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1. Introduction

For any smooth surface S, the Hilbert scheme S [n] parameterizing 0-dimensional
length-n subschemes of S is a smooth 2n-dimensional variety whose inner geom-
etry is naturally related to that of S. For instance, if � ⊂ S [n] is the exceptional
divisor—that is, the exceptional locus of the Hilbert–Chow morphism µ : S [n] →
Symn(S)—then irreducible (possibly singular) rational curves not contained in �

roughly correspond to irreducible (possibly singular) curves on S with a g1
n′ on

their normalizations for some n′ ≤ n (see Section 2.1 for the precise correspon-
dence when n = 2). One of the features of this paper is to show how ideas and
techniques from one of the two sides of the correspondence make it possible to
shed light on problems naturally arising on the other side.

If S is a K3 surface then S [n] is a hyperkähler manifold (cf. [5]), and rational
curves play a fundamental role in the study of the (birational) geometry of S [n].

Indeed, a result due to Huybrechts [32] and Boucksom [11] implies in particular
that these curves govern the ample cone of S [n]. The presence of a P n ⊂ S [n] gives
rise to a birational map (the so-called Mukai flop [41]) to another hyperkähler
manifold and, for n = 2, all birational maps between hyperkähler 4-folds factor
through a sequence of Mukai flops [12; 30; 62; 63]. Moreover, as shown by Huy-
brechts [32], uniruled divisors allow us to describe the birational Kähler cone of
S [n]. For hyperkähler 4-folds that are deformation equivalent to the Hilbert square
of a K3 surface, a conjectural description of the Mori cone and of the numerical
and geometric properties of the rational curves that are extremal in the Mori cone
has been proposed by Hassett and Tschinkel [24] (and partly confirmed in [25]).

The scope of this paper, and the structure of it as well, is twofold: we first devise
general methods and tools to study families of curves with hyperelliptic normal-
izations on a surface S (Sections 2–4). Then we apply these to obtain concrete
results in the case of K3 surfaces (Sections 5–7).
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1.1. Families of Singular Curves with Hyperelliptic Normalizations

The main question we address in the first part of the paper is whether there exists
an upper bound on the dimension of families of irreducible curves on a projective
surface with hyperelliptic normalizations. One easily sees that, if the canonical
system of the surface is birational, then no curve with hyperelliptic normalization
can move (cf. e.g. [34]). On the other hand, any surface S admitting a (generically)
2 : 1 map onto a rational surface R carries families of arbitrarily high dimensions
of curves on S having hyperelliptic normalizations. Nevertheless, for a large class
of surfaces, we derive the following geometric consequence on the family when
its dimension is greater than 2.

Theorem 4.6′. Let S be a smooth projective surface with pg(S) > 0. Let V be a
reduced and irreducible scheme parameterizing a flat family of irreducible curves
on S with hyperelliptic normalizations (of genus ≥ 2) such that dim(V ) ≥ 3.
Then the algebraic equivalence class [C] of the curves parameterized by V has
a decomposition [C] = [D1] + [D2 ] into algebraically moving classes such that
the point parameterizing D1 + D2 lies in the closure V̄ of V in the component
of the Hilbert scheme of S containing V. Moreover, the rational curves in S [2] cor-
responding to the irreducible curves parameterized by V cover only a (rational)
surface R ⊂ S [2].

In fact, we prove a stronger result (Theorem 4.6) that relates the decomposition
[C] = [D1]+ [D2 ] to the g1

2 on the normalizations of the curves parameterized by
V. This additional point will be crucial in our application of this result. An imme-
diate corollary is a simple dimension bound under natural additional hypotheses
on V (Corollary 4.7).

The proof of Theorem 4.6 illustrates well the rich interplay between the prop-
erties of curves on S and those of subvarieties of S [2]. It relies on two ingredients.
First, by a suitable version of Mumford’s theorem on 0-cycles on surfaces with
pg > 0 (cf. Corollaries 3.2 and 3.4), the family of rational curves in S [2] asso-
ciated to the irreducible curves on S with hyperelliptic normalizations can cover
only a surface if dim(V ) ≥ 3. Then, by Mori’s bend-and-break technique (see
Lemma 2.10), we produce a reducible member in S [2]. From this, in Proposition 4.3
we produce a decomposition of the curves on S into algebraically moving classes.

One application of Theorem 4.6 is a Reider-like result for families of singular
curves with hyperelliptic normalizations obtained in [34], where also more exam-
ples of such families are given. In the rest of this paper, we focus on K3 surfaces
and, in particular, apply Theorem 4.6 to show the following result.

Theorem 5.2. Let (S,H ) be a general, smooth, primitively polarized K3 sur-
face of genusp = pa(H ) ≥ 4. Then the family of nodal curves in |H | of geometric
genus 3 with hyperelliptic normalizations is nonempty, and each of its irreducible
components is 2-dimensional.

It is well known that there exist finitely many (nodal) rational curves, a1-parameter
family of (nodal) elliptic curves, and a 2-dimensional family of (nodal) curves of
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geometric genus 2 in |H | (see Section 5). Every such family yields in a natu-
ral way a 2-dimensional family of irreducible rational curves in S [2] (Section 2).
Therefore, Theorem 5.2 is the first nontrivial existence result about curves with
hyperelliptic normalizations on general K3 surfaces of any polarization, and con-
sequently about rational curves in S [2]. Also note that, by a result of Ran [47], the
expected dimension of a family of rational curves in a symplectic 4-fold—whence
a posteriori also of a family of curves with hyperelliptic normalizations lying on a
K3 surface—is 2 (Lemma 5.1).

The proof of Theorem 5.2 takes the entire Section 5 and relies on a general
principle of constructing curves with hyperelliptic normalizations on general K3
surfaces that is outlined in Proposition 5.11. First construct a marked K3 surface
(S0,H0) of genus p such that |H0| contains a family of dimension ≤ 2 of nodal
(possibly reducible) curves with the property that a desingularization of some
δ > 0 of the nodes is a limit of a hyperelliptic curve in the moduli space Mp−δ
of stable curves of genus p − δ and such that this family is not contained in a
higher-dimensional such family. Then consider the parameter space Wp,δ of pairs
((S,H ),C), where (S,H ) is a smooth, primitively marked K3 surface of genus p
andC ∈ |H | is a nodal curve with at least δ nodes. Now map (the local branches of )
Wp,δ into Mp−δ by partially normalizing the curves at δ of the nodes and mapping
them to their respective classes. By construction, the image of this map intersects
the hyperelliptic locus Hp−δ ⊂ Mp−δ. A dimension count then shows that the
dimension of the parameter space I ⊂ Wp,δ consisting of ((S,H ),C) such that
a desingularization of some δ > 0 of the nodes of C is a limit of a hyperelliptic
curve is at least 21. Now the dominance on the 19-dimensional moduli space of
primitively marked K3 surfaces of genus p follows because the dimension of the
special family on S0 did not exceed 2.

The technical difficulties in the proof of Proposition 5.11 arise mostly because
the curves in the special family on S0 may be reducible. Hence we need to par-
tially desingularize families of nodal curves, and the tool for this is provided in
the Appendix by E. Sernesi. Moreover, we need a careful study of the Severi
varieties of reducible nodal curves on K3 surfaces, and here we use results of
Tannenbaum [56].

Given Proposition 5.11, the proof of Theorem 5.2 is then accomplished by con-
structing a suitable (S0,H0) in Proposition 5.19 with |H0| containing a desired
2-dimensional family of special curves, with δ = p − 3, and then showing that
the curves in the special family on S0 in fact deform to curves with precisely δ

nodes on the general S in Lemma 5.20. Showing that the special family on S0 is
not contained in a family of higher-dimensional curves with the same property is
quite delicate, and it is here that we use the full version of Theorem 4.6.

We also show (Corollary 5.3) that the associated rational curves in S [2] cover a
3-fold.

1.2. Results on the Mori Cone of S [2]

Let (S,H ) be a general, smooth, primitively polarized K3 surface of genus p =
pa(H ) ≥ 2. Then N1(S

[2])R � R[Y ]⊕R[P1
�], where P1

� is the class of a rational
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curve in the ruling of the exceptional divisor � ⊂ S [2] and where Y := {ξ ∈ S [2] |
Supp(ξ) = {p0, y} with p0 ∈ S and y ∈ C ∈ |H |}, where p0 and C are chosen.
One has that P1

� lies on the boundary of the Mori cone; by the result of Huybrechts
and Boucksom mentioned previously, if the Mori cone is closed then also the other
boundary is generated by the class of a rational curve. Notice that the conjecture
of Hassett and Tschinkel [24] on the properties of these extremal classes is still
open even in the case of the Hilbert square of a general K3 surface. It therefore
seems useful to obtain more information on the Mori cone and to find examples
where the particular classes pointed out by Hassett and Tschinkel appear.

