 3 C[(3, 2)∗ ]
B12 1 5 0 C[(3, 2)∗ ]
B13 1 1 4 C[(2, 2)∗ ]
B14 9 0 0 C[(1,1, 1)∗ ]
B15 0 9 0 C[(3)∗ ]
B16 2 0 0 C[(1)∗ ]
B17 0 2 0 C[(1)∗ ]

Notation 4.1. Let N = (
n
k

) − 1. The Plücker map embeds G(k, n) in PN. Let
C[λ] denote the closure of the locus of maps f in M0,0(G(k, n), 3)with irreducible
domain such that the map f factors through the inclusion of some Schubert va-
riety �λ in G(k, n). Let Q(λ)L[µ] denote the closure of the locus of maps with
reducible domains C1 ∪ C2 such that f restricts to a degree-1 map on C1 and a
degree-2 map on C2 such that the image of f |C2 is contained in some Schubert
variety �λ and the entire image of f is contained in some Schubert variety �µ.

Observe that C, Q, and L denote cubic, quadratic, and linear, respectively.

Example 4.2. Let f ∈ M0,0(G(k, n), 3) be a general stable map. Then the lin-
ear spaces parameterized by the image of f sweep out a cubic scroll S0,...,0,1,1,1.

Such a scroll is a cone over the Segre embedding of P1 × P2. In particular, every
stable map in M0,0(G(k, n), 3) lies in a Schubert variety of the form �(3,2,1)∗ .
Hence, C[(3, 2, 1)∗ ] = M0,0(G(k, n), 3). Note that C[(1)∗ ] is the locus of maps
in M0,0(G(k, n), 3) that are triple covers of a line in G(k, n); QL[(3, 2, 1)∗ ] is
the boundary divisor.

In order to understand the stable base locus decomposition of M0,0(G(k, n), 3),
we will introduce many curve classes and divisor classes. Before we begin we
summarize the curve classes in Table 2. The first column lists the curve classes in
the order that we introduce them. The next three columns contain the intersection
numbers of these curve classes with the divisor classes Hσ1,1, Hσ2, and ". In the
last column, we describe the locus covered by effective curves in that class.
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Table 3

T = 2
3 (Hσ1,1 +Hσ2 +")

Ddeg = 1
3 (−Hσ1,1 + 2Hσ2 −")

Dunb = 1
3 (2Hσ1,1 −Hσ2 −")

P = 1
3 (2Hσ1,1 + 2Hσ2 −")

F = 1
3 (5Hσ1,1 + 5Hσ2 −")

S = 1
3 (−Hσ1,1 + 5Hσ2 −")

S ′ = 1
3 (5Hσ1,1 −Hσ2 −")

U = 2Hσ1,1 + 5Hσ2 −"

U ′ = 5Hσ1,1 + 2Hσ2 −"

R = Hσ1,1 +Hσ2 −"

V = Hσ1,1 + 4Hσ2 − 2"

V ′ = 4Hσ1,1 +Hσ2 − 2"

In Table 3 we summarize all the divisor classes that we will introduce and ex-
press them in terms of the classes Hσ1,1, Hσ2, and ". These two tables should help
the reader verify Theorem 4.8.

We begin by introducing two divisor classes P and F, where P (resp., F ) is the
pull-back ofDdeg introduced in [CoHaS1] (resp., in [Ch]) by the natural morphism

i : M0,0(G(k, n), 3) → M0,0(P
N, 3).

The expressions for the classes follow from parts (v) and (vi) of [Ch, Thm. 1.1]. In
order to make this paper self-contained, we will sketch these calculations below.

The Class P. The image of a map of degree 3 spans a linear space of dimen-
sion ≤ 3 in the Plücker embedding of G(k, n). Consider the Zariski open set U in
M0,0(G(k, n), 3) where the linear span of the image of f is P3. Let P denote the
class of the closure (in M0,0(G(k, n), 3)) of the locus in U where the span of f
intersects a fixed PN−4.

Lemma 4.3. The class P is given by

P = 1

3
(2Hσ1,1 + 2Hσ2 −").

The stable base locus of P consists of C[(1, 1)∗ ] ∪ C[(2)∗ ] ∪ Q((1)∗)L.

Proof. Let B1 (resp., B2) denote the curve in M0,0(G(k, n), 3) induced by a
pencil of twisted cubic curves on a quadric surface contained in a fixed �(1,1,1)∗
(resp., �(3)∗). These pencils sweep out a surface with cohomology class 2σ(1,1)∗
(resp., 2σ(2)∗) and have four reducible members. Let B3 denote the curve in
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M0,0(G(k, n), 3) induced by a pencil of lines in �(1,1)∗ union a fixed conic at-
tached at the base point of the pencil. The class P is determined by the following
intersection numbers:

B1 ·Hσ1,1 = 2, B1 ·Hσ2 = 0, B1 ·" = 4, B1 · P = 0;
B2 ·Hσ1,1 = 0, B2 ·Hσ2 = 2, B2 ·" = 4, B2 · P = 0;
B3 ·Hσ1,1 = 1, B3 ·Hσ2 = 0, B3 ·" = −1, B3 · P = 1.

The class P is the pull-back of a very ample divisor class under the rational map

φP : M0,0(G(k, n), 3) ��� G(3,N)

mapping a stable map to the span of its image. Hence, the base locus of P is con-
tained in the indeterminacy locus of the map φP . Namely, it is contained in either
the locus of maps whose (reduced) image is a curve of degree < 3 or a curve of
degree 3 that spans a P2. If a curve of degree 3 in the Grassmannian spans a P2,
then the P2 must be contained in the Grassmannian since the ideal of the Grass-
mannian in its Plücker embedding is generated by quadrics. We conclude that the
base locus of P is contained in the locus C[(1, 1)∗ ]∪C[(2)∗ ]∪Q((1)∗)L (note that
the locus of three-to-one maps onto a line is contained in C[(1, 1)∗ ] ∩ C[(2)∗ ]).
Conversely, let B4 (resp., B5) be the curves in M0,0(G(k, n), 3) induced by a pen-
cil of nodal cubics in �(1,1)∗ (resp., �(2)∗) containing a fixed node and five base
points. Curves in the classes B4 and B5 cover the loci C[(1, 1)∗ ] and C[(2)∗ ], re-
spectively. We have the following intersection numbers:

B4 ·Hσ1,1 = 1, B4 ·Hσ2 = 0, B4 ·" = 5, B4 · P = −1;
B5 ·Hσ1,1 = 0, B5 ·Hσ2 = 1, B5 ·" = 5, B5 · P = −1.

