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Generically Ordinary Fibrations and
a Counterexample to Parshin’s Conjecture

Junmyeong Jang

1. Introduction

For a proper smooth surface X of general type over the field of complex numbers
C, the Miyaoka–Yau inequality states a relation between two Chern numbers of X:

c2
1 (X) ≤ 3c2(X).

However, the Miyaoka–Yau inequality does not hold in general over a field of
positive characteristic. For example, let us consider π : X → C, a generically
smooth nonisotrivial semistable fibration of a proper smooth surface to a proper
smooth curve over a field of positive characteristic. If both the base genus and the
fiber genus are greater than 1, then X is a minimal surface of general type. Let
π(pn) : X(pn) → C be the base change of π by the n-iterative Frobenius morphism
F n : C → C, and let X̃(pn) → X(pn) be the minimal desingulization of X(pn).

Then it can be easily checked that, for any M > 0, if n is sufficiently large then
X̃(pn) violates the inequality c2

1 ≤ Mc2 [14, p. 195]. On the other hand, in a letter
to D. Zagier, Parshin [13, p. 288] proposed that a version of the Miyaoka–Yau in-
equality might hold for a surface of general type whose Picard scheme is smooth.
In this paper, we will construct a counterexample to this conjecture.

Theorem. For any M > 0, there is a smooth proper surface of general type X

over a finite field whose Picard scheme is smooth and c2
1 (X) > Mc2(X).

The key step in the construction is the following observation.

Lemma 2.10. If π : X → C is a generically ordinary semistable fibration, then

dim H 0(R1π∗OX) = dim H 0(R1π(pn)
∗ OXpn)

and
dim H1(OX) = dim H1(OXpn)

for any n.

From these facts and the Rieman–Roch theorem, we easily obtain the following
result.

Corollary 2.11. Under the same condition as in Lemma 2.10, all the Harder–
Narasimhan slopes of R1π∗(OX) are nonpositive.
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In Section 2, we prove Lemma 2.10 and Corollary 2.11 in addition to making other
preparations. Corollary 2.11 is the semipositivity theorem [15, p. 3], which is not
valid in general over a field of positive characteristic.

In Section 3 we construct a counterexample to Parshin’s conjecture. Using
Lemma 2.10 reduces the problem to the construction of a generically ordinary
nonisotrivial smooth fibration, for which the Picard scheme of the total space is
smooth. We will do this by using a reduction argument.

Acknowledgments. The author is indebted to Prof. M. Kim, without whose sup-
port and instruction this work would not have been possible. It is also a pleasure to
thank Prof. K. Joshi and Prof. L. Illusie for their helpful advice and encouragement.

2. Preparations

Let k be an algebraically closed field and C a projective curve over k.

Definition 2.1. C is stable (resp. semistable) if:

(1) it is connected and reduced;
(2) all the singular points are normal crossing; and
(3) an irreducible component, which is isomorphic to P1, meets the other compo-

nents in at least three (resp. two) points.

For an arbitrary base scheme, we define a (semi)stable curve as follows.

Definition 2.2. A proper flat morphism of relative dimension 1 of schemes
π : X → S is a (semi)stable curve if every geometric fiber of π is a (semi)stable
curve in the sense of Definition 2.1.

In this paper we are mainly concerned with generically smooth semistable curves
to proper smooth curves over a field. If π : X → C is such a semistable fibration
over an algebraically closed field k, then X is a proper surface over k and the sin-
gular points of X are isolated. A singularity of X is a simple surface singularity
of An type that is étale locally isomorphic to

k[x, y, t]/(t n+1 − xy).

If X̃ → X is the minimal blow-up of these singularities, then the composition
π̃ : X̃ → C is also a semistable fibration [1, p. 4]. Moreover, ω1

X̃/C
(the dualizing

sheaf for π̃) is isomorphic to ω1
X/C (the pull-back of the dualizing sheaf for π) by

the blow-up and π̃∗ω1
X̃/C

= π∗ω1
X/C [14, p. 171]. Hence for most purposes we may

assume that X is a smooth surface over k, and we do so from now on. We also as-
sume, unless stated otherwise, that π : X → C is a generically smooth semistable
fibration.

Definition 2.3. A semistable fibration π : X → C is isotrivial if all the special
fibers of π are isomorphic.