If now C ∈ |mH | is an irreducible curve with hyperelliptic normalization, let
g0(C) ≥ pg(C) be the arithmetic genus of the minimal partial desingularization
of C that carries the g1

2 (see Section 2.1 and Section 6.2). By the unicity of the
g1

2, C defines a unique irreducible rational curve RC ⊂ S [2] with class RC ∼alg

mY − ( g0(C)+1
2

)
P1
�; see (6.11). Thus, the higher is g0(C) (or pg(C)) and the lower

is m, the closer is RC to the boundary of the Mori cone. This motivates the search
for curves on S that have hyperelliptic normalizations of high geometric genus and
thus are “unexpected” from Brill–Noether theory.

If X ∼alg aY − bP1
� is an irreducible curve in S [2] with a, b �= 0, then we de-

fine a/b to be the slope of the curve. Describing the Mori cone NE(S [2]) amounts
to computing

slope(NE(S [2])) := inf{slope(X) | X is an irreducible curve in S [2]},
and, if the Mori cone is closed, then slope(NE(S [2])) = sloperat(NE(S [2])), where

sloperat(NE(S [2])) := inf{slope(X) | X is an irreducible rational curve in S [2]}.
(See Sections 6.1–6.3 for further details.) Combining various results, we obtain
five bounds of a different nature on the slope of effective 1-cycles in the Hilbert
square S [2] of a K3 with Pic(S) = Z[H ].

(1) If X ∈N1(S
[2])Z with X ∼alg Y − kP1

�, then k ≤ pa(H )+4
4 ; that is, slope(X) ≥

4
pa(H )+4 (cf. Theorem 6.18, which is related to the “singular Brill–Noether in-
variant” introduced in [21]).

(2) slope(NE(S [2])) ≤ √
2/(pa − 1) (cf. Theorem 6.21, which is related to Se-

shadri constants).

In Section 7 we give a couple of existence results of a different type than Theo-
rem 5.2: in Propositions 7.2 and 7.7 we find general primitively polarized K3 sur-
faces (S,H ) of infinitely many degrees such that S [2] contains either a P2 (shown
to us by B. Hassett) or a 3-fold birational to a P1-bundle over a K3. We also find
the classes corresponding to the lines and fibers, respectively, and the geometric
genus of the corresponding curves on S with hyperelliptic normalizations. The
lines and the fibers are interesting because, according to the conjecture of Hassett
and Tschinkel [24], they should generate an extremal ray of NE(S [2]). As a by-
product of these constructions, we also obtain:
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(3) sloperat(NE(S [2])) ≤ slope(line in a P2) = 2
2n−9 if pa(H ) = n2 − 9n + 20

for some n ≥ 6;
(4) sloperat(NE(S [2])) ≤ slope(fiber of a P1-bundle) = 1

d
ifpa(H ) = d 2 for some

d ≥ 2.

Moreover, Proposition 7.2 also shows the sharpness of Theorem 4.6 even in the
case of a surface with Picard number 1. In fact, the (3m − 1)-dimensional fam-
ily of rational curves in OP2(m) gives rise to a (3m − 1)-dimensional family of
curves with hyperelliptic normalizations in |mH |.

The idea of the proofs of Propositions 7.2 and 7.7 is to start with a special quartic
surface S0 ⊂ P3 such that S [2]

0 contains a P2 or a 3-fold birational to a P1-bundle
over itself; perform the standard involution on S

[2]
0 to produce a new such surface;

and then deform S
[2]
0 , keeping the new one by maintaining a suitable polarization

on the surface that is different from OS0(1). Here we use results from [24] and [58]
on deformations of symplectic 4-folds.

Finally, we remark that combining Theorem 4.6 with the deformation-theoretic
argument of Proposition 5.11 yields the following general procedure for deform-
ing (even reducible) rational curves on the Hilbert square of a special K3 to the
general one.

(5) Let (S0,H0) be a primitively marked K3 surface. Suppose |H0| contains a
maximal family of (possibly reducible) curves with the property that some
partial desingularization is a limit of a smooth hyperelliptic curve of genus pg.

Suppose further that this family is 2-dimensional (apply Theorem 4.6). Then
these curves deform to irreducible curves with hyperelliptic normalizations on
the general K3 surface (S,H ). Hence also the associated rational curves R0

in S
[2]
0 deform to S [2]. In particular, sloperat(NE(S [2])) ≤ slope(R0) = 2

pg+1.

Acknowledgments. The authors thank L. Caporaso, O. Debarre, A. Iliev, and
A. Verra for useful discussions. We are extremely grateful to: C. Ciliberto, for
valuable conversations and helpful comments on the subject and for pointing out
some earlier mistakes; B. Hassett, for pointing out the examples behind Propo-
sition 7.2; and E. Sernesi, for helpful conversations and for his Appendix to this
paper.

2. Rational Curves in S [2]

Let S be a smooth projective surface. In this section we gather some basic results
that will be needed in the rest of the paper. We first describe the natural corre-
spondence between rational curves in S [2] and curves on S with rational elliptic
or hyperelliptic normalizations. Then, in Section 2.2, we apply Mori’s bend-and-
break technique to rational curves in Sym2(S) covering a surface.

Recall that we have the natural Hilbert–Chow morphism µ : S [2] → Sym2(S)

that resolves Sing(Sym2(S)) � S. The µ-exceptional divisor � ⊂ S [2] is a P1-
bundle over S. The Hilbert–Chow morphism gives an obvious one-to-one corre-
spondence between irreducible curves in S [2] not contained in � and irreducible
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curves in Sym2(S) not contained in Sing(Sym2(S)). We will therefore often switch
back and forth between working on S [2] and on Sym2(S).

2.1. Irreducible Rational Curves in S [2] and Curves on S

Let T ⊂ S × S [2] be the incidence variety with projections p2 : T → S [2] and
pS : T → S. Then p2 is finite of degree 2 and branched along � ⊂ S [2]. (In par-
ticular, T is as smooth as � is.)

Let X ⊂ S [2] be an irreducible rational curve not contained in �. We will now
see how X is equivalent to one of three sets of data on S.

Let νX : X̃ � P1→ X be the normalization and set X ′ := p−1
2 (X) ⊂ T. By the

universal property of blowing up, we obtain the commutative square

C̃X

f
��

ν̃X

��

X̃

νX

��

� P1

X ′
p2 |X ′ �� X ,

(2.1)

defining the curve C̃X as well as ν̃X and f. In particular, ν̃X is birational and C̃X

admits a g1
2 (i.e., a 2 : 1 morphism onto P1 that is given by f ) but may be singular

or even reducible. Set ν̃ := pS |X ′ � ν̃X : C̃X → S.

Assume first that C̃X is irreducible. We set CX := ν̃(C̃X) ⊂ S. Since X �⊂ �,
it follows that CX is a curve. Since C̃X carries a g1

2, it is easily seen that also the
normalization ofCX does—that is, CX has rational elliptic or hyperelliptic normal-
ization. Moreover, it is easily seen that ν̃ : C̃X → CX is generically of degree 1.
Indeed, for general x ∈ CX, since x /∈ pS(p

−1
2 (�)) we can write (pS |X ′)−1(x) =

{(x, x + y1), . . . , (x, x + yn)}, where n := deg ν̃. By the definition of p2 and since
X ′ = p−1

2 (X), we must have that each (yi, x + yi) ∈X ′ for i = 1, . . . , n and that
each couple ((x, x+yi), (yi, x+yi)) is the push-down by ν̃X of an element of the
g1

2 on C̃X. Hence, each couple (x, yi) is the push-down by the normalization mor-
phism of an element of the induced g1

2 on the normalization of CX. Since x was
chosen to be general, x /∈ Sing(CX); hence we must have n = 1 as claimed.

In particular, by construction we know that ν̃ : C̃X → CX is a partial desingu-
larization of CX; in fact, it is the minimal partial desingularization of CX carrying
the g1

2 in question (which is unique if pg(CX) ≥ 2). We have therefore obtained:

(I) the data of an irreducible curve CX ⊂ S together with a partial normalization
ν̃ : C̃X → CX with a g1

2 on C̃X (unique, if pg(CX) ≥ 2) such that ν̃ is minimal
with respect to the existence of the g1

2.

Next we treat the case where C̃X is reducible. In this case, it must consist of
two irreducible smooth rational components, C̃X = C̃X,1∪ C̃X,2, that are identified
by f.

If ν̃ does not contract any of the components, set CX,i := ν̃(C̃X,i ) ⊂ S and
nX,i := deg ν̃|C̃X,i

for i = 1, 2. We therefore obtain:
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(II) the data of a curve CX = nX,1CX,1+nX,2CX,2 ⊂ S with nX,i ∈N and CX,i an
irreducible rational curve; a morphism ν̃ : C̃X = C̃X,1∪ C̃X,2 → CX,1∪CX,2

(resp. ν̃ : C̃X → CX,1 if CX,1 = CX,2) that is nX,i : 1 on each component
and where C̃X,i is the normalization of CX,i; and an identification morphism
f : C̃X,1∪ C̃X,2 � P1 ∪ P1→ P1.