Therefore, C[(1, 1)∗ ]∪C[(2)∗ ] must be contained in the restricted base locus of P.
Similarly, let B6 be a moving curve in Q((1)∗)L such that the (reduced) image of
the maps parameterized by B6 is a fixed pair of lines in G(k, n). Since the image
lines do not vary, we have the intersection numbers B6 ·Hσ1,1 = B6 ·Hσ2 = 0. The
intersection number of B6 with " can be taken to be positive. It follows that the
intersection number of B6 with P will be negative. We conclude that Q((1)∗)L is
contained in the restricted base locus of P.

The Class F. Fix two linear spaces ' ∼= PN−3 ⊂ 0 ∼= PN−1 in PN. Let V de-
note the open subset of M0,0(G(k, n), 3) parameterizing maps f such that f −1(0)

is three distinct points. LetF denote the class of the closure in M0,0(G(k, n), 3) of
the locus of maps f such that the line l spanned by a pair of points in0∩ Image(f )
intersects '. Equivalently, the projection from ' of the image of f has a node
contained in the image of the projection of 0.

Lemma 4.4. The class F is equal to

F = 1

3
(5Hσ1,1 + 5Hσ2 −").

The stable base locus of F consists of C[(1)∗ ] ∪ Q((1)∗)L.
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Proof. Let B4 and B5 be the curves introduced in the proof of Lemma 4.3. Then
F is the class of the pull-back under the natural inclusion of the corresponding
divisor class from M0,0(P

N, 3). By [Ch], F · B4 = F · B5 = 0. On the other
hand, B3 ·F = 2. The formula for F follows from these intersection numbers and
the calculations in the proof of Lemma 4.3. Suppose the image of a map f is a
curve of degree 3 in G(k, n) ⊂ PN. Then we can always choose a hyperplane 0
in PN that intersects the image of f in three distinct points p1,p2,p3. By taking
' to be a codimension-2 linear subspace of 0 not intersecting the lines joining
any pair of points pi,pj with i �= j, we obtain a divisor in the class F whose
support does not contain f. We conclude that the base locus of F is contained in
C[(1)∗ ]∪Q((1)∗)L. Since the curve B6 introduced in the proof of Lemma 4.3 has
B6 ·F < 0, it follows that Q((1)∗)L is in the restricted base locus of P. Similarly,
let B7 be a moving 1-parameter family of maps in C[(1)∗ ] intersecting the bound-
ary divisor whose image is a fixed line in G(k, n). Since B7 ·Hσ1,1 = B7 ·Hσ2 =
0 and B7 · " > 0, we conclude that B7 · F < 0 and C[(1)∗ ] is in the restricted
base locus of F.

The P k−1 parameterized by a twisted cubic curve in G(k, n) sweep out a rational
scroll of degree 3 in P n−1. We can define divisors in M0,0(G(k, n), 3) by impos-
ing conditions on this scroll.

The Classes S and S ′. It is easiest to understand the class S in G(3, 6). The
linear spaces parameterized by a general rational cubic curve in G(3, 6) sweep out
the Segre embedding of P1 × P2 in P 5. The projection of the Segre 3-fold from
a point to P 4 is a cubic hypersurface in P 4 with a double plane. We can define a
divisor by requiring this double plane to intersect a fixed line in P 4. More gener-
ally, fix a linear space ' = P n−k−3 ⊂ 0 = P n−k−1 in P n−1. Let U be the Zariski
open subset of M0,0(G(k, n), 3) consisting of maps f such that the linear spaces
parameterized by the image of f sweep out a k-dimensional (possibly reducible)
cubic scroll. Recall that an irreducible cubic scroll is a cone over the Segre em-
bedding of P1 × P2, or a degeneration to a cone over a cubic surface scroll or a
twisted cubic curve. Let S be the class of the closure in M0,0(G(k, n), 3) of the
locus of maps where the scroll contains a quadric hypersurface of dimension k−1
whose span contains ' and intersects 0 in a linear space of dimension n− 4. The
projection of a cubic scroll of dimension k in P n−1 from ' is a cubic hypersurface
in P k+1 that is double along a P k−1. Conversely, an irreducible cubic hypersurface
in P k+1 that is double along a P k−1 arises as a projection of a cubic scroll. Here
S is the class of the divisor of maps where the singular locus of the projection of
the scrolls from ' intersects a fixed line (the image of the projection of 0). The
reader will notice that the class S is defined in M0,0(G(k, k + 2), 3) and pulled
back to M0,0(G(k, n), 3) under the rational map induced by projection from '.

Given a divisor class D in M0,0(G(n− k, n), 3), we can define a dual divi-
sor class D ′ in M0,0(G(k, n), 3). Here G(k, n) and G(n − k, n) are isomor-
phic. This isomorphism induces an isomorphism between M0,0(G(k, n), 3) and
M0,0(G(n− k, n), 3). Let D ′ denote the pull-back of the divisor class D in
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M0,0(G(n− k, n), 3) under the isomorphism. In particular, define S ′ to be the
divisor class obtained by starting with S in M0,0(G(n− k, n), 3).

Lemma 4.5. The classes S and S ′ are equal to the following:

S = 1

3
(−Hσ1,1 + 5Hσ2 −"),

S ′ = 1

3
(5Hσ1,1 −Hσ2 −").

The stable base locus of S consists of C[(1,1, 1)∗ ] ∪ Q((1, 1)∗)L. The stable base
locus of S ′ consists of C[(3)∗ ] ∪ Q((2)∗)L.
Proof. The assertions about S ′ follow from the assertions about S by duality. To
calculate the class of S, we use test families. Consider a pencil of plane cubics
with a fixed node. Take the cone over this pencil with a vertex equal to a projec-
tive linear space P k−2. This pencil of cubic scrolls induces a 1-parameter family
of degree-3 curves in G(k, n) and hence a curve in M0,0(G(k, n), 3). Note that
the class of this curve is B5 defined in Lemma 4.3. Since the singular locus in this
family of scrolls does not vary, a general line will be disjoint from the singular
locus. Note that the singular loci of the five reducible members of the family are
also disjoint from a general line. We have the intersection numbers

B5 ·Hσ1,1 = 0, B5 ·Hσ2 = 1, B5 ·" = 5, B5 · S = 0.

From the proof of Lemma 4.3, B3 is the curve induced in M0,0(G(k, n), 3) by
attaching a conic at the base point of a pencil of lines contained in�(1,1)∗ . Similarly,
let B8 be the curve induced in M0,0(G(k, n), 3) by attaching a conic at the base
point of a pencil of lines contained in �(2)∗ . We can interpret the corresponding
scrolls as follows. The scrolls swept out by the linear spaces parameterized by
points in B3 are the union of a fixed quadric scroll with a fixed linear space L of
projective dimension k having a common P k−1. The intersection of the P k−1 vary-
ing in a pencil in L is the only data that varies. The scrolls swept out by the linear
spaces parameterized by points in B8 are the unions of a fixed quadric scroll with
a pencil of linear spaces of projective dimension k having a common P k−1 with
the quadric scroll. Using these geometric descriptions, the following intersection
numbers are straightforward to calculate:

B3 ·Hσ1,1 = 1, B3 ·Hσ2 = 0, B3 ·" = −1, B3 · S = 0;
B8 ·Hσ1,1 = 0, B8 ·Hσ2 = 1, B8 ·" = −1, B8 · S = 2.

