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Smoothings of Schemes with
Nonisolated Singularities

NikorLAos TZIOLAS

1. Introduction

The purpose of this paper is to describe the deformation and Q-Gorenstein defor-
mation theory of schemes defined over a field k£ with nonisolated singularities and
to obtain criteria for the existence of smoothings and Q-Gorenstein smoothings.
The motivation for doing so comes from many different problems. Two of the most
important ones are the compactification of the moduli space of surfaces of general
type (and its higher-dimensional analogues) and the minimal model program.

Let 0 € C be the germ of a smooth curve and let U = C — 0. It is well known
[A; KoSh] that any family fy: Xy — U of smooth surfaces of general type over
U can be completed in a unique way to a family f: X — C such that w%‘]c is in-
vertible and ample for some & > 0 and the central fiber X = f ~1(0) is a stable
surface. A stable surface is a proper 2-dimensional reduced scheme X such that
X has only semi-log-canonical singularities and a)E(k] is locally free and ample for
some k > 0. Hence the moduli space of surfaces of general type can be compacti-
fied by adding the stable surfaces. Therefore, we should like to know which stable
surfaces are smoothable and which are not. For an overview of recent advances
in this area and the higher-dimensional analogues, see [A].

We would like to mention two applications from the minimal model program
that are related to the smoothability problem.

1. The outcome of the minimal model program starting with a smooth, n-
dimensional projective variety X is a terminal projective variety Y such that either
Ky is nef or Y has a Mori fiber space structure, which means that there is a pro-
jective morphism f: Y — Z with —Ky f-ample. Suppose that the second case
occurs and dimZ = 1. Let z € Z and Y, = f~!(z). Then Y, is a Fano variety of
dimension n — 1 and Y is a Q-Gorenstein smoothing Y_. In general, Y, has noniso-
lated singularities and may not even be normal. Hence the classification of Mori
fiber spaces in dimension # is directly related to the classification of smoothable
Fano varieties of dimension n — 1.

2. One of the two fundamental maps that appear in the context of the 3-dimen-
sional minimal model program is an extremal neighborhood. A 3-fold terminal
extremal neighborhood [KoMo] is a proper birational map A C Y EN X > P such
that Y is the germ of a 3-fold along a proper curve A, Aq = f~'(P),Y isterminal,
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and —Ky is f-ample. An extremal neighborhood is the local analogue of a flip-
ping contraction or a divisorial contraction that contracts a divisor onto a curve.
In this setting, then, Y is a 1-parameter Q-Gorenstein smoothing of the general
member H € |Oy|. The singularities of H are, in general, difficult to understand,
and H may even be nonnormal. Of course, there are natural higher-dimensional
analogues of the previous construction.

It is therefore of interest to study the deformation theory of schemes with non-
isolated singularities and to obtain criteria for a scheme X to be smoothable. The
case when X is a reduced scheme with normal crossing singularities has been ex-
tensively studied by Friedman [Fr]. In particular, he obtained a condition (called
d-semistability) in order for X to be smoothable with a smooth total space and
he studied the obstruction theory for a d-semistable scheme to be smoothable.
As an application of these methods, Friedman showed that any d-semistable K3
surface is smoothable. Pinkham and Persson [PiP] have studied the problem of
whether a d-semistable scheme is smoothable and derived examples showing that
this is not always so. Kawamata and Namikawa [ KaNa] have defined and studied
the notion of logarithmic deformations of a normal crossing reduced scheme, ex-
tending Friedman’s result on the smoothability of normal crossing K3 surfaces to
higher-dimensional normal crossing Calabi—Yau varieties.

Typically, one first studies this problem locally and then globally. The local
problem is to study which singularities are smoothable and the global is to find
obstructions for the local smoothings to exist globally. If X has isolated singu-
larities only, then it is well known that H?(Ty) is an obstruction space for the
globalization of the local deformations. Hence, if X is locally smoothable and
H?*(Tx) = 0, then X itself is smoothable. However, if the singular locus of X
has dimension greater than 1, then there are examples of locally smoothable vari-
eties whose obstruction in H?(Ty) is zero that are not globally smoothable [PiP].
The reason behind this is that, if the singularities are not isolated, then there are
many local automorphisms of deformations that do not lift to higher order. An-
other major difference between the cases of isolated and nonisolated singularities
is that Schlessinger’s cotangent cohomology sheaves T7(X) no longer have finite
support. Instead, they are sheaves supported on the singular locus of X and are,
in general, difficult to describe [Tz1].

In this paper we seek to present a systematic study of the deformation theory of
schemes with positive-dimensional singular locus and also write a few smootha-
bility and nonsmoothability criteria. Some of the results that we prove are already
known, but many others are (to our knowledge) new. We have tried to obtain the
most general results with the fewest possible restrictions on the singularities. We
hope this paper will be a useful reference to anyone using deformation theory.

The paper is organized as follows. In Section 3 we define the deformation func-
tors Def(Y, X) and Def79(Y, X ), where Y C X is a closed subscheme of a scheme
X defined over a field k. If Y = X then these are the usual deformation and Q-
Gorenstein deformation functors of X. If P € X is an affine isolated singularity,
then Def(P, X) = Def(P € X) is the functor of algebraic deformations of iso-
lated singularities defined by Artin [A, Def. 5.1]. More generally, if ¥ # X then
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these are deformation functors of X, the formal completion of X along Y with
certain algebraizability conditions that are explained in Definition 3.2. They are
algebraic analogues of deformations of germs of analytic spaces. We also define
the local deformation functors Defj.. (Y, X) and Def,‘ff(Y, X), which parameterize
the local deformations of ¥ C X. In almost all applications—and for the defor-
mation functors to have good properties—we assume that Y contains the singular
locus of X.

In Section 4 we describe the tangent spaces T(Y, X)and ’]I‘;G (Y, X) of Def (Y, X)
and Def?9(Y, X). Moreover, in Proposition 4.2 we obtain the local-to-global se-
quence for the functors Def(Y, X) and Def?¢(Y, X), which is a generalization of
the usual local-to-global sequence for Def(X) [Se, Thm. 2.4.1].

In Section 5 we study the existence of a pro-representable hull for the de-
formation functors defined in Section 3. It is known that Def(Y, X) has a pro-
representable hull if its tangent space T'(Y, X) is finite dimensional [S]. In Theo-
rem 5.4 we show that this also holds for Def?°(Y, X) and in Theorem 5.5 we show
that, under some strong restrictions on the singularities of X, Deff(’,cG(Y, X) and
Defl,. (Y, X) have a hull, too. Finally, in Proposition 5.3 we exhibit some cases
where T!(Y, X) and ’]I‘;G (Y, X) are finite dimensional over the base field k.

In Sections 6 and 7 we explain the main technical tool used to study the defor-
mation theory of X, Kawamata’s T !-lifting property [Kal; Ka2].

In Section 8 we use the T '-lifting property to study the global deformation the-
ory of Y C X. In particular, in Theorem 8.1 we show that, if X is a pure and re-
duced scheme defined over a field of characteristic 0 and if X — Y is smooth, then
Ext)z} (Q x> O0%) isAan obstruction space to lifting a deformation X,, € Def(Y, X)(A,)
to A,41, where X is the formal completion of X along Y and A, = k[£]/(e™h).
Moreover, we exhibit an explicit obstruction element.

In Section 9 we study the problem of when local deformations of ¥ C X exist
globally. The main results are as follows.

(1) In Proposition 9.1 we show that, under very strong restrictions on the singu-
larities of X, the global-to-local map

7 : Def(Y, X) — Defo. (Y, X)

is smooth if H%( f"x) = 0, where fx is the completion of Tx along Y. However,
in general 7 may fail to be smooth. This is in contrast to the case of isolated
singularities, for which it is well known that the global-to-local map is always
smooth if H*(Tx) = 0.

(2) To get around the failure of 7 to be smooth, for any small extension

0—-J—>B—>A—-0

and for any X4 € Def(Y, X)(A) we define the spaces Def(X4/A, B) and
Def}o.(Xa/A, B), parameterizing global and local liftings of X4 to B with
certain local compatibility conditions that are explained in Definition 9.2. In
Theorem 9.4 we describe them and show that there is an exact sequence

0— H'(Txy ® J) 2 Def(Xa/A, B) %> Defioe(X4/A, B) - H*(Tx ® J)
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generalizing the first-order global-to-local exact sequence. Moreover, we
show that there must be two successive obstructions in H%(7?(X) ® J) and
HYT'Y(X) ® J) in order for Defioc(Xa/A, B) # @. If these obstructions
vanish, then there must be another obstruction in H 2(7A"X ® J) in order for
Def(X4/A, B) # (—that is, for the local deformations to exist globally.
These obstruction spaces are well known if X = Y [H3].

In Section 10 we extend all results obtained for the functor Def(Y, X) to
Def?%(Y, X). We do this by using that, locally, any Q-Gorenstein deformation
of X is induced by a deformation of its index-1 cover [ KoSh].

Let X be a scheme of finite type over a field k, and let f: X — S be a defor-
mation of X over the spectrum of a discrete valuation ring (R, m). In Section 11
we compare properties of the global deformation f with properties of the asso-
ciated formal deformation f,: X, — S,, where S, = Spec R/m"*! and X, =
X xg S,. In particular, we obtain criteria on the associated formal deformation
in order for the global one to be a smoothing. This is important because the de-
formations obtained with our methods are only formal and are not necessarily
algebraic. But when they are algebraic it is of interest to know which properties
of the global deformation can be read from properties of the associated formal
deformation.

In Section 12 we apply the theory developed in the previous sections to give
some smoothing and nonsmoothing criteria for a pure and reduced scheme of fi-
nite type over a field k. The main results are as follows.

(1) Let D be either Def(X) or Def7°(X). In Theorem 12.3 we show that if at any
generic point of its singular locus X has normal crossing singularities and if

H (p(Ty(X))) = Hy(p(Tp(X))) =0,

then X is not smoothable, where p(Tll)(X )) is the quotient of TLI,(X ) by its
torsion and Z is the support of the torsion part. As a special case we get that
if X has normal crossing singularities and H°(T'(X)) = 0, then X is not
smoothable.

(2) In Theorem 12.5 we show that if X is a locally smoothable Q-Gorenstein
scheme such that the index-1 covers of all its singular points have complete
intersection singularities, TqIG(X ) is finitely generated by its global sections,
and H'(T,;(X)) = H*(Tx) = 0, then X has a formal Q-Gorenstein smooth-
ing. Various other more specialized smoothing criteria are also given.

In Section 13 we apply the theory developed earlier in order to give examples in
the context of the moduli of stable surfaces and the 3-dimensional minimal model
program. First we give two examples of nonsmoothable stable surfaces. The com-
ponents of the moduli space of stable surfaces to which these surfaces belong do
not contain any smooth surfaces of general type, so these are extra components
that appear by compactifying the moduli space of surfaces of general type. Then,
by deforming a particular nonnormal surface H, we construct a 3-dimensional di-
visorial extremal neighborhood f: Y — X such that H is the general member
of |Oy]|.
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2. Preliminaries

All schemes in this paper are separated and Noetherian defined over a field k.
Additional properties will be stated as needed.

We denote by Art(k) the category of Artin local k-algebras.

For any coherent sheaf F on a scheme X, we denote F "l = (F®)**,

Let F: Art(k) — Sets be a deformation functor. Then, following the nota-
tion introduced by Schlessinger [S], its tangent space is the set F(k[t]/ (t?))
and is denoted by T}.

(5) A small extension of local Artin k-algebras is a square zero extension

(6)

(M

0—-J—>B—>A—-0

of local Artin k-algebras (A, my4) and (B, mp) such that J is a principal ideal
of B and mgJ = 0 (and therefore J = k as a B-module).

Let X — Y be a morphism of Noetherian separated schemes and F a co-
herent sheaf on X. Then by T(X/Y, F) we denote Schlessinger’s cotangent
cohomology sheaves [LiS].

Let X be a scheme. A formal deformation of X is a flat morphism of formal
schemes §: X — &, where & = Specf R, (R, my) is a complete local ring,
and X = X x g Specf(R/mpg). Equivalently, a formal deformation of X over
(R, mpg) is a collection of compatible deformations f,: X, — Spec R, for
alln € Z.o, where R, = R/m;l;“l. Suppose that X is of finite type over a
field k. Then the formal deformation is called effective if and only if there is
a flat morphism of finite type f: X — S = Spec R of schemes with X =
X x5 Spec(R/mg) = X and such that X = X, the formal completion of X’
along X. In this case, f is called the associated formal deformation of f. If in
addition f is induced from a deformation f’: X’ — Spec A, where (A, my,)
is a localization of a finitely generated k-algebra such that A = R, then the
deformation is said to be algebraic.

(8) A reduced scheme X is called Q-Gorenstein if and only if it is Cohen—

Macauley, it is Gorenstein in codimension 1, and there is an n € Z.( such
that wg("] is invertible.

(9) A smoothing of a scheme X is a flat morphism f: X — T = Spec R, where

(R, m) is a discrete valuation ring such that X xy Spec(R/m) = X and the
generic fiber X x7 Spec K(R) is smooth over K(R). If in addition X is Q-
Gorenstein and there is an n € Z.( such that w}{’/]T is invertible, then the
smoothing is called Q-Gorenstein. To avoid degenerate situations we will
assume either that X is a local scheme and f is a morphism of local schemes

or that X and f are proper and of finite type.

3. The Deformation Functors

First we recall the definition of an étale neighborhood of a closed subscheme Y of
a scheme X [C].
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DEerINITION 3.1. Let X be a Noetherian scheme defined over a field k, and let
Y C X be a closed subscheme of X. An étale neighborhood of Y in X is an étale
morphism Z — X suchthat Z xx Y =Y.

Next we define the deformation functors that we shall study in this paper.

DEFINITION 3.2. Let X be a Noetherian scheme defined over a field &, and let
Y C X be aclosed subscheme of X. Let X be the formal completion of X along Y.
Then Def(Y, X): Art(k) — Sets is the functor such that, for any finite local Artin
k-algebra A, Def(Y, X)(A) is the set of isomorphism classes of flat morphisms of
formal schemes f: X — Specf A such that
(1) X Xspecra Specfk = X and
(2) there exist an open cover U; of X and flat morphisms of schemes f;: U; —
Spec A such that:
(a) U; Xspec a Speck is a local étale neighborhood of ¥ in X; and
(b) U; — Specf A is the formal completion of U; — Spec A along Y.

Next we define the notion of Q-Gorenstein deformations and the corresponding
deformation functor Def?S(Y, X). In order for this to make sense, it is necessary
to define the notion of relative dualizing sheaves for a formal family as in Defini-
tion 3.2.

DEFINITION 3.3.  Let X be a Cohen—Macauley scheme that is Gorenstein in co-
dimension 1 and defined over a field k, and let Y C X be a closed subscheme of
X. Let f: X - S = Specf A be an element of Def(Y, X)(A), where A € Art(k).
Let U; be an open cover of X as in Definition 3.2. Then the sheaves (a)gf]/ )" glue
together to form a coherent sheaf on X, which we denote by ng)s Note that the

construction is independent of the cover chosen.

DEerFINITION 3.4. Let X be a Q-Gorenstein scheme defined over a field &, and let
Y C X be a closed subscheme of X. The functor of QQ-Gorenstein deformations
is the functor Def9°(Y, X): Art(k) — Sets such that, for any finite local Artin
k-algebra A, Def?%(Y, X)(A) is the set of isomorphism classes of flat morphisms
X — S = Specf A in Def(Y, X) such that the sheaf a)gf/]s is invertible for some
ne Z>0.

It is not immediately clear whether Def?¢(Y, X) as just defined is a functor. This
would be true if wx,/s being Q-Gorenstein is a stable property under base exten-
sion, which is known to be true [HasK, Lemma 2.6].

REMARK 3.5.

(1) If Y = X, then the functors Def(X, X) and Def?9(X, X) are just the familiar
deformation functors Def(X) and Def?¢(X).

(2) Let P € X be an affine isolated singularity. Then it follows from the defini-
tions and from Theorem 11.1 [Arl, Cor. 2.6] that Def(P, X) is the functor of
algebraic deformations of an isolated singularity [Ar2, Def. 5.1]. This functor
is usually denoted by Def(P € X), and we will frequently use this notation.
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More generally, if X has isolated singularities and ¥ = X sing — {P1,..., P},
then Def(Y, X) = []'_, Def(P; € X).

Moreover, as we shall see later, in order to obtain reasonable results about
Def(Y, X) or Def?%(Y, X) (in particular, existence of pro-representable hulls), we
will assume that Y is proper and that X — Y is smooth.

REMARK 3.6. The functors Def(Y, X) and Def9S(Y, X) are an attempt to estab-
lish an algebraic analogue of deformations of germs of analytic spaces. A can-
didate for an algebraic germ is the formal neighborhood. However, completion
along a subscheme is not an algebraic construction. The algebraic analogues of
local analytic neighborhoods are étale neighborhoods. Ideally we would like to
define the notion of an algebraic germ in such a way such that (1) if two are isomor-
phic then they are at least locally étale equivalent and (ii) any morphism between
two algebraic germs comes, at least locally, from a morphism between étale neigh-
borhoods. It is known [C, Thm. 4] that if Y C X;, Y C X, is an embedding of
a scheme Y into two schemes X; and X, and X' = X%, then—under relatively
mild hypotheses—the isomorphism is induced by a common étale neighborhood
of Y in X; and X,. However, it is possible that )A(l = )A(Z but th x X%, in which
case X and X are not étale equivalent around Y [C, Ex. 1]. For these reasons, the
correct definition of the algebraic germ of ¥ C X would be that of the henseliza-
tion X" of X along Y instead of the completion X. However, owing to technical
difficulties of working with henselization, we work with the formal neighborhood
and impose a local algebraizability condition in order not to stray too far from the
geometry of ¥ C X. Moreover, in many cases the results of Artin [Arl] allow us
to move between the formal and the algebraic case.

NortaTION 3.7.  For the rest of this paper, whenever we speak of Def(Y, X) or
Def99(Y, X), X is assumed to satisfy all the relevant properties stated in Defini-
tions 3.2 and 3.4.