In particular, an isotrivial fibration π : X → C is a smooth fibration. If π is
isotrivial, then there exists a finite étale cover C ′ → C such that the base change
πC ′ : X×C C ′ → C ′ is trivial. In particular, if π is isotrivial then deg π∗ωX/C = 0.
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Proposition 2.4 (Szpiro). If π is a nonisotrivial semistable fibration, then
deg π∗ωX/C > 0. Equivalently, deg R1π∗OX < 0 [14, p. 173].

Now assume that k is a perfect field of positive characteristic p and that X is a
smooth proper variety defined over k. We have the following Frobenius diagram
for X/k:

X
FX/k

��

����
��

��
��

� X(p) ��

��

X

��

k
Fk �� k .

Here FX/k is the relative Frobenius morphism of X/k. When �•
X/k is the de Rham

complex of X/k, FX/k∗(�•
X/k) is an OX(p)-linear complex of coherent OX(p)-

modules. The image of FX/k∗�i−1
X/k → FX/k∗�i

X/k is denoted by Bi�X/k or Bi�.

Each Bi� is a vector bundle on X(p).

Definition 2.5. X is ordinary (Bloch–Kato ordinary) if H i(Bj�X/k) = 0 for
all i and j.

There are many equivalent conditions to Bloch–Kato ordinarity [9, p. 209]. If X is
a curve or an abelian variety, then X is ordinary if and only if it satisfies the clas-
sical definition that the order of p-torsion points of the Pic0

X/k is maximal or that
the Frobenius morphism on H1(OX) is bijective. If all the integral crystalline co-
homologies of X, H i

crys(X/W ), are torsion free, then X is ordinary if and only if
the Newton polygons of X are equal to the Hodge polygons of X for all degrees.
Here W is the ring of Witt vectors of k.

We can extend the definition of ordinarity to any proper smooth morphism of
schemes of characteristic p. Assume that f : X → S is a proper and smooth mor-
phism. Let X(p) = X ×S (S, FS) and let FX/S : X → X(p) be the relative Frobe-
nius morphism. The image Bi

X/S of FX/S∗�i−1
X/S

d−→ FX/S∗�i
X/S is a vector bundle

on X(p). We define X/S to be ordinary if Rif∗(B
j

X/S) = 0 for all i and j.

The notion of ordinarity can also be extended to a proper generically smooth
morphism to a Spec of a discrete valuation ring with normal crossing on the special
fiber. We recall the definition of ordinarity for such a morphism from [7] and [8].
Let A be a local ring of a smooth curve over k. In particular, A is a discrete val-
uation ring of positive characteristic. Let S = Spec A and let s ∈ S be the closed
point.

Definition 2.6. f : X → S is locally semistable if it is isomorphic to

Spec A[x1, . . . , xn]/(x1 · · · xr − t) → Spec A

étale locally at a relative singular point, where t is a uniformizer of A.

The term “locally semistable” morphism is not conventional; usually such a mor-
phism is simply called “semistable”. We have introduced this definition here to
avoid a conflict with our former definition of semistable curve. Note that the def-
inition of a semistable curve is a little different from that of a locally semistable
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morphism. The definition of semistable curve requires that the semistable fibration
be proper and relatively minimal, whereas X should be regular in Definition 2.6.
Yet for a semistable curve X → C, if X is regular then X ⊗ OC,s → Spec OC,s is
locally semistable per Definition 2.6 for each s ∈C.

Let X → S be a locally semistable morphism; let U ⊂ X be the relative smooth
locus and u : U ↪→ X the inclusion. Then X \U is of codimension at least 2, from
which it follows that ω •

X/S = u∗�•
U/S is a complex of locally free sheaves on X

and that ωi
X/S = ∧i

ω1
X/S. When X is given as A[x1, . . . , xn]/(x1 · · · xr − t) étale

locally, ω1
X/S is the free module of rank n − 1 generated by

dx1/x1, . . . , dxr/xr , dxr+1, . . . , dxn

with the relation
r∑

i=1

dxi

xi

= 0.

Here ω1
X/S is isomorphic to �1

X/S(log Xs/s), where Xs is the special fiber. Note

that �1
X/S is the subsheaf of ω1

X/S generated by dx1, . . . , dxn. Also note that the
highest wedge product ωn−1

X/S is the relative dualizing sheaf of f : X → S.