The class of S (and by duality that of S ′) follows from these calculations.
Let B9 be the curve induced in M0,0(G(k, n), 3) from a pencil of conics in

�(1,1)∗ union a line at a base point of the pencil. Curves in the same class as B9

cover the locus Q((1, 1)∗)L. Since

B9 ·Hσ1,1 = 1, B9 ·Hσ2 = 0, B9 ·" = 2,

we conclude thatB9 ·S = −1 < 0. Therefore, Q((1, 1)∗)L is in the restricted base
locus of S. Recall from the proof of Lemma 4.3 thatB1 is a pencil of twisted cubics
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on a quadric contained in �(1,1,1)∗ . Since curves in the class B1 cover C[(1,1, 1)∗ ]
and B1 · S = −2 < 0, we conclude that C[(1,1, 1)∗ ] is in the restricted base locus
of S.

Suppose X is an irreducible cubic scroll of dimension k that spans a projective
linear space of dimension ≥ k+1. Then the singular locus of X has dimension ≤
k − 1. We can always choose a linear space ' = P n−k−2 so that the projection of
X still spans a linear space of dimension k + 1. We can then find a line l disjoint
from the singular locus of the projection X. If we take 0 to be the span of ' and
l, we obtain a section of S not vanishing on the point in M0,0(G(k, n), 3) induced
by the scroll X. Similarly, as long as the linear spaces parameterized by a point
in M0,0(G(k, n), 3) do not cover a linear space of dimension k multiple-to-one,
then the singular locus of the resulting (possibly reducible) scroll has dimension ≤
k − 1 and the same argument shows that the point is not in the base locus of S.
We conclude that the base locus of S is contained in C[(1,1, 1)∗ ] ∪ Q((1, 1)∗)L;
hence equality holds. This completes the proof of the proposition.

Finally, the following lemma determines the stable base locus of Ddeg and Dunb.

Lemma 4.6. The stable base locus of Dunb is C[(3, 2)∗ ] ∪ Q((2)∗)L. The stable
base locus of Ddeg is C[(2, 2, 1)∗ ] ∪ Q((1, 1)∗)L.
Proof. By duality, it suffices to consider the stable base locus of Ddeg. Note
that C[(2, 2, 1)∗ ] ∪ Q((1, 1)∗)L is the locus of maps whose images lie in a sub-
GrassmannianG(k, k+2) ofG(k, n). The image of every map in M0,0(G(k, n), 3)
factors through some embedding of G(k, k + 3) in G(k, n). Suppose the image
of a map f does not lie in a sub-Grassmannian G(k, k + 2); then the image of
f lies in a sub-Grassmannian G(k, k + 3). Take a linear space ' of dimension
n − k − 3 that does not intersect the (k + 3)-dimensional linear space spanned
by the linear spaces parameterized by the image of f. The locus of maps g ∈
M0,0(G(k, n), 3) such that the projection from ' of the span of the linear spaces
parameterized by g has dimension ≤ k + 2 is an effective divisor D in the class
Ddeg. Since f /∈D, we conclude that the stable base locus of Ddeg is contained in
C[(2, 2, 1)∗ ] ∪ Q((1, 1)∗)L. By the argument in the previous lemma, Q((1, 1)∗)L
is in the stable base locus of Ddeg. To see that C[(2, 2, 1)∗ ] is contained in the sta-
ble base locus of Ddeg, take a pencil of cubic hypersurfaces in P k+1 double along a
fixed projective linear space P k−1. (Note that a general projection of a cubic scroll
of dimension k to P k+1 is a cubic hypersurface double along a P k−1.) This fam-
ily of cubic hypersurfaces induces a curve B10 in M0,0(G(k, n), 3). We have the
following intersection numbers:

B10 ·Hσ1,1 = 5, B10 ·Hσ2 = 1, B10 ·" = 0.

A simple dimension count shows that such a pencil does not have any reducible
members. Hence, the last two intersection numbers are clear. To calculate the
first one, observe that the pencil induces a pencil of cubic curves in a plane dou-
ble at a fixed point. By Kleiman’s transversality theorem, the first intersection
number is the number of reducible curves in such a pencil. We have already seen
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that this number is 5. Using the expression for the class of Ddeg, we conclude that
B10 · Ddeg = −1. Curves in the class B10 cover the locus C[(2, 2, 1)∗ ]. We con-
clude that the stable base locus of Ddeg is C[(2, 2, 1)∗ ] ∪ Q((1, 1)∗)L.
Notation 4.7. Let U and U ′ be the divisor classes

U = 2Hσ1,1 + 5Hσ2 −", U ′ = 5Hσ1,1 + 2Hσ2 −".

Let R be the divisor class

R = Hσ1,1 +Hσ2 −".

Let V and V ′ be the divisor classes

V = Hσ1,1 + 4Hσ2 − 2", V ′ = 4Hσ1,1 +Hσ2 − 2".

Theorem 4.8 describes the stable base locus decomposition of M0,0(G(k, n), 3).
Since there are 22 chambers in the decomposition, the statement of the theorem
is necessarily long. The decomposition is summarized in Figure 2, which shows
a cross-section of the 3-dimensional cone.

Figure 2 The stable base locus decomposition of M0,0(G(k, n), 3)
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Theorem 4.8. The stable base locus decomposition of the effective cone of
M0,0(G(k, n), 3), with 3 ≤ k ≤ n− 3, is as follows.

(1) In the closed cone spanned byHσ1,1,Hσ2, andT, the stable base locus is empty.
(2) In the domain bounded by ", Hσ1,1, T, and Hσ2 union c(Hσ1,1") ∪ c(Hσ2"),

the stable base locus is equal to the boundary divisor.
(3) In the domain bounded by Hσ2, ", and S union c("S), the stable base locus

is the union of C[(1,1, 1)∗ ] and the boundary divisor.
(4) In the domain bounded by Ddeg, S, and " union c("Ddeg), the stable base

locus is the union of C[(2, 2, 1)∗ ] and the boundary divisor.
(5) In the domain bounded by Hσ1,1, ", and S ′ union c("S ′), the stable base

locus is the union of C[(3)∗ ] and the boundary divisor.
(6) In the domain bounded by Dunb, S ′, and " union c("Dunb), the stable base

locus is the union of C[(3, 2)∗ ] and the boundary divisor.
(7) In the domain bounded by Ddeg, R, and V union c(DdegR), the stable base