One of the fundamental problems in deformation theory is to determine when a
given scheme X admits a smoothing. The natural approach is first to study the
problem locally (i.e., to determine which singularities are smoothable) and then to
globalize the local smoothings. If X has isolated singularities only, say P, ..., Py,
then the globalization of the local deformations is achieved by studying the natural
transformation of functors

k
D(X) - [[ D(P:. X), 3.1
i=l
where D(X) is either Def(X) or Def9¢(X) and D(P;, X) is either Def(P;, X) or
Def?¢(P;, X). If the singularities of X are not isolated, then the map (3.1) does
not exist. A kind of “sheafification” of the local deformation functors is more ap-
propriate in this case.

DEFINITION 3.8. Let D(Y, X) be either Def(Y, X) or Def9%(Y, X). The functor
D(Y, X) is the functor
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D(Y, X): Art(k) — Sh(X)

defined as follows. For any finite local k-algebra A, D(Y, X)(A) is the sheaf asso-
ciated to the presheaf F' defined by F(V) = D(Y NV, V)(A) for any open set V.

DEFINITION 3.9. Let D(Y, X) be either Def(Y, X) or Def9°(Y, X). The functor
of local deformations of D(Y, X) is the functor Dy (Y, X): Art(k) — Sets de-
fined by

Diee(Y, X)(A) = H(D(Y, X)(A)).

For D(Y, X) as just defined, there is a natural transformation of functors
w: D(Y,X) — D (Y, X). 3.2)

We call this map the local-to-global map. If X has isolated singularities and if
Y = X, then 7 extends (3.1).

REMARK 3.10. If X has isolated singularities and H 2(Tx) = 0, then it is well
known that 7 is smooth. But 7 is not smooth in general because of its inability
to lift local automorphisms of deformations to higher order. Under some strong
conditions on the singularities of X, however, 7 is still smooth (Proposition 9.1).

4. The Tangent Space of Def(Y, X) and Def?¢(Y, X)

Let Y C X be a closed subscheme of a scheme X. In this section we describe the
tangent spaces of the functors Def(Y, X) and Def7¢(Y, X) as well as the local-to-
global map 7 (3.2) at the level of tangent spaces.

DEFINITION 4.1. We denote by T!(Y, X), T!(Y, X), ']I‘}IG(Y,X), and Tq'G(Y, X)
the tangent spaces of the functors

Def(Y, X), Def(¥,X), Def?“(¥,X), and Def?(Y,X),

respectively.

It easily follows from the definitions of the deformation functors involved that
HYT'(Y,X))and H O(quc (Y, X)) are the respective tangent spaces of Defjo. (Y, X)
and Defl‘(])CG(Y, X). If X — Y is smooth, then T (¥, X) is just Schlessinger’s TY(X)
sheaf and T, (Y, X) is the subsheaf T,;(X) of T'(X) defined as follows. For
any affine open subset U C X, quG (X)(U) is the Ox (U)-module of isomorphism
classes of first-order Q-Gorenstein deformations of U.

The next proposition describes the global-to-local map at the level of tangent
spaces. If X = Y and D = Def(X), then this is just the familiar global-to-local
sequence of the functor Def(X) [Se, Thm. 2.4.1].

PrOPOSITION 4.2.  Suppose that X is a reduced scheme and that Y C X a closed
subscheme. Then the following statements hold.
(1) There is a canonical injection

¢: TI(Y, X) — Ext;(Qx, 03)

that is an isomorphism if X — Y is smooth.
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(2) Let D be either Def(Y, X) or Def¢(Y, X). Then there is an exact sequence
0 — H'(Ty) = TL(Y,X) - HYT)(X)).
Ifin addition X — Y is smooth, then 'IFID(Y, X) = Tll)(X), T5(Y, X) = Tg(X),
and there is an extended exact sequence
0 — H'(Tx) = TL(X) = HYTA(X)) = H*(Ty),
where X is the formal completion of X along Y and where Qx., Tx, and fg(X )

are the corresponding completions of Q2x, Tx, and T,%(X ) along Y.

Proof. We first deal with the case D = Def(Y, X). The proof is based on the one
for ordinary schemes [Se, Thm. 2.4.1]. Let X; — Specf A; be a first-order defor-
mation of X. Then by definition there is an open cover U; of X} such that Uf; = l?,-,
where U; is a first-order deformation of a local étale neighborhood V; of Y in X.
Then the extension

0—->k—>A —>k—>0

gives the extension
0— Oy, = Oy, = Oy, = 0O,

and since X is assumed to be reduced, there is an exact sequence
0— Oy, = Qu, ®0y, — Qy, > 0
and consequently
0— Oy, —>SA2UI.®O‘7‘_ — fzvl. — 0.
Patching these all together yields the exact sequence
0— 04 — SA2X®(’)X—> fZX—>O.

Hence we get a map
T'(Y, X) — Extg(Qx, Oy),

which is injective (as in the usual scheme case). Conversely, let
0— 03— &—Qx—0

be any extension in Ext;((SAZ x> 03). Let d: 03 — Q x be the comHIetionAof the
universal derivation of X (for detailed definitions and properties of d and 2y for
any formal scheme X, see [TL6OR]). Then, exactly as in the scheme case, this gives
a first-order deformation X’ of X. However, in general it may not be locally the
completion of a deformation of a local étale neighborhood of ¥ in X.

The standard local-to-global spectral sequence gives

0— H'(Ty) > Bxt,(Qx, 0y) — H(Exth,(Qx. 05) — H*(Ty).  (@.D)

Claim: .
Exty, (Qx, Og) = Exty(Qx, Ox)".

In fact, we will show that

Extl(F,P) = Exty (F,P)",
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where F and P are coherent Ox-modules. This is a local result, so we may as-
sume that X = Spec A and Y = V(I), where I C A is an ideal. Then, since F is
coherent, there is an exact sequence

0— O0f > o0r > F—o.
Applying Homx (-, P) and taking completions, we obtain the exact sequence
P — PF = Exth(F.P)" — 0.
Taking completions first and then applying Hom ¢ (-, P),we get the exact sequence
pm s Pk Sxt)l»((fzx,(’)f() — 0.

The claim now follows immediately from the last two exact sequences.
Since X is reduced, it follows that 7'(X) = Ext)lf (Rx, Ox). Thus from (4.1)
we obtain the exact sequence

0 — H'(Tx) — Ext,(Qx.0y) > HUT'(X)) > HX(Ty).  (42)

The space H 1(YA"X) class}ﬁes the first-order locally trivial deformations of X [Hal],
and T'(Y, X) C Ext}((Q x> Oy). Hence there is an exact sequence

0— H'(Ty) - T'(V,X) - HYT'(X))

as claimed. If in addition X — Y is smooth, then TY(X)is supported on Y and so
7! (X) = T'(X). Therefore, every first-order deformation X’ of X arising from
an element of ExtX(Q x,Oy) is locally the completion of a local deformation of
X, and hence in this case T'(Y, X) = Ext}((flx, Oy). This, together with the ex-
act sequence (4.2), gives the exact sequence claimed in the second part of the
proposition.

It remains to consider the Q-Gorenstein functor. Let

v TWY, X) - HAT'(¥, X))
be the global-to-local map defined previously. Then
O(T‘G(Y X)) c HYTY(v,X)) and ']I‘IG(Y X)= 1/f_‘(H°(T (Y, X))).

This, together with the results just proven for the usual deformations case, yields
the corresponding results for the Q-Gorenstein case. UJ

REMARK 4.3.  From Proposition 4.2 it follows that, in order to obtain reasonable
results concerning the tangent space of Def(Y, X) or Def7°(Y, X), X — Y must be
smooth. From now on we will always assume this.

5. Existence of Pro-representable Hulls

In this section we investigate the existence of pro-representable hulls [S] for all the
deformation functors defined in Section 3. To do so, we use the following result
of Schlessinger.
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THEOREM 5.1 [S]. Let F: Art(k) — Sets be a functor such that F (k) is a single
point. Let A — A and A" — A be morphisms in Art(k), and consider the map

F(A x4 A") — F(A") x g F(A"). S.D
Then the following statements hold.

(1) F has a pro-representable hull if and only if F has the following properties:
(Hy) (5.1) is a surjection whenever A” — A is a small extension;
(H») (5.1) is a bijection when A = k and A" = k[t]/(t?);
(H3) dim T} < oc.
(2) Fis pro—representable if and only if F has the following additional property:
(Hy) F(A x4 A') = F(A') xp@y F(A') is an isomorphism for any small
extension A’ — A.

By using the criteria of the previous theorem, Schlessinger showed the following.

PrROPOSITION 5.2 [S]. Let X be a scheme defined over a field k. Then Def(X)
has a pro-representable hull if and only if dim T (X) < oo.

The proof given by Schlessinger applies directly to Def(Y, X), so it follows that
Def(Y, X) has a pro-representable hull if and only if dim; T!(¥, X) < oc.

Next we present some cases where T!(Y, X) and ’JI‘I ¢ (Y, X)) have finite dimen-
sion over k. Then we show that Def?%(Y, X) has a pro -representable hull if and
only if dimy ’}I‘ ¢(¥, X) < oo; and finally we show that, under some strong re-
strictions on the singularities of X, Defjo. (Y, X) and Deffff(Y X)) also have a pro-
representable hull.

PROPOSITION 5.3.  Let X be a reduced scheme, and let Y C X be a proper sub-

scheme of X. Then TYY, X) and T;G(Y, X) have finite dimension over the base

field k in any of the following cases.

1) xX=Y.

(2) Both X and Y are proper and smooth, and the normal bundle Ny/x of Y in X
is ample.

(3) Y is contractible to an isolated singularity—in other words, there is a proper
morphism f: X — Z suchthat f(Y)isapoint, X—Y = Z— f(Y),Z— f(Y)
is smooth, and R'f,Ox =0 foralli > 1.

4) dimY =1, X — Y is smooth, and Iy/I;Z) is ample, where I;z) is the second
symbolic power of the ideal sheaf Iy of Y in X.

Proof. We use Proposition 4.2. Then the first part is immediate and the second
part was proved by Hartshorne [H2]. The third part is well known in the analytic
category, but owing to the lack of a reference we present a proof here. The result is
local around Y, so we may assume that Z = Spec A, where (A, m) is the localiza-
tion of a finitely generated k-algebra. Let f: X — Z be the birational map in the
assumption. Now, since f is proper and birational, H'(Ty) is a finitely generated
torsion A-module and hence H'(Tx)" = H'(Tx), where H'(Tx)" is the m-adic
completion of H'(Tx). Then, according to the formal functions theorem,
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H\(Tx) = H'(Tx).
Dualizing the standard exact sequence
Q7 — Qx = Qx;z = 0
and taking into consideration that f is birational, we obtain the exact sequence
0—>Tx > (f*Qz)*—> M — 0,

where M is a coherent Ox-module supported on Y. Hence dim; H'(Tx) < oo
if and only if dim; H'((f*Q2)*) < oo. Moreover, there is a natural map :
f*T7; — (f*Qz)* and the supports of both Ker (1) and Coker () are contained
in Y. It therefore suffices to show that dim; H'(f*Tz) < oo. Since Z is affine,
there is an exact sequence

0>N—->0;—->T,—-0

and hence an exact sequence
0—> Q0— f*N—>Of - [T, — 0,

where Q is supported on Y. This breaks into two short exact sequences:

0> Q— f*N—> M — 0,

0> M- Oy - [T, — 0.
Thus, since R' f.Ox = 0, it now follows that

dimy H'(f*Ty) < 0o <= dimy H*(f*N) < oo.

If we repeat the above argument then the result follows by induction.

It remains to show the last part. So, assume that dimY = 1, that Iy/I,Ez) is
ample, and that X — Y is smooth. Then, by Proposition 4.2, it suffices to show
that dim, H 1(TA"X) < 00. The completion X of X along Y can be calculated via
the ideal sheaves 1;"), S0

H'(Tx) = lim H'(Tx ® Ox/I;").
The short exact sequence
0— I/ — Ox/1" — Ox/I" — 0
gives the exact sequence
0— K, = I/ @ Ty — Ox/I" @ Tx 25 Ox/1" @ Ty — 0.

We will show that I-{ '(Ker(a,)) = 0 for n sufficiently large and hence, since
Y is proper, dim; H'(Tx) < oo. Since dimY = 1, it follows that H>(K,) = 0
and so it suffices to show H'(I"/1""*" ® Tx) = 0 for n sufficiently large. The
natural map
S"(Iy /1) — 18771
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is generically surjective along Y'; hence there exists an exact sequence
S"(UIy/ 1) @ Ty — I°/I0 @ Ty — T, — 0,

where 7, has 0-dimensional support. Because Iy/I ;2) is ample, there must exist
an ng € Z such that H'(S"(Iy/I{’)) ® Tx) = 0 for all n > ny. Therefore,
H' (/1Y @ Ty) = 0 for all n > ng and hence dim; H'(Tx) < oo as
claimed. U

THEOREM 5.4. Let X be a Q-Gorenstein scheme, and let Y C X be a closed
subscheme of X. Assume also that dimy T;G(Y, X) < oo (this occurs, for ex-
ample, when Y C X satisfy the conditions of Proposition 5.3). Then the functor
Def?¢(Y, X) has a pro-representable hull.

Proof. We only show the case X = Y; the general case is similar. For conve-
nience, set D = Def?¢(Y, X). We follow the general lines of the proof given by
Schlessinger for the usual deformation functor Def(X) [S, Prop. 3.10]. It suf-
fices to show that D satisfies Schlessinger’s conditions (H;), (H,), and (H3) (see
Theorem 5.1). Condition (Hj3) is satisfied by assumption, and (H,) will follow
from (H;) because it is satisfied for the usual deformation functor Def(Y, X). Let
A" — Aand A’ — A be homomorphisms between Artin local k-algebras such that
A" — A is a small extension; that is, there exists a square zero extension

0—>k—> A" - A0
We will show that the natural map
D(A” x4 A') = D(A") xp(ay D(A)

is surjective (this is condition (Hy)). Let X4» € D(A”), X4 € D(A’), and X, €
D(A)suchthat X4»®4rA = X4 ®x A = X,. Then there are natural maps Oy, —
Ox, and Ox,, — Ox,. Let R = A” x4 A" and let Xy be the scheme (|X|, Ox,),
where | X| is the underlying topological space of X and Ox, = Ox,, X0y, Ox, -
Then Oy, is a flat R-algebra, Ox, ®x A" = Ox,,, and Ox, ®r A’ = Ox,, [S]. To
conclude the proof we must show that X is Q-Gorenstein (i.e., that it is Cohen—
Macauley), that X is Gorenstein in codimension 1, and that there is an n € Z such
that wE;’R] sr is invertible. Because Xy is a deformation of X over an Artin local ring
R, it is Cohen—Macauley and Gorenstein in codimension 1. Let n be the index of
X. Then there is a natural map
o a)g(”k] /R~ a)E?A] /A" xw[XnA]/A a)g("j e

We will show that this map is an isomorphism. First observe that, since X is
Q-Gorenstein of index n and X4, X4, X4 are also Q-Gorenstein, they also have
index n [KoSh] and hence the right-hand side is invertible. Since a)g("R] /R is reflex-
ive and X is Cohen—Macauley, it suffices to show that ¢ is an isomorphism over
the Gorenstein locus. Let X° C X be the Gorenstein locus of X. Then there is a
commutative diagram
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o' o
XO/R — “x0n

L

[nl w[n]
Xo A" e o/A

[\l _  ®n

and, moreover, since @ =w and ! = ®" are invertible,

X2/R X3/R X0, /A" X0, /A"
[nl ® A = a)l"]
“/R R Xo”/Au-
Hence [S, Cor. 3.6]
o =l ol
XQ/R T XD, /A Tod X0/ X0 4
as claimed and therefore Xy is Q-Gorenstein. O

The next proposition shows that, under some strong restrictions on the singular-
ities of X, the local deformation functors Defi,.(Y, X) and Def10C (Y, X) have a
hull, too. This is useful in the cases when Def(Y, X) and Def?6(Y, X) do not have
a hull, a deficiency that arises because they may not have finite-dimensional tan-
gent spaces. However, the tangent spaces of the local functors are H(T'(Y, X))
and H°(T;(Y, X)), and since T'Y, X), T, (Y, X) are coherent sheaves supported
on the smgular locus of X, it follows that HO(T (Y, X)) and H(T,;(Y, X)) will
be finite-dimensional if the singular locus of X is proper and is contamed inY.

THEOREM 5.5. Let X be a scheme, and let Y C X be a subscheme of X. Assume
that the singular locus Z of X is proper and that Z C Y. Let D be either Def(Y, X)
or Def9°(Y, X). Suppose that one of the following conditions are satisfied:

(1) with the exception of finitely many singular points, D locally satisfies Schles-
singer’s condition (Hy);

(2) the codimension of Z in X is at least 3 and depthp(Ox p) > 3 for any point
P e Z (closed or not).

Then the local deformation functor Do has a pro-representable hull.

Proof. We prove the theorem only for ¥ = X. The proof of the general case is
similar.

It suffices to verify Schlessinger’s conditions (H;), (H;), and (H3). The tan-
gent space of Dio is H(T}(X)). Since T} (X) is a coherent sheaf supported on
the singular locus of X, it follows that H°(T,}(X)) is finite dimensional over the
base field k. So (H3) is satisfied.

Assume now that either one of the conditions in the statement is satisfied. If
the second one holds, then Def(X) = Def(X — Z) [Ar2] and, since X — Z is
smooth, it locally satisfies (H4). Hence we need only assume that the first condi-
tion is satisfied.
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Let A” - A and A’ — A be homomorphisms between Artin local k-algebras
such that A” — A is a small extension. We will show (H;)—in other words, that
the natural map

Dloc(A// XA A/) - Dloc(A”) X Dioc(A) Dloc(A/)

is surjective. By definition, Dio.(B) = H°(D(B)) for any local finite k-algebra B.
Lets’e HY(D(A')) and s” € H°(D(A")) be such that they map to s € H(D(A))
under the natural maps A': H'(D(A')) — H®D(A)) and ": H'(D(A")) —
H°(D(A)). Let {U;} be an affine open cover of X, and let U; =U;NU. Let &;
be any deformation of U; over aring B. In what follows we will use X;; to denote
the restriction of X;; on Uj;.

