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Effective Base Point Free Theorem
for Log Canonical Pairs, II.

Angehrn–Siu Type Theorems

Osamu Fujino

1. Introduction

The main purpose of this paper is to advertise the power of the new cohomological
technique introduced in [Am]. By this new method, we generalize Angehrn–Siu
type effective base point freeness and point separation (see [AS] and [Ko, 5.8 and
5.9]) for log canonical pairs. Here, we adopt Kollár’s formulation in [Ko] be-
cause it is suitable for singular varieties. The main ingredients of our proof are
the inversion of adjunction on log canonicity (see [Ka]) and the new cohomologi-
cal technique (see [Am]). For the Kollár type effective freeness for log canonical
pairs, see [F5]. In [F4], we give a simple new proof of the base point free theorem
for log canonical pairs. It is closely related to the arguments in this paper.

The following theorems are the main theorems of this paper.

Theorem 1.1 (Effective Freeness; cf. [Ko, Thm. 5.8]). Let (X,�) be a projec-
tive log canonical pair andM a line bundle onX. Assume thatM ≡ KX+�+N,
whereN is an ample Q-divisor onX. Let x ∈X be a closed point and assume that
there are positive numbers c(k) with the following properties.

(1) If x ∈Z ⊂ X is an irreducible ( positive dimensional ) subvariety, then

(N dimZ · Z) > c(dimZ)dimZ.

(2) The numbers c(k) satisfy the inequality

dimX∑

k=1

k

c(k)
≤ 1.

ThenM has a global section not vanishing at x.

Theorem 1.2 (Effective Point Separation; cf. [Ko, Thm. 5.9]). Let (X,�) be
a projective log canonical pair and M a line bundle on X. Assume that M ≡
KX+�+N, whereN is an ample Q-divisor onX. Let x1, x2 ∈X be closed points
and assume that there are positive numbers c(k) with the following properties.
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(1) If Z ⊂ X is an irreducible ( positive dimensional ) subvariety that contains x1

or x2, then
(N dimZ · Z) > c(dimZ)dimZ.

(2) The numbers c(k) satisfy the inequality
dimX∑

k=1

21/k k

c(k)
≤ 1.

Then global sections ofM separate x1 and x2.

To strengthen these two theorems, we introduce the following definition.

Definition 1.3. Let X be a normal variety and B an effective Q-divisor on X
such thatKX+B is Q-Cartier. Let x ∈X be a closed point. If (X,B) is Kawamata
log terminal at x, then we put µ(x,X,B) = dimX. When (X,B) is log canonical
(lc) but not Kawamata log terminal at x, we define

µ(x,X,B) = min{dimW | W is an lc center of (X,B) such that x ∈W }.
If (X,B) is not log canonical at x, then we do not define µ(x,X,B) for such x.
For the details of lc centers, see Theorem 3.1.

In Remark1.4 (resp. Remark1.5), we discuss a slight generalization of Theorem1.1
(resp. Theorem 1.2).

Remark 1.4. In Theorem 1.1, if µ = µ(x,X,�) < dimX andW is the minimal
lc center of (X,B) with x ∈W, then we can weaken the assumptions as follows.
If Z ⊂W is an irreducible (positive dimensional) subvariety that contains x, then

(N dimZ · Z) > c(dimZ)dimZ

and the numbers c(k) satisfy the inequality
µ∑

k=1

k

c(k)
≤ 1.

In particular, if µ(x,X,�) = 0, then we need no assumptions on c(k).

Remark 1.5. In Theorem 1.2, we put µ1 = µ(x1,X,�) and µ2 = µ(x2,X,�).
Possibly after switching x1 and x2, we can assume thatµ1 ≤ µ2. LetW1 (resp.W2)

be the minimal lc center of (X,�) such that x1 ∈W1 (resp. x2 ∈W2) when µ1 <

dimX (resp. µ2 < dimX). Otherwise, we putW1 = X (resp.W2 = X).
(1) IfW1 �⊂W2, then the assumptions in Theorem 1.2 can be replaced as follows.

If x1 ∈Z ⊂W1 is an irreducible (positive dimensional) subvariety, then

(N dimZ · Z) > c(dimZ)dimZ

and the numbers c(k) satisfy the inequality
µ1∑

k=1

k

c(k)
≤ 1.
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(2) IfW1 �W2, then the assumptions in Theorem 1.2 can be replaced as follows.
If x2 ∈Z ⊂W2 is an irreducible (positive dimensional) subvariety, then

(N dimZ · Z) > c(dimZ)dimZ

and the numbers c(k) satisfy the inequality

µ2∑

k=1

k

c(k)
≤ 1.