If ν̃ contracts one of the two components of C̃X, say C̃X,2, to a point xX ∈ S (it
is easily seen that it cannot contract both), then µ(X) ⊂ Sym2(S) is of the form
{xX + CX} for an irreducible curve CX ⊂ S, which is necessarily rational. It is
easily seen that CX = ν̃(C̃X,1) and deg ν̃|C̃X,1

= 1, so we obtain:

(III) the data of an irreducible rational curve CX ⊂ S together with a point xX∈S.
Note that in (I)–(III) the support of the curve CX on S is simply

Supp(CX) = 1-dimensional part of {x ∈ S | x ∈ Supp(ξ) for some ξ ∈X}, (2.2)

and the set is already purely 1-dimensional except in (III) with xX /∈C.
Conversely, from the data (I), (II), or (III) one can recover an irreducible ra-

tional curve in S [2] that is not contained in �. Indeed, in (I) (resp. (II)) the g1
2 on

C̃X (resp., the identification f ) induces a P1 ⊂ Sym2(C̃X), and this is mapped to
an irreducible rational curve in Sym2(S) by the natural composed morphism

Sym2(C̃X)
ν̃(2) �� Sym2(CX) ↪ �� Sym2(S).

The irreducible rational curve X ⊂ S [2] is the strict transform by µ of this curve.
In (III), X ⊂ S [2] is the strict transform by µ of {xX + CX} ⊂ Sym2(S).

We see that the data (III) correspond precisely to rational curves of type
{x0 + C} ⊂ Sym2(S), where x0 ∈ S is a point and C ⊂ S is an irreducible ratio-
nal curve. Moreover, it is easily seen that the data (II) correspond precisely to the
images by α : C̃1× C̃2 � P1× P1→ C1+ C2 ⊂ Sym2(S) (resp. α : Sym2(C̃ ) �
P2 → Sym2(C) ⊂ Sym2(S)) of irreducible rational curves in |n1F1+ n2F2| for
n1, n2 ∈N (resp. |nF | for an integer n ≥ 2), where Pic(C̃1× C̃2) � Z[F1]⊕Z[F2 ]
(resp. Pic(Sym2(C̃ )) � Z[F ]) and C1,C2 (resp. C) are irreducible rational curves
on S and where the tilde ( ˜ ) denotes normalization. However, data of type (II)
will not be studied in this paper, where the focus is on data of type (I) and (III)—
mostly the former.

Observe that (a) an irreducible rational curve X ⊂ Sym2(S) arising from ra-
tional (resp. elliptic) curves C as in (I) moves in Sym2(C), which is a surface
birational to P2 (resp. an elliptic ruled surface), and (b) a curve X ⊂ Sym2(S) of
the form {xX+C}moves in the 3-fold {S+C}, which is birational to a P1-bundle
over S and contains Sym2(C).

At the same time, it is well known that if kod(S) ≥ 0 then rational curves on S

do not move and elliptic curves move in at most 1-dimensional families. This fol-
lows, for instance, from the following general result (that we will later need in the
case pg = 2).
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Lemma 2.3. Let S be a smooth projective surface, with kod(S) ≥ 0, containing
an n-dimensional irreducible family of irreducible curves of geometric genus pg.

Then n ≤ pg and, if equality occurs, either the family consists of a single smooth
rational curve; or kod(S) ≤ 1 and n ≤ 1; or kod(S) = 0.

Proof. This is “folklore”. For a proof, see [34].

As a consequence, if kod(S) ≥ 0 then rational curves in Sym2(S) arising from ra-
tional or elliptic curves on S move in families of dimension at most 2 in Sym2(S).

On the other hand, irreducible rational curvesX ⊂ Sym2(S) arising from curves
on S with hyperelliptic normalizations of geometric genus pg ≥ 2 (necessarily of
type (I)) move in a family whose dimension equals that of the family of curves
with hyperelliptic normalizations in which C ⊂ S moves (by unicity of the g1

2).

Apart from some special cases, it is easy to see that the converse is also true. The
proof of this is straightforward and is left to the reader.

Lemma 2.4. Let {Xb}b∈B be a 1-dimensional irreducible family of irreducible
rational curves in Sym2(S) covering a (dense subset of a) proper, reduced and ir-
reducible surface Y ⊂ Sym2(S) that does not coincide with Sing(Sym2(S)) ∼= S.

Then, with notation as before, C = CXb
in S for every b ∈ B if and only if

either Y = Sym2(C0), with either C0 ⊂ S an irreducible rational curve and C ≡
nC0 for n ≥ 1 or C0 = C ⊂ S an irreducible elliptic curve; or Y = C + C ′ :=
{p + p ′ | p ∈ C, p ′ ∈ C ′}, with C an irreducible rational curve and C ′ ⊂ S any
irreducible curve; or Y = C1 + C2, with C1,C2 ⊂ S irreducible rational curves
and C = n1C1+ n2C2 for n1, n2 ∈N.

We note that, by Lemma 2.3, also the rational curves in Sym2(S) arising from sin-
gular curves of geometric genus 2 on S move in at most 2-dimensional families.
We will show that, under some additional hypotheses, this is a general phenome-
non. We will focus our attention on curves with hyperelliptic normalizations (of
genus pg ≥ 2) in Sections 4–7.

2.2. Bend-and-Break in Sym2(S)

Let V ⊆ Hom(P1, Sym2(S)) be a reduced and irreducible subscheme (not neces-
sarily complete). We consider the universal map

PV := P1×V
&V �� Sym2(S) (2.5)

and assume that the following two conditions hold:

for any v ∈V, &V (P
1× v) �⊆ Sing(Sym2(S)) � S; (2.6)

the natural map PV −→ Rat(Sym2(S)) defined by &V

is generically finite. (2.7)

Here Rat(Sym2(S)) is the union of the components of Hilb(Sym2(S)) whose gen-
eral points correspond to reduced connected curves with rational components [16,
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5.6]. (This simply means thatV induces a flat family of rational curves in Sym2(S)

of dimension dim(V ).) Set
RV := im(&V), (2.8)

the Zariski closure of im(&V) in Sym2(S). It is the (irreducible) uniruled sub-
variety of Sym2(S) covered by the curves parameterized by V. In the language of
[36, Def. 2.3], RV is the closure of the locus of the family &V . Note that, by (2.7),
dim(RV) ≥ 2 if dim(V ) ≥ 1. Moreover (see e.g. [23, Prop. 2.1]),

dim(RV) ≤ 3 if kod(S) ≥ 0. (2.9)

When RV is a surface, using Mori’s bend-and-break technique yields the fol-
lowing result. In the statement we emphasize that the breaking can be made in
such a way that, for general ξ, η ∈RV , two components of the reducible (or nonre-
duced) member at the border of the family pass through ξ and η, respectively. This
will be central in our applications (Proposition 4.3 and Section 5, where we prove
Theorem 5.2). We give the proof because we could not find in the literature pre-
cisely the statement we need.

Lemma 2.10. Assume that dim(V ) ≥ 3 and dim(RV) = 2. Let ξ and η be any
two distinct general points of RV . Then there is a curve Yξ,η in RV such that Yξ,η
is algebraically equivalent to (&V)∗(P1

v) and either

(a) there is an irreducible nonreduced component of Yξ,η containing ξ and η; or
(b) there are two distinct, irreducible components of Yξ,η containing ξ and η,

respectively.

Proof. Since dim(V ) ≥ 3 by assumption, by (2.7) we can choose a 1-dimen-
sional smooth subscheme B = Bξ,η ⊂ V parameterizing curves in V such that
(&V)∗(P1× v) contains both ξ and η for every v ∈B. We thus have the family of
rational curves

&B := (&V)|B : P1× B −→ RV , (2.11)

together with two marked (distinct) points x, y ∈ P1 such that &B(x×B) = ξ and
&B(y × B) = η and such that each &B(P

1× v) is nonconstant for any v ∈B; in
particular, &B(P

1× B) is a surface.
As in the proofs of [37, Lemma 1.9] and [36, Cor. II.5.5], let B̄ be any smooth

compactification of B. Consider the surface P1 × B̄. Let 0 ∈ B̄ denote a point
at the boundary, P1

0 the fiber over 0 of the projection onto the second factor, and
x0, y0 ∈ P1

0 ⊂ P1 × B̄ the corresponding marked points. By the rigidity lemma
[37, Lemma 1.6], &B cannot be defined at the point x0, as in the proof of [37,
Cor. 1.7], and the same argument works for y0.