The section s is equivalent to a collection of deformations X; of U; over A
and A-isomorphisms ¢;;: X;; — Xj;. Similarly, s’ is equivalent to a collection
of deformations X/ of U; over A" and A-isomorphisms ¢;;: X}, — X7, and s is
equivalent to a collection of deformations X/ of U; over A” and A”-isomorphisms
d)l-’;: Xi’Jf — XJ’l’ Since A'(s’) = A’(s”) = s, there must exist A-isomorphisms
Vit X @y A — Xjand ¥ X' ®a A — X;. Then Ox; X0, Oxy is a defor-
mation of U; over R = A” x4 A'. The collection {Ox; X0, Ox/} forms a section
in H°(D(R)) if and only if there are R-isomorphisms

)\,,‘j: OX'/I XOXU OXI/I’ — OX;: XO;\{/, OXI/’/
The natural candidate for such an isomorphism is
/ ",
¢ij X d)l-j. OX{]» X (’)Xl/j/, — O/Yj/i X OX]{I{.

This isomorphism induces an isomorphism of O X Xo, @ X if and only if there
is a commutative diagram

OX/ ®A/ X// ®A// A
Ox;, ®u A i Oxy ®ar A
1//].’[ y
O,

By our assumption, we can refine the open cover in such a way that the U;; sat-
isfy (H4). We can now modify the ¢;; so that the left-hand side of the diagram
commutes and then, since the U;; satisfy (Ha4), we lift them to X;/. Hence we get
a section and therefore D), satisfies (H;). Similarly, it also satisfies (H,) (note
that (H,) is satisfied without any restrictions on the singularities of X) and hence
D¢ has a hull. O
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Next we present a simple case when Dy, has a hull.

COROLLARY 5.6.  Assume that, with the exception of finitely many singular points,
the index-1 cover of any singular point of X is smooth and that the singular locus
of X is proper. Then Def}! (Y X) has a hull.

Proof. By Theorem 5.5 we need only show that, with the exception of finitely
many singular points, property (H4) is satisfied. This is equivalent to showing that
local automorphisms of deformations lift to higher order. Since the result is lo-
cal, we may assume that X is affine. Then let 7 : X — X be the index-1 cover of
X. Let X4 be a Q-Gorenstein deformation of X over A. Let A — B be a finite
local A-algebra and let Xz = X4 ®4 B. Let 6 be a B- automorphlsm of Xp. Let
X 4 — X4 be the index-1 cover of X4. Then X 4 1s a deformation of X [KoSh] over
A and X4 ®4 B is the index-1 cover of Xg. From the construction of the index-1
cover, @ lifts to an automorphism of X that is smooth by assumption. This now
lifts to an automorphism of X 4 and hence to an automorphism of Xjy4. O

REMARK 5.7. From the proof of Theorem 5.5, it is clear that the obstruction to
the local deformation functors having a hull is the presence of automorphisms. In
fact, the only time we were able to show existence of a hull is when there are no
automorphisms. In view of this, perhaps it would be better to consider the stack
of deformations instead.

6. The T-lifting Property

The main technical tool that we will use to study the deformation theory of a
scheme X is Kawamata’s T !-lifting property [Kal; Ka2]. We recall the basic def-
initions and properties.

Let D: Art(k) — Sets be a deformation functor of some scheme X defined over
a field of characteristic 0—that is, a covariant functor that satisfies Schlessinger’s
conditions (H;) and (H;). Assume moreover that D has an obstruction space Tg.
For A € Art(k), D(A) is the set of isomorphism classes of pairs (X4, ¢g) consist-
ing of deformations X4 of X and marking isomorphisms ¢¢: X4 ®4 k — X. The
class of (X4, ¢o) will be denoted by [X4, o]

Let B, = k[x,y]/(x"*",y?) and C, = k[x,y]/(x"*, y2,x"y). There are nat-
ural maps o, : A,y1 = Ay, Bt By = Ay, Vi By = Cy, 8,0 Cy — By,
Cn: A, — Cy,and g,: An+1 — B, with .Bn(x) =1, 5;1()’) =0, Sn(t) =x+Yy,
and ¢,(t) =x + y.

DEFINITION 6.1.  Let [X,, ¢o] € D(A,). Then we define:

(D ’]I‘}D (X, /A,) to be the set of isomorphism classes of pairs (¥,,, ¥,,) consisting of
deformations Y, of X over B, and marking isomorphisms ¥,,: ¥, @5, A, —
X,; and

2) Tg(X,, /A,) to be the sheaf of sets on X associated to the presheaf F such that
FWU) = Tll)(U,,/An) for any open U C X, where U, = X,|y.
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If D is Def(Y, X) or Def7¢(Y, X ) then we use the notation T'(X,,/A,), T (X, /A,),
T;G (X,/A,), and quc (X,/A,), respectively.

DEerINITION 6.2 [Kal; Ka2]. We say that the deformation functor D satisfies the
T'-lifting property if and only if, for any X,, € D(A,,), the natural map

bn: Th(Xu/An) = Tp(Xuo1/An—1)

is surjective, where X,,—; = D(o,—1)(X,).

THEOREM 6.3 [Kal, Thm. 1]. Let D be a deformation functor that satisfies the
T -lifting property. Then D is smooth. In particular, if D has a hull, then its hull
is smooth.

In fact, the proof of the previous theorem shows the following.

THEOREM 6.4. Let D be a deformation functor, X,, € D(A,), X,_1 = D(a,)(X,),
andY,_1 = D(g,_1)(X,) € T},(Xn,l/A,,,l). Then X, lifts to A,+1 (i.e., is in the
image of D(A,+1) — D(A),)) if and only if Y,_, is in the image of the natu-
ral map

b T (Xn/Ay) = Th(Xy1/An).

The advantage of Theorem 6.4 is that it allows us to exhibit in the next section a
very explicit obstruction element to the lifting of X, to A,,;;. The following result
is also useful.

PROPOSITION 6.5.  With assumptions as in Theorem 6.4, let Y, € T'(X,/A,) be
a lifting of Y,_1; that is, ¢,(Y,) = Y,_1. Then there is a lifting X, of X, over
A,y such that Y, = D(g,)(Xn+1).

The proof of the proposition depends on the following result of Schlessinger.

THEOREM 6.6 [S]. Let D: Art(k) — Sets be a functor that satisfies (H,). Let
0>J—>B%A—>0

be a small extension of local Artin k-algebras, and let D(«): D(B) — D(A) be
the natural map. Then, for any &4 € D(A), there is a natural action of the tan-
gent space tp of D on the set D(a) " (£4). Moreover, if D satisfies (H,), then the
action is transitive.

A careful look at the proof of the previous theorem reveals that the action described
satisfies the following functorial property.

COROLLARY 6.7. With assumptions as in Theorem 6.6, let

o

0 J B A 0

Lol

0 7 B~ A 0

o
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be a commutative diagram of small extensions of local Artin k-algebras such that
f is a k-isomorphism. Let £4 € D(A) and &y = D(h)(€4) € D(A’). Then the
natural map D(a)~'(£4) — D) '(En) is tp-equivariant.

If f is not an isomorphism, then the previous result is not true.

Proof of Proposition 6.5. Let¢,: A, — C, be defined by ¢,(¢) = x + y, and let
8,: C, — B,_ be the natural map. Then §,¢, = ¢,-;. Consider the commuta-
tive diagram of small extensions

O J AVH—I An 0
lf J/En J{n
0 J B, Cy 0

where J = (t"*!), J' = (xy"), and f is the isomorphism given by sending ¢"*+!
to xy”. This diagram induces the commutative diagram

D(Auy) =% D(A) —— T2 ®J

J{D(en) J{D@'H)

D(yn) 2 /
D(B,) —— D(C,) — T/ ®J

where Tg is an obstruction space for D. Let Z, = D(¢,)(X,). Then the T'-
lifting property implies that D(y,)(Y,) = Z, [Kal; Ka2]. Let X, 41 be a lifting
of X, which exists by the 7'-lifting property, and let ¥, = D(e)(X,_ ). Then
Y, Y, € D(yn)‘l(Z,,), which is a homogeneous ¢p-space by Theorem 6.6. Hence
there is a 6 € p such that 0 - Y, = Y,,. Moreover, by Corollary 6.7, the natural
map D(a,)"N(X,) = D(&)7N(Z,) is tp-equivariant. Hence D (¢,)(X,+1) = Ya,

where X, ;1 =6-X, . O

REMARK 6.8. The T'!-lifting property was originally introduced by Ran [Ra] in
order to study infinitesimal deformations of a complex manifold; it was later gener-
alized by Kawamata [Kal; Ka2] to the case of an arbitrary deformation functor D.
Later, a stronger version of the T '-lifting property was introduced by Fantechi and
Manetti [FM2]. According to their definition, a deformation functor D has the
T -lifting property if, for any n € N, the natural map

D(B,+1) — D(B,) Xp,) D(A,41)

is surjective; they show that if D has the T '-lifting property and k has character-
istic 0, then D is smooth. Then, naturally, for any X, € D(A,) one can define
Tlg(X,l/An) = {Y, € D(B,), D(B,)(Y,) = X,}. Hence D has the new T '-lifting
property if and only if the natural map T'(X,/A,) — T'(X,_i/A,_1) is surjec-
tive for any X,, € D(A,). This is a stronger condition because it depends only
on D and does not take into consideration any automorphisms of X,. However,
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T'(X,/A,) does not have any natural k-vector space structures even when D =
Def(X). For this reason we consider the weaker definition given by Kawamata:
it has the advantage that ’]I‘b(X »/A,) has a natural k-vector space structure if D is
either Def(Y, X) or Def9“(¥, X), which are the cases of interest in this paper.

7. Description of T'(X,/A,) and T (X,/A,)

Let X be a pure and reduced scheme defined over a field of characteristic 0, and
let Y C X be a closed subscheme of X such that X — Y is smooth. Let X, €
Def(Y, X)(A,). In this section we describe the spaces T'(X,,/A,) and the sheaves
T (X, /An).

First we state a simple technical result that will be needed later.

LEmMMA 7.1.  Let X be a pure scheme, and let Xy be a deformation of X over a
local Artin k-algebra R. Then X is also pure.

Proof. The proof will be by induction on the length /(R) of R. If [(R) = 1 then
Xz = X, which by assumption is pure. Now, for any Artin ring R, the maximal
ideal m has a composition sequence (0) = Ip C I} C --- C Iy C Iy = m such
that I /Ix+1 = R/m. Since I} = A/m and since I, — 11/112 is surjective, it fol-
lows that 7 = 0. Hence there is a square zero extension

0—-k—R— B—0,

which gives the square zero extension
0_)OX_>OXRi)OXB_)O'

Let J C Oy, be an ideal sheaf such that dim Supp(J) < dim X. Then, by induc-
tion, p(J) = 0; hence J C Ox and so J = 0 since X is pure. O

PrROPOSITION 7.2.  Suppose that X is a pure and reduced scheme, that Y C X is
a closed subscheme, and that X — Y is smooth. Let X, € Def(Y, X)(A,). Then

T'(X,/An) = Exth, (Qu,/4,.Ox,)
and
T'(X,/An) = Extly (2x,/4,, Ox,)-

Proof. The proof is similar to our proof of Proposition 4.2. We will show only the
first isomorphism; the proof of second is identical. Let {I/!} be an open cover of
X, such that ¢! = U, where U/ is a deformation over A, of a local étale neigh-
borhood V' of Y in X. Let also ), € D(B,) and let {W!} be the corresponding
open cover such that W! = Wn’ , where W/ is a deformation over B, of a local étale
neighborhood Z' of Y in X. By Lemma 7.1, U, VI, W}, and Z' are also pure.

We know that B,, is the trivial square zero extension of A, by A,. Therefore,
the trivial extension

0—A,—-B,—>A,—0
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gives the extension (not necessarily trivial) of A,-algebras
0— (’)W; ®p, Ap — OW,;' — (’)er ®p, Apn — 0.
There is a right exact sequence
Up
OW]; ®Bn An — QW;/A,, ®Bn An — QVV,{@BV,An/An — 0.

Since X is pure and reduced, it follows that W,f ®p, An is pure and hence o, is
injective. Taking completions, we obtain the exact sequence

0— Oy, — (QVl/,f/A,, ®gp, A" — (Qvlf,;'@;B”A,,/A,,)A — 0.

Now if (A, m) is alocal k-algebra, then fZA/k = QA//@ where A is the m-adic com-
pletion of A [TL6R]. Therefore, and patching the preceding sequences together,
it follows that there is an exact sequence

0— Oxn — fzyn/An ®Bn An — fzxn — 0.
Hence we have a map
Tp(Xa/An) = Exth, (Qx,/a, Ox,)s

which (as in the usual scheme case) is injective. We will show that it is also
surjective.
Let

0—> Oy, > &= Qy, >0
be an element of Extkn(ﬁ Xn/An> Ox,). Let
622 OX,, — SAZXH/AH

be the completion of the universal derivation [TL6R]. Then, again as in the usual
scheme case, we get a square zero extension of A,-algebras

0— Ox, 5> Oy — Oy, — 0. (7.1)

Moreover, if we argue exactly as in the proof of Proposition 4.2, it follows that
the extension (7.1) is locally the completion of an extension of U/ by U,'. To com-
plete the proof we need to show that Oy, admits the structure of a flat B,-algebra
and that J, ®p, A, = X,. The algebra Oy, is already an A,-algebra, and it can
be made into an A;-algebra via A: k[t]/(t?) — Oy, by setting A() = o(1). In
this way, O, becomes a B, = (A} ® A,)-algebra. The flatness is a consequence
of the following straightforward generalization of [Se, Lemma A .9].

LEMMA 7.3. Let (B,mp) be a local ring, A a B-algebra, and M a finitely gen-
erated A-module. Let
0->M—->A—->A-0 (7.2)

be a square zero extension of A by M. Let R be an A'-algebra. Then R is a flat
A'-algebra if and only if the sequence (7.2) ®a R is exact and R Q4 A is a flat
A-algebra.
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From the construction of the B, -algebra structure on Oy, we have Oy, ®p, A, =
Oy, . Furthermore, since X — Y is smooth, (7.1) ®p, A, is exact on X — Y and,
since X is pure, it follows that (7.1) ®jp, A, is, in fact, exact. Hence O, is flat
over B,,. [

REMARK 7.4. If X =Y then Proposition 7.2 says simply that
T'(X,/An) = Exty, (Qx,/4, Ox,)

and
T'(X,/An) = Exty (2x,4,- Ox,),

where X,, € Def(X)(A,).
REMARK 7.5. Proposition 7.2 was proved by Namikawa [Na] for the case X =Y.

As a corollary of Proposition 7.2, the spectral sequence relating the functors Ext
and Ext gives the local-to-global sequence for T'.

COROLLARY 7.6.  Given the assumptions in Proposition 7.2, there exists an exact
sequence

0 — H'(Tx,/a,) = T'(Xa/Ay) = HUT'(X,/A) — H*(Tw,a,).
The next technical lemma will be needed in the sequel.

LEMMA 7.7. Let X be a pure and reduced scheme, and let X 4 be a deformation
of X over alocal Artin k-algebra A. Let Fy be a coherent sheaf on X 4 for which
there is a nonempty open subset Uy C X4 such that the restriction Fy|y, is flat
over A. Let A — B be a homomorphism of finite Artin local k-algebras, and let
Xp = XA ®4 B. Leti: Xg — Xy be the inclusion, and let Gg be a coherent
Ox,-module. Then, for all k > 0,

Exty (Fi,i.Gp) = Ext§ (i*Fy, Gp)
and
Exty (Fa,i,Gp) = Exty (i*Fu, Gp).
Proof. For any k there are natural maps
¢ Exty, (i*Fy, Gp) — Exty (Fu,i.Gp),
Y Exty (i"Fp, Gp) — Extf (Fy,i,.Gp)
defined as follows. Let [ Ez] be an element of Ext,k(B (i*F4, Gp). Thisis represented
by an extension
0—-Gp—E —Ey— - - = E—i"F, - 0.

Moreover, there is a natural map As: Fy — i,i"F4. We define q&fé([EA]) €
Ext)’ﬁA(FA, i.Gp) to be the extension obtained by pulling back [E4] with A, and
similarly for 1//?.
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Leti,: Coh(Xp) — Coh(X,) be the induced map between the corresponding
categories of coherent sheaves. Let G be either the Homy,(Fy, ) or Homy,(Fy, -)
functor. Since i, is exact, to prove the lemma it suffices to show that i, sends in-
jectives to G-acyclics. First we show this in the case when G = Homx,(Fy, -).
Let I be an injective Ox,-module. We will show that

Exty (Fa, Ip) = 0;
this is local, so we may assume that X (and hence Xj4) is affine. Then X4 has
enough locally free sheaves. So we may write
0— Py —> E4 —> F4 —> 0,
where E4 is locally free. Hence
Ext§ (Fu,Ig) = Exty,'(Pa, Ip).

Furthermore, since X is pure it follows that X4 is pure as well. Therefore, E4 is
pure and hence Py is also pure and its restriction on Uy is flat over A. Continuing
similarly, we find that

Exty (Fa,Ip) = Exty (Na, Ip),

where Ny is also pure and its restriction on Uy is flat over A. Now consider the
exact sequence
0— Qs —> My — Ny — O,

where M}, is locally free. Then, as before, Q4 is pure and thus, since Ny is flat
over Uy, it follows that

0— Qs — i"™M4y — i*Ny — 0
is exact, too. Hence there is a commutative diagram

Homy,(Na,islg) — Homy, (Ma,i1p) — Homy,(Qa,ixlp) — Exty, (Na,ilp) — 0

lfl l f2 \L/‘é \L fa

’Homxs(i*NA,IB) — Homxs(i*MA,IB) — HOmXB(i*QA,IB) — SXt)l(A(i*NA,IB) —0

where fi, f>, and f3 are clearly isomorphisms. Consequently, f4 is also an iso-
morphism. But since I is an injective Ox,-module, we have

Exty (Ga,iydp) = Exty (i*Ga, Iz) =0
and hence
Exty (Fa,inIg) =0

forall k > 1, as claimed. Next we show the corresponding statement for the global
Ext. The spectral sequence relating the local and global Ext functors show that

Exty,(Fa.ixIp) = H(Homy,(Fy.iI5))
= H*(Homy,(i*F4, Ip)) = Exty (i*Fy, I5) = 0.