(3) IfW1 =W2, then we can weaken the assumptions in Theorem 1.2 as follows.
If Z ⊂W1 =W2 is an irreducible (positive dimensional) subvariety that con-
tains x1 or x2, then

(N dimZ · Z) > c(dimZ)dimZ

and the numbers c(k) satisfy the inequality

µ∑

k=1

21/k k

c(k)
≤ 1,

where µ = µ1 = µ2.

1.6. Let us quickly review the usual technique for base point free theorems via
multiplier ideal sheaves (cf. [AS; Ko]). Let (X,�) be a projective log canonical
pair and M a line bundle on X. Assume that M ≡ KX + � + N, where N is an
ample Q-divisor onX. Let x ∈X be a closed point. Assume that (X,�) is Kawa-
mata log terminal (klt) around x. In this case, it is sufficient to find an effective
Q-divisor E on X such that E ≡ cN for 0 < c < 1, (X,� + E) is log canoni-
cal around x, and x is an isolated non-klt locus of (X,� + E). Once we obtain
E, we have H1(X,M ⊗ J (X,� + E)) = 0 by the Kawamata–Viehweg–Nadel
vanishing theorem andM − (KX +�+ E) ≡ (1 − c)N, where J (X,�+ E) is
the multiplier ideal sheaf associated to (X,�+E). Therefore, the restriction map
H 0(X,M)→ H 0(X,M⊗OX/J (X,�+E)) is surjective. By the choice ofE, x
is isolated in Supp(OX/J (X,�+E)). So, we can obtain a section ofM that does
not vanish at x. To constructE, we need the Ohsawa–TakegoshiL2-extension the-
orem or the inversion of adjunction. For the details, see [AS] and [Ko].

From now on, we assume that (X,�) is log canonical but not Kawamata log
terminal at x. When x is an isolated non-klt locus of (X,�), we can apply the pre-
ceding arguments. However, in general, x is not isolated in Supp(OX/J (X,�)).
So, we cannot directly use the techniques in [AS] and [Ko]. Fortunately, by using
the new framework introduced in [Am], we know that it is sufficient to find an ef-
fective Q-divisor E on X such that E ≡ cN for 0 < c < 1, (X,� + E) is log
canonical around x, and x is an lc center of (X,� + E). This is because we can
prove that the restriction map H 0(X,M)→ C(x)⊗M is surjective once we ob-
tain such E (see Theorem 3.2). We note that the inversion of adjunction on log
canonicity plays a crucial role when we construct E.
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We summarize the contents of this paper. In Section 2, we will explain the proof
of Theorem 1.1 and 1.2. It is essentially the same as Kollár’s proof in [Ko, Sec. 6]
if we adopt the new cohomological technique and the inversion of adjunction on
log canonicity. So, we will omit some details in Section 2. In Section 3, which is
an appendix, we collect some basic properties of lc centers and the new cohomo-
logical technique for the reader’s convenience since they are not popular yet.

I hope that this paper and [F5] will motivate the reader to study the new coho-
mological technique. For a systematic and thorough treatment on this topic, that
is, the new cohomological technique and the theory of quasi-log varieties, we rec-
ommend that the reader see [F3].

Notation. We will work over the complex number field C throughout this paper.
Numerical equivalence of line bundles and Q-Cartier Q-divisors is denoted by ≡.
Linear equivalence of Cartier divisors is denoted by ∼. LetX be a normal variety
and B an effective Q-divisor such that KX + B is Q-Cartier. Then we can define
the discrepancy a(E,X,B)∈ Q for every prime divisorE overX. If a(E,X,B) ≥
−1 (resp. > −1) for every E, then (X,B) is called log canonical (resp. Kawa-
mata log terminal). Note that there always exists the maximal Zariski open set U
of X such that (X,B) is log canonical on U. If E is a prime divisor over X such
that a(E,X,B) = −1 and the closure of the image of E on X, which is denoted
by cX(E) and called the center of E on X, is not contained in X \U, then cX(E)
is called a center of log canonical singularities or log canonical center of (X,B).
Let x ∈ X be a closed point. Assume that (X,B) is log canonical at x but not
Kawamata log terminal. Then there is a unique minimal log canonical centerW
passing through x, andW is normal at x (see Theorem 3.1 in the Appendix).