Let X(p) be the base change of X by the Frobenius morphism of S and let
FX/S : X → X(p) be the relative Frobenius morphism. Then FX/S∗ω •

X/S is an
OX(p)-linear complex. The image and the kernel of the differentials of the com-
plex F∗ω •

X/S are denoted by BiωX/S and ZiωX/S (respectively), and HiωX/S =
ZiωX/S/B

iωX/S. Observe that BiωX/S , ZiωX/S , and HiωX/S are OX(p)-coherent
sheaves and are flat over S. The usual Cartier isomorphism

C−1 : �i
Up/S → HiF∗�•

U/S

on the smooth locus extends to an isomorphism

C−1 : ωi
X(p)/S

→ HiF∗ω •
X/S ,

[7, p. 381], where ωi
X(p)/S

= F ∗
C (ωi

X/S). In particular, the Cartier isomorphism at
i = 0 gives an exact sequence

0 → OX(p) → F∗OX → B1ωX/S → 0.

Definition 2.7. A proper locally semistable morphism f : X → S is ordinary
if Hj(BiωX/S) = 0 for all i, j.

Since the BiωX/S are flat over S, it follows that f is ordinary if and only if
Hj(Xs , BiωX/S |Xs

) = 0 for all i, j. This definition depends on the entire
f : X → S, and not only on the special fiber, because the complex ω •

X/S depends
on the entire f : X → S. But if f is smooth, then f is ordinary if and only if the
special fiber is ordinary in the sense of Definition 2.5. Moreover, if the relative
dimension of f is 1 and the residue field is perfect, then f is ordinary if and only
if the Frobenius morphism on H1(OXs

) is bijective. Hence the ordinarity depends
only on the special fiber.

Because all these arguments are local on the base S, they remain valid when we
replace the base S by a smooth curve over a perfect field of positive characteristic.
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Let C be a smooth curve over a perfect field k of positive characteristic, and let
π : X → C be a proper generically smooth semistable curve. Since each BiωX/C

is flat over C by the semicontinuity theorem, it follows that the set of points s ∈C

satisfying the property that X ⊗OC
Os is ordinary forms an open set in C.

Definition 2.8. Let π : X → C be a proper semistable curve. We say that π is
generically ordinary if at least one closed fiber of π is ordinary. (Hence almost all
closed fibers of π are ordinary.)

Now we recall the (semi)stability and the Harder–Narasimhan slopes of a vector
bundle on a smooth proper curve. Let C be a smooth proper curve defined over an
algebraically closed field k. For a vector bundle V on C, the slope of V is defined
as s(V ) = deg V/rank V. We call V semistable (resp. stable) if, for any proper
subbundle W of V, s(W ) ≤ s(V ) (resp. s(W ) < s(V )).

Proposition 2.9 (Harder–Narasimhan). For any vector bundle V on C, there
exists a unique filtration of V consisting of subbundles of V,

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V,

such that (i) Vi/Vi−1 is a semistable vector bundle of slope λi and (ii) λ1 > λ2 >

· · · > λn [4, p. 220].

This filtration is called the Harder–Narasimhan filtration of V, and λ1, . . . , λn are
called the Harder–Narasimhan slopes of V. If the base field is not algebraically
closed, then the Harder–Narasimhan slopes of V are defined as the Harder–
Narasimhan slopes of pull-backs of the bundle along the base change to an alge-
braically closed field. When π : X → C is a semistable fibration of a proper
smooth surface to a proper smooth curve over a subfield of C, the semi-positivity
theorem states that all the Harder–Narasimhan slopes of R1π∗OX are nonpositive
[15, p. 1].

Lemma 2.10. If π : X → C is a generically ordinary semistable fibration, then

dim H 0(R1π∗OX) = dim H 0(R1π(pn)
∗ OX(pn) )

and
dim H1(OX) = dim H1(OX(pn) )

for any n.

Proof. Let X(p) be the base change of X by the absolute Frobenius morphism of
C. We have the following Frobenius diagram for X/C:

X
FX/C

��

π
����

��
��

�� X(p) ��

π(p)

��

X

π

��

C
FC �� C .

There is an exact sequence of coherent OX(p)-modules

0 → OX(p) → FX/C∗OX → B1ω → 0.
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For this sequence, the long exact sequence via π
(p)
∗ is

0 −→ OC � OC −→ π(p)
∗ (B1ω) −→ R1π(p)

∗ (OX(p))

F ∗
X/C−−→ R1π∗(OX) −→ R1π(p)

∗ (B1ω) −→ 0. (∗)
Because π is generically ordinary, the restriction of π

(p)
∗ B1ω to the ordinary locus

in C is 0. But B1ω is flat over OC , so π
(p)
∗ B1ω = 0. In (∗), then, F ∗

X/C is injec-
tive and

dim H 0(R1π(p)
∗ (OX(p))) ≤ dim H 0(R1π∗(OX)).