Therefore, to resolve the indeterminacies of the rational map &B : P1× B̄ ���
RV , we must at least blow up P1 × B̄ at the points x0 and y0. Now let W be the
blow-up of P1× B̄ such that &̄B : W → RV is an extension of &B; that is, suppose
we have the commutative diagram
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W

π

��

&̄B

����
��

��
��

�

P1× B̄
&B ����� RV .

Let Ex0 := π−1(x0) and Ey0 := π−1(y0). Observe that neither of these can be
contracted by &̄B , for otherwise &B itself would be defined at x0 or y0.

As a result, the curve &̄B(Ex0) has an irreducible component ,ξ containing ξ

and the curve &̄B(Ey0) has an irreducible component ,η containing η. By con-
struction, ,ξ+,η ⊆ &̄B∗(π−1(P1×0)), and &̄B∗(π−1(P1×0)) is the desired curve
Yξ,η. The two cases (a) and (b) occur as ,ξ = ,η or ,ξ �= ,η, respectively.

3. Rationally Equivalent 0-Cycles on Surfaces with pg > 0

In this section we extend to the singular case a consequence of Mumford’s result
[43, Cor., p. 203] for 0-cycles on surfaces with pg > 0 and reformulate the results
in terms of rational quotients.

3.1. Mumford’s Theorem

The main result of this subsection, which we prove in detail for the reader’s con-
venience, relies on the following generalization of Mumford’s result (see [59,
Chap. 22] for a detailed account).

Theorem 3.1 (cf. [59, Prop. 22.24]). Let T and Y be smooth projective vari-
eties, and let Z ⊂ Y × T be a cycle of codimension equal to dim(T ). Suppose
there exists a subvariety T ′ ⊂ T of dimension k0 such that, for all y ∈ Y, the
0-cycle Zy is rationally equivalent in T to a cycle supported on T ′.

Then, for all k > k0 and all η ∈H 0(T,.k
T ),

[Z]∗η = 0 in H 0(Y,.k
Y ),

where, as is customary, [Z]∗η denotes the differential form induced on Y by the
correspondence Z.

Combining this theorem with Mumford’s original “symplectic” argument, we ob-
tain the following.

Corollary 3.2. Let S be a smooth, irreducible projective surface with pg(S) >

0 and let / ⊂ S [n] be a reduced, irreducible ( possibly singular ) complete sub-
scheme such that µ(/) �⊂ Sing(Symn(S)), where µ : S [n] → Symn(S) is the
Hilbert–Chow morphism. If there exists a subvariety , ⊂ Symn(S) such that
dim(,) ≤ 1, , �⊂ Sing(Symn(S)), and all the 0-cycles parameterized by µ(/)

are rationally equivalent to 0-cycles supported on ,, then dim(/) ≤ n.

Proof. Let π : /̃→ / ⊂ S [n] be the desingularization morphism of /. Let Z =
0π ⊂ /̃ × S [n] be the graph of π. Then Z ∼= /̃, so that codim(Z) = dim(S [n])
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as in Theorem 3.1. By assumption, µ(/) parameterizes 0-cycles of length n on
S that are all rationally equivalent to 0-cycles supported on , with dim(,) ≤ 1.
Since µ(/) is not contained in Sing(Symn(S)) by assumption, it follows that
µ|/ : / → µ(/) is birational. If , ′ denotes the strict transform of , under µ,
then dim(, ′) ≤ 1.

We can apply Theorem 3.1 with Z = Y = /̃, T = S [n], and T ′ = , ′. Thus, for
each k > 1 and each η ∈H 0(.k

S [n]), we have [Z]∗η = 0 in H 0(/̃,.k

/̃
).

Let ω ∈H 0(S,KS) be a nonzero 2-form on S. As in [43, Cor.], we define

ω(n) :=
n∑
i=1

p∗i (ω)∈H 0(S n,.2
S n),

where S n is the nth Cartesian product and pi is the natural projection onto the
ith factor, 1 ≤ i ≤ n. The form ω(n) is Sym(n)-invariant and, since µ is surjec-
tive, this induces a canonical 2-form ω[n]

µ ∈H 0(S [n],.2
S [n]) (see [43, Sec. 1], where

ω[n]
µ = ηµ in the notation there). From what we have observed here, [Z]∗(ω[n]

µ ) =
0 as a form in H 0(/̃,.2

/̃
). Consider

(Symn(S))0

:=
{
ξ =

n∑
i=1

xi

∣∣∣ xi �= xj , 1≤ i �= j ≤ n, and ω(xi)∈.2
S,xi

is not 0

}
.

Then (Symn(S))0 ⊂ Symn(S) is an open dense subscheme that is isomorphic to
its preimage via µ in S [n]. For each ξ ∈ (Symn(S))0, ξ is a smooth point and

πn : S n −→ Symn(S)

is étale over ξ. Thus, the 2-form ω(n) ∈H 0(S n,.2
S n) is nondegenerate on the open

subset (S n)0 of points in the preimage of (Symn(S))0; in other words, it defines a
nondegenerate skew-symmetric form on the tangent space of (S n)0.

Let π0
n := πn|(S n)0 . Since π0

n : (S n)0 → (Symn(S))0 is étale, there exists a
2-form

ω
(n)
0 ∈H 0((Symn(S))0,.2

(Symn(S))0
)

such that ω(n) = π∗n(ω
(n)
0 ) and ω

(n)
0 is also nondegenerate. Therefore, the maximal

isotropic subspaces of ω(n)
0 (ξ) are n-dimensional.

Now / ⊂ S [n] and / ∩ µ−1((Symn(S))0) �= ∅, since µ(/) �⊂ Sing(Symn(S))

by assumption. Since / is reduced, let ξ ∈ / ∩ µ−1((Symn(S))0) be a smooth
point. Then, since /smooth = π−1(/smooth), by abuse of notation we still denote
by ξ ∈ /̃ the corresponding point. We know that [Z]∗ω[n]

µ (ξ) = 0 in the tangent

space Tξ (/̃). Since

ξ ∈/smooth ∩ µ−1((Symn(S))0) ⊂ (Symn(S))0,

it follows that [Z]∗(ω[n]
µ ) = ω

(n)
0 |/smooth∩µ−1((Symn(S))0). This implies dim(/) ≤ n.
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3.2. The Property RCC and Rational Quotients

Recall that a variety T (not necessarily proper or smooth) is said to be rationally
chain connected (RCC) if, for each pair of very general points t1, t2 ∈ T, there
exists a connected curve 0 ⊂ T such that t1, t2 ∈0 and each irreducible compo-
nent of 0 is rational (see [36]). Furthermore, by [16, Rem. 4.21(2)], if T is proper
and RCC then each pair of points can be joined by a connected chain of rational
curves.

Also recall that, for any smooth variety T, there exists a variety Q, called the
rational quotient of T, together with a rational map

f : T ��� Q (3.3)

whose very general fibers are equivalence classes under the RCC-equivalence re-
lation (see e.g. [16, Thm. 5.13] or [36, IV, Thm. 5.4]).

In this language, an equivalent statement of Corollary 3.2 is as follows.

Corollary 3.4. LetS be a smooth projective surface withpg(S) > 0. If Y ⊂ S [n]

is a complete subvariety of dimension> n not contained in Exc(µ), then any desin-
gularization of Y has a rational quotient of dimension ≥ 2.

Proof. Let Ỹ be any desingularization of Y and let Q be its rational quotient. Up
to resolving the indeterminacies of f : Ỹ ��� Q, we may assume that f is a proper
morphism whose very general fiber is a RCC-equivalence class; thus, in particu-
lar, each fiber is RCC (see [36, Thm. 3.5.3]).

If dim(Q) = 0, it follows that Ỹ (so also Y ) is RCC, contradicting Corollary 3.2.
If dim(Q) = 1, then cutting Ỹ with dim(Y )−1 general very ample divisors re-

sults in a curve , ′ that intersects every fiber of f. Every point of Ỹ is connected
by a chain of rational curves to some point on , ′. We thus obtain a contradiction
by Corollary 3.2 (with , the image of , ′ in Sym2(S)).

Let now RV be the variety covered by a family of rational curves in Sym2(S) pa-
rameterized by V, as defined in (2.8); let R̃V be any desingularization of RV ; and
let QV be the rational quotient of R̃V . Of course, dim(QV) ≤ dim(RV) − 1 be-
cause RV is uniruled by construction.

Lemma 3.5. If dim(V ) ≥ dim(RV), then dim(QV) ≤ dim(RV) − 2 ( for any
desingularization R̃V of RV). In particular, if dim(V ) ≥ 2 and dim(RV) = 2,
then any desingularization of RV is a rational surface.