Acknowledgments. I was partially supported by the Grant-in-Aid for Young
Scientists (A) #20684001 from JSPS. I was also supported by the Inamori Foun-
dation. I thank the referee for useful comments.

2. Proof of the Main Theorem

The main results of this section are the following propositions.

Proposition 2.1 (cf. [Ko, Thm. 6.4]). Let (X,�) be a projective log canoni-
cal pair and N an ample Q-divisor on X. Let x ∈ X be a closed point and c(k)
positive numbers such that if x ∈Z ⊂ X is an irreducible ( positive dimensional )
subvariety then

(N dimZ · Z) > c(dimZ)dimZ.

Assume that
dimX∑

k=1

k

c(k)
≤ 1.

Then there is an effective Q-divisor D ≡ cN with 0 < c < 1 and an open neigh-
borhood x ∈X 0 ⊂ X such that
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(1) (X 0,�+D) is log canonical and
(2) x is a center of log canonical singularities for the pair (X,�+D).
Remark 2.2. In Proposition 2.1, the assumptions on Z and c(k) can be replaced
as in Remark 1.4.

Proposition 2.3 (cf. [Ko, Thm. 6.5]). Let (X,�) be a projective log canonical
pair and N an ample Q-divisor on X. Let x1, x2 ∈ X be closed points and c(k)
positive numbers such that if Z ⊂ X is an irreducible ( positive dimensional ) sub-
variety such that x1 ∈Z or x2 ∈Z then

(N dimZ · Z) > c(dimZ)dimZ.

Assume also that
dimX∑

k=1

21/k k

c(k)
≤ 1.

Then, possibly after switching x1 and x2, one can take an effective Q-divisorD ≡
cN with 0 < c < 1 and an open neighborhood x1 ∈X 0 ⊂ X such that

(1) (X 0,�+D) is log canonical,
(2) x1 is a center of log canonical singularities for the pair (X,�+D), and
(3) (X,�+D) is not log canonical at x2.

Remark 2.4. In Proposition 2.3, the assumptions on Z and c(k) can be replaced
as in Remark 1.5.

First, we give a proof of Theorem 1.1 by using Proposition 2.1.

Proof of Theorem 1.1. We consider the pair (X,� + D) constructed in Proposi-
tion 2.1. It is not necessarily log canonical but has a natural quasi-log structure (see
Theorem 3.2). Let X \ X−∞ be the maximal Zariski open set where (X,�+D)
is log canonical. Since (X,�+D) is log canonical around x and x is an lc center
of (X,� + D), the union of x and X−∞ has a natural quasi-log structure X ′ in-
duced by the quasi-log structure of (X,� +D) (see Theorem 3.2). We consider
the following short exact sequence:

0 → IX ′ → OX → OX ′ → 0.

Since M − (KX + � + D) ≡ (1 − c)N is ample, H1(X, IX ′ ⊗M) = 0 by the
vanishing theorem (see Theorem 3.2). Therefore, H 0(X,M) → H 0(X ′,M) is
surjective. We note that x is isolated in X ′ because x /∈ X−∞. Thus, the evalua-
tion map H 0(X,M)→ M ⊗ C(x) is surjective. This is what we wanted.

Next, we give a proof of Theorem 1.2 by Proposition 2.3.

Proof of Theorem 1.2. We use the same notation as in the proof of Theorem 1.1.
In this case, x2 is on X−∞. In particular, x2 is a point of X ′. Since H 0(X,M)→
H 0(X ′,M) is surjective and x1 is an isolated point of X ′, we can take a section of
M that separates x1 and x2.
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Therefore, all we have to prove are Propositions 2.1 and 2.3. Let us recall the fol-
lowing easy but important result. Here, we need the inversion of adjunction on
log canonicity.

Proposition 2.5 (cf. [Ko, Thm. 6.7.1]). Let (X,�) be a projective log canoni-
cal pair with dimX = n and x ∈X a closed point. Let H be an ample Q-divisor
onX such that (H n) > nn. Then there is an effective Q-divisor Bx ≡ H such that
(X,�+ Bx) is not log canonical at x.