On the other hand, since

H 0(R1π(p)
∗ (OX(p))) = H 0(F ∗

CR1π∗OX) = H 0(R1π∗(OX) ⊗OC
FC∗(OC))

and since there is an injection R1π∗OX ↪→ R1π∗OX ⊗ FC∗(OC), it follows that

dim H 0(R1π∗OX) ≤ dim H 0(F ∗
CR1π∗OX).

Therefore,
dim H 0(R1π∗OX) = dim H 0(F ∗

CR1π∗OX).

Because
dim H1(OX) = dim H1(OC) + dim H 0(R1π∗OX)

and
dim H1(OX(p)) = dim H1(OC) + dim H 0(R1π(p)

∗ OX(p)),

we have
dim H1(OX) = dim H1(OX(p)).

We can apply this argument to the relative Frobenius morphism

FX(p i )/C : X(pi) → X(pi+1)

for any i, since FX(p i )/C : X(pi) → X(pi+1) is the base change of the relative Frobe-
nius morphism FX/C : X → X(p) by F i

C : C → C. Then by induction we have

dim H 0(R1π∗OX) = dim H 0(F n∗
C R1π∗OX)

and
dim H1(OX) = dim H1(OX(pn) )

for any n.

Corollary 2.11. Under the same condition as in Lemma 2.10, all the Harder–
Narasimhan slopes of R1π∗(OX) are nonpositive.

Proof. Assume that V is a subbundle of R1π∗OX with a positive degree d > 0 and
rank r. Then F n∗

C V is a subbundle of F n∗
C R1π∗OX with a positive degree pnd and

rank r. By the Riemann–Roch theorem on C, dim H 0(F n∗
C V ) diverges as n ap-

proaches infinity. But this contradicts the fact that dim H 0(F n∗
C R1π∗OX) is stable

(by Lemma 2.10). Hence R1π∗OX does not have a subbundle of positive degree,
so all the Harder–Narasimhan slopes of R1π∗OX are nonpositive.
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Remark 2.12. In [12], Moret-Bailly constructed a counterexample of the semi-
positivity theorem consisting of a theta-divisor of a nonisotrivial supersingular
abelian surface over P1. Note that for this example the p-rank of the generic fiber
is 0. In [10] we will show that if the generic p-rank of a nonisotrivial semistable fi-
bration is 0, then a suitable number of Frobenius pull-backs of the fibration violate
the semipositivity theorem. It is an interesting phenomenon that the information
of the p-rank, which is a property of a Galois action, can be expressed as a nu-
merical property of a coherent sheaf.

In the proof of Corollary 2.11 we actually showed that, if π is generically ordi-
nary, then F n∗

C R1π∗OX does not have a positive Harder–Narasimhan slope for any
n ∈ N. Hence the slope-0 part of R1π∗OX is strongly semistable. In fact, we can
say more about the slope-0 part of R1π∗OX. We use the following notation for
convenience.

Definition 2.13. For a vector bundleV on C,V0 is the slope-0 part of V and V−
is the negative-slope part of V.

When π is generically ordinary, we have the following canonical filtration of
R1π∗OX:

0 → (R1π∗OX)0 → R1π∗OX → (R1π∗OX)− → 0.

Definition 2.14. A vector bundle V on C is étale trivializable if there exists a
finite étale cover f : D → C such that f ∗V is trivial.

Proposition 2.15. If π : X → C is generically ordinary, then (R1π∗OX)0 is
étale trivializable.

Proof. In the proof of Theorem 1, we saw that

F ∗
CR1π∗OX ↪→ R1π∗OX.

Yet in the exact sequence

0 → (R1π∗OX)0 → R1π∗OX → (R1π∗OX)− → 0,

(R1π∗OX)− is an iterative extension of semistable vector bundles of negative
slopes. Therefore, the image of the composition

F ∗(R1π∗OX)0 ↪→ F ∗R1π∗OX ↪→ R1π∗OX

is contained in (R1π∗OX)0. Because (R1π∗OX)0 and F ∗(R1π∗OX)0 are of the
same rank and the same degree, they are isomorphic. Hence, by [11, Thm. 1.4,
p. 75], (R1π∗OX)0 is étale trivializable.