Proof. With notation as in Section 2.2, we have dim(PV ) ≥ dim(RV)+ 1 and so
the general fiber of &V is at least 1-dimensional (cf. (2.5)). This means that if ξ is
a general point of RV then there exists a family of rational curves in RV , passing
through ξ, of dimension≥ 1. Of course, the same is true for a general point of R̃V .

Thus, the very general fiber of f in (3.3) has dimension ≥ 2, whence dim(QV) ≤
dim(RV)− 2. The last statement follows because any smooth surface that is RCC
is rational (cf. [36, IV.3.3.5]).
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Combining Corollary 3.4 and Lemma 3.5, we have the following statement.

Proposition 3.6. If pg(S) > 0 and dim(V ) ≥ 2, then either

(i) RV is a surface with rational desingularization; or
(ii) dim(V ) = 2, RV is a 3-fold, and any desingularization of RV has a 2-

dimensional rational quotient.

Proof. By (2.9), dim(RV) = 2 or 3. If dim(RV) = 2 then (i) holds by Lemma 3.5;
if dim(RV) = 3 then dim(QV) = 2 by Corollary 3.4. Hence dim(V ) = 2 by
Lemma 3.5 and so (ii) holds.

Remark 3.7. LetS be a smooth projective surface withpg(S) > 0 and letY ⊂ S [2]

be a uniruled 3-fold that is different from Exc(µ), where µ : S [2] → Sym2(S) is
the Hilbert–Chow morphism.

Take a covering family {Cv}v∈V of rational curves on Y. By Corollary 3.4, the
family must be 2-dimensional (see Lemma 3.5). Then the curves in the cover-
ing family yield, via the correspondence described in Section 2.1, curves on S

with rational elliptic or hyperelliptic normalizations, and the correspondence is
one-to-one in the hyperelliptic case. We therefore see that we must be in one of
the following cases:

(a) S contains an irreducible rational curve , and

Y = {ξ ∈ S [2] | Supp(ξ) ∩ , �= ∅};
(b) S contains a 1-dimensional irreducible family {E}v∈V of irreducible elliptic

curves and
Y = {ξ ∈E[2]

v }v∈V ;
(c) S contains a 2-dimensional, irreducible family of irreducible curves with

hyperelliptic normalizations that is not contained in a higher-dimensional
irreducible family, and Y is the locus covered by the corresponding rational
curves in S [2].

(Note that case (b) can occur only for kod(S) ≤ 1, by Lemma 2.3, and that case (c)
can occur only when |KS | is not birational. The latter fact is easy to show; see
e.g. [34].)

In the case of K3 surfaces, uniruled divisors play a particularly important role
[32, Sec. 5]. Cases (a)–(c) occur on a general projective K3 surface with a po-
larization of genus ≥ 6. In fact, cases (a) and (b) occur on any projective K3
surface, which necessarily contains a 1-dimensional family of irreducible elliptic
curves and a 0-dimensional family of rational curves (by a well-known theorem
of Mumford; see the proof in [39, pp. 351–352] or [2, pp. 365–367]). Case (c)
occurs on a general primitively polarized K3 surface of genus p ≥ 6 (by Corol-
lary 5.3, to follow) with a family of curves of geometric genus 3. In addition to
this, in Proposition 7.7 we will see that there is another 3-fold as in (c) arising
from curves of geometric genus > 3 in the hyperplane linear system on general
projective K3 surfaces of infinitely many degrees.

Moreover, there is not a one-to-one correspondence between families as in
(a)–(c) and uniruled 3-folds in S [2]. In fact, in Proposition 7.2 we will see that, in
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the hyperplane linear systems on general K3 surfaces of infinitely many degrees,
there is a 2-dimensional family of curves with hyperelliptic normalizations, as in
(c), whose associated rational curves cover only a P2 in S [2].

4. Families of Curves with Hyperelliptic Normalizations

The purpose of this section is to study the dimension of families of curves on a
smooth projective surface S with hyperelliptic normalizations.

It is not difficult to see that if |KS | is birational then the dimension of such a
family is forced to be 0 (see e.g. [34]). At the same time it is easy to find obvious
examples of surfaces, even with pg(S) > 0, that include large families of curves
with hyperelliptic normalizations—namely, surfaces admitting a finite 2 : 1 map
onto a rational surface (see e.g. [10; 26; 27; 28; 29; 49; 52; 54]). In these cases
one can pull back the families of rational curves on the rational surface to ob-
tain families of curves on S with hyperelliptic normalizations of arbitrarily high
dimensions. Moreover, in Proposition 7.2 we will see that, for infinitely many de-
grees, even a general, primitively polarized K3 surface (S,H ) contains a P2 in its
Hilbert square, which is not contained in � (but the surface is not a double cover
of a P2, by generality). Therefore, by the correspondence in Section 2.1, S con-
tains large families of curves with hyperelliptic normalizations. One can see that,
in all these examples of large families, the algebraic equivalence class of the mem-
bers breaks into nontrivial effective decompositions. For example, in the K3 case
of Proposition 7.2, we will see that the curves in |OP2(n)| in P2 ⊂ S [2] correspond
to curves in |nH |. In this section we will see, with the help of Lemma 2.10, that
this is a general phenomenon.

Toward this end, let V be a reduced and irreducible scheme parameterizing a
flat family of curves on S all of constant geometric genus pg ≥ 2 and with hyper-
elliptic normalizations. Let ϕ : C → V be the universal family. After normalizing
C we obtain, possibly restricting to an open dense subscheme of V, a flat family
ϕ̃ : C̃ → V of smooth hyperelliptic curves of genus pg ≥ 2 (cf. [57, Thm. 1.3.2]).
Let ωC̃/V be the relative dualizing sheaf. As in [38, Thm. 5.5(iv)], consider the
morphism γ : C̃ → P(ϕ̃∗(ωC̃/V )) over V. This morphism is finite and of relative
degree 2 onto its image, which we denote by PV . We thus obtain a universal family
ψ : PV → V of rational curves mapping to Sym2(S), as in (2.5), that satisfies (2.6)
and (2.7). (Strictly speaking, (2.5) denoted a universal family of maps, whereas it
now denotes a universal family of curves.) To summarize, recalling (2.8), we have

C̃
π

����
��

��
�

ϕ̃
��

��
��

��
��

γ
�� PV

ψ

��

&V �� RV

S V .

(4.1)

Also note that (4.1) is compatible with the correspondence of case (I) from Sec-
tion 2.1 in the sense that, for general v ∈V, we have (using the same notation as in
Section 2.1)
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π(ϕ̃−1(v)) = pS(p
−1
2 Xv) = (pS)∗(p−1

2 Xv) = CXv

with Xv = µ−1
∗

(
&V (ψ

−1(v))
) ⊂ S [2],

(4.2)

where µ is the Hilbert–Chow morphism (in particular, pS and p2 are the first and
second projections, respectively, from the incidence variety T ⊂ S × S [2]). Note
that the second equality in (4.2) follows because pS is generically one-to-one on
the curves in question, as we saw in Section 2.1. This will be central in our proof
of the next result. We now apply Lemma 2.10 to “break” the curves on S.

Proposition 4.3. Let S be a smooth projective surface, and let V and RV be as
before. Assume that dim(V ) ≥ 3 and dim(RV) = 2, and let [C] be the algebraic
equivalence class of the members parameterized by V.

Then there is a decomposition into two effective, algebraically moving classes

[C] = [D1]+ [D2 ]

such that, for general ξ, η ∈ RV , there exist effective divisors D ′1 ∼alg D1 and

D ′2 ∼alg D2 with ξ ⊂ D ′1 and η ⊂ D ′2 and [D ′1+D ′2 ]∈ V̄, where V̄ is the closure
of V in the component of the Hilbert scheme of S containing V.

Proof. For general ξ, η ∈RV supported at two distinct points on S, let B = Bξ,η ⊂
V be as in the proof of Lemma 2.10 and let B̄ be any smooth compactification of
B. By abuse of notation, we will consider ξ and η as being points in S [2]. By (the
proof of ) Lemma 2.10 and using the Hilbert–Chow morphism, there is a flat fam-
ily {Xb}b∈B̄ of curves in the surface µ−1∗ (RV) ⊂ S [2] (where µ is the Hilbert–Chow
morphism as usual) parameterized by B̄ and such that, for general b ∈B, Xb is an
irreducible rational curve and

CXb
= (pS)∗(p−1

2 (Xb)) = π(ϕ̃−1(b)), (4.4)

with notation as in Section 2.1(cf. (4.2)). In particular, {CXb
}b∈B is a1-dimensional

nontrivial subfamily of the family {CXv
}v∈V given by V. Moreover, for some

b0 ∈ B̄ \ B we have Xb0 ⊇ Yξ + Yη, where Yξ and Yη are irreducible ratio-
nal curves (possibly coinciding) such that ξ ∈ Yξ and η ∈ Yη. Also note that
Yξ ,Yη �⊂ � ⊂ S [2].