The argument about the £Ext sheaves cannot be directly applied to the global Ext
functor because there may not be enough locally free sheaves on X 4. O

Next we give a version of the previous results in the case of formal schemes.
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COROLLARY 7.8.  With assumptions as in Lemma 7.7, let X4 € Def(Y, X)(A) and
Xp = X4 Q4 B. Let Fa be a coherent sheaf on X, for which there is an open
Up C Xy such that Fyly, is flat over A. Let Gg be a coherent sheaf on X and
leti: Xg — X4 be the inclusion. Then

Exty (FaiGp) = Extly, (i*Fa,Gp)
and 4 '
Exty, (Fa, ixGp) = Exty, (i"F4, Gp).

Proof. The natural map ¢’ defined in Lemma 7.7 exists in this case, too. Then
the proof proceeds similarly and it is local. Locally X4 = \7A, where V, is a de-
formation over A of a local étale neighborhood V of Y in X. So we may assume
that 7, = ﬁA and G = GB, where F4, Gy are coherent sheaves on V4, Vg. But
then, as we have already seen in Proposition 4.2,

Extl, (Fy, Gp) = (Ext|,(F4, Gp))".
Vi A
Moreover, if Zp is an injective Ox,-module then Zp = fB, where [g is an injec-

tive Oy,-module. Now the proof proceeds exactly as the proof of Lemma 7.7. [

We next state the key result that will enable us to obtain obstructions to lift a de-
formation X, € Def(Y, X)(A,) to A,11.

PROPOSITION 7.9. Let X be a pure and reduced scheme defined over a field k of
characteristic 0, and let Y C X be a closed subscheme of X such that X — Y is
smooth. Let X, € Def(Y, X)(A,). Then there are exact sequences

0 — Tx — Tw,a, = T, yya,, — T'(Y, X) = T'(X,/A,)

n—1

— TYXo1/Anmr) > Ext2(Qx.0p)
and
0 — HTx) = H(Tw,jn,) — H(Tw, s, ) — T'(¥,X)

— TN, /A) — T Xao1/An1) > Ext2 (2, O).
Note that, since X — Y is assumed to be smooth, it follows from Proposition 4.2
that T'(Y, X) = T'(X).
Proof of Proposition 7.9. Apply HomX,z(S:ZX”/An, -) and ’Hom;gn(fzxnmn, -) on the
square zero extension

0— 04 - 0Ox, > Ox,., >0

and then use Proposition 7.2 and Lemma 7.7. O

8. Global Lifting of Deformations

Let X, € Def(Y, X)(A,). In this section we obtain obstructions to the lifting of
X, to Apyr. Let Y,_ = Def(Y, X)(e,—1)(X,) € T'(X,_1/A,_1). According to
Theorem 6.4, &, lifts to A+ if and only if ), _; is in the image of the natural map
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T (X, /A) = TH(Xy-1/Ap-).
According to Proposition 7.9, there is an exact sequence
T!(X, /AL = THX, 1 /A1) > Ext2 (., O).
Identifying TYX,—1/A,_1) With
Exth, (Qx,/a,, Ox, ) = Bxthy,  (Qx, /4,1 Ox,.,)

and identifying TY(X,/A,) with Extkn(fz xn/An» Ox,), we see that V,_; is repre-
sented by the extension

0— Ox, | = E = Qu,a, = 0,
which is the pullback of the extension
O - O/Yn—l - fzyn—l/An—l ®Bn—l A"l*l - anfl/An—l - O

under the natural map Q XnJAn = Q Xp1/A Hence

n—1°

E= (fzynfl/Anfl ®anl A”_l) XSAZX'H Q-Xn/An'

1/An-1

Then ®(Y,_)) € Extfyn(fzxn/A”, Oz) = Exti(fzx, Oy;) is represented by the two-
term extension .
0—)02—)0)(” —)E—)QXH/AH — 0.

We can therefore use Theorem 6.4 to obtain the following result.

THEOREM 8.1.  With assumptions as in Proposition 7.9, let
Yn—1 = Def(¥, X)(en—1)(Xp).

Then the obstruction to lifting X, to a deformation X, | over A, | is the element
ob(X,) € Exti)l(ﬁxn /A O%) = Ext)zz (Qx, Oy) represented by the extension

0_)0)?_)(9-)% — FE — fzxn/An —>0,
where

E=(Qy, 1/a,1 @8, An-1) Xo, 0 x4,

[An—1

Therefore, if Ext?{(@x, 0z) =0and if Y and X satisfy the conditions of Propo-
sition 5.3, then the hull of Def(Y, X) is smooth.

In practice it is easier to verify vanishing for cohomology than for the Ext
groups. Next we shall give some cohomological conditions for the vanishing of
Ext)%((Q x> Oy), but first we give a definition.

DEFINITION 8.2. Let X be a pure scheme, and let Y C X be a closed subscheme
of X such that X — Y is smooth. Then we denote by Ob3(X) the cokernel of the
local-to-global obstruction map H(T'(X)) — H?(Tx) of Proposition 4.2.

COROLLARY 8.3. There are three successive obstructions in HO(Ext)%( (fzx, 0Oz)),
HY(T'(X)), and Ob*(X) to the lifting of X,, to A, 1. Therefore, if
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HOExt} (Qx,0g)) = H'(T'(X)) = 0b*(X) =0
and if Defy (X) has a hull, then its hull is smooth and of dimension
RN(Tx) +h(T' (X)) = h*(Tx).
Proof. Consider the Leray spectral sequence
EDY = HP(Ext] (Qx,05)) = EPf1 = Ext§+q(fzx,(95()).
Then there are exact sequences
0— E]2 — E? > Eg’z,
0— EYY > E'» EM > E?’ > E? > EY' — E3°.

The claim now follows once we consider that E2 = Ext§+q(f2x, 0z)), Eg’z =
HO(Ext)%((fZX, 05)), and E;° = H(Ty). O

COROLLARY 8.4. Suppose that Def(Y, X) has a hull and that
HOExt3 (@, 03)) = H(T'(X)) = HX(Tx) = HAT'(X)) = 0.
Then every deformation of X is formally locally trivial.

The conclusion follows because, by Corollary 8.3, the hull of Def(Y, X) is smooth
and is the same as the hull of the locally trivial deformations Def’(Y, X).

REMARK 8.5. The simplest case if Ob?(X) = 0 is when H2(Tx) = 0. This hap-
pens in particular when there is a morphism f: X — S, where S is affine, f is
proper with fibers of dimension < 1, and ¥ = f~!(s) for some s € S. Then, by
the formal functions theorem, H 2(f"X) = 0. This is the case of 3-fold flips and
divisorial contractions with at most 1-dimensional fibers.

9. Local to Global

Let X be a scheme, and let Y C X be a closed subscheme of X such that X — Y is
smooth. In Section 8 we obtained obstructions to the lifting of a deformation X, €
Def(Y, X)(A,) to a deformation X, € Def(Y, X)(A,1) for the case where X is
pure and reduced. However, our methods were global and did not yield any infor-
mation about the local structure of X, ;. In this section we will study the problem
of when local liftings of X,, globalize to give a deformation X,,; of X over A, 4+
or, more generally, when local deformations of X exist globally.

Ideally one should study the local-to-global map 7 : Def(Y, X) — Defj,. (Y, X).
If X = Y, X has isolated singularities, and H 2(Tx) = 0, then 7 is known to be
smooth. This is no longer necessarily true if X has positive-dimensional singu-
lar locus. The reason is the same as that given for the failure of Def}.(Y, X) to
have a hull: the presence of local automorphisms that do not lift to higher order.
However, under strong restrictions on the singularities of X, 7 is smooth.

PROPOSITION 9.1. Suppose the assumptions in Theorem 5.5 hold, and suppose
also that H*(Tx) = 0. Then m is smooth.
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Proof. As before, we demonstrate the case X = Y (the general case is proved sim-
ilarly). For convenience, set D = Def,.(Y, X) and D), = Defj,.(Y, X). Then it
suffices to show that, for any small extension

0—>J—>B%5 A0,

the natural map
D(B) = D(A) Xpyp(a) Dioc(B)
is surjective.

Let X4 € D(A), sp4 = m(X4) € Dy(A), and sg € Djoc(B) be such that
Dioc(g)(sp) = sa. By the definition of Dy, sg and s4 are equivalent to an open
cover {U;} of X, a collection of deformations U? and U# of U; over B and A
(respectively) for which UiB Rp A= UiA, B-isomorphisms qbl.’; : UiB lv, N U; —
UjB|1]ij[, and A-isomorphisms ¢$: UMuiny, — UjA|Uij[ such that, for any
i, j.k, ¢;; 97 i is the identity automorphism of Uy = U N U/ N UL

By assumption, we may take U; in such a way that U; N U; satisfies (H4). Hence
we may take the qu such that, on Uy = U; N U; N Uy, the restriction of ¢le =
qbl ¥ qukq)kl on U ik is the identity automorphism of UlAk Hence q§ Tk corresponds to
a B-derivation d,]k € HomUB(Q /B> Ovy,) = Homy, (Ry,, Oy,). On the 4-fold in-
tersections Ujjxs = Ui NU; ﬂ Uiy NU,, the ¢Bk satlsfy acocycle condition and hence
we get an element of H 2(’;‘-Lom x(Qx, Ox)) = H?*(Ty). If this element vanishes,
then the ¢5 can be modified in such a way that ¢l i quk o8 & 1s the identity automor-
phism of U N U NUP and hence the UP glue to a global deformation Xp. [

In order to circumvent the failure of the local-to-global map 7 : Def(¥, X) —
Defioc (Y, X) to be smooth, we must gain some control of the automorphisms of
deformations. Bearing this in mind, and following the ideas of Lichtenbaum and
Schlessinger [LiS], we establish the following definitions.

DEFINITION 9.2. Let
0—-J—B—>A—0 9.1)

be a small extension of Artin rings, and let X4 € Def(Y, X)(A). Let (X.,¢;),i =

1,2, be pairs, where Xé € Def(Y, X)(B) and the ¢; : X4 — Xé ®p A are isomor-

phisms. We say that the pair (X}, ¢1) is isomorphic to the pair (X§,¢2) if and

only if there is a B-isomorphism 1 : X}g — Xﬁ such that ¥¢; = ¢».

(1) We define Def(X 4 /A, B) to be the set of isomorphism classes of pairs [ X, ¢]
of deformations Xp € Def(Y, X)(B) and marking isomorphisms ¢: X, —
Xp®p A

(2) LetDef(X4/A, B) be the sheaf of sets associated to the presheaf F on X such
that F(U) = Def(Us /A, B), where Uy = X4|y. Then we define

Defioc(Xa/A, B) = H'(Def(X4/A, B)).
Note that there is a natural map

7: Def(X4 /A, B) — Defioc(X4/A, B).
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Note also that, since any square zero extension of local Artin k-algebras can be
obtained by a sequence of successive small extensions, we do not lose anything
by working only with small extensions.

REMARK 9.3. Let X, € Def(Y, X)(A,). Then, in the notation of Section 6,
Tl(Xn/An) = Def(Xn/An’ Bn—H) and Tl(Xn/An) = Defloc(Xn/An’ Bn+1)-

THEOREM 9.4. Let X be a scheme defined over a field k, and let Y C X be a
closed subscheme of X such that X — Y is smooth. Let

0—-J—>B—>A—->0

be a small extension of local Artin k-algebras, and let X4 € Def(Y, X)(A). Then

the following statements hold.

(1) Def(X4/A, B) and Defioc(X4/A, B) are T'(Y,X) ® J and HY (T (X) ® J)
homogeneous spaces, respectively.

(2) Let sp € Defioc(Xa/A, B). Then the set 7 (sg) is a homogeneous space
over H'(f‘x ®J).

(3) There is a sequence

0— H'(Ty ® J) % Def(Xa/A, B) %> Defioc(Xa/A, B) - HX(Tx ® J)

that is exact in the following sense. Let sp € Defioc (X4 /A, B). Then sp isin the
image of 7 if and only if d(sg) = 0. Moreover, let Xp, Xj €Def(X4/A, B)
such that w(X,) = nw(X),). Then thereisay € H (TX ® J) such that X!, =
v - Xa, where by “.” we denote the action of H' (TX ® J) on " (s5).

Proof. We will prove the theorem only for the case X = Y. The local algebraiz-
ability conditions embedded in the definition of Def(Y, X) ensure that, with some
effort, all steps of the proof can be carried out in the case when Y #= X and X — Y
is smooth. The proof of the theorem proceeds in two steps.

Step 1. In this step we obtain descriptions of Def(X4 /A, B) and Def,.(X4 /A, B)
using cotangent sheaf cohomology and spaces of infinitesimal extensions, which
we describe next. Let X be an S-scheme and F an Ox-module. We denote by
Ex(X/S, F) the space of square zero extensions

0—>F—>0x —>0x—>0
of S-schemes [Grl]. Note that there is always a natural map
Ex(X/S,F) — H(T'(X/S,F)),

where T'(X/S, F) is the first cotangent cohomology sheaf of Schlessinger [LiS].
This map is an isomorphism if X and § are affine.
The sequence B — A — Oy, gives the exact sequences

0 — T'(Xa/A,J ®4 Ox,) — T'(Xs/B,J ®4 Ox,)
2 TYA/B,J ®4 Ox,) — T (X4/A,J @4 Ox,) (9.2)
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and
0 — Ex(X4/A,J ®1 Ox,) — Ex(X4/B,J ®4 Ox,)
L Ex(A/B,J ®4 Ox,) (9.3)
(see [Grl; LiS]). After taking global sections on sequence (9.2) we have
0 — HT'(Xa/A.J ®1 Ox,)) — HT'(Xa/B.J ®1 Ox,))
2 HYT'(A/B,J ®4 Ox,)). (94)

By a slight abuse of notation, we shall use [Z] to denote both the elements of
Ex(A/B,J ® Ox,) and of HA(T'(A/B, J ®4 Ox,)) corresponding to the square
zero extension

0—-J®:0x, >B—A—0.

We now claim that
(1) Defie(Xa/A, B) = A71([Z]) and
(2) Def(Xa/A, B) = n ' ([11).

Indeed, an element of Defj,.(X4/A, B) is equivalent to an open cover {U;}
of X and pairs [Uj,¢}]1 € Def(U, /A, B), where Ui = Xal|y,, such that
Wilunu» d4luiny;] = U4 lu.nu;» &1 luinu, ] for any i, j. These give square zero
extensions [e;] € T'(UJ /B, J ®a OUAI) and

0—>J®AOU;—>OUé—)OUx—>O,

which are isomorphic on the overlaps U; N U; and hence glue to an element
le] € HYT'(Xa/B,J ®4 Ox,)). Moreover, the facts that U, is flat over B and
Ui ®p A = Uj imply that A([e]) = [Z] [LiS]. Therefore, Defioc(X4/A, B) =
A N([Z]). A similar argument shows also that Def(X 4 /A, B) = u~'([I]).

Step 2. This is the main part of the proof of the theorem. Combining the results
of the claim and the exact sequences (9.3) and (9.4), it follows that Def,.(X4 /A, B)
and Def(X/A, B) are HO(T' (X4 /A, J ®a Ox,)) = HY(T'(X) ® J) [LiS] and
Ex(Xa/A,J ®40x,) = T'(X)® J [Grl] homogeneous spaces. This shows The-
orem 9.4(1).

We proceed to show part (2) of the theorem. In what follows we use the follow-
ing notation. Let {U;};c; be an open cover of X. Then, for any choice of indices
i, ..., ik, weset Uyj,...;, = Uy, N---NUj;,. Also if Xy is a deformation of X over
an Artin ring R, we set X,’%""i" = Xrly,n.-nuj, -

Let sg € Defioc(X4/A, B). First we exhibit the action of H'(Ty ® J) =
Hl(’HomXA(QXA/A,J (S OXA)) on N_I(SB). Let [X3p,9] € JT_I(SB) and y €
Hl(’HomXA(QXA/A, J ®4 Ox,)). The element s3 is equivalent to giving an open
cover {Ui}ie; of X; elements [U},¢'] € Def(Uj /A, B); and, for all i, j, iso-
morphisms ¢ : Ug|y,ny, — Ué|U,-ﬂU,~ such that ¢’ = ¢/ on U; N U;. The
element [Xp,¢] € Def(X4/A, B) is equivalent to giving elements [U}, %] €
Def(U{ /A, B) for all i and, for all i, j, isomorphisms ¥ : Uf|y,nv, = Ujluny,
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such that Y'Yy’ = ¥/ on U; N U; and ¥ /%y = % on the triple intersec-
tions U; N U; N Uy. The cohomology class y is equivalent to a collection y;; €
HomXX(QXX-/A, J®O U) = Hom U(SZ vl/B> J® OXX)’ where U = Ué|UiﬂUw
that satisfies the cocycle cond1t10n on the triple intersections. Therefore, y is
equivalent to a collection of B-derivations d;; : OUé’ - J® OX:{ satisfying the

cocycle condition on the triple intersections. Then we define y - [Xp, ¢] to be the
element of 7 ~!(sp) that is defined by the data [U}., 1] and glueing isomorphisms
v +dij: Ubluiny, = Uluiny,-

It remains to show that 7~ '(sp) is an H'(Tx ® J)-homogeneous space—in
other words, that H'(Tx ® J ) acts transitively on 7 ~'(sp). Let [Xp, Y], [ X5, ¥'] €

77 !(sg). Then there exist an open cover {U};e; of X and isomorphisms
A XB|U, — Xgly,, for all i € I, such that A;3y = ¥’ on U;. Then, on Uy,
hij = A5 'A; is an automorphism of Xy Y over X, Y Therefore, Ajj corresponds
to a B- derlvatlon d;;j € Derg(O g,] ® O X) = Hom g(Q g/B,J ® O X) =
Homxg (Q XU /a0 J® Ox/ij). These satisfy the cocycle condition on triple inter-
sections and hence give an element y € Hl(HomxA(QxA/A,J ®a Ox,)) =
H'(Tx ® J). Now, from the definition of the action of H'(Tx ® J) on w '(sp),
itis clear that y - [Xp, Y] = [Xp, ¥']; therefore, the action is transitive.