Remark 2.16. It is natural to expect that if π : X → C is defined over a field
of characteristic 0 then (R1π∗OX)0 is étale trivializable. But for this problem we
cannot apply the standard reduction argument directly. One reason is that we don’t
know whether there are infinitely many places at which the reduction is generi-
cally ordinary. This obstruction is related to Serre’s ordinary reduction conjecture.
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3. Counterexample to Parshin’s Conjecture

In this section we will construct a counterexample to Parshin’s conjecture. Let us
recall the construction in [14] of a counterexample to the Miyaoka–Yau inequality
over a field of positive characteristic. Let k be a perfect field of positive charac-
teristic. Let π : X → C be a smooth nonisotrivial fibration of a proper smooth
surface to a proper smooth curve over k of fiber genus g ≥ 2 and of base genus
q ≥ 2. Also set d = −deg R1π∗OX > 0. Then

c2
1 (X) = 12d + 8(q − 1)(g − 1) and c2(X) = 4(q − 1)(g − 1).

When π(pn) : X(pn) → C is the base change of π by the n-iterative Frobenius
morphism of C, we have F n

C : C → C, deg R1π
(pn)
∗ OX(pn) = −pnd,

c2
1 (X

(pn)) = 12dpn + 8(q − 1)(g − 1), and c2(X) = 4(q − 1)(g − 1).

For any M > 0, if n is sufficiently large then

c2
1 (X

(pn)) > Mc2(X
(pn)).

Lemma 3.1. Suppose that X is a smooth proper surface over k admitting a smooth
fibration π : X → C to a smooth proper curve C over k. If π is generically or-
dinary and if Pic X is smooth, then Pic X(pn) is smooth for any n ∈ N when
X(pn) → C is the base change of X → C by the n-iterative Frobenius morphism
F n

C : C → C.

Proof. Recall the Frobenius diagram

X
FX/C

��

����
��

��
�� X(p)

α ��

��

X

��

C
FC �� C .

Here α � FX/C is the absolute Frobenius morphism of X and FX/C � α is the ab-
solute Frobenius morphism of X(p). Because π is smooth, X(p) is smooth over k.

For a smooth projective variety, the Frobenius morphism induces a bijective semi-
linear morphism on the rational crystalline cohomologies. Therefore,

dim H i
crys(X/K) = dim H i

crys(X
(p)/K),

whereK is the fraction field of the ring of Witt vectorsW =W(k) andH i
crys(X/K)=

H i
crys(X/W ) ⊗ K. In particular,

dim H1
crys(X/K) = dim H1

crys(X
(p)/K).

On the other hand, the K-dimension of the crystalline cohomology H i
crys(X/K)

is equal to the Q l-dimension of the l-adic étale cohomology H i
ét(X̄, Q l), where

l is a prime number different from the characteristic of k and X̄ = X ×k k̄. The
dimension of H1

ét(X̄, Q l) is twice the dimension of Pic X, so
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dim Pic X = dim Pic X(p).

Pic X is smooth if and only if its dimension is equal to the k-dimension of H1(OX).

Since π is generically ordinary, by Lemma 2.10 we have

dim H1(OX) = dim H1(OX(p)).

Hence, if Pic X is smooth then Pic X(p) is smooth. By the same argument,
Pic X(pn) is smooth for any n.

Theorem. For any M > 0, there is a smooth proper surface of general type X

over a finite field whose Picard scheme is smooth and c2
1 (X) > Mc2(X).

Proof. By Lemma 3.1, it is enough to give a nonisotrivial, generically ordinary
smooth fibration X → C such that Pic(X) is smooth. We will construct such an
example by using a reduction argument.

Let Fm be the Fermat curve xm + ym + zm = 0 over C with m > 3. Denote the
genus of Fm by g, and note that g ≥ 3. Let Mg be the moduli space of smooth
proper curves of genus g over C. By [5, p. 105] there exists a smooth proper curve
C0 in Mg passing through the point representing Fm. Then there is a finite cover
C → C0 and a nonisotrivial smooth fibration π : X → C that induces the com-
position C → C0 ↪→ Mg. Let us choose s ∈ C such that Xs = X ×C k(s) =
Fm. We can take an integral model of π with the section s over a Noetherian do-
main of finite type over Z. Explicitly, we can take A, an integral domain of finite
type over Z , and a smooth fibration πA : XA → CA over Spec A that satisfy the
following conditions:

(1) XA and CA are smooth and proper over Spec A;
(2) there is a geometric generic point of η : C → Spec A such that πA ×A η is

isomorphic to π : X → C;
(3) there exists a section S : Spec A → CA such that S ×A η corresponds to s with

respect to the isomorphism in (2);
(4) S ×CA

XA is isomorphic to the Fermat curve over Spec A.