Pulling back to the incidence variety T ⊂ S × S [2], we obtain a flat family
{X ′b := p−1

2 (Xb)}b∈B̄ of curves in T such that

X ′b0
:= p−1

2 (Xb0) ⊇ p−1
2 (Yξ )+ p−1

2 (Yη) =: Y ′ξ + Y ′η. (4.5)

Observe that the family {X ′b}b∈B̄ is a family of curves in the incidence variety
T0 ⊂ S × µ−1∗ (RV), which is a surface contained in T. By (4.4), pS maps this
family to a family of curves covering (an open dense subset of ) S, so we see that
(pS)|T0 is surjective and, in particular, generically finite. Thus, choosing ξ and
η general enough, we can make sure they lie outside of the images by p2 of the
finitely many curves contracted by (pS)|T0 . Hence p−1

2 (Yξ ) and p−1
2 (Yη) are not

contracted by pS.

Therefore, recalling (4.4) and (4.5) and letting b ′ ∈ B be a general point, we
obtain



654 F. Flamini , A. L. Knutsen, & G. Pacienza

C ∼alg (pS)∗X ′b ′ ∼alg (pS)∗X ′b0
⊇ (pS)∗Y ′ξ + (pS)∗Y ′η ⊇ Dξ +Dη,

where Dξ := pS(p
−1
2 Yξ ) and Dη := pS(p

−1
2 Yη).

By construction we have Dξ ⊃ ξ and Dη ⊃ η, viewing ξ and η as length-2 sub-
schemes of S. (Note that Dξ and Dη are not necessarily distinct.) Possibly after
adding additional components to Dξ and Dη, we can assume that

C ∼alg (pS)∗X ′b ′ = Dξ +Dη,

where Dξ and Dη are not necessarily reduced and irreducible. Since this construc-
tion can be repeated for general ξ, η ∈ RV and since the set {x ∈ S | x ∈ Supp(ξ)
for some ξ ∈RV } is dense in S (because the curves parameterized by V cover the
whole surface S), it follows that the obtained curves Dξ and Dη must move in an
algebraic system of dimension at least 1.

By construction, Dξ +Dη lies in the border of the family ϕ : C → V of curves
on S; as such, [Dξ +Dη] lies in the closure of V in the component of the Hilbert
scheme of S containingV. Moreover, because the number of such decompositions
is finite (since S is projective and since the divisors are effective), we can find one
decomposition [C] = [D1]+ [D2 ] holding for general ξ, η ∈RV .

The next two results are immediate consequences.

Theorem 4.6. Let S be a smooth projective surface with pg(S) > 0. Then the
following conditions are equivalent :

(i) S [2] contains an irreducible surface R with rational desingularization such
that R �= µ−1∗ (C1 + C2), µ−1∗ (Sym2(C)) for rational curves C,C1,C2 ⊂ S,
andR �⊂ Exc(µ), whereµ : S [2]→ Sym2(S) is the Hilbert–Chow morphism;

(ii) S contains a flat family of irreducible curves with hyperelliptic normalizations
of geometric genus pg ≥ 3 that is parameterized by a reduced and irreducible
scheme V such that dim(V ) ≥ 3.

Furthermore, if either of these two conditions holds then:

(a) the rational curves in S [2] that correspond to the irreducible curves parame-
terized by V cover only the surface R in S [2]; and

(b) the algebraic equivalence class [C] of the curves parameterized by V has an
effective decomposition [C] = [D1]+ [D2 ] into algebraically moving classes
such that, for general ξ, η ∈ R, there are effective divisors D ′1 ∼alg D1 and
D ′2 ∼alg D2 such that ξ ⊂ D ′1 and η ⊂ D ′2 and such that the point parame-
terizing D ′1+D ′2 lies in the closure V̄ of V in the component of the Hilbert
scheme of S containing V.

Proof. Assume (ii) holds. Then, by Proposition 3.6, RV ⊂ Sym2(S) is a surface
with rational desingularization, so that (i) holds.

Assume now that (i) holds. Then R carries a family of rational curves of dimen-
sion n ≥ 3. By Lemma 2.4 and the assumptions in (i), this yields an n-dimensional
family of curves on S that have rational elliptic or hyperelliptic normalizations.
Hence (ii) follows from Lemma 2.3.
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Finally, assume that (i) and (ii) both hold. Then (a) follows from Proposition 3.6
again, where R is the proper transform via µ of the surface RV therein; (b) then
follows from Proposition 4.3.

Corollary 4.7. Let S be a smooth projective surface with pg(S) > 0, and let V
be a reduced irreducible scheme parameterizing a flat family of irreducible curves
with hyperelliptic normalizations of geometric genus ≥ 2. Denote by [C] the al-
gebraic equivalence class of the members of V.

If [C] has no decomposition into effective, algebraically moving classes, then
dim(V ) ≤ 2.

In particular, Corollary 4.7 holds when, for example, NS(S) = Z[C].
The examples with the double covers of smooth rational surfaces, together with

the result in Proposition 7.2 mentioned previously, show that the results above are
natural.

The statement in Theorem 4.6(b) shows that the length-2 0-dimensional schemes
on the curves in the family corresponding to the elements of the g1

2 on their nor-
malization are, in fact, “generically cut out” by moving divisors in a fixed alge-
braic decomposition of the class of the members in the family. This recalls the
well-known results of Reider [48] and their generalizations [8; 9]. In fact, The-
orem 4.6(b) can be used to prove a Reider-like result involving the arithmetic
and geometric genera of the curves in the family (cf. [34]). Moreover, the pre-
cise statement in Theorem 4.6(b) will be crucial in the next section, where we
will use degeneration methods to prove existence of curves with hyperelliptic
normalizations.

5. Nodal Curves of Geometric Genus 3
with Hyperelliptic Normalizations

on K3 Surfaces

In the rest of the paper we will focus on the existence of curves with “Brill–Noether
special” hyperelliptic normalizations (i.e., of geometric genera > 2), and in this
section we show that Theorem 4.6(b) is particularly suitable for proving existence
results by degeneration arguments.

To do this and to discuss some consequences on S [2], in the sequel we focus on
K3 surfaces, which were actually one of our original motivations for this work.

We start with the following observation, which combines a result of Ran (men-
tioned in the Introduction) with results from the previous section.

Lemma 5.1. Let S be a smooth, projective K3 surface, and let L be a globally
generated line bundle of sectional genus p ≥ 2 on S. Let |L|hyper ⊆ |L| be the
subscheme parameterizing irreducible curves in |L| with hyperelliptic normal-
izations. Then any irreducible component of |L|hyper has dimension ≥ 2, with
equality holding if L has no decomposition into moving classes.
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Proof. Any n-dimensional component of |L|hyper yields an n-dimensional family
of irreducible rational curves in S [2]. By [47, Cor. 5.1], we have n ≥ 2. The last
statement follows from Corollary 4.7.

The main aim of this section is to apply Theorem 4.6(b) to prove the following
statement.

Theorem 5.2. Let (S,H ) be a general, smooth, primitively polarized K3 sur-
face of genusp = pa(H ) ≥ 4. Then the family of nodal curves in |H | of geometric
genus 3 and with hyperelliptic normalizations is nonempty, and each of its irre-
ducible components is 2-dimensional.

In [21] we studied which linear series may appear on normalizations of irreducible
curves on K3 surfaces. To do so, we introduced a singular Brill–Noether number
ρsing(pa , r, d,pg)—whose negativity, when Pic(S) � Z[H ], ensures the nonex-
istence of curves in |H |—with pa = pa(H ) and of geometric genus pg , whose
normalizations admit a gr

d (we will return to this in Section 6.3). Moreover, [21,
Exs. 2.8 and 2.10] give examples of nodal curves with hyperelliptic normalizations
of geometric genus 3 and arithmetic genus 4 or 5. Theorem 5.2 shows that this
is a general phenomenon. The proof will be given in the balance of this section.
We will also determine the dimension of the locus covered in S [2] by the rational
curves associated to curves in a component of the family, as follows.

Corollary 5.3. Let (S,H ) be a general, smooth, primitively polarized K3
surface of genus p = pa(H ) ≥ 6. Then the subscheme of |H | parameterizing
nodal curves of geometric genus 3 with hyperelliptic normalizations contains a
2-dimensional component V such that dim(RV) = 3.

This corollary shows in particular that all three cases in Remark 3.7 occur on a
general K3 surface. In Sections 6.2 and 6.3 we will compute the classes of the
corresponding rational curves in S [2] (see (6.25)) and also discuss some of the con-
sequences of Theorem 5.2 on the Mori cone of S [2].