Now we show part (3). Taking into consideration the previous two parts, it
suffices to construct the map d and to show that Ker(d) C Im(mx). Let sp €
Defioc(X4/A, B) as before. Then, for any i, j,k € I, ¢ijx = ¢ridjxPij is a B-
automorphism of U lv,, over X, ik . Therefore, ¢;;x corresponds to a B-derivation

ijk
dijx € Der,g((’)U| J R0 uA) = Hom z/k(Qthk/A,J QK O uk) These satisfy

the cocycle condltlon on the 4 fold intersections and thus glve an element of
Hz(HomxA(QxA/A, J®40x,)) = H?(Tx®J). This defines the map 3. If (s3) =

0, then the isomorphisms ¢;; can be modified so that ¢;j is the identity automor-
phism of Uj |y, and therefore the U}, and ¢’ glue to a global deformation X and
the isomorphism ¢p: X4 — Xp ®p A. Hence sy = n([Xp, ¢]), as claimed. [J

COROLLARY 9.5. With assumptions as in Theorem 9.4, there are two successive
obstructions in HY(T*(X) ® J) and H(T'(X) ® J) in order for

Defloc(XA/Av B) # 0

(i.e., for X 4 to lift locally to B). If these obstructions vanish then there is another
obstruction in H*(Ty ® J) in order for Def(X4/A, B) # @ (i.e., for the local
deformations to globalize).

Proof. We show only the case X = Y; the general case is similar. Let Q =
Im(v), where v is the map in the long exact sequence (9.2). Then there are two
exact sequences,

0 — HUT'(X4/A,J ® Ox,)) — HT'(Xa/B,J ® Ox,))
HYQ) 5 H\T'(X4/A,7 ® Ox,)) (9.5
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and
0— H°Q) — HYT'(A/B,J ® Ox,)) — HNT*(X4/A,J ® Ox,)). (9.6)

By Step 1 of the proof of Theorem 9.4, Defioc(X4a/A, B) = A'([I]), where
A = Ba. It is now clear from the preceding exact sequences that there are two
successive obstructions in HO(TZ(XA/A, J ® Ox,)) = HYT?(X) ® J) and
HYTY(Xa/A,J ® Ox,)) = H(T'(X) ® J) so that A"'([1]) # 0. If these ob-
structions vanish, then by Theorem 9.4(3) it follows that there is another obstruc-
tion in H%(Tx ® J) so that Def(X4/A, B) # . O

The spaces Def(X4 /A, B) and Def},.(X4 /A, B) do not, in general, have any vec-
tor space structures over the ground field k. This complicates any calculation in-
volving them. However, if B is the trivial extension of A by J, then these spaces
do have natural k-vector space structures.

REMARK 9.6. A variant of Theorem 9.4 is already known in the case X = Y, and
the obstructions in Corollary 9.5 are also well known [H3; LiS]. However, to our
knowledge, the Defj,. space and the global-to-local sequence of Theorem 9.4(3)
have not been considered earlier, and this distinguishes our statement from those
already found in the literature.

REMARK 9.7. Theorem 9.4 establishes a relation between the local and global de-
formation spaces Def(X 4 /A, B) and Def},.(X4/A, B). However, the obstructions
obtained in Corollary 9.5 are not satisfactory in many ways. We explain why. Re-
call quickly how the obstructions work. In the notation of the corollary, given a
deformation X, of X over A, if the obstruction in H%(T?(X)) vanishes then we
can lift X4 locally to B—in other words, there exist an open cover {U'} of X and
liftings Ué of X4|yi over B. Then, if the second obstruction in HY(T'(X)) van-
ishes, the local liftings can be modified in order to agree on overlaps. This does
allow us to find obstructions in order for Def},.(X4 /A, B) # @, but we lose all
local information about the liftings. To gain some control over the singularities of
a lifting of X4, we would like to choose a particular lifting U,§ of X4|yi and then
find obstructions to globalize it. This requires more careful study, and additional
obstructions will appear. For general choice of the rings A and B the method is
probably quite tricky, but for the purposes of this paper (where mainly 1-parameter
deformations are studied) we will consider only deformations over the rings A,,.
Our main tool is again the T '-lifting property.

9.1. Local to Global and the T '-lifting Property

Let X, be a deformation of X over A,. Here we present a method of lifting X,
to a deformation X, of X over A, that allows us to control the singularities
of Xn+1 .

Let X,_1 = X, ®a, A,—rand Y,_; = X, ®a, B, € TI(X,,,l/A,,,l), where
B, _1is an A,-algebra via the map €,_;: A, — B,_; defined in Section 6. Then,
according to the T !-lifting property (Theorem 6.4), X,, lifts to A, if and only
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if ¥, is in the image of the natural map t,,: T}, (X,/An) — ThH(Xn-1/An-1).
Theorem 8.1 obtained an explicit obstruction element for this to occur; however,
as mentioned earlier, it does not offer any local information about the possible lift-
ings. Local information is carried by the sheaves T!(X,/A,). These are related
to T'(X,/A,) by the following natural commutative diagram:

Th(X,/Ay) —2— HOTH(Xn/An)

| | 07

T (Xoot/An1) — HOTN(Xpo1 /A1)

The idea is as follows. Let s,_; = ¢,_1(Y,—1). Instead of lifting Y,,_; di-
rectly through t,,, we will obtain obstructions in order for s,_; to be in the image
of o,. If these obstructions vanish, then we choose a particular element s, €
H%T'(X,/A,)) such that o,(s,) = s,_i and so obtain obstructions for the ex-
istence of a global ¥, € T'(X,/A,) such that ¢,(Y,) = s,. In this way we can
control the local structure of Y;,. Then, according to Proposition 6.5, there is a lift-
ing X, 41 of X,, over A, such that X, ;| ®a,,, B, = Y,, where again B, is an
A, y1-algebraviae,: A,+1 — B,. Now suppose that by this process we have ob-
tained a formal deformation f,,: X,, — Spec(A,) for n. Suppose that it is induced
by an algebraic deformation f: X — Spec A. We will see next that the sections
s, carry a lot of information about the singularities of X. In particular, smoothings
can be detected by them, as shown by the next two propositions.

PROPOSITION9.8.  Let f: X — A be adeformation of a pure and reduced scheme
X over the spectrum of a discrete valuation ring (A,my). Let f,: X,, — Spec A,
be the associated formal deformation and let Y, = X, 11 ®a,,, By € TYX,/A,).
Moreover, let e € T'(X/A) be the element that is represented by the extension

0— OX:f*a)A—)Qx—)Qx/A—)O. (98)
Then e, =Y, in T'(X,/A,), where e, = e @4 A,,.
Proof. By Proposition 7.2, T'(X,/A,) = Extkﬂ(an/An,OXn) and TH(X/A) =

Ext}Y(Q x/n, Ox). It follows from their definition that Y, and e, are represented
by the extensions

0 - OX’I i) (QXII+I®A,,+]BI7/AI1) ®Bn An g QX?I/AH - 0
and
O — OX,, ﬁ) QX ®A A” — QXn/An — 0,

respectively, where (1) = d(1®x) ® 1 and B(1) = dt ® 1 for ¢ a generator of the
maximal ideal of my. It is now easy to see that the two extensions are isomorphic
via the mapping

O: Qx ®a Ap = (Qx,,184,,,B./4,) OB, An



56 NikoLAOS TZIOLAS

defined by ®(dz ®a) =d(z®1) ® a, where z € Oy, a € A, and 7 is the class of
Z in OX,,~ [l

ProposiTION 9.9.  With assumptions as in Proposition 9.8, assume in addition
that X has complete intersection singularities. Then f is a smoothing of X if and
only if there are k,n € Z.y, k < n, such that

t*TV(X,/A,) C Ox, - sn.
Proof. Dualizing the exact sequence (9.8) yields the exact sequence
Oy 5 TH(X/A) — TH(X) — 0,

where a(1) = e. Therefore, T'(X) = Coker(a) = T'(X/A)/ Oy - e.

Suppose that f is a smoothing. Then 7'(X) is supported over m4 and hence
there is a k € Z- o such that t"(Tl(X/A)/(’)X -e) = 0. Reducing it modulo m’{ and
using Proposition 9.8, we get the claim.

Conversely, suppose there exist k,n € Z( such that t*TH(X, /A C Ox, - Sn.
Let F = TY(X/A)/Ox - e and F, = T'(X,/A,)/Ox, - s,. Then, by Lemma 12.2
and Proposition 9.8, it follows that F/¢"*!F = F,, where t is a generator of the
maximal ideal m4 of A. Now, by assumption, t*(F/t"*!F) = 0 and hence t*F =
t"tIF = F,; therefore, by Nakayama’s lemma, t*F = 0. Hence T'(X) is sup-
ported over my4 and so, by Lemma 11.9, f is a smoothing. U

Even though our previous discussion was for the case when X = Y, it is also valid
in the general case.

9.2. The Maps o, and ¢,

Here we study the maps o, and ¢,, in diagram (9.7). In particular we obtain con-
ditions under which they are surjective.

PROPOSITION 9.10.  With assumptions as in Proposition 7.9, there are canonical
exact sequences

0 — HYT'(X)/F,) — HUT'(X,/A,)
= HOT'(X,_1/Aus1)) = Qn — 0,
0— L, — Qn — HExt}(Qx,0y)), and
0— L, - H\(T'(X)/F) — H(T'(X,/A)
as well as a noncanonical sequence
0 — HAT'(X)/F) — HT'(X,/A,) = HOT (Xy_1/Au-1))
— HY(T'(X)/F,) & HOExtg(Q2x, 0y)),
where F, C T'(X) is the cokernel of the map
fxn/An - fxnfl/Anw

Proof. By Proposition 7.9 there exists an exact sequence

Mn

0 — TX)/Fy = THX /AL 25 TN Xyo1/An) 225 T2V, X).
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Let M,, = Ker(u,). Then this sequence breaks into two short exact sequences:
0 — TYX)/F, — TH(X,/A) 22 M, — 0;
0— M, — T'(Xu_1/Au_1) 25 T2, X).
Then we obtain the following exact sequences in cohomology:
0 — HOT'(X)/F) L5 HOT'(X,/A)) 2> HOM,)
L BT/ F) s BT /AL)):
0 — HM,) > HUT'(X,-1/A,-1) > HAT?(Y, X)).

We wish to understand the kernel and Cokernel of the map o,, = g o f>. Con-
sider the commutative diagram

0 — HOT\(X)/F,)) —2 BT (X/An) — 2 Im(fr) ————0
l lqb’l Jﬂ
0 0 HOT (Xy_1/An_1)) == HT"(Xp_1/Ap_1)) — 0

where B is the restriction of g; on Im(f;). The snake lemma now gives that
ker(p,) = HYT'(X)/F,) and Coker(B) = Coker(h). Hence there is an exact
sequence

0— HUT'(X)/Fy) — HUT'(X,/A,)
— HYT'(X,_1/A-) > Qu — 0, (9.9)
where 0, = Coker(f). Now the diagram
0 — Im(f;) =——=Im(f>) 0 0

| & |

0—— H'(M,) — HYT'(X,1/An-1)) — HAT*(¥, X)) —0

implies that there is an exact sequence

0~ L, —> Q, > HAT*(Y,X)) (9.10)

with L,, = Coker[Im(f,) — H°(M,) and thus there is another exact sequence
0= Ly — H\(T'(X)/Fp) — H'(T'(X,/Ay)). ©.11)
The proposition now follows from (9.9), (9.10), and (9.11). O

COROLLARY 9.11.  There are two successive obstructions in H O(Sxt)%( (fz x> 03))
and H'(T'(X)/F,) to an element s,y of HX(T'(X,u_1/A,—1)) being in the image
of a,.

The exact sequences in Proposition 9.10 are not very enlightening in general.

However, if X has local complete intersection singularities, then they are greatly
simplified.
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COROLLARY 9.12.  Suppose that X has local complete intersection singularities
or, more generally, that H 0(5xt§($2 x> Ox)) = 0. Then there is an exact sequence

0 — HYT'(X)/F) — HYT'(X,/A.)
2 HOT (X 1 /A1) — H\T'(X)/Fp).

Next we study the local-to-global map ¢,,. If X is pure and reduced, then the dia-
gram (9.7) is part of the commutative diagram with exact rows

A Yn bn an ~
HY(Tx,ja,) — T(X,/A;) ————— HY(T'(X,/A,)) ——— H*(Tx,/a,)
A Yn-1 bn—1 On—1 A
H'(Tx, ya, ) — T'(Xuo1/An)) —— HOT N (Xoo1/Ano) — H*(Tx, ,a, )
(9.12)

where ¥, and ,_; are injective. Hence the obstruction for an element s, €
HO(T‘(XH/An)) to being in the image of ¢, is the element 9,,(s,) € Hz(f"xn/An).
If X hasisolated singularities then it is well known that there are successive obstruc-
tions in H? (fx) in order for 9,(s,) to be zero. However, in the general case this is
not so, and once more the reason is the inability to lift local automorphisms. The
best that we can do in this case is to find conditions for the map ¢,, to be surjective.

PROPOSITION 9.13. Let X be a pure and reduced scheme over a field k, and
let Y C X be a closed subscheme of X such that X — Y is smooth. Let X, €
Def(Y, X)(A,), and let Fi, = Coker[Tx, ja, — Tx, ,/a,,1 C T'(X). If H*(Tx) =
H'(Fy) =0 forall k < n, then ¢, is surjective.

Note that, if the singularities of X are isolated, then H'(F;) = 0 and the propo-
sition is the familiar result about isolated singularities. Admittedly it is not easy
to check the conditions of the proposition, but at least the sheaves F are all sub-
sheaves of 7'!(X), which depends only on X.

Proof of Proposition 9.13. The long exact sequence described in Proposition 7.9
gives the following short exact sequences:

0— f"x — YA"X"/A” - 0, — 0;
0—>0,— 7Aﬂx,,_l/A,,_l — F, — 0.
These give the exact sequences
s HY(Tx) = H*(Tx,a,) = H*(Qn) > -,
s H'(F) = H(Q0) » H*(Tx, ya, ) = -+
The claim now follows by induction on 7. UJ

So far we have found conditions in order for ¢, and o, to be surjective. Return-
ing to our original problem and starting with a deformation X,, of X over A4,,, we
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want to lift ¥,y = X, ®4, B,_1toa Y, in T'(X,/A,). Lets,_1 = ¢p_1(Y,_1). If
the obstructions in Corollary 9.12 and Proposition 9.13 vanish, then thereisa Y, €
T'(X,/A,) such that ¢n-1(t,(Y,)) —Y,_1) = 0. Hence, in order to obtain a lifting
Y, of Y,_1, we need to lift the locally trivial deformation Z,_; = 7,(Y,)) — Y,_1.
It is well known that if X has isolated singularities then the obstruction to lifting
Z,—1 to a locally trivial deformation Z, over A, is in H 2(Tx) (this also follows
immediately from the next proposition). In general, though, this is not true. Again
the best that we can do is to find conditions for 7, to be surjective.

PROPOSITION 9.14.  With assumptions as in Proposition 9.13, if
H'(F) = H*(Tx) =0

then every locally trivial lifting Z,_1 of X,—1 over B,_1 lifts to a locally trivial
lifting Z,, of X,, over B,,.

Proof. From diagram (9.7) it follows that the isomorphism classes of locally trivial
liftings of X over By are in one-to-one correspondence with H '(f"xk /A, )- Hence
the statement of the proposition is equivalent to saying thatif H'(F,) = H? (f"X) =
0 then the natural map

Wn: Hl(fXH/A,,) — Hl(fxn—l/Azz—l)

is surjective. This follows from arguments that are similar to those used in the
proof of Proposition 9.13. U

The previous discussion suggests that we must study the sheaves F,, and the quo-
tients 7' (X)/F,,. There are two main cases. The firstis when 7' (X)/F,, has finite
support for all n (and hence no higher cohomology) and o, is surjective for all n.
Here the only obstruction to the lifting of X, to A,,4; isin H 2(YA“X). This case is
treated in Lemma 12.2.

The second case is when we know that H?(F;,) = 0 for all n. The simplest cases
of this occurring are when the singular locus of X is 1-dimensional and when there
is a proper morphism f: X — Z with 1-dimensional fibers and Z affine (e.g., the
cases of flipping, flopping, and divisorial contractions with 1-dimensional fibers).
In this case we will show that H'(T'(X)/F,) is a quotient of H'(T'(X)) and
hence we can at least find a uniform bound for its dimension, which is finite if X
has proper singular locus. Indeed, there is an exact sequence

0— F =T (X)—> T (X)) F,— 0
that induces the exact sequence
H'(F) — H(T' (X)) » H\(T'(X)/F)) — H*(F).

Since H2(F,) = 0, it follows that H'(F,) is a quotient of H'(T'(X)).
Thus we have shown the following result.

COROLLARY 9.15.  Suppose that the singular locus of X is I-dimensional or that
there is a proper morphism f: X — Z with I-dimensional fibers and Z affine.
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If H(T'(X)) = 0, then the map o,,: H(T'(X,/A,)) — HYT'(X,—1/a,_,) is
surjective for all n.

10. Q-Gorenstein Deformations

Let X be a Q-Gorenstein scheme, and let ¥ C X be a closed subscheme of X
such that X — Y is smooth. In this section we extend the results obtained in the
previous sections regarding the usual deformation functor Def(Y, X) to the case
of the Q-Gorenstein deformation functor Def7¢(¥, X ). Toward this end, we will
locally compare the Q-Gorenstein deformations of X to the deformations of its
index-1 cover X. The key property that enables us to do so is that locally every
Q-Gorenstein deformation of X lifts to a deformation of X [KoSh].
Let
0—-J—B—>A—>0

be a small extension of Artin rings and let X4 € Def9¢(Y, X)(A). Then, in complete
analogy with the case of Def(Y, X) (Definition 9.2), we define Def9“(X, /A, B),
Def?%(X 4 /A, B), and Def{gf(XA/A, B) = H%(Def(X4/A, B)).

We need the following technical result.

LeEmMA 10.1.  Let B be an A-algebra, M a B-module, and G a group acting on
them compatibly with the algebra structure; in other words, for any g € G, the map
¢o: B — B defined by ¢4(b) = g-b is an A-algebra isomorphism and g - (bm) =
(g-b)(g-m) foranyb € B andm € M. Then there is an action of G on T'(B/A, M),
i =0,1,2. If A = k is a field, then G also acts on UCeAn(k) Def(B)(C), where
Def(B)(C) is the set of all deformations of B over C.