Because Spec A is a scheme of finite type over Z , there is a rational point of
Spec A over a number field F. Given the coordinates of this rational point, there is
a morphism Spec B → Spec A for which B is a localization of OF , the ring of in-
tegers of F. By the change of bases, we obtain a smooth fibration πB : XB → CB

over Spec B. Then, for a place υ ∈ Spec B, the fiber of πυ = πB × kυ over Sυ is
the Fermat curve over the residue field of υ. The ordinarity of the Fermat curve
over a finite field depends only on the characteristic of the field. To be precise, it
is ordinary if and only if p ≡ 1 modulo m, where p is the characteristic of the fi-
nite field [16]. Therefore, at infinitely many places of Spec B, the reduction of π

is generically ordinary. Because Pic Xυ is smooth for almost all υ ∈ Spec B, there
is a place υ ∈ Spec B such that πυ is generically ordinary and the Picard scheme
of Xυ is smooth.

Remark 3.2. In the preceding example, while dim H1(OX(pn) ) is stable as n is
increasing, dim H 0(�1

X(pn) ) is strictly increasing [2, p. 94]. By the way, for an
arbitrary proper smooth surface, the inequality
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c2
1 ≤ 5c2 + 6β1 + 6(2h1,0 − β1)

holds for β1 = dimQ l
H1

ét(X ×k k̄, Q l). In view of this inequality, it seems that the
Miyaoka–Yau inequality is related to the correctness of h1,0 and not to the correct-
ness of h0,1. The example we have constructed shows that the “correct” value of
h0,1 does not guarantee the Miyaoka–Yau inequality.

References

[1] M. Deschamps, Réduction semi-stable, Astérisque 86 (1981), 1–34.
[2] R. Fossum, Formes différentielles non Fermées, Astérisque 86 (1981), 90–96.
[3] T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978),

779–794.
[4] G. Harder and M. Narasimhan, On the cohomology groups of moduli spaces of

vector bundles on curves, Math. Ann. 212 (1975), 215–248.
[5] J. Harris, Curves and their moduli, Algebraic geometry (Bowdoin, 1985), Proc.

Sympos. Pure Math., 46, part 1, pp. 99–143, Amer. Math. Soc., Providence, RI,
1987.

[6] L. Illusie, Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. École
Norm. Sup. (4) 12 (1979), 501–661.

[7] , Ordinarité des intersections complètes générales, The Grothendieck
Festschrift, vol. II, Progr. Math., 87, pp. 376–405, Birkhäuser, Boston, 1990.

[8] , Réduction semi-stable et décomposition de complexes de de Rham à
coefficients, Duke Math. J. 60 (1990), 139–185.

[9] L. Illusie and M. Raynaud, Les suites spectrales associées au complexe de
de Rham–Witt, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 73–212.

[10] J. Jang, Semi-stable fibrations of generic p-rank 0, Math. Z. (to appear).
[11] H. Langer and U. Stuhler, Vektorbündel auf Kurven und Darstellungen der

algebraischen Fundamentalgruppe, Math. Z. 156 (1977), 73–83.
[12] L. Moret-Bailly, Familles de courbes et de variétés abéliennes sur P

1, Astérisque 86
(1981), 125–140.

[13] A. Parshin, A letter to Don Zagier, Progr. Math., 89, pp. 285–292, Birkhäuser,
Boston, 1991.

[14] L. Szpiro, Sur le théorème de rigidité de Parsin et Arakelov, Astérisque 64 (1979),
169–202.

[15] G. Xiao, Surfaces fibrées en courbes de genre deux, Lecture Notes in Math., 1137,
Springer-Verlag, Berlin, 1980.

[16] N.Yui, On the Jacobian variety of the Fermat curve, J. Algebra 65 (1980), 1–35.

School of Mathematics
Korea Institute for Advanced Study
Hoegiro 87, Dongdaemun-gu
Seoul 130-722
Korea

jjm@kias.re.kr