Proof. If we adopt Lemma 2.6, then the proof of [Ko, Thm. 6.7.1] works without
any changes.

Lemma 2.6 (cf. [Ko, Cor. 7.8]). Let (X,�)be a log canonical pair andBc : c ∈C
an algebraic family of Q-divisors on X parameterized by a smooth pointed curve
0 ∈ C. Assume that (X,� + B0) is log canonical at x ∈ X. Then there is a Eu-
clidean open neighborhood x ∈W ⊂ X such that (X,� + Bc) is log canonical
onW for c ∈C near zero.

Lemma 2.6 is a direct consequence of Kawakita’s inversion of adjunction on log
canonicity (see [Ka, Thm.]). The next proposition is a reformulation of [Ko,
Thm. 6.8.1]. In Kollár’s proof in [Ko, Sec. 6], he cuts down the non-klt locus. On
the other hand, we cut down the minimal lc center passing through x. The advan-
tage of our method is in the fact that the minimal lc center is always irreducible
by its definition. So, we do not need to use tie breaking technique (see [Ko, 6.9,
Step 3]) to make the non-klt locus irreducible even when (X,�) is Kawamata log
terminal.

Proposition 2.7 (cf. [Ko, Thm. 6.8.1]). Let (X,�) be a projective log canoni-
cal pair and x ∈X a closed point. Let D be an effective Q-Cartier Q-divisor on
X such that (X,�+D) is log canonical in a neighborhood of x. Assume thatZ is
the minimal lc center of (X,�+D) such that x ∈Z with k = dimZ > 0. Let H
be an ample Q-divisor on X such that (H k ·Z) > k k. Then there are an effective
Q-divisor B ≡ H and a rational number 0 < c < 1 such that

(1) (X,�+D + cB) is log canonical in a neighborhood of x and
(2) there is a minimal lc center Z1 of (X,� + D + cB) such that x ∈ Z1 and

dimZ1 < dimZ.

Proof. By the assumption, there are a projective birational morphism f : Y → X

and a divisor E ⊂ Y such that a(E,X,� + D) = −1 and f(E) = Z. We write
KY = f ∗(KX +�+D)+ ∑

eiEi where E = E1 and so e1 = −1. Let Z 0 ⊂ Z

be an open subset such that:

(1) Z 0 is smooth and f |E : E → Z is smooth over Z 0; and
(2) if z∈Z 0, then (f |E)−1(z) �⊂ Ei for i �= 1.

Lemma 2.8 (cf. [Ko, Claim 6.8.3]). With notation as before, choosem� 1 such
that mH is Cartier. Let U be the Zariski open subset of X where (X,� +D) is
log canonical. Then, for every z∈Z 0, the following assertions hold.
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(1) There is a divisor Fz ∼ mH |Z such that multz Fz > mk.
(2) OX(mH )⊗ IZ is generated by global sections and

H1(X, OX(mH )⊗ IZ) = 0.

In particular, H 0(X, OX(mH ))→ H 0(Z, OZ(mH |Z)) is surjective.
(3) For any F ∼ mH |Z , there is an FX ∼ mH such that FX|Z = F and

(X,�+D + (1/m)FX) is log canonical on U \ Z.
(4) Let FXz ∼ mH be such that FXz |Z = Fz. Then (X,�+D + (1/m)FXz ) is not

log canonical at z.

The proof of Lemma 2.8 is the same as the proof of [Ko, Claim 6.8.3]. So, we omit
it here. Pick z0 ∈Z arbitrary. Let 0 ∈C be a smooth affine curve and g : C → Z

a morphism such that z0 = g(0) and g(c)∈Z 0 for general c ∈C. For general
c ∈C, pick Fc := Fg(c) as in Lemma 2.8(1). Let F0 = limc→0 Fc. Then we ob-
tain the following lemma. For the precise meaning of limc→0 Fc, see the proof of
[Ko, Thm. 6.7.1].

Lemma 2.9 (cf. [Ko, Claim 6.8.4]). With notation as before, there exists a divi-
sor FX0 ∈ |mH | such that

(1) FX0 |Z = F0,
(2) (X,�+D + (1/m)FX0 ) is log canonical on U \ Z,
(3) (X,�+D + (1/m)FX0 ) is log canonical at the generic point of Z, and
(4) (X,�+D + (1/m)FX0 ) is not log canonical at z0.