Before starting on the proof of Theorem 5.2, we recall the following conven-
tion. For any smooth surface S, any line bundle L on S such that |L| contains
smooth irreducible curves of genus p := pa(L), and any positive integer δ ≤ p,
one denotes byV|L|,δ the locally closed and functorially defined subscheme of |L|
parameterizing the universal family of irreducible curves in |L| having δ nodes
as the only singularities and, consequently, having geometric genus pg := p − δ.

These are classically called Severi varieties of irreducible δ-nodal curves on S

in |L|.
It is now well known—as a direct consequence of Mumford’s theorem on the

existence of nodal rational curves on K3 surfaces (see [2] or [39]) and standard
results on Severi varieties—that if (S,H ) is a general, primitively polarized K3
surface of genus p ≥ 3, then the Severi variety V|H |,δ is nonempty and regular ;
in other words, it is smooth and of the expected dimension p − δ for each δ ≤ p

([56, Lemma 2.4, Thm. 2.6]; see also [15; 20]).
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The regularity property follows from the fact that, since by definition V|L|,δ
parameterizes irreducible curves, the nodes of these curves impose independent
conditions on |L| [15; 20; 56, Rem. 2.7]. In terms of equisingular deformation
theory, this implies that suitable obstructions are zero to some locally trivial de-
formations. In other words, it implies that V|L|,δ ′ ⊂ V̄|L|,δ for any δ ′ > δ (see [53,
Anhang F], [60], and [51, Thm. 4.7.18] for P2 and [56, Sec. 3] for K3 surfaces).
Furthermore, if [C] ∈ V|L|,δ+k for k > 0 is a general point of an irreducible com-
ponent, then the fact that the nodes impose independent conditions enables a clear
description of what V̄|L|,δ looks like locally around the point [C]: it is the union of(
δ+k
δ

)
smooth branches through [C], where each branch corresponds to a choice

of δ “marked” (or “assigned”) nodes among the δ+ k nodes of C and where these
branches intersect transversally at [C];moreover, the other k “unassigned” nodes
of C disappear when one deforms [C] in the corresponding branch of V̄|L|,δ (see
[53, Anhang F], [60], and [50, Sec. 1] for P2 and [56, Sec. 3] for K3 surfaces).

The situation is slightly different for reducible nodal curves in |L|. Since they
appear in the proof of Theorem 5.2, we must also take care of this case. Toward
that end, we define the “degenerated” version of V|L|,δ as

W|L|,δ := {C ∈ |L| | C, not necessarily irreducible, has only nodes

as singularities and at least δ nodes}. (5.4)

For the same reasons given before, W|L|,δ is a locally closed subscheme of |L|.
Note that

W|L|,δ =
⋃
δ ′≥δ

V|L|,δ ′ if all the curves in |L| are irreducible, (5.5)

which is a partial compactification of V|L|,δ.
Let [C] ∈ W|L|,δ. Choosing any subset {p1, . . . ,pδ} of δ of its nodes, one ob-

tains a pointed curve (C;p1, . . . ,pδ), where p1, . . . ,pδ are also called the marked
(or assigned ) nodes of C (see [56, Defs. 3.1(ii) and 3.6(i)]).

Recall that there exists an algebraic scheme, which we denote by

B(C;p1,p2, . . . ,pδ) (5.6)

and is locally closed in |L|, representing the functor of infinitesimal deformations
of C in |L| that preserve the marked nodes—that is, the functor of locally trivial
infinitesimal deformations of the pointed curve (C;p1, . . . ,pδ) (cf. [56, Prop. 3.3],
where we have identified the schemes therein with their projections into the lin-
ear system |L|). In other words, B(C;p1,p2, . . . ,pδ) is the local branch of W|L|,δ
around [C]∈W|L|,δ corresponding to the choice of the δ marked nodes.

Theorem 5.7 (cf. [56, Thm. 3.8]). Let (C;p1, . . . ,pδ) be as before. Assume
that the general element of |L| is a smooth irreducible curve and that the partial
normalization of C at the δ marked nodes p1, . . . ,pδ is a connected curve.

Then B(C;p1,p2, . . . ,pδ) is smooth at the point [(C;p1,p2, . . . ,pδ)] of dimen-
sion dim(|L|)− δ.
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Proof. This follows from [56, Thm. 3.8] since, by our assumptions, the pointed
curve (C;p1, . . . ,pδ) is virtually connected in the language of [56, Def. 3.6].

For the proof of Theorem 5.2 we need to recall other fundamental facts. We first
define, for any globally generated line bundle L of sectional genus p := pa(L) ≥
2 on a K3 surface S and for any integer δ such that 0 < δ ≤ p − 2, the locus in
the Severi variety V|L|,δ:

V
hyper
|L|,δ := {C ∈V|L|,δ | its normalization is hyperelliptic}. (5.8)

Observe in particular that, for any p ≥ 3, one always has V hyper
|L|,p−2 = V|L|,p−2 �= ∅

and, by regularity of V|L|,p−2, this is smooth and of dimension 2.
Let Mg be the moduli space of smooth curves of genus g, which is quasi-

projective of dimension 3g − 3 for g ≥ 2. Denote by Mg its Deligne–Mumford
compactification. Then Mg is the moduli space of stable genus-g curves. Let
Hg ⊂ Mg denote the locus of hyperelliptic curves, which is known to be an ir-
reducible variety of dimension 2g − 1 (see e.g., [1]), and let Hg ⊂ Mg be its
compactification.

Moreover, recall from [22, Def. (3.158)] that a nodal curve C (not necessar-
ily irreducible) is stably equivalent to a stable curve C ′ if C ′ is obtained from C

by contracting to a point all smooth rational components of C meeting the other
components in only one or two points.

As before, we define the degenerated version of V hyper
|L|,δ by

W
hyper
|L|,δ := {C ∈W|L|,δ | there exists a desingularization C̃ of δ of the

nodes of C such that C̃ is stably equivalent to

a (stable) curve C ′ with [C ′ ]∈Hpa(L)−δ}. (5.9)

Note that, by definition, any such C̃ is connected. Similarly as in (5.5), we have

W
hyper
|L|,δ =

⋃
δ ′≥δ

V
hyper
|L|,δ if all the curves in |L| are irreducible. (5.10)

Theorem 5.2 will be a direct consequence of the next three results: Proposi-
tion 5.11, Proposition 5.19, and Lemma 5.20. The central degeneration argument
is given as follows.

Proposition 5.11. Let p ≥ 3 and δ ≤ p − 2 be positive integers. Assume there
exists a smooth K3 surface S0 with a globally generated, primitive line bundle H0

on S0 with pa(H0)=p and such that W hyper
|H0|,δ(S0) �= ∅ and dim(W

hyper
|H0|,δ(S0))≤ 2.

Then, on the general, primitively marked K3 surface (S,H ) of genus p, it fol-
lows that W hyper

|H |,δ (S) is nonempty and equidimensional of dimension 2.

Proof. Let Bp be the moduli space of primitively marked K3 surfaces of genus
p. It is well known that Bp is smooth and irreducible of dimension 19 (see e.g.
[2, Thm. VIII 7.3 and p. 366]. We let b0 = [(S0,H0)] ∈ Bp. Similarly as in [5],
consider the scheme of pairs

Wp,δ := {(S,C) | [(S,H )]∈Bp and [C]∈W|H |,δ(S)} (5.12)
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and the natural projection
π : Wp,δ −→ Bp. (5.13)

(That Wp,δ is a scheme—in fact, a locally closed scheme—follows from the proof
of Mumford’s theorem on the existence of nodal rational curves [39, pp. 351–352;
2, pp. 365–367].)

Note that for general [(Sb,Hb)] = b ∈Bp we have

π−1(b) =
⋃
δ ′≥δ

V|Hb |,δ ′(Sb)

by (5.5) (since Pic(Sb) � Z[Hb]), so π−1(b) is nonempty, equidimensional, and
of dimension g := p− δ by the regularity property recalled previously. In partic-
ular, π is dominant. Observe that Wp,δ is singular in codimension 1, so it is not
normal.

For brevity, let W := Wp,δ and let C f−→W be the universal curve. As in The-
orem A.1(i) and (ii) (see the Appendix), there exists a commutative diagram

C ′

f ′
��

�� C
f

��

W(δ)
α �� W ,

where α is a finite unramified morphism defining a marking of all the δ-tuples of
nodes of the fibers of f (cf. Theorem A.1 with V = W and E(δ) = W(δ)). More
precisely: in the notation of Theorem A.1, if for w ∈W the curve C(w) has δ + τ

nodes with τ ∈ Z+, then α−1(w) consists of
(
δ+τ
δ

)
elements because any ηw ∈

α−1(w) parameterizes an unordered marked δ-tuple of the δ + τ nodes of C(w).

Let ηw ∈W(δ). Then ηw is represented by a pointed curve (C;p1,p2, . . . ,pδ),
where (S,C)∈W and where p1,p2, . . . ,pδ are δ marked nodes on C.