Proof. For any g € G, there is an induced isomorphism ¢,: B — B of B given
by ¢,(b) = g~'- b for any b € B. This yields an isomorphism

¢i: T'(B/JA, M) — T'(B/A,M*),

where M* is M as an abelian group but where the B-module structure is given
by b-m = (g~' - bym. The map Yo: M* — M given by Y,(m) = g-misa
B-module homomorphism inducing an isomorphism

Yo T'(B/A,M*) — T'(B/A, M).

Now the map f, = ¥ o ¢%: T'(B/A, M) — T'(B/A, M) gives the G-action on
Ti(B/A,M).

We can describe T (B/A,M),i = 1,2, as the spaces of infinitesimal one- and
two-term extensions of B by M, respectively. It is useful to describe the action of
G on T'(B/A, M) when the latter is viewed this way.

Let (E) be a one-term infinitesimal extension

0->M-—->C—->B—0
of B by M. Then, for any g € G, let (E’) be the pullback extension
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0 M C’ B 0
| ]
0 M C B 0
and let (E”) be the pushout extension
0 M C’ B 0
!
0 M c” B 0

Then g-[E] = [E”]in T'(B/A, M). The action on two-term extensions is defined
exactly analogously. Next we will show that G acts on | J ¢ o1y Def(B)(C). So
let C € Art(k) be a finite local Artin k-algebra and R a deformation of B over
C. We proceed by induction on the length of C. If length(C) = 1, then R¢ €
T'(B/k, B) and the action is already defined. Now any C appears as an extension

0—-k—>C—>C —0.

Let Rcr = Rc®c C'. Then, by induction, g - R¢ is defined and there is an isomor-
phism g - Rcr — R¢/ (not over C’ in general). Define g - R¢ to be the extension
obtained by pulling back

00— B— Rc—> Rco—>0

viathe map g - Rcr — R O

Construction of the Sheaves Tin (Xa/B,F)

Let X4 — Spec A — Spec B be morphisms of schemes such that X4 is a Cohen—
Macauley and relatively Gorenstein in codimension 1 and such that there is an
n € Z with wg("A] /A inyertible. Let F be a coherent sheaf on X 4. Next we will define
coherent sheaves Tq’G (Xa/B,F). ~

Let X4, = Ui U; be an affine cover of X4, and let 7r; : U; — U; be the index-1
cover of U;. Let r; be the index of U; and let 7; = F|y,. Then 7; is Galois
with Galois group the group of r; roots of unity u,,. Hence, by Lemma 10.1, u;
acts on TX(U;, w!F;), k = 0. Let TS, (Ui/B, Fi) = (T*(Ui/B, 7} F;))". This is
a coherent sheaf on U;. We will show that these sheaves glue to a coherent sheaf
quG(X /B, F). It suffices to show that there are isomorphisms

¢ij: T)(Ui/B, Fi)luy; = T)(Ui/B, F)lu,»

where U;; = U; N U;. Let ry; be the index of Uj;. Then ryj|r; and r;j|r;. Let
mij: U — Ujj be the index-1 cover of Uj;. Then, from the uniqueness and the
construction of the index-1 cover it follows that there are factorizations
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7 Uy ()
bij ®ji

&

TTij

=

where ¢;; and ¢;; are étale of degrees s;; = r;/r;; and s; = r;/r;;, respectively.
Then _
T Uy Y. 7} F) = ¢35 T U/ Y. 1) F)

and therefore

(T* (' Uy Yo Fi)) o = THUy /Y. 7)o ).
Hence

(T U Y, 7t Fi'n = (THG Uy, 7 Fi) oy o
= (THUy)/ Y, 75 Fip).
Similarly, it follows that
(T* (e U Y. F))i = (THUy) Y, 7 Fig) oo
and hence
T,5(Ui/B, Fi)lu, = T, (U;/B, Flu,-

Therefore, the sheaves quG (U;/B, F;) glue to a global sheaf quG(X a/B,F).
The next proposition shows that Tq% and T° agree under certain conditions.

ProposiTION 10.2.  Suppose that F is a locally free coherent sheaf on X 4. Then
T\ (Xa/B.F) = T°Xs/B.F).

Proof. Let {U;} be an affine cover of X4 and let 7; = F|y,. Let m; : 0, — U; be
the index-1 cover and G; the corresponding Galois group. Then TqOG(U,- /B, Fi) =
TO%U;/B, )¢ and, moreover, T°(U;/B, F;) = Homy, (R, 5,7 Fi)". The G;-
action is given as follows. Let ¢ € G; and f € Homy (2, 5, m}F;). Theng- fis
the Oy, -sheaf homomorphism defined by (g - f)(x) = g~ ' f(g-x). The natural
map 7/ Q2,5 — Qg p induces a homomorphism

¢: Homy; (25, /5 7 Fi)
— Homg, (*Qu,p, 7 F;) = Homy, (Qy,/8, 7/ Fi). (10.1)
Now, since F is assumed to be locally free, it follows that both modules in the se-
quence (10.1) are reflexive. Furthermore, since X, is Gorenstein in codimension 1,

it follows that m; is étale in codimension 1 and therefore ¢ is an isomorphism.
Hence, taking G;-invariants, we get an isomorphism

quc(Ui/B, Fi) — (Homy, (Qy,/8, ni*}-i)Gf)~.
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We now claim that Homy;, (Qu,5, 7 F;)% = Homy, (Qu,/5, F;). The natural
injection F; — m*JF; gives a natural injection

v : Homy, (Qu,/8, Fi) — Homy, (Qu,s, 7 F) .

Now let f € Homy;, (Q2y,/B, ni*]-',-)G" . The definition of the G;-action shows that
Im(f) C (JTI.*}',-)G" = F;. Hence v is surjective and thus is an isomorphism. As
a result, for any U; we have an isomorphism

g Tyg(Ui/B, Fi) > T°(Uy/ B/ Fy).

Following the construction of the sheaves Tin’ we see that these isomorphisms
glue to a global isomorphism

g: T\(X4/B,F) — T°(X4/B,F)

as claimed. O

ProposITION 10.3.  Let X be a Q-Gorenstein scheme defined over a field k. Let
X4 — Spec A be a Q-Gorenstein deformation of X over a finite local Artin k-
algebra A. Let

0—>J—>B—>A—0

be an extension of finite local Artin k-algebras with J> = 0. Then there is a
k-isomorphism

T,;(Xa/B.J ® Ox,) — Def'“(X4/A, B),

where Def1°(X 4 /A, B) is the space of isomorphism classes of Q-Gorenstein lift-
ings Xp of X4 over B.

Proof. Let r be the index of X, m4: X 4 — X4 the index-1 cover of X4, and
7: X — X the index-1 cover of X. Then X 4 is a deformation of X over A.
An element of quG(X a/B,J ® Ox,) corresponds to a p,-invariant square zero
extension

0—>J®0;, — Oz, > Og, > 0. (10.2)

Taking invariants yields an extension
0> J®0x, - Ox, > Ox, =0 (10.3)
and hence a Q-Gorenstein lifting Xz of X4 over B. This defines a map
¢: T,);(Xa/B.J ® Ox,) — Def?9(X4/A, B).

Next we show that ¢ is surjective. Indeed, let Xp be a Q-Gorenstein lifting of
X4 over B. Then there is a square zero extension as in (10.3). Let g : )ZB — X3
be the index-1 cover of Xg. As before, this is a lifting of X 4 over B. Hence there
is a u,-invariant extension as in (10.2), and therefore ¢ is surjective.

It remains to show that ¢ is injective. Since X is Gorenstein in codimension 1,
it follows that 7 : X — X is étale in codimension 1. Let U C X be the Gorenstein
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locus. Then 7 ~'(U) — U is étale and codim(X — 7 ~'(U), X) > 2. Therefore,
the natural map ~
Def(X) — Def(z~'(U))

is injective [Ar2, Lemma 9.1] and hence ¢ is injective, too. O
The next corollary is an immediate consequence of Proposition 10.3.

COROLLARY 10.4. Let X be a Q-Gorenstein scheme defined over a field k, and
let Y C X be a closed subscheme of X such that X — Y is smooth. Let X, €
Def{“(X)(A,). Then

(D) TG(Y X) = lG(X/k Ox) and

) T,(Xu/An) = T);(X,/An, Ox,).

Most of the functorial properties of the usual T sheaves hold for the Tin as well.
Next we present a few that are of interest to us.

ProOPOSITION 10.5. Let X be a Q-Gorenstein scheme defined over a field k. Let
A € Art(k) and let X4 — Spec(A) be a Q-Gorenstein deformation of X over A.
Then the following statements hold.

(1) Let A — B be a morphism of Artin local k-algebras, Xp = X4 Xspec(a)
Spec(B) the fiber product, and Fp an Ox,-module. Then there are natural
isomorphisms

T,(Xp/B,Fp) = T,;(Xa/A, j. Fp).

where j: Xp — Xy is the projection map.
(2) Let C — B — A be a sequence of ring homomorphisms, and let F be an

Ox,-module. Then there is an exact sequence

T)o(Xa/B,F) = T,(Xa/C,F)
— T'B/C.F) — T, (Xa/B.F) — -+
(3) Let
0—-J—->B—>A—-0

be a square zero extension of Artin local k-algebras, and let Xp be a Q-
Gorenstein lifting of X4 over B. Then there is an exact sequence

- = T)5(Xa/A,J ®4 Ox,) = T/;(Xp/B, Ox,)
— T)(Xa/A,Ox,) = T)5'(Xa/A, T @4 Ox,) = -+
The proof of the proposition follows immediately from the corresponding state-
ments for the usual 77 after passing, as before, to the index-1 covers.

Next we show that TZG(X ) = TZG(X /k,Ox) is an obstruction sheaf for
Def qG(X ) if X — Y is smooth. For the sake of simplicity we only present the
case X =Y.

ProPOSITION 10.6.  Let X be a Q-Gorenstein scheme defined over a field k. Let

0—-J—>B—>A—->0
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be a square zero extension of finite Artin local k-algebras such that mgJ = 0 and
X4 € Def96(X)(A). Then there is a section ob(X,) € H(T, 2 (X)) ® J such
that, for any affine open Uy C X4,0b(X4)|y €T, G(U) Qr J is the obstruction to
lifting Uy to a Q-Gorenstein deformation Ug of U over B, where U = Uy Q4 k.

Proof. This a local result, so we may assume that X is affine of index r. Let
7w : X — X be the index-1 cover of X. Then quG(X) = (T?(X))*. Let

0—-J—>B—>A—->0

be an extension of finite local Artin algebras, and let X4 be a Q-Gorenstein de-
formation of X over A. Let 74 : X 4 — X4 be the index-1 cover. Then X A is a
deformation of X over A [KoSh] and, by Lemma 10.1, the obstruction ob(X A) €
T? (X) ®y J is u,-invariant and hence it is, in fact, in TZG(X) ®k J. Thus, if
ob(X4) = 0, then there is a deformation X ' of X over B that lifts X4. This de-
formation may not be u,-invariant, but Xp =1 Zl “o¢t - X is, where ¢ is a
primitive r-root of unity. Then Xp = Xp/u, isa hftlng of X4 over B. UJ

Having developed the theory of Q-Gorenstein cotangent sheaves Tin (X), we can
now repeat most of the arguments verbatim for the usual deformation functor
Def(Y, X) in Section 9. In particular we have the following.

THEOREM 10.7. Let X be a Q-Gorenstein scheme defined over a field k, and let
Y C X be a closed subscheme of X such that X — Y is smooth. Let

0—-J—B—>A—>0

be a small extension of local Artin k-algebras and let X, € Def1¢(Y, X)(A). Then
the following statements hold.

(1) The spaces Def1%(X,/A, B) and Defloc(XA/A B) are Tl ¢, X)® J and
H 0(T (X) ® J) homogeneous spaces, respectively.

(2) Letsg € DeflOC (X4/A, B). Then the set w1~ (sg) is a homogeneous space over
H'(Tx ® J).

(3) There is a sequence

0 — H' (Ty ® J) = Def?%( X, /A, B)

qG
KN Def.

(X1/A,B) > HX(Tx ® J)

thatis exact in the following sense. Let sp € DefloC (Xa/A, B). Then sg is in the
image of w ifand only if 3(sg) = 0. Moreover, let X, X}, € Def?%(X 4 /A, B)
be such that w(X4) = n(X}). Then there isa y € H! (TX ® J) such that
X} = v - Xa, where by “-” we denote the action of H' (TX ® J) on w7\ (sp).

CoroLLARY 10.8. With assumptions as in Theorem 10.7, there are two suc-
cessive obstructions in HO(T (X)® J) and H (TIG(X) ® J) in order for
DefféCG(XA/A, B) £ 0 (i.e., for X4 to lift locally to B). If these obstructions van-

ish, then there is another obstruction in H> (f"x ® J) inorder for Def(X4 /A, B) #
@ (i.e., for the local obstructions to globalize).
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The local lifting method and the results that were described in Section 9.1 apply
immediately to the Q-Gorenstein case as well. For the convenience of the reader,
we state the main technical tools needed to apply it.

PrOPOSITION 10.9.  Let X be a Q-Gorenstein scheme defined over a field k, and
let Y C X be a closed subscheme of X such that X — Y is smooth. Let X, €
Def;’G(X)(An) and X,_y = X,, ®a, An—1. Then there is an exact sequence

0— Ty — Tx,n, > Tx, .y,
— T)(X) = T)o(Xu/An) = T,o(Xuo1/An_1) = T (X).
Proof. Use Proposition 10.5 and Proposition 10.2 on the extension

0—-k—>A,—> A,_1— 0. O

ProrposiTiON 10.10.  With assumptions as in Proposition 10.9, there are canoni-
cal exact sequences

0 — H%T,);(X)/F) = HUT,);(Xa/An))
— HT,;(Xy_1/An-1)) > Qu — 0,
0— L, — Qu — HAT5(X)), and
0— L, > H\(T);(X)/Fn) = H'(T,);(Xu/An))
in addition to a noncanonical sequence
0 — HUTG(X)/F) — HYT)5(X0/A)) 25 HYT) 5 (X1 /A1)
— H'(T,;(X)/F,) ® HU(T (X)),

where F,, C TqIG(X ) is the cokernel of the map TX” JA, = TXn—l/Anfl‘

COROLLARY 10.11.  Suppose that the index-1 cover of every singular point of X
has local complete intersection singularities. Then there is an exact sequence

0 — HUT,);(X)/F) — H°<T o6 (Xn/An)

> HT,6(X 1 /A, D) > H (T,6(X)/Fp).

11. From Formal to Algebraic

For geometric applications we are interested in algebraic deformations f: X — S
of a scheme X of finite type over a field k. However, the methods of this paper
are formal and so produce only formal deformations of X. It is therefore of in-
terest to know under what conditions a formal deformation is algebraic as well
as which properties of an algebraic deformation can be read from the associated
formal deformation.
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The problem of whether a formal deformation is algebraic is a difficult one.
An affirmative answer is known for the cases where X is affine with isolated sin-
gularities [Ar2, Thm. 5.1] and where X is projective with H 2(X,0x) = 0 ([Se,
Thm. 2.5.13]; see also [Gr2]). This problem is extensively studied in [Arl].

In general it is difficult to compare the properties of an algebraic deformation
and its associated formal deformation. For example, it is possible that the formal
deformation is trivial but the global one is not [Se, Ex. 1.2.5]. In this section we
state criteria for recognizing the properties of being locally trivial and smoothing
from certain properties of the corresponding formal deformation. Then we define
the notion of formal smoothing, which we will use in Section 12.

The next theorem by Artin is the key to the relation between locally formally
trivial and locally trivial deformations.

THEOREM 11.1 [Arl, Cor.2.6]. Let X; and X, be S-schemes of finite type, and let
x; € X; be points, i = 1,2. If the complete local rings Oy, x, are Os-isomorphic,
then Xy and X, are locally isomorphic for the étale topology.

COROLLARY 11.2. Let f: X — S be a flat morphism of schemes of finite type.
Moreover, assume that f is either proper or a morphism of local schemes. Let
s € § and suppose that the corresponding formal deformation X,, — S,,, where
X, =X x5 S,and S, = Spec((957s/mg+1), is locally trivial. Then there exist a
neighborhood s € U C S and an étale cover {V;} of f~'U such that V; — U is
trivial.

In particular, with assumptions as in the previous theorem, if the fiber over s
(i.e., X;) is singular then the general fiber is singular, too, and hence f is not a
smoothing.

Proof. 1If f is a flat family of local schemes, then the corollary follows immedi-
ately from Theorem 11.1. Now suppose that f is proper. Let X; = X x g Spec k(s)
and let X be the formal completion of X along X,. Then the assumptions imply
that X is locally trivial. In particular, it follows that OX p = Oy p, Where ) =
X, xS, PeX,,and Ox P, (’)y p are the completions of Oy, p, Oy p at the max-
imal ideals mx p,my, p of Oy p, Oy p. Hence, by Theorem 11.1 there is an étale
cover {V;} of X, in X such that V; — S is trivial. Let Z = X — J,V;. Then,
since f is proper, Y = f(Z) is closed in S and U = § — Y has the required
properties. OJ

Let f: X — S be a deformation of a scheme X over the spectrum of a discrete
valuation ring. Next we will obtain criteria on the corresponding formal defor-
mation f,: X, — Spec A, in order for f to be a smoothing. First we define the
relative differentials of a morphism of formal schemes.

DEeFINITION 11.3 [LNSa]. Let f: X — & be a morphism of formal schemes.
Let J, J be ideals of definition of X, & (respectively) such that {*J - Ox C J. Let
X, = (%,0%/3"™") and S, = (&, O0s/I"") be the corresponding schemes, and
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let f,,: X, — S, be the corresponding morphism. Then lim Qy, /s, and lim wy, /s,
are sheaves of Oy = l<1£1 Ox,-modules, and we define the sheaf of formal relative
differentials

Qx/s = lgl Qx,/5,

and the formal dualizing sheaf
wx/e = limoy, s, .
If | is of pseudo-finite type, then both are coherent. In this case we also define
T'(%X/6) = Exty(Qx/s. Ox),

the first-order formal relative cotangent sheaf. For the basic properties of Qx/s,
see [TLOR].

Next we define the notion of a formal Q-Gorenstein deformation f: X — & and
the corresponding sheaf quG (X/6).

DErFINITION 11.4.  Let f: X — & be a flat morphism of formal schemes.