The proof of Lemma 2.9 is the same as the proof of [Ko, Claim 6.8.4] if we adopt
Lemma 2.6. To finish the proof of Proposition 2.7, we set B = (1/m)FX0 . Let c
be the maximal value such that (X,�+D + cB) is log canonical at x. Then we
have the desired properties.

Proof of Proposition 2.1. Without loss of generality, we can assume that c(k)∈ Q

for every k. If (X,�) is Kawamata log terminal around x, then we put Z1 = X.

Otherwise, let Z1 be the minimal lc center of (X,�) such that x ∈Z1. If dimZ1 =
k1 > 0, then we can find x ∈D1 ≡ k1

c(k1)
N and 0 < c1 < 1 such that (X,�+ c1D1)

is log canonical around x and k2 = dimZ2 < k1, where Z2 is the minimal lc cen-
ter of (X,�+ c1D1)with x ∈Z2 (see Proposition 2.7). Repeat this process. Then
we can find n ≥ µ1 = k1 > k2 > · · · > kl > 0, where ki ∈ Z , with the following
properties:

(1) there exists an effective Q-divisor Di such that Di ≡ ki
c(ki )

N for every i,
(2) there exists a rational number ci with 0 < ci < 1 for every i,
(3) (X,�+ ∑ l

i=1 ciDi) is log canonical around x, and
(4) x is an lc center of the pair (X,�+ ∑ l

i=1 ciDi).

We putD = ∑ l
i=1 ciDi. ThenD has the desired properties. We note that 0 < c =∑ l

i=1 ci
ki
c(ki )

< 1 and D ≡ cN.
From now on, we consider the proof of Proposition 2.3. We can prove Proposi-
tion 2.10 by the same way as Proposition 2.5.
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Proposition 2.10. Let (X,�) be a projective log canonical pair with dimX = n
and x, x ′ ∈X closed points. LetH be an ample Q-divisor on X such that (H n) >

2nn. Then there is an effective Q-divisor Bx,x ′ ≡ H such that (X,� + Bx,x ′) is
not log canonical at x and x ′.

By Proposition 2.10, we can modify Proposition 2.7 as follows. We leave the de-
tails as an exercise for the reader.

Proposition 2.11. Let (X,�) be a projective log canonical pair and x, x ′ ∈ X
closed points. LetD be an effective Q-Cartier Q-divisor onX such that (X,�+D)
is log canonical in a neighborhood of x and x ′. Assume that there exists a mini-
mal lc center Z of (X,�+D) such that x, x ′ ∈Z with k = dimZ > 0. Let H be
an ample Q-divisor on X such that (H k · Z) > 2k k. Then there are an effective
Q-divisor B ≡ H and a rational number 0 < c < 1 such that :

(1) (X,�+D + cB) is not Kawamata log terminal at the points x and x ′ and is
log canonical at one of them, say at x; and

(2) there is a minimal lc center Z1 of (X,� + D + cB) such that x ∈ Z1 and
dimZ1 < dimZ.

The next proposition is very easy.

Proposition 2.12. Let (X,�) be a projective log canonical pair and x, x ′ ∈ X
closed points. LetD be an effective Q-Cartier Q-divisor onX such that (X,�+D)
is log canonical in a neighborhood of x and x ′. Assume that the minimal lc cen-
ter Z � x ′ of (X,� + D) does not contain x, that is, x /∈ Z. Let H be an ample
Q-divisor on X. Then there is an effective Q-divisor B ≡ H such that x /∈B and
(X,�+ εB) is not log canonical at x ′ for every ε > 0.

Proof. We take a general member A of H 0(X, OX(lH ) ⊗ IZ), where l is suf-
ficiently large and divisible. Note that H is an ample Q-divisor. We put B =
(1/l)A. Then x /∈ B and (X,� + D + εB) is not log canonical at x ′ for every
ε > 0.

Let us start the proof of Proposition 2.3.

Proof of Proposition 2.3. We use the notation in Remark 1.5. LetW1 (resp.W2)

be the minimal lc center of (X,�) such that x1 ∈W1 (resp. x2 ∈W2) when µ1 =
µ(x1,X,�) < dimX (resp. µ2 = µ(x2,X,�) < dimX). Otherwise, we put
W1 = X (resp.W2 = X). Possibly after switching x1 and x2, we can assume that
µ1 ≤ µ2. Without loss of generality, we can assume that c(k)∈ Q for every k.