locus is C[(2, 2, 1)∗ ] ∪ C[(3)∗ ] ∪ Q((2)∗)L ∪ Q((1, 1)∗)L.
(8) In the domain bounded by Dunb, R, and V ′ union c(DunbR), the stable base

locus is C[(3, 2)∗ ] ∪ C[(1,1, 1)∗ ] ∪ Q((1, 1)∗)L ∪ Q((2)∗)L.
(9) In the domain bounded by Ddeg, Dunb, and R union c(DdegDunb), the stable

base locus is the union C[(3, 2)∗ ] ∪ C[(2, 2, 1)∗ ] ∪ Q((2)∗)L ∪ Q((1, 1)∗)L.
(10) In the domain bounded by Ddeg, S, and V union c(VDdeg) ∪ c(SDdeg), the

stable base locus is the locus C[(2, 2, 1)∗ ] ∪ Q((1, 1)∗)L.
(11) In the domain bounded byDunb, S ′, and V ′ union c(V ′Dunb)∪c(S ′Dunb), the

stable base locus is the locus C[(3, 2)∗ ] ∪ Q((2)∗)L.
(12) In the domain bounded by F, Hσ1,1, and Hσ2 union c(Hσ1,1F)∪ c(Hσ2F), the

stable base locus is C[(1)∗ ] ∪ Q((1)∗)L.
(13) In the domain bounded by P, U, F, and F ′ union c(UP )∪ c(U ′P), the stable

base locus is C[(1, 1)∗ ] ∪ C[(2)∗ ] ∪ Q((1)∗)L.
(14) In the domain bounded by S, Hσ2, and U union c(US)∪ c(Hσ2S), the stable

base locus is C[(1,1, 1)∗ ] ∪ Q((1)∗)L.
(15) In the domain bounded by S ′, Hσ1,1, and U ′ union c(U ′S ′) ∪ c(Hσ1,1S

′), the
stable base locus is C[(3)∗ ] ∪ Q((1)∗)L.

(16) In the domain bounded by F, Hσ2, and U union c(UF )∪ c(UHσ2), the stable
base locus is C[(1, 1)∗ ] ∪ Q((1)∗)L.

(17) In the domain bounded by F, Hσ1,1, and U ′ union c(U ′F ) ∪ c(U ′Hσ1,1), the
stable base locus is C[(2)∗ ] ∪ Q((1)∗)L.

(18) In the domain bounded by P, S, and U union c(PS), the stable base locus is
C[(1,1, 1)∗ ] ∪ C[(2)∗ ] ∪ Q((1, 1)∗)L.

(19) In the domain bounded by P, S ′, and U ′ union c(PS ′), the stable base locus
is C[(1, 1)∗ ] ∪ C[(3)∗ ] ∪ Q((2)∗)L.

(20) In the domain bounded by P,V,R,V ′, the stable base locus is C[(1,1, 1)∗ ] ∪
C[(2, 2)∗ ] ∪ C[(3)∗ ] ∪ Q((1, 1)∗)L ∪ Q((2)∗)L.

(21) In the domain bounded by P, S, and V, the stable base locus is C[(1,1, 1)∗ ]∪
C[(2, 2)∗ ] ∪ Q((1, 1)∗)L.

(22) In the domain bounded by P, S ′, and V ′, the stable base locus is C[(3)∗ ] ∪
C[(2, 2)∗ ] ∪ Q((2)∗)L.
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Proof. The divisors Hσ1,1, Hσ2, and T are base-point-free (see [CoS, Sec. 5]). It
follows that in the closed cone generated by these divisors the stable base locus is
empty. LetD = aHσ1,1 +bHσ2 +c" be an effective divisor. If curves with classB
cover a subvariety X of M0,0(G(k, n), 3) and if B ·D < 0, then X has to be con-
tained in the base locus of D. Conversely, if D can be expressed as a nonnegative
linear combination of D ′ and base-point-free divisors, then the stable base locus
of D is contained in the stable base locus of D ′. Using these two observations re-
peatedly, we can determine the stable base locus decomposition.

1: The boundary. Recall from the proof of Lemma 4.3 that B3 is the class of
the curve in M0,0(G(k, n), 3) induced by a pencil of lines in �(1,1)∗ union a fixed
conic attached at the base point and that B3 · D = a − c. Similarly, recall from
the proof of Lemma 4.5 that B8 is the class of the curve in M0,0(G(k, n), 3) in-
duced by a pencil of lines in �(2)∗ union a fixed conic and that B8 · D = b − c.

Since curves in the class B3 and B12 cover the boundary divisor, we conclude that
the boundary divisor is in the restricted base locus of D whenever a < c or b < c.

Equivalently, the boundary divisor is in the stable base locus of D if D is in the
complement of the closed cone generated by Dunb, Ddeg, and T. Conversely, since
T is base-point-free, the stable base locus of any divisor in the closed cone gen-
erated by Dunb, Ddeg, and T must be contained in the union of the stable base loci
of Ddeg and Dunb. Therefore, the boundary divisor is contained in the stable base
locus of D if and only if D is in the complement of the closed cone generated by
Dunb, Ddeg, and T.

2: Q((1, 1)∗)L and Q((2)∗)L. Recall from the proof of Lemma 4.5 that B9

is the curve in M0,0(G(k, n), 3) obtained by taking a pencil of conics in �(1,1)∗
union a fixed line at a base point of a pencil. Since curves in the same class as
B9 cover Q((1, 1)∗)L and B11 · D = a + 2c, we conclude that Q((1, 1)∗)L is
in the restricted base locus of D if a < −2c. By replacing �(1,1)∗ with �(2)∗ in
this discussion, we conclude that Q((2)∗)L is in the restricted base locus of D if
b < −2c. Conversely, Q((1, 1)∗)L (resp., Q((2)∗)L) is not contained in the sta-
ble base locus of Dunb (resp., Ddeg). We conclude that Q((1, 1)∗)L is contained in
the stable base locus of D if and only if D is in the complement of the closed cone
spanned by Dunb, Hσ2, and T. Similarly, Q((2)∗)L is in the stable base locus of D
if and only if D is in the complement of Ddeg, Hσ1,1, and T.

3: Q((1)∗)L. During the proof of Lemma 4.3, we showed that Q((1)∗)L is in
the stable base locus of D if c < 0. It follows that Q((1)∗)L is in the stable base
locus of D if and only if D is in the complement of the closed cone generated by
Hσ1,1, Hσ2, and T.