(1) We say that f is a formal Q-Gorenstein deformation if there are ideals of defi-
nition J, J of X, & (respectively) such that {*J-Ox C J and the corresponding
deformations of schemes f,: X, — S,, where X, = (X,0x/3"™)and S, =
(8, 0s/3"") are Q-Gorenstein.

(2) Suppose that f is a formal Q-Gorenstein deformation. Then, with notation
as in (1), let {U;} be an affine open cover of X and let X;, = X,|y,. Then
the deformation X, , — S, is induced by a deformation f(im — §,, where
Tin: X in = Xi n is the index-1 cover [KoSh]. These form an inverse system,
and setting .’%i = 1(£n}~(,n yields a map of formal schemes 7; : .’%,- — Xy,
which we call the formal index-1 cover. Then, as in the usual scheme case,
the covering groups G; act on T'(X;/&) and we define quG (%;,6) =
T'(%;/6)%. These glue together to form a coherent sheaf TqIG (%/6) on %.

NoTATION 11.5.  Let § be a coherent sheaf on a formal scheme X. We denote by
Fitt, (§) C Ox the k-fitting ideal of §. These ideals measure the obstruction for
§ to be locally generated by k elements. In fact, § is locally generated by k ele-
ments if and only if Fitt; (F) = Ox. Moreover, fitting ideals commute with base
change and completion [E, Prop. 20.6].

Next we define the notion of a formal smoothing.

DEFINITION 11.6.  Let X be a proper equidimensional scheme of finite type over
a separable field k. Then a formal deformation f: X — & for G = Specfk[[#]]
is called a formal smoothing of X if and only if there is a k € Z. ( such that J¥ C
Fitt,,(Qx,s), where J C Ox is an ideal of definition of X and n = dim X.

REMARK 11.7. In the previous definition we required that X be equidimensional
in order to control the dimension of the components of the general fiber. However,
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itis not a very restrictive condition because almost all singularities of interest in ap-
plications (e.g., moduli of canonically polarized varieties and the minimal model
program) are Cohen—Macauley and hence equidimensional.

The next proposition shows that formal smoothness implies smoothness in the case
of algebraic deformations.

ProPOSITION 11.8.  Let X be a proper equidimensional scheme of dimension n
that is of finite type over a separable field k. Let f: X — S be a deformation of
X over the spectrum of a discrete valuation ring (A, m), and let {: X — G be the
associated formal deformation. Then f is a smoothing of X if and only if {is a
formal smoothing of X.

Proof. Since f is proper, it follows that the general fiber X, = X x5 Spec K(A) is
equidimensional of dimension n. Assume that f is formally smooth. Then—since
Fitt,(Qx,s) = Fitt,,(Qx/s)", the formal completion of Fitt,(2x/s) along X—the
assumption implies that Ox /Fitt,(2x,s) is supported on the central fiber. There-
fore, Flttn(QX ) = OX and hence Qux, /K (a) is locally generated by n elements.

Let X} be an 1rreduc1ble component of X, and let P € X, be a closed point.
Then, smce X, is Noetherian, we have dim (’)X“p =n. Letmp C OX“P =n be
the maximal ideal. Then there is an exact sequence

mp/mp — Qx4 ® (Ox,, p/mp) — QK (O, p/K(4) = 0,

which s exact on the left as well because k is separable. Therefore, dim(m p /m%,) =
dim (’)ng p and hence Oxg, p is regular. In fact, the proof shows that it is geometri-
cally regular and therefore Oy, p is smooth. Hence X, is smooth and irreducible.
The converse is proved similarly. O

If X has complete intersection singularities or if X is Q-Gorenstein and the index-1
cover of any of its singular points has complete intersection singularities, then it
is possible to give simpler criteria, which we will use in Section 12.

We will need the next easy lemma.

LEmMMA 11.9.  Let X be a local complete intersection scheme of finite type over a
field k. Then, if Ext)lf(Qx, Ox) =0, X is smooth.

Proof. We may assume that X is affine. Then, since it is complete intersection,
there exists an exact sequence

0— Of - O - Qx—0

such that m — k = dim X. Since Ext)l((SZ x, Ox) = 0, it follows that the previous
sequence is split exact. Hence

or =0f @ Qx

and therefore Qy is free and of rank equal to the dimension of X. Hence X is
smooth. UJ
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ProposiTiON 11.10. Let X be a local complete intersection scheme, and let
f: X — S be a deformation of X over the spectrum of a discrete valuation
ring (A,myu). Let §: X — & be the corresponding formal deformation. Assume
that f is proper and of finite type. Let I C Ox be an ideal of definition of X.
Then the following statements are equivalent:

(1) the family f: X — S is a smoothing of X,

(2) there is an m €N such that 3"T'(X/8) = 0;

(3) thereis a k € N such that, foralln > k,

T' (X1 /A1) = T'(X,/An),
where X, = X Xg Sp, Sy = Spec A, and A, = A/m’*".

Proof. First we show that (1) implies (2). In this case, X = X is the completion
of X along X. Then Qx5 = Qx5 [TLOR] and hence

TY(X/6) = Exty (s, Ox) = Exty(Quys, Ox)" = T (X/S)".

Now, by Lemma 11.9, X — S is a smoothing if and only if 7'(X/S) is supported
on X. Since T'(X/S) is a coherent O-module, this is equivalent to saying that
there is an m € N such that I"T'(X/S) = 0, where [ is the ideal sheaf of X in
X. Hence J"T'(¥/6) = 0, where J = I. Conversely, if 3"T'(%X/&) = 0 for
some m and some ideal of definition J, then it also holds for all ideals of defini-
tion and in particular for J = I. Hence (I"T'(X/S))" = 0 and thus there is an
X C U C X (an open neighborhood of X in &’) such that I’"TI(X/S)|Z,, =0
therefore, since f is proper and S is local, I T'(X/S) = 0. Hence T'(X/S) is
supported on X’ and so f is a smoothing.

Next we show that (1) is equivalent to (3). Let # be a generator of the maximal
ideal of R. Then the exact sequence

0—>OX£>OX—>OX”—>0

gives the exact sequence

tn+]

0 — Twa —> Tajn — Tx,a, — T'(X/A)

" TNRJAY — TH(X,/A,) — 0.

Thus f is a smoothing if and only if T'(X/S) is supported on X and hence if and
only if there is a k € N such that t*T'(X/S) = 0. Now it follows from the previous
exact sequence that this is equivalent to saying that T'(X,;1/A,41) = T (X,/A,)
forall n > k. O

ProposITION 11.11.  Let X be a Q-Gorenstein scheme such that the index-1 cover
of its singular points has complete intersection singularities only. Let f: X — §
be a Q-Gorenstein deformation of X over the spectrum of a discrete valuation
ring (A,my), and let f: X — & be the corresponding formal deformation. As-
sume that f is proper and of finite type. Let 3 C Ox be an ideal of definition of
X. Then the following statements are equivalent:



Smoothings of Schemes with Nonisolated Singularities 71

(1) the family f: X — S is a smoothing of X,
(2) there is an m € N such that jmTqIG (X/6) =0and 3™ C Fittj(wx/s);
(3) thereis a k € N such that, for all n > k, 3™ C Fitt|(wx,s) and

T 6 (Xnp1/Ans1) = Ty (Xa/An),
where X, = X X5 Sy, Sy = Spec A,,, and A, = A/m’}™".

Proof. The proof follows the lines of that for Proposition 11.10 with a few differ-
ences that we explain next. The condition 3™ C Fitt;(wx,s) means that, generi-
cally over S, wx/s is generated by one element and hence is a line bundle. There-
fore, the general fiber of f is Gorenstein. Hence the index-1 cover of any singu-
larity of & is étale away from the central fiber. Now, since the index-1 cover of
any singular point of X is assumed to be complete intersection, it follows that the
general fiber of f is also complete intersection. Now applying the arguments of
the proof of Proposition 11.10 yields the claimed result. UJ

12. Smoothing Criteria

Let X be a proper pure and reduced scheme of finite type over a field k. Moreover,
assume that the singular points of X are either complete intersection or Q-Goren-
stein with complete intersection index-1 covers. In this section we give some
smoothing and nonsmoothing criteria for such schemes X. Following the method-
ology of this section and the methods developed in previous sections, one could
also give similar criteria for algebraic germs ¥ C X. However, for the sake of
simplicity we will only consider the case X =Y.

In what follows we denote by D either Def(X) or Def?“(X) and by T/ (X)
either T/(X) or T;G(X).

The sheaves T}, (X) are fundamental in the study of the deformation theory of
X. However, they can be extremely complicated. The reduced part of their support
is contained in the singular locus of X, but it may have embedded components.
This happens even in the simplest cases. For example, if X is the pinch point given
by x? — y?z = 0, then T!(X) = k[x, y,z]/(x, y2, yz) and has an embedded point
over the pinch point. This makes any calculation involving 7} (X ) most difficult.
So it is better to consider instead the pure part of 7}, (X ), which we define next. It
is simply a generalization of the notion of torsion free.

DEerFINITION 12.1. Let X be a pure and reduced scheme, and let F be a coher-
ent sheaf on X of dimension d. Let F;_; C F be the maximal subsheaf of F of
dimension at most d — 1. Then we define:

(1) the support of the torsion part of F to be the support of Fy_i;
(2) the rank of F, tk(F), by

rk (F) = maxg{length(F:), where £ is a generic point of the support of F};

(3) the pure part of F, p(F), to be the quotient F/F,_; (this is pure of dimen-
siond).
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Let X,, — Spec A, be a deformation of X over A,, andlet X,,_; = X,, ®a, , An.
Then, from our discussion in Sections 9 and 10, it follows that—in order to under-
stand the obstructions to lifting X,, to a deformation X, over A, —it is impor-
tant to study the sheaves F, and TA(X )/ Fn, where F,, C TDI(X ) is the cokernel
of the natural map T, /4, — Tx,_,/a,_,- The next lemma does this in some cases.

LEmMMA 12.2. Let X — A = Spec(R) be a deformation of X, where (R,m) is
a discrete valuation ring. Let X, = X ®g R/m""\, and (as in Proposition 9.10)
let F,, C TI;(X) be the cokernel of the natural map Tx,;a, — Tx,_/a where
A, = R/m"*'. Then the following statements hold.

n—1?

(1) There is an injective map

¢: Tp(X/A) — lim Tj(X, /Ay).

n

where fDl(X/A) is the m-adic completion of TDI(X/A). Moreover, ¢ is an
isomorphism at any local complete intersection point of X.
(2) Suppose that X is unobstructed at any generic point of its singular locus and

that X is a smoothing. Then there is an ny € Z such that

(a) tk(T}(X)/Fy) =0ifn = ng and

(b) 0 < tk(TAH(X)/F) <tk(TH(X)) foralln < ny.

(c) Suppose that, at any generic point £ of the singular locus of X, X is a
hypersurface singularity (f = 0) C C" with u(f) = t(f), where u(f)
and t(f) are (respectively) the Milnor and Tjurina numbers of f. If X
is smooth at &, then rk(Tlg(X)/]-',,) =0 foralln.

Proof. Let t be a generator of the maximal ideal of R. Then the exact sequence

n+1
0—>0Xt—>(9x—>(9xn—>0

gives the exact sequence

ln+l

0 — Tyjn —> Tan — Tx,ja, — Tp(X/A)
n+l
5 TAX/A) — TN(X, /A, — TE(X/A), (12.1)

where Tg(X /A) is a sheaf supported on the noncomplete intersection singular
points of X. Then it follows that there are injections

bu: Tp(X/A) /1" TH(X/A) — Tp(X,/AL).

Passing to the inverse limits yields the claimed map ¢. Furthermore, since the ¢,
are isomorphisms at any complete intersection point of X, we know that ¢ is an
isomorphism, too.

Suppose that &' is a smoothing and that, at any generic point of its singular
locus, X is unobstructed. Then, at any generic point £ of the singular locus of
X, T2(X/A)¢ = 0 and the argument of the proof of Proposition 11.10 shows that
there is an ny € Z such that TA(X,/A,)e = T (Xu—1/A,—1)¢ foralln > ng. In
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fact, something stronger holds. Suppose there is a k € Z such that T} (X /Ax)s =
T]é(Xk—l/Ak—l)s- Then we will show that Tg(X,,/A”)&- = TDl(X,,_l/An_l)g for all
n > k. From (12.1) it follows that

Tp(Xu/An)e = TH(X/A)e/t" T Ty (X/A)g
for all n and hence, since T2 (Xi/A)e = TA(Xi—1/Ar-1)es

1T (XA = 1T (X/A)g;
consequently,
"IN X/A)e = t" T (X/A)e
for all » > k. Hence Té(Xn/A,,)g = Tg(X,l_l/A,l_])g foralln > k.
Moreover, by Proposition 9.10 and Proposition 10.10, there is an exact sequence

0 — TAX)/Fy — TAXu/AR) 22 T)(Xoo1/An_y); (12.2)

hence it follows that there is an ny € Z such that, generically along the singular-
ities of X, ¢, is an isomorphism for all n > n( but not if n < ny. Therefore,
rk(Tg(X)/]-'n) =0ifn >npand 0 < rk(Tg(X)/]-'n) < rk(TDl(X)) ifn < ng, as
claimed.

Let £ € X be a generic point of the singular locus of X and let K = k(Ox ¢).
Suppose that, at £, X is a hypersurface singularity given by (f = 0) C C”
and u(f) = t(f). If X is smooth at &, then dimg Tg(X/A) = wu(f). But
since u(f) = t(f) = dimg TA(X) by assumption, it follows from (12.1) that
TDI(X/A) = Tg(X) and hence tTl;(X/A) = 0. Therefore, t”TDl(X/A) = 0 for
all n, so

Tp(Xa/A) = Tp(Xu-1/An-1) = Tp(X/A)
for all n. Hence from (12.2) it follows that rk(Tg (X)/F,) = O0forall n, as claimed.
O
The next theorem gives some conditions under which X is not smoothable.

THEOREM 12.3.  Suppose that Ho(p(Tlé (X))) = 0 and that, at any generic point
of the singular locus of X, X is complete intersection. Let Z be the support of the
torsion part of TA(X), and let f: X — A be a I-parameter deformation of X.
Then

(1) Xsine  xsing_ywhere X5 and XS are the singular parts of X and X; in
particular, X is not smooth.

(2) Suppose also that H%(p(T,%(X))) = 0 and that, at any generic point & of the
singular locus of X, X is analytically isomorphic to (x{ + - -+ + x,? =0) C
C". Then there is a proper closed subset W of the singular locus of X such
that X — W is locally trivial. In particular, the general fiber X, of f is sin-
gular and hence X is not smoothable.

COROLLARY 12.4.  Suppose that T)(X) is pure and that H(T}(X)) = 0. Sup-
pose also that the general singularity of X is analytically isomorphic to
(P4 +xt=0)ccCn

Then X is not smoothable.
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Corollary 12.4 applies in particular to schemes with only normal crossing singu-
larities.

Proof of Theorem 12.3. Let X — A be a deformation of X over A = Spec(R),
where (R,m) is a discrete valuation ring. Suppose that X is not trivial at any
generic point of the singular locus of X. Let X,, = X x, Spec(R/m"). By our as-
sumptions, every section of T} (X) vanishes generically along the singularities of
X. The theorem will follow if we show that:

(1) TA(X/A) has a section s that does not vanish generically along the singular
locus of X; and

(2) any section of Tlg(Xn /A,) vanishes generically along the singular locus of X
for any n.

Indeed, if there is a smoothing X, then by (1) there is a section s of TA(X /)
that does not vanish at any generic point of the singular locus of X. But then, by
Lemma 12.2(1), there is an n € Z such that the image s,, of s in T,:I,(Xn/An) does
not vanish at any generic point of the singular locus of X. But this is impossible
by (2).

Next we show (1). Since X is complete intersection at any generic point of the
singular locus X, it follows that there is an exact sequence

0— ffwr=0x = Qx = Qu;m — 0. (12.3)

This gives a section s of Ext (R, Ox) = T'(X/A). If X is also Q-Gorenstein,
then this gives an element of quc (X/A). Since X is pure, X,, is also pure and hence
there is an exact sequence

0 e Oxn — Q){ ®OX OX,, —> QX,I/A” — O (124)

that gives an element of Tl(X,,/A,l) = Sxt}("(an/A”,Oxn). If X is also Q-
Gorenstein, then this gives an element of TqIG(Xn /A,). Next we claim that the

extension (12.3) is not split—nor even generically split along the singular locus
of X.

Case 1. Suppose that X' is smooth and that (12.3) is generically split along the
singular locus of X. Then Qx = Qx/a @ Ox and hence Qx4 is free and so Qy is
free, which of course is not true. Hence, in this case (12.3) is not even generically
split.