Case 1. If W1 �⊂ W2, then we can see that x1 /∈W2 (see Theorem 3.1(2)). By
Proposition 2.12, we can find an effective Q-divisor B ≡ N such that x1 /∈B and
(X,�+ εB) is not log canonical at x2 for every ε > 0. In this case, we cut down
the minimal lc center passing through x1 as in the proof of Proposition 2.1 by using
Proposition 2.7. Then we obtain a Q-divisorD onX satisfying conditions (1), (2),
and (3) in Proposition 2.3.
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Case 2. IfW1 �W2, then x2 /∈W1. Thus, the proof in Case 1 works after switch-
ing x1 and x2.

Case 3. We assume W1 = W2. If W1 = W2 = X, then we apply Proposi-
tion 2.10. Otherwise, we use Proposition 2.11 and cut downW1 = W2. Then, we
obtain (X,�+G) such that:

(1) G is an effective Q-divisor on X and a rational number d such that G ≡
d 21/kk

c(k)
N with 0 < d < 1, where k = dimW1;

(2) (X,� + G) is not Kawamata log terminal at the points x1 and x2 and is log
canonical at one of them, say at x1; and

(3) there is a minimal lc centerW ′
1 of (X,�+G) such that x ∈W ′

1 and dimW ′
1 <

dimW1.

If (X,� +G) is log canonical at both the points x1 and x2, and if x1 and x2 stay
on the same new minimal lc center of (X,�+G), then we apply Proposition 2.11
again. By repeating this process, we obtain the situation where there is a suitable
effective Q-divisor G′ on X such that (X,�+G′) is not log canonical at one of
x1 and x2, or x1 and x2 are on different minimal lc centers of the pair (X,�+G′).
Then, we can apply the same arguments as in Case 1 and Case 2.

Thus, we finish the proof.

3. Appendix

In this appendix, we collect some basic properties of lc centers and the new coho-
mologial technique (cf. [Am]). Here, we do not explain the definition of quasi-log
varieties because it is very difficult to grasp. We think that Theorem 3.2 is suf-
ficient for our purpose in this paper. We recommend the reader interested in the
theory of quasi-log varieties to see [F1].

Throughout this appendix,X is a normal variety and B is an effective Q-divisor
on X such that KX + B is Q-Cartier.

Theorem 3.1 (cf. [Am, Prop. 4.8]). Assume that (X,B) is log canonical. Then
we have the following properties.

(1) (X,B) has at most finitely many lc centers.
(2) An intersection of two lc centers is a union of lc centers.
(3) Any union of lc centers of (X,B) is semi-normal.
(4) Let x ∈X be a closed point such that (X,B) is log canonical but not Kawa-

mata log terminal at x. Then there is a unique minimal lc center Wx passing
through x, andWx is normal at x.

The next theorem is one of the most important results in the theory of quasi-log
varieties (see [Am, Thm. 4.4]).

Theorem 3.2. The pair (X,B) has a natural quasi-log structure. Let X \X−∞
be the maximal Zariski open set where (X,B) is log canonical. Let X ′ be the
union of X−∞ and some lc centers of (X,B). Then X ′ has a natural quasi-log
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structure, which is induced by the quasi-log structure of (X,B). We consider the
short exact sequence

0 → IX ′ → OX → OX ′ → 0,

where IX ′ is the defining ideal sheaf of X ′ on X. Note that X ′ is reduced on
X \ X−∞. Assume that X is projective. Let L be a line bundle on X such that
L − (KX + B) is ample. Then H i(X, IX ′ ⊗ L) = 0 for all i > 0. In particular,
the restriction map

H 0(X,L)→ H 0(X ′,L|X ′)

is surjective.

For the proofs of Theorem 3.1 and Theorem 3.2, see [Am] and [F3, Sec. 3.2]. We
close this appendix with an important remark.

Remark 3.3. The vanishing and torsion-free theorems required for the proofs of
Theorem 3.1 and Theorem 3.2 can be proved easily by investigating mixed Hodge
structures on compact support cohomology groups of smooth varieties. Therefore,
[F2] is sufficient for our purposes. We do not need [F3, Chap. 2], which is very
technical and seems to be inaccessible to non-experts. See also [F6, Secs. 5, 6].
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