4: C[(3, 2)∗ ] and C[(2, 2, 1)∗ ]. We would like to show that if D is an effec-
tive divisor in the complement of the closed cone generated by Dunb, S," (resp.,
in the complement of the closed cone generated by Ddeg, S ′,") then C[(2, 2, 1)∗ ]
(resp., C[(3, 2)∗ ]) is in the stable base locus of D. We define two families of cubic
surface scrolls in P 4. Fix a pencil of conics in P2 and a general line l in P 4. Fix
three points p1,p2,p3 on the line and three of the base points q1, q2, q3 of the pen-
cil of conics. For each member Ct of the pencil of conics, there exists a unique
cubic scroll containing Ct , l, and the lines lpi,qi joining pi to qi. Let F1 be the
corresponding family of cubic scrolls. Note that F1 has three reducible members,
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all of the scrolls in F1 are nondegenerate, and the directrix of the scrolls l does
not vary in the family. Take the cone with a fixed vertex P k−3 to obtain a fam-
ily of cubic scrolls of dimension k. This family induces a curve with class B11 in
M0,0(G(k, n), 3). We claim that

B11 ·Hσ1,1 = 1, B11 ·Hσ2 = 2, B11 ·" = 3.

For the last equality, note that the family has three reducible members. Since the
total space of the family is smooth at the nodes of the three reducible members,
the intersection with the boundary divisor is transverse at these points. The fam-
ily F1 induces a curve with class B ′

11 in M0,0(G(2, 5), 3). It is straightforward to
see that B11 · Hσ1,1 = B ′

11 · H ′
σ1,1

and B11 · Hσ2 = B ′
11 · H ′

σ2
, where the primes de-

note that the intersection is taking place in M0,0(G(2, 5), 3). Since in the family
F1 the members are nondegenerate and the directrices are constant, we have the
intersection numbers B ′

11 ·D ′
deg = B ′

11 ·D ′
unb = 0 in M0,0(G(2, 5), 3). The classes

of these divisors are calculated in [CoS] (see also the next section). Solving for
the coefficients yields the claimed equalities.

Next, take a general projection of the scroll S2,2 to P 4. Recall that the scroll S2,2

is the embedding of P1 × P1 in P 5 under the complete linear system OP1×P1(1, 2).
Take a general line l in P 4 and fix an isomorphism between l and the conics in
S2,2, and let S1,2,2 be the scroll generated by taking the spans of the points under
this isomorphism. The scroll S1,2,2 gives rise to a 1-parameter family F2 of cubic
scrolls in P 4. In the family F2, none of the members are reducible and the direc-
trices of all the cubic scrolls are l. Taking the cone over F2 with a fixed vertex
P k−3 induces a curve with class B12 in M0,0(G(k, n), 3). We have the following
intersection numbers:

B12 ·Hσ1,1 = 1, B12 ·Hσ2 = 5, B12 ·" = 0.

Since the degree of the cone over S1,2,2 is 5 and the family does not have any
reducible elements, the last two equalities are immediate. The first equality
can be computed, as in the previous case, by noting that F2 induces a curve
B ′

12 in M0,0(G(2, 5), 3) that satisfies both the equalities B12 ·Hσ1,1 = B ′
12 ·Hσ1,1

and B ′
12 ·D ′

unb = 0.
Since curves in the classB11 andB12 cover the locus C[(3, 2)∗ ], we conclude that

if the effective divisor D satisfies a + 5b < 0 or a + 2b + 3c < 0 then C[(3, 2)∗ ]
is in the restricted base locus of D. By duality, if 5a + b < 0 or 2a + b+ 3c < 0
then the locus C[(2, 2, 1)∗ ] is in the restricted base locus of D. Conversely, by
Lemmas 4.5 and 4.6, C[(2, 2, 1)∗ ] is not contained in the union of the stable base
loci of Dunb, S, and " and C[(3, 2)∗ ] is not contained in the union of the stable
base loci of Ddeg, S ′, and ". We conclude that C[(2, 2, 1)∗ ] (resp., C[(3, 2)∗ ]) is
in the stable base locus of D if and only if D is an effective divisor in the comple-
ment of the closed cone generated by Dunb, S," (resp., in the complement of the
closed cone generated by Ddeg, S ′,").

5: C[(2, 2)∗ ]. Fix a linear space ' of dimension k − 2 disjoint from a 4-
dimensional linear space 0. Let φ : G(2, 4) → G(k, n) be the morphism obtained
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by taking the span of any 2-dimensional linear space in 0 with ' and consid-
ering the resulting subspaces as a subspace of the n-dimensional ambient vector
space. A codimension-2 linear section of G(2, 4) in its Plücker embedding maps
to a quadric surface in the Plücker embedding of G(k, n) of class σ(1,1)∗ + σ(2)∗ .
Consider a pencil of twisted cubics on this quadric surface and let B13 be its class.
The following intersection numbers are easy to compute:

B13 ·Hσ1,1 = 1, B13 ·Hσ2 = 1, B13 ·" = 4.

Since curves with class B13 cover the locus C[(2, 2)∗ ], we conclude that C[(2, 2)∗ ]
is in the restricted base locus ofD if a+b+4c < 0. On the other hand, C[(2, 2)∗ ] is
not in the union of the stable base loci of S, S ′, and". We conclude that C[(2, 2)∗ ]
is in the base locus of D if and only if D is in the complement of the closed cone
generated by S, S ′, and ".

6: C[(1,1, 1)∗ ] and C[(3)∗ ]. Recall from the proof of Lemma 4.3 that B1 (resp.,
B2) is the class of the curves in M0,0(G(k, n), 3) induced by a pencil of twisted
cubics on a quadric surface contained in�(1,1,1)∗ (resp., �(3)∗). Curves in the class
B1 (resp., B2) cover C[(1,1, 1)∗ ] (resp., C[(3)∗ ]). Since B1 · D = 2a + 4c and
B2 ·D = 2b+4c, we conclude that if a < −2c (resp., b < −2c) then C[(1,1, 1)∗ ]
(resp., C[(3)∗ ]) is in the restricted base locus of D.

Next, consider a general projection of the third Veronese embedding of P2 in P9

to P3. The image of a pencil of lines in P2 under this map gives rise to a1-parameter
family F of rational cubics in P3. Let B14 (resp., B15) be the class of the curves
in M0,0(G(k, n), 3) induced by taking the family F in �(1,1,1)∗ (resp., �(3)∗). The
following intersection numbers are easy to compute:

B14 ·Hσ1,1 = 9, B14 ·Hσ2 = 0, B14 ·" = 0;
B15 ·Hσ1,1 = 0, B15 ·Hσ2 = 9, B15 ·" = 0.

Since curves in the class B14 (resp., B15) cover C[(1,1, 1)∗ ] (resp., C[(3)∗ ]), we
conclude that C[(1,1, 1)∗ ] (resp., C[(3)∗ ]) is in the restricted base locus of D if
a < 0 (resp., b < 0). In summary, we conclude that C[(1,1, 1)∗ ] is in the restricted
base locus of the divisors contained in the complement of the closed cone gener-
ated by Dunb, Hσ2, and ". Similarly, C[(3)∗ ] is in the restricted base locus of the
divisors contained in the complement of the closed cone generated by Ddeg, Hσ1,1,
and ".