Case 2. Suppose that the general singularity of X is analytically isomorphic to
(x{+--+xt=0)ccC" (12.5)

Hence if (12.3) were generically split then, generically over the singular locus
of X,
Ext} (Qx, Ox) = Exty (Qa/a, Ox). (12.6)

Around the generic point £ of the singular locus of X we may assume that X is
the singularity given by (12.5). Thus all Ext spaces involved are now finite di-
mensional over K = k(Oy ¢). We will show by direct computation that (12.6) is
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impossible. In suitable local analytic coordinates, X is given by (12.5); if we use
the Weierstrass preparation theorem, then X’ is given by

XP X+ 08Kt X 1) =0,
where g # 0 and ¢ does not divide g. Straightforward calculations show that

k[.XI,...,xn,t]

Extl (Qy,Ox) =
x (8. Ox) (X1s ey Xps 1508/ 0X 0ty -2 150/ X, 15~ \g + 1598/ 01, 19)

and similarly

k[x1,...,xp, 1]
(X1y ey X, 1508/ 0X k415 ..., 1508/ 0y, tsg)'
If Extﬁf(QX, Ox) = Extk (Qx/a,Ox), then

Exth (Qua, Ox) =

st e 4 159g/0t € (X1, ..., X, 1508/ 0X1s1s ..., 1708/ 0Xn, 1°8);

hence there are polynomials 4;, h € k[x1, ..., x,, ] such that

s—1 K 8g ¢ K 8g K
st g+ta—2hlta—xz+hlg
i=s+1
and therefore ¢ divides g, which is impossible. This shows part (1) of the claim.
Now we show (2), proceeding by induction on n. By assumption, n = 1 is
true. By Lemma 12.2, there is an ng € Z such that rk((Tg(X)/f,,) = 0 for all
n > ng and, since rk(Tg(X)) =1, rk((Tg(X)/]-"n) = 1for all n < ny. Hence
p(THX)/Fy) = p(TH(X)) forall n < no.
Suppose that n < no and construct the pushout diagram

00— TAX)/Fp —— TN (X /An) — T (X 1/An_1)

Lk

0 —— p(Tp(X)/Fy) On T'(Xp-1/An-1)

with Ker(8,) = Ker(y,,) supported on Z. Let M,, = Coker(«,). Then there is a
commutative diagram

0 —— 0= H)(p(Tp(X))) — H(Q,) —— H)(M,) — Hy(p(T5(X)))
fll le f3J f4l
0——0=Hp(TH(X)) —— H(Q,) — H'(M,) —— H'(p(Tp(X)))
Now f3 is an isomorphism by induction and H}( p(T,}(X ))) = 0 by assumption.
Hence, by the five lemma, f> is also an isomorphism and therefore all sections of

Q,, are supported on Z.
Now there is an exact sequence

0 — Ker(y,) = T'(X,/A,) = Q, — 0,
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and, since Ker(8,) = Ker(y,), we know that Ker(y,) is supported on Z. Let
U=X-—2Z Then T'(X,/A,)|v = Qn.|uv and hence, since the sections of Q,
are supported on Z, the sections of T'(X,/A,) are also supported on Z. Thus,
for all n < nyg, the sections of T!(X,/A,) are supported on Z. If n > ny, then
rk(TD](X)/}'n) = Oand hence Z, = Supp(TD'(X)/}'n) is a proper subset of X "¢,
By induction, all sections of T'(X,_;/A,_;) are supported on a proper subset
Z,yof X8 LetZ, = Z UZ, yand U, = X — Z,. Then T'(X,/A,)|y, =
T X, _1/A,_))] v, and hence all sections of TY(X,/A,) are supported on Z,,. This
shows (2).

It remains to show part (1) of the theorem. This is a local result, so we may as-
sume that X is affine and X’ is smooth. Then, by Lemma 12.2, tk((T5(X)/F,) =
0 for all n. The previous proof now shows that the sections of T3(X,/A,) van-
ish at any generic point of the singular locus of X for all n, and part (1) follows as
before. O

Next we present some smoothing criteria.

THEOREM 12.5. Let X be a proper pure and reduced scheme of finite type over a
field k of characteristic 0. Let D be either Def(X) or Def1°(X). Assume that:

(1) X has complete intersection singularities if D = Def(X); or
(2) X is locally smoothable, and the index-1 cover of any singularity of X has
complete intersection singularities, if D = Def1%(X).

Then, if TA(X) is finitely generated by its global sections and if Hl(Tg(X)) =
H*(Tx) =0, X is D-formally smoothable.

COROLLARY 12.6.  Ifevery deformation of X is effective, then X is D-smoothable.

REMARK 12.7.

(1) The requirement that X be proper can be replaced by the more general require-
ment that Def(X) have a hull.

(2) The conditions of the theorem on the vanishing of the obstructions are rather
restrictive, but there are some cases when they are satisfied. We mention two
of them. The first is when there is a proper morphism f: X — Spec A such
that dim f “I(s) < 1forall s € Spec A. Then, by the formal functions theo-
rem, H*(Tx) = 0. This is, for example, the case of birational maps with at
most 1-dimensional fibers. The second case is when X is a Fano variety with
only double-point normal crossing singularities such that T!(X) is finitely
generated by its global sections. Then H'(T'(X)) = H?(Tx) = 0 [Tz2].

Proof of Theorem 12.5. For simplicity we show only the case D = Def(X). The
Q-Gorenstein case is analogous; one need only lift the following argument to the
index-1 covers.

The conditions of the theorem imply that Def(X) exists and is smooth. Let
Sty...,85 € HYT'(X)) be sections that generate T'(X). Because Def(X) is
smooth, the sections sy, ..., s lift to a formal deformation f,: Y,, — §,, of X over
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S, = Spec(S/m”“) where S = k[[#,...,#]] and mg is its maximal ideal. Let
f: Y — S be the corresponding morphism of formal schemes. We will show that
Y is smooth over Specf K(S). Let U C X be the smooth locus of X. Then f|y is
smooth and hence, since X is pure, it follows that there is an exact sequence

0— f*Qs — Qy = Qys — 0 (12.7)
[TLGR]. Moreover, Qs = Q% = O, where R = k[z,...,1;]. Hence f*Qs =
(’)f,, and dualizing the previous sequence yields
Homy(Qy, 0y) — 0% LTI Y/S) — T'(Y) — 0. (12.8)
By construction, however, ¢ is surjective and therefore
T'(Y) = Ext},(Qy, 0y) = 0.

Claim: Oy and Oy ®s K(S) have smooth local rings.

The result is local and hence we may assume that X is affine and given by
Ox = klx1,....,xn]1/(f), where (f) = (fi1,..., fy) is a complete intersection.
Then Ox, = S,[x1,...,xul/(fn), where (f,,) is a lifting of (f) on S,[x1,...,Xp,]
and so

S{xt,...,xpu "
Oy = lim Oy, = 2Ll (12.9)
-~ (fiees f5)
where S[xq,...,x,,]"is thems-adiccompletionofS[xl,...,xm]andf,- = 1<ir_nf[(").

Let
00y —>0¢ - Qx—0

be a presentation of Qy, where m — r = dim Oyx. Then this exact sequence lifts
to compatible exact sequences

0— Ox, — Oy, — Qx, — 0.

Furthermore, Oy = hm Ox, and hence, taking inverse limits and taking into con-
sideration that Qy = l1m Qe,, [TLOR], we obtain an exact sequence

O—>O§,—>(’)y—>52y—>0.
This extension is trivial because E_Xti,(ny, 0Oy) = 0. Hence
0y =050y

and so Qy is locally free and of the rank claimed. This implies that O, has geo-
metrically regular local rings. Indeed, let P € X be a point and mp the maximal
ideal of Oy, p. Then, since k is perfect, it follows that

my/m% = Qy @ k(P)

[E] and therefore dimypy m p/m% = dim Oy, p; hence Oy, p is geometrically reg-
ular and therefore smooth. Because any localization of Oy is a localization of
Oy, p for some P € X, it follows that Oy, has smooth local rings. In particular,
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since any localization of Oy ®s K(S) is a localization of Oy, Oy ®s K(S) is
smooth. .
Since 2y = Og’,, where d = dim X, the sequence (12.8) becomes

04 L 0k L TI(Y/8) — T'(Y) — 0;

as in the usual scheme case, ¥ is given by the Jacobian matrix J = (3f;/ x;j). Since
0Oy ®s K(S) is smooth, it follows that J has maximum rank at all localizations of
Oy ®s K(S). Therefore, v ®s K(S) is surjective and hence T'(Y/S) is torsion
over S. Thus there is a formal arc A = Specfk[[¢]] — Spec S such that, in the
fiber X = Y Xgpecrs Specfk[[t]], T'(X/A) is torsion over k[[¢]]; hence there is
an [/ € N such that t]Tl(X/A) = 0 and therefore X — A is a formal smoothing
of X. O

The preceding proof also shows the following.

COROLLARY 12.8.  With assumptions as in Corollary 12.6, suppose that T (X ) =
Oz, where Z is the singular locus of X. Then there is a smoothing f: X — A of
X such that

(1) X is smooth if D = Def(X) and
(2) the singularities of X are smooth quotients if D = Def99(X).

There is one nice and simple case when 7''(X) is finitely generated by its global
sections.

COROLLARY 12.9. Let X be a projective local complete intersection field over a
field k of characteristic 0. Let X C Y be an embedding such that Y is smooth. Sup-
pose that Ny y is finitely generated by its global sections and that H ri(x)) =
H?(Tx) = 0. Then X is formally smoothable.

Proof. Dualizing the conormal sequence for X C Y yields a surjection
Nxyy — TH(X) — 0.

Hence T'(X) is finitely generated by its global sections, too, and so X is formally
smoothable. O

Next we give a similar criterion for Q-Gorenstein deformations.

COROLLARY 12.10. Let X be a projective Q-Gorenstein scheme defined over a
field k of characteristic 0. Suppose that its Gorenstein points are complete inter-
sections and that the high-index points are complete intersection quotients. Let
X C Y be an embedding such that, locally around any point P € X, P € Y is
a general deformation of P € X. Suppose that Nx,y is finitely generated by its
global sections and that Hl(quc (X)) = H*(Tx) = 0. Then X has a Q-Gorenstein
smoothing.
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Proof. Dualizing the conormal sequence for X C Y, we obtain a sequence

Ny 2 TI(X) — Exth(Qy ® Oy, Oy) — 0.

We claim that Im(¢p) = quG (X) and hence if Ny,y is generated by global sections
then so is quc(X ). The claim is local at the singularities of ¥, so we may assume
that Y is affine. By assumption, Y is smooth at any index-1 point, and in this case
we are done. Asssume then that Y has index r > 1. Letr: ¥ — Y be the index-1
cover; then X = 7w ~(X) is the index-1 cover of X. Moreover, since Y is the gen-
eral deformation of X by assumption, it follows that Y is smooth and hence there
is a surjection
Nijy = TH(X) = 0.
Let G be the Galois group of the &. Then taking invariants yields
Ng/? = Nxyy = T,)5(X) > 0
as claimed. O

In general, if X C Y and if Ny,y is finitely generated by its global sections (or,
even better, is ample), then X has nice deformation properties. Considering cases
with respect to the singularities of X (like normal crossings) and the shape of the
singular locus of X, one can derive various kinds of criteria—similar to the pre-
vious corollary for the smoothability of X—without even referring to 7'(X). Let
Z be the singular locus of X. In general, T'(X) is not a sheaf of Oz-modules. It
usually has an embedded part; in fact, sometimes even Z is an embedded com-
ponent of its support (this happens, for instance, if X is given by xy + z" = 0
in C* n > 3). So it is rather difficult to describe T'(X) directly and to check
whether it is generated by its global sections. However, if the singular locus of
X is 1-dimensional, then it is possible to give criteria for the finite generation of
T'(X) without any reference to its embedded part.

THEOREM 12.11. Let X be a projective scheme with singularities as in Theo-
rem 12.5, and let Z be its reduced singular locus. Suppose that dimZ = 1 and
that:

€Y p(I§ Tg(X)/I;*lTEI,(X)) is generated by its global sections for all k > 0;
2) Hl(p(lng%(X)/IéﬂTDl(X))) =0 forallk > 0;

(3) H'(p(TH(X) ® Oz)) = H*(Tx) = 0.

Then X is D-formally smoothable.

Proof. Let F, C IST)(X)/I5T'T)(X) be the maximal 0-dimensional subsheaf
of IXT)(X)/I5T' T (X). Then there is an exact sequence

0— HO(F) — HUISTH(X)/ 15T TH (X))
— H%p(IETA(X)/ 15T Th(X))) — 0.
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Hence, if p(ISTA(X)/I5T' TA(X)) is generated by its global sections, then so is
15T (X) /IS T (X). There are also exact sequences

0 — IETY(X) /ISP TH(X) — THX)/IET' T (X) — THX)/IETH(X) — 0

for all k > 0. By induction, then, Tg(X)/IéTg(X) is finitely generated by its
global sections for all k. But since Tg(X ) is supported on Z, it follows that
12T} (X) = 0 for m sufficiently large. Hence T} (X) is finitely generated by its
global sections and so, by Theorem 12.5, X is D-smoothable. O

If X has normal crossing singularities at any generic point of its singular locus,
then p(T'(X)) is an Oz-module and hence one need only take k = 0 in the con-
ditions of the theorem.

COROLLARY 12.12.  With assumptions as in the previous theorem, suppose in
addition that X has normal crossing singularities at any generic point of its sin-
gular locus, that p(T}(X)) is finitely generated by its global sections, and that
Hl(p(TDl(X))) = H*(Tx) = 0. Then X is smoothable.

13. Examples

In this section we apply the theory developed in the previous parts of the paper to
give some examples from the theory of moduli spaces of stable surfaces and the
3-dimensional minimal model program.

1. In this example we construct a few classes of locally but not globally smooth-
able stable surfaces with normal crossing singularities. This means that the irre-
ducible components of the moduli space of stable surfaces that they belong to do
not contain any smooth surfaces of general type. Hence these are extra compo-
nents that appear after the moduli space of surfaces of general type is compactified
by adding the stable surfaces.

1.1. Let X be a projective surface with exactly one singular point P such that:

a. Kx = kA, where A is very ample and k > 2 is an integer;
b. P € X is analytically isomorphic to the cone over a smooth projective plane
curve of degree 4.

Note that such surfaces do exist—for example, X C P* given by (xZ + x3)xg +
(x2+xHx}+ (x2 +x2)x3 =0.

Let f: Y — X be the blowup of X along P. Then Y is smooth and the f-
exceptional divisor is a smooth curve E C P? of degree 4 such that N 1y =
Og(—1) and hence E? = —4. Moreover, a straightforward calculation shows that

Ky = f*Kx — 2E.

Let Z be obtained by glueing two copies of Y along E. This is a surface with nor-
mal crossing singularities, and we claim that K is ample and Z is not smoothable.

By [Fr] or [Tzl], T'(Z) = Ngjy ® Ngjyy = Op(—2) and so HY(T'(X)) = 0.
Hence, by Theorem 12.3, Z is not smoothable.
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Next we show that K is ample. For this it suffices to show that Kz|z,,i = 1,2,
is ample, where Z; = Y are the irreducible components of Z. It is not difficult to
see that

Kzlz;, =Ky +E= f*Kx — E.

This is ample if and only if (f*Kx — E)> > O and (f*Kx — E) - D > 0 for any
irreducible curve D C Y. Now

(f*Kx —E)} = K2 —4=k*A>—4 >0,

since k > 2 and A is very ample; therefore, A> > 1. Let D C Y be an irreducible
curve and let C = f,D. Then

(f*Kx—E) - D=Kyx-C—E-D=FkA-C —mp(C) = kdeg(C) —mp(C),

where mp(C) is the multiplicity of C at P and deg C is the degree of C with re-
spect to the embedding defined by A. Then deg(C) > mp(C) and hence, since
k > 2, it follows that

(f*Kx — E)-D > 0.

Therefore, K is ample as claimed.

1.2. Let X be a smooth projective surface with Ky ample. Suppose that X con-
tains a smooth curve C with p,(C) > 2 and Kx - C > 2(p,(C) — 1).

Such surfaces do exist. For example, let C C P3 be a smooth plane curve of
degree k > 4 given by fi(x,y,z) =t = 0, where f;(x,y,z) is a homogeneous
polynomial of degree k > 4, and let X C P? be the hypersurface of degree d >
k + 1 given by

8a—k(x,¥,2,t) fu(x,¥,2) +thy_(x,y,z,1t) =0,

where g _r(x,y,z,t) and hy_1(x,y,2,t) are homogeneous polynomials of de-
grees d — k and d — 1, respectively. For general choice of g;_(x,y,z,¢) and
hg—1(x,y,z,t), X is a smooth surface containing C. Furthermore, Ox(Kyx) =
Ox(d — 4) and hence

Ky C=degOc(d —4) = (d — 4k > k* — 3k = 2(p.(C) — 1),

since d > k + 1 and k > 4. Moreover, Ky is ample.

Let Z be obtained by glueing two copies of X along C. This is a surface with nor-
mal crossing singularities, and we claim that K is ample and Z is not smoothable.

Let Zy, Z, be the two irreducible components of Z. By construction, Z; = Z,
i =1,2. Then K7 is ample if and only if Kz|z, is ample, i = 1,2. As in the pre-
vious example, Kz|z, = Kx + C. By construction, Kz + C is ample and hence
K7 is ample.

By adjunction, N¢/x = wc ® a);l and therefore

deg/\/c/x =2pa(C) -2 - KX -C < 0,

by assumption. As in the previous example, T'(X) = N¢/x ® Nc/x. Hence
T'(X) is a line bundle on C of negative degree. Therefore, H(T'(X)) = 0 and,
by Theorem 12.3, X is not smoothable.
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2. In this example we construct a terminal 3-fold divisorial extremal neighbor-
hood f: Y — X such that the general member of |Oy| is not normal.

Let U be the germ of a smooth surface around the configuration of rational
curves

-2 2 2 -3 -2 -3 -1 -2 -5

oO—O0—O0—O0—— 00— —0—=oO0
Let h: U — Z be the contraction of all the curves except for those marked by a
solid circle. Then (i) we get amap f : Z — T contracting two smooth rational
curves Cyand C, to apoint O € T such that 0 € T is an As singularity and (ii) Z has
exactly three singular points P; € C;, P, € C,,and Q = C; N C5. Itis easy to see
that (P, € Z) = 1/9(1,5), (P, € Z) = 1/9(1,—5), and (Q € Z) = 1/3(1,1). Let
Z be obtained from Z by identifying C; and C, via an involution of C; 4+ C, tak-
ing Py to P, and leaving Q fixed. Let 7 : Z — Z be the quotient map. Then the
singular locus of Z is a smooth rational curve C; w~!(C) = C; + C»; and Z has
one singularity analytically isomorphic to (xy = 0)/Z(5, -5, 1), has one degener-
ate cusp analytically isomorphic to x* 4 y* + xyz = 0, and has normal crossing
singularities at all other singular points. Moreover, Z is the normalization of Z,
and there is a natural morphism f: Z — T contracting C to 0 € T.

Straightforward calculations show that Kz - C = —1/9 < 0. Also, since U is
the minimal log-resolution of C C Z, it follows from [Tz1] that deg p(TqIG (2)) =
—2 —14 1+ 3 =1 and hence we have p(Tq'G(Z)) = Op1(1). Thus, by Corol-
lary 12.12, there exists a Q-Gorenstein smoothing ¥ — A of Z. Then f extends
to a morphism g: ¥ — X over A, where X is a deformation of T [KoMo]. Now
g: Y — X is a 3-fold extremal neighborhood and Z € |Oy]| is the general mem-
ber. Moreover, the neighborhood is divisorial because X is Gorenstein.

Finally, observe that the method of producing 3-fold extremal neighborhoods by
deforming birational surface morphisms f: Z — T is fundamental in the classifi-
cation of flips by Kolldr and Mori [KoMo]. In principle, it could be used in higher
dimensions to understand higher-dimensional flips and divisorial contractions.
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