7: C[(1, 1)∗ ] and C[(2)∗ ]. The proof of Lemma 4.3 shows that if a + 5c < 0
(resp., b + 5c < 0) then C[(1, 1)∗ ] (resp., C[(2)∗ ]) is contained in the restricted
base locus of D. Observe that C[(1, 1)∗ ] is not contained in the union of the sta-
ble base loci of S ′ and ". Similarly, C[(2)∗ ] is not contained in the union of the
stable base loci of S and ". We conclude that C[(1, 1)∗ ] (resp., C[(2)∗ ]) is in the
stable base locus of D if and only if D is in the complement of the closed cone
spanned by S ′,Hσ2," (resp., S,Hσ1,1,").

8: C[(1)∗ ]. The proof of Lemma 4.4 shows that if c < 0 then the locus of maps
that have a component mapping multiple-to-one onto a line is in the restricted base
locus of D. Take a smooth quadric surface in �(1,1,1)∗ or �(3)∗ . Fix a three-to-one
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map from P1 to P1 and map P1 to each member of one of the rulings of the quadric
surface. The induced curves B16 and B17 have the following intersection numbers:

B16 ·Hσ1,1 = 2, B16 ·Hσ2 = 0, B16 ·" = 0;
B17 ·Hσ1,1 = 0, B17 ·Hσ2 = 2, B17 ·" = 0.

We conclude that C[(1)∗ ] is in the stable base locus of D if and only if D is con-
tained in the complement of the closed cone spanned by Hσ1,1, Hσ2, and ".

We now combine these observations to conclude the proof of the theorem. Let
D be a divisor contained in the closed cone spanned by ", Hσ1,1, and Hσ2 but not
contained in the closed cone spanned by Hσ1,1, Hσ2, and T. Since Hσ1,1 and Hσ2

are base-point-free, the stable base locus of D has to be contained in the boundary
divisor. By the discussion of the boundary divisor, the stable base locus of D con-
tains the boundary divisor. We conclude that the stable base locus of D is equal
to the boundary divisor.

If D is a divisor in the domain bounded by S, ", and Hσ2 union c("S), then the
stable base locus of D is contained in the union of the stable base loci of " and S.
We conclude that the stable base locus of D is C[(1,1, 1)∗ ] union the boundary di-
visor. Similarly, if D is a divisor in the domain bounded by S ′, ", and Hσ1,1 union
c("S ′), then the stable base locus of D is C[(3)∗ ] union the boundary divisor.

Suppose D is in the region bounded by Ddeg, ", and S union c("Ddeg) (resp.,
by Dunb, ", and S ′ union c("Dunb)). Then the stable base locus of D has to be
contained in the union of the stable base loci of Ddeg and " (resp., Dunb and ").
We deduce that in the region bounded by Ddeg, ", and S union c("Ddeg), the sta-
ble base locus is equal to C[(2, 2, 1)∗ ] union the boundary divisor. In the region
bounded by Dunb, ", and S ′ union c("Dunb), the stable base locus is the union of
C[(3, 2)∗ ] and the boundary divisor.

Similarly, if D is in the region bounded by Ddeg, S, and V union c(DdegS) ∪
c(DdegV ) (resp., by Dunb, S ′, and V ′ union c(DunbS

′) ∪ c(DunbV
′)), then the sta-

ble base locus of D has to be a subset of the stable base locus of Ddeg (resp.,
Dunb). This follows from the fact that D is a nonnegative linear combination of
Ddeg (resp., Dunb) and base-point-free divisors Hσ1,1 and Hσ2 . We conclude that
these stable base loci are C[(2, 2, 1)∗ ]∪Q((1, 1)∗)L (resp., C[(3, 2)∗ ]∪Q((2)∗)L).
An almost identical argument shows that if D is in the region bounded by Ddeg,
Dunb, and R union c(DdegDunb), then the stable base locus of D is C[(2, 2, 1)∗ ] ∪
C[(3, 2)∗ ] ∪ Q((1, 1)∗)L ∪ Q((2)∗)L.

If D is in the region bounded by Ddeg, R, and V union c(RDdeg), then the
stable base locus of D is contained in the union of the stable base loci of Ddeg

and S ′ since every divisor in this region can be expressed as a nonnegative lin-
ear combination of Ddeg, S ′, and base-point-free divisors. Similarly, if D is in
the region generated by Dunb, R, and V ′ union c(RDunb), then the stable base
locus is contained in the union of the stable base loci of S and Dunb. We con-
clude that in the region generated by Ddeg, R, and V union c(RDdeg), the stable
base locus is C[(2, 2, 1)∗ ] ∪ C[(3)∗ ] ∪ Q((2)∗)L. In the region generated by Dunb,
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R, and V ′ union c(RDunb), the stable base locus is C[(3, 2)∗ ] ∪ C[(1,1, 1)∗ ] ∪
Q((1, 1)∗)L.

In the region bounded by F, Hσ2, and Hσ1,1 union c(Hσ1,1F)∪ c(Hσ2F), the sta-
ble base locus has to be contained in the stable base locus of F. We conclude that
the stable base locus is C[(1)∗ ] ∪ Q((1)∗)L.

In the domain bounded by S, U, and Hσ2 union c(US) ∪ c(Hσ2S), the stable
base locus has to be contained in that of S. We conclude that the stable base locus
is C[(1,1, 1)∗ ] ∪ Q((1, 1)∗)L. Similar considerations apply for S ′, U ′, and Hσ1,1

union c(U ′S ′)∪ c(Hσ1,1S
′). The stable base locus in the domain bounded by F, U,

and Hσ2 union c(UF )∪ c(UHσ2) is contained in the stable base locus of U that is
contained in the intersection of the stable base loci of P and S. We conclude that
the stable base locus is C[(1, 1)∗ ] ∪Q((1)∗)L. Similar considerations apply to the
domain bounded by F, U ′, and Hσ1,1 union c(U ′F ) ∪ c(U ′Hσ1,1).

Remark 4.9. The proof of Theorem 4.8 also leads to a detailed description of
some of the birational models of M0,0(G(k, n), 3). The model corresponding to
T is the moduli space of weighted stable maps M0,0(G(k, n), 2, 1) defined in
[MuM] and is obtained as a divisorial contraction of M0,0(G(k, n), 3) that con-
tracts the boundary divisor. The morphism φT collapses the locus of maps with
reducible domain that have the same degree-2 component and the same node, re-
membering only the degree-2 component and the point of attachment. For D ∈
c(Hσ1,1T ) or D ∈ c(Hσ2T ), the models give two other divisorial contractions of
the boundary divisor that further admit small contractions to M0,0(G(k, n), 2, 1).
The model corresponding to a divisor in D ∈ c(Hσ1,1Hσ2) is the normalization of
the Chow variety. For such D, φD is a small contraction that contracts the locus of
maps that have a component multiple-to-one onto their image remembering only
the image and the multiplicity. The normalization of the Chow variety admits two
further contractions (corresponding to the divisors Hσ1,1 and Hσ2) that are them-
selves Chow varieties formed with respect to the codimension-2 classes σ1,1 and
σ2. The flip is a divisorial contraction of the Hilbert scheme contracting the divi-
sor of nodal cubics by forgetting the embedded structure.

5. Degree-3 Maps to Grassmannians of Lines

The discussion in the previous section has to be slightly modified for Grassman-
nians G(2, n). In this case, the divisors S ′ and Dunb coincide and so part of the
effective cone collapses. Consequently, the decomposition has fewer chambers.
The description of the remaining chambers is almost identical. The reader might
wish to compare Figures 2 and 3 to see the differences. In this section, we will
briefly sketch the minor modifications necessary for understanding the stable base
locus decomposition for M0,0(G(2, n), 3), where n ≥ 5. The class of Dunb has
a different expression, and the effective cone is no longer symmetric under inter-
changing σ1,1 and σ2. The description and base loci of the divisor classes S, P,
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and F remain unchanged. The divisors described in Section 2 have the following
expressions (see [CoS]):

T = 2

3
(Hσ1,1 +Hσ2 +"),

Ddeg = 1

3
(−Hσ1,1 + 2Hσ2 −"),

Dunb = 1

3
(5Hσ1,1 −Hσ2 −").

As in Section 4, the divisor class P is defined as the pull-back of OG(4,N)(1) under
the rational map that sends f ∈ M0,0(G(2, n), 3) to the span of the image of f in
the Plücker embedding of G(2, n). Intersecting P with the test families obtained
by taking a pencil of conics in �(1,1)∗ (or �(2)∗) union a fixed line containing a
base point and a pencil of lines in �(1,1)∗ union a fixed conic attached at a base
point, we see that

P = 1

3
(2Hσ1,1 + 2Hσ2 −").

As long as the image of f spans a 3-dimensional projective space in the Plücker
embedding of G(2, n), f is not contained in the base locus of P. Conversely, the
argument given in the previous section shows that if the image of f spans a linear
space of dimension < 3, then f is in the stable base locus of P. We conclude that
the stable base locus of P is C[(1, 1)∗ ] ∪ C[(2)∗ ] ∪ Q((1)∗)L.

Define the divisor class F as the pull-back of the corresponding divisor in
M0,0(P

N, 3) introduced in [Ch]. Then, by the argument given in Lemma 4.4,

F = 1

3
(5Hσ1,1 + 5Hσ2 −")

and the stable base locus of F is C[(1)∗ ] ∪ Q((1)∗)L. Define the divisor S as in
Section 4. The arguments in Lemma 4.5 show that the class S is given by

S = 1

3
(−Hσ1,1 + 5Hσ2 −")

and the stable base locus of S is equal to C[(1, 1)∗ ]∪Q((1, 1)∗)L. Finally, observe
that the stable base locus of Dunb is C[(3)∗ ] ∪ Q((2)∗)L and the stable base locus
of Ddeg is C((2, 1)∗)∪Q((1, 1)∗)L. First, suppose the domain of the stable map f
is irreducible. As long as the pull-back of the tautological bundle of G(2, n) has
splitting type (1, 2), then f is not in the indeterminacy locus of the map φ defined
in Section 2. Similarly, if the domain of f has two components and the pull-back
of the tautological bundle to the component of degree 2 has splitting type (1, 1),
then f is not in the indeterminacy locus of φ. It follows that in both cases f is not
in the base locus of Dunb. If the domain of f has three or four components, then
the image could consist either of three concurrent lines or of three nonconcurrent
lines where one line intersects the other two. It is easy to see that if the common
point of intersection of the lines parameterized by two of the lines coincides, then
f is contained in Q((2)∗)L and otherwise f is not in the base locus of Dunb. An
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argument similar to the one in Lemma 4.6 shows that C[(3)∗ ] ∪Q((2)∗)L is in the
stable base locus of Dunb. The claim follows. The discussion of Ddeg is similar.

Notation 5.1. Set

U = 2Hσ1,1 + 5Hσ2 −" and U ′ = 5Hσ1,1 + 2Hσ2 −".

The stable base locus decomposition of the effective cone of M0,0(G(2, n), 3) has
15 chambers, which are described in the following theorem. Figure 3 depicts a
cross-section of the effective cone.

Figure 3 The stable base locus decomposition of M0,0(G(2, n), 3)

Theorem 5.2. The stable base locus decomposition of the Neron–Severi space
of M0,0(G(2, n), 3), n ≥ 5, is given as follows.

(1) In the closed cone spanned byHσ1,1,Hσ2, and T, the stable base locus is empty.
(2) In the domain bounded by ", Hσ1,1, T, and Hσ2 union c(Hσ1,1") ∪ c(Hσ2"),

the stable base locus is equal to the boundary divisor.
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(3) In the domain bounded by Hσ2, ", and S union c("S), the stable base locus
is the union of C[(1, 1)∗ ] and the boundary divisor.

(4) In the domain bounded by Ddeg, S, and " union c("Ddeg), the stable base
locus is the union of C[(2, 1)∗ ] and the boundary divisor.

(5) In the domain bounded by Ddeg, P, and S union c(PDdeg) ∪ c(SDdeg), the
stable base locus consists of C[(2, 1)∗ ] ∪ Q((1, 1)∗)L.

(6) In the domain bounded by Dunb, Ddeg, and P union c(DdegDunb), the sta-
ble base locus consists of the union C[(3)∗ ] ∪ Q((2)∗)L ∪ C[(2, 1)∗ ] ∪
Q((1, 1)∗)L.

(7) In the domain bounded by Dunb, Hσ1,1, and " union c(Dunb"), the stable
base locus consists of C[(3)∗ ] and the boundary divisor.

(8) In the domain bounded byDunb,Hσ1,1, andU ′union c(Hσ1,1Dunb)∪c(U ′Dunb),
the stable base locus is C[(3)∗ ] ∪ Q((2)∗)L.

(9) In the domain bounded by Dunb, P, and U ′ union c(PDunb), the stable base
locus is C[(3)∗ ] ∪ Q((2)∗)L ∪ C[(1, 1)∗ ].

(10) In the domain bounded by P, U, F, and U ′ union c(UP )∪ c(U ′P), the stable
base locus consists of C[(1, 1)∗ ] ∪ C[(2)∗ ] ∪ Q((1)∗)L.

(11) In the domain bounded by S, P, and U union c(PS), the stable base locus
consists of C[(1, 1)∗ ] ∪ C[(2)∗ ] ∪ Q((1, 1)∗)L.

(12) In the domain bounded by S, U, and Hσ2 union c(Hσ2S)∪ c(U ′S), the stable
base locus consists of C[(1, 1)∗) ∪ Q((1, 1)∗)L.

(13) In the domain bounded by U, F, and Hσ2 union c(UHσ2)∪ c(UF ), the stable
base locus consists of C[(1, 1)∗) ∪ Q((1)∗)L.

(14) In the domain bounded by Hσ1,1, F, and U ′ union c(U ′F ) ∪ c(U ′Hσ1,1), the
stable base locus consists of C[(2)∗ ] ∪ Q((1)∗)L.

(15) In the domain bounded by Hσ1,1, Hσ2, and F union c(Hσ1,1F)∪ c(Hσ2F), the
stable base locus consists of C[(1)∗ ] ∪ Q((1)∗)L.

Proof. The proof of this theorem is very similar to but easier than the proof
of Theorem 4.8. Hence, we briefly sketch it and leave most of the details to
the reader. The divisors Hσ1,1, Hσ2, and T are base-point-free; therefore, in the
closed cone generated by these divisors, the stable base locus is empty. Let D =
aHσ1,1 + bHσ2 + c". The curve classes B3 and B8 from the proof of Theorem 4.8
show that the boundary divisor is in the restricted base locus of any effective divisor
contained in the complement of the closed cone generated by Dunb, Ddeg, and T.
Since Hσ1,1 and Hσ2 are base-point-free, in the domain bounded by Hσ1,1, T, Hσ2,
and " union c(Hσ1,1") ∪ c(Hσ2") the stable base locus consists of the bound-
ary divisor. The curve induced by taking the image of a general pencil of lines in
the projection of the third Veronese embedding of P2 to a plane Poincaré dual to
the class σ(1,1)∗ shows that C[(1, 1)∗ ] is in the restricted base locus of D if a < 0.
Hence, in the domain bounded by S, ", and Hσ2 union c("S), the stable base
locus is the union of C[(1, 1)∗ ] and the boundary divisor. Similarly, the curve in-
duced by taking the image of a pencil of lines in the projection of the thirdVeronese
embedding of P2 to a P3 Poincaré dual to the class σ(3)∗ shows that C[(3)∗ ] is in
the stable base locus of D if b < 0. We conclude that, in the region bounded by
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Dunb, ", and Hσ1,1 union c(Dunb"), the stable base locus is the union of C[(3)∗ ]
and the boundary divisor. Let A1 be the curve class induced in M0,0(G(2, n), 3)
by a pencil of cubic surfaces in P3 with a fixed double line and eight general base
points. Then

A1 ·Hσ1,1 = 5, A1 ·Hσ2 = 1, A1 ·" = 0.

The last two of these equalities are clear. The first one may be computed using the
identity A1 · S = 0. Curves in the class A1 cover C[(2, 1)∗ ], so C[(2, 1)∗ ] is in the
stable base locus of D if 5a + b < 0. Therefore, in the domain bounded by Ddeg,
S, and " union c(Ddeg"), the stable base locus is C[(2, 1)∗ ] union the boundary
divisor.

The curve classes B6 and B7 introduced during the proof of Lemma 4.4 show
that C[(1)∗ ] and Q((1)∗)L are in the restricted base locus of D if c < 0. Since
the stable base locus of F is equal to the union of these two loci, in the region
bounded by F, Hσ1,1, and Hσ2 union c(Hσ1,1F) ∪ c(Hσ2F) the stable base locus
equals C[(1)∗ ]∪Q((1)∗)L. LetA2 be the curve class induced in M0,0(G(2, n), 3)
by taking the cone over a pencil of twisted cubic curves in a fixed quadric surface
in P3. Since

A2 ·Hσ1,1 = 0, A2 ·Hσ2 = 2, A2 ·" = 4,

C[(3)∗ ] is in the restricted base locus of D if b < −2c. The curve class B15 intro-
duced in the proof of Theorem 4.8 shows that C[(2, 1)∗ ] is in the restricted base
locus of D if a+ b+ 4c < 0. Similarly, the loci Q((1, 1)∗)L and Q((2)∗)L are in
the restricted base locus ofD if a < −2c and b < −2c, respectively. We conclude
that in the domain bounded byDunb,U ′, andHσ1,1 union c(U ′Dunb)∪c(Hσ1,1Dunb),
the stable base locus is C[(3)∗ ]∪Q((2)∗)L. In the domain bounded byDunb,P, and
Ddeg union c(DunbDdeg), the stable base locus is C[(3)∗ ]∪C[(2, 1)∗ ]∪Q((2)∗)L∪
Q((1, 1)∗)L. In the domain bounded byDdeg,P, and S union c(PDdeg)∪c(SDdeg),
the stable base locus is C[(2, 1)∗ ] ∪ Q((1, 1)∗)L.

The curve classes B4 and B5 introduced in the proof of Lemma 4.3 show that
C[(1, 1)∗ ] and C[(2)∗ ], respectively, are in the stable base locus of D if a+5c < 0
and b + 5c < 0, respectively. Hence, in the domain bounded by P, U ′, F, and P
union c(U ′P) ∪ c(UP ), the stable base locus is C[(1, 1)∗ ] ∪ C[(2)∗ ] ∪ Q((1)∗)L.
The stable base locus of a divisor contained in the domain bounded byDunb,P, and
U ′ union c(DunbP) is a subset of the union of the stable base loci of Dunb and P.
Therefore, in this region the stable base locus is C[(3)∗ ] ∪ C[(1, 1)∗ ] ∪ Q((2)∗)L.
Similarly, in the domain bounded by P, S, and U union c(PS), the stable base
locus is C[(2)∗ ] ∪ C[(1, 1)∗ ] ∪ Q((1, 1)∗)L.

The stable base locus ofU (resp.,U ′) is contained in the intersection of the stable
base loci of S and P (resp., Dunb and P). Moreover, in the domain bounded by U,
Hσ2, and F union c(FU) ∪ c(Hσ2U) (resp., U ′, Hσ1,1, and F union c(FU ′) ∪
c(Hσ1,1U

′)), the stable base locus is contained in the stable base locus of U
(resp., U ′). It follows that the stable base loci are C[(1, 1)∗ ] ∪ Q((1)∗)L and
C[(2)∗ ] ∪ Q((1)∗)L, respectively. Finally, in the domain bounded by S, U, and
Hσ2 union c(US)∪c(Hσ2S), the stable base locus is contained in that of S. Hence,
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in this region the stable base locus is C[(1, 1)∗ ] ∪ Q((1, 1)∗)L. This concludes the
proof of the theorem.

Remark 5.3. The description of the models is analogous to the case of
M0,0(G(k, n), 3) with k ≥ 3 described in Remark 4.9. We leave the necessary
modifications to the reader.
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