Let W(S,H ) (resp. W(δ)(S,H )) be the fiber of π (resp. of α�π) over [(S,H )]∈
Bp, and let

α(S,H ) : W(δ)(S,H ) −→W(S,H )

be the induced morphism. For ηw ∈W(δ)(S,H ) as before, we have

T[ηw](W(δ)(S,H )) ∼= T[(C;p1,p2,...,pδ)](B(C;p1,p2, . . . ,pδ)), (5.14)

where B(C;p1,p2, . . . ,pδ) is as in (5.6). Indeed, because α is finite and unrami-
fied, α(S,H ) is also. Therefore, it suffices to consider the image of the differential
dα(S,H )[ηw]. This image is given by first-order deformations of C in S (equiv-
alently, in |H |) that are locally trivial at the δ marked nodes; these are precisely
given by T[(C;p1,p2,...,pδ)](B(C;p1,p2, . . . ,pδ)) [56, Rem. 3.5].

Let W̃(δ) be the smooth locus of W(δ). From Theorem 5.7 and (5.14), together
with the fact that Bp is smooth, it follows that W̃(δ) contains all the pairs (S,C)

with δ marked nodes on C such that |C| is globally generated (i.e., its general ele-
ment is a smooth irreducible curve), and the partial normalization of C at these
marked nodes is a connected curve. More precisely, by the proof of Mumford’s



660 F. Flamini , A. L. Knutsen, & G. Pacienza

theorem (see [39] or [2]), any irreducible component of W(δ) has dimension ≥
19+ p − δ = 19+ g; furthermore, by (5.14) we have dim(T[ηw](W(δ)(S,H ))) =
g, where ηw represents (S,C) where C has the δ marked nodes. It also follows
that W(δ) is smooth and of dimension 19+ g at these points.

If we restrict C ′ to W̃(δ) then, by parts (iv) and (v) of Theorem A.1, we have a
commutative diagram

C̃
f̃

��

�� C
f

��

W̃(δ)
α̃ �� W ,

where α̃ = α|W̃(δ)
and where f̃ is the flat family of partial normalizations at δ

nodes of the curves parameterized by α(W̃(δ)) (in the notation of Theorem A.1,
f̃ = f̄ in (v) and C̃ = C̄ in (iii) and (iv)).

There is an obvious rational map

W̃(δ)

c��� Mg

defined on the open dense subscheme W̃ 0
(δ) ⊂ W̃(δ) such that, for ηw ∈ W̃ 0

(δ), C̃(ηw)
is stably equivalent to a stable curve of genus g.

Set ψ := c|W̃ 0
(δ)
. By definition, for any ηw ∈ W̃ 0

(δ), the map ψ contracts all

possible smooth rational components of C̃(ηw) meeting the other components in
only one or two points and also maps the resulting stable curve into its equivalence
class in Mg.

Pick any C0 ∈ W
hyper
|H0|,δ(S0) and let w0 = [(S0,C0)] ∈ W be the correspond-

ing point. Now |H0| is globally generated, and the normalization of C0 at some
δ nodes satisfying the conditions in (5.9) is a connected curve. Therefore, letting
ηw0 ∈ α−1(w0) be the point that corresponds to marking these δ nodes, we have
that ηw0 ∈ W̃ 0

(δ) and the map c is defined at ηw0 .

Let Ṽ ⊆ W̃ 0
(δ) be the irreducible component containing ηw0; then, as already

proved, dim(Ṽ ) = 19+ g.

By assumption, ψ(Ṽ ) ∩Hg �= ∅. Hence, for any irreducible component K ⊆
ψ(Ṽ ) ∩Hg ,

dim(K) ≥ dim(ψ(Ṽ ))+ dim(Hg)− dim(Mg) = dim(ψ(Ṽ ))+ 2− g. (5.15)

Pick any K containing ψ(ηw0) and let I ⊆ ψ−1|Ṽ(K) be any irreducible com-
ponent containing ηw0 . Since the general fiber of ψ |Ṽ has dimension

dim(Ṽ )− dim(ψ(Ṽ )) = 19+ g − dim(ψ(Ṽ )),

from (5.15) it follows that

dim(I ) = dim(K)+ 19+ g − dim(ψ(Ṽ ))

≥ dim(ψ(Ṽ ))+ 2− g + 19+ g − dim(ψ(Ṽ )) = 21. (5.16)

Consider now
π � (α̃|I) : I −→ Bp. (5.17)
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By assumption, the fiber over b0 = [(S0,H0)] is at most 2-dimensional, so we
may conclude from (5.16) that π � (α̃|I) is dominant, that all the fibers are pre-
cisely 2-dimensional, and that dim(I ) = 21. This shows that W hyper

|H |,δ �= ∅ for
general [(S,H )] ∈ Bp, and Lemma 5.1 implies that any irreducible component of
W

hyper
|H |,δ (S) has dimension 2.

Remark 5.18. In particular, Lemma 5.1, Proposition 5.11 and [21, Exs. 2.8 and
2.10] prove Theorem 5.2 for p = 4 and 5.

We next construct the desired special primitively marked K3 surface.

Proposition 5.19. Let d ≥ 2 and k ≥ 1 be integers. Then there exists a K3 sur-
face S0 with

Pic(S0) = Z[E ]⊕ Z[F ]⊕ Z[R],

with intersection matrix
 E 2 E.F E.R

F.E F 2 F.R

R.E R.F R2


 =


 0 d k

d 0 k

k k −2


,

and such that the following conditions are satisfied :

(a) |E| and |F | are elliptic pencils;
(b) R is a smooth, irreducible rational curve;
(c) H0 := E + F + R is globally generated—in particular, the general member

of |H0| is a smooth irreducible curve of arithmetic genus p := 2k + d;
(d) the only effective decompositions of H0 are

H0 ∼ E + F + R ∼ (E + F )+ R ∼ (E + R)+ F ∼ (F + R)+ E.

Proof. Since the lattice has signature (1, 2), a result of Nikulin [44] (see also [40,
Cor. 2.9(i)]) shows the existence of a K3 surface S0 with that as Picard lattice.
Performing Picard–Lefschetz reflections on the lattice, we can assume that H0 is
nef by [2, VIII, Prop. 3.9]. Straightforward calculations on the Picard lattice rule
out the existence of effective divisors , satisfying ,2 = −2 and ,.E < 0 or satis-
fying ,.F < 0 or satisfying ,2 = 0 and ,.H0 = 1. Hence (a) and (c) follow from
[49, Prop. 2.6 and (2.7)]. One may similarly compute that if , > 0, ,2 = −2,
and ,.R < 0, then , = R; this proves (b).

Similarly, (d) is proved by direct calculations using the nefness of E, F, and H0

and by recalling that, according to Riemann–Roch and Serre duality, a divisor D
on a K3 surface is effective and irreducible only if D2 ≥ −2 and D.N > 0 for
some nef divisor N.

The following result, together with (5.10) and Proposition 5.11, now concludes the
proof of Theorem 5.2 and Corollary 5.3. Given Remark 5.18, we need only con-
sider p ≥ 6.

Lemma 5.20. Let p ≥ 6 be an integer. There exists a smooth K3 surface S0 with
a globally generated, primitive line bundle H0 on S0 with p = pa(H0) such that :
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(a) W
hyper
|H0|,p−3(S0) �= ∅;

(b) dim(W
hyper
|H0|,p−3(S0)) = 2;

(c) there exists a component of W hyper
|H0|,p−3(S0) whose general member deforms to

a curve [Ct ]∈V hyper
|Ht |,p−3(St ) for general [(St ,Ht)]∈Bp;

(d) for general [(St ,Ht)] ∈ Bp, the 2-dimensional irreducible component Vt ⊆
V

hyper
|Ht |,p−3(St ) given by (c) satisfies dim(RVt ) = 3 (with notation as in Sec-

tion 2.2).

Proof. Set k = 1 if p is even and k = 2 if p is odd, and let d := p − 2k ≥ 2.
Consider the marked K3 surface (S0,H0) in Proposition 5.19.

We will consider two general smooth elliptic curves E0 ∈ |E| and F0 ∈ |F | and
curves of the form

C0 := E0 ∪ F0 ∪ R,

with transversal intersections and a desingularization

C̃0 = Ẽ0 ∪ F̃0 ∪ R̃→ C0 (5.21)

of the δ := p − 3 = d + 2k − 3 nodes marked in Figure 1—that is, all but one
of each of the intersection points E0 ∩ F0, E0 ∩ R, and F0 ∩ R. Then [C0 ] ∈
W

hyper
|H0|,p−3, since C̃0 is stably equivalent to a union of two smooth elliptic curves

intersecting in two points [22, Exer. (3.162)], proving (a). The closure of the fam-
ily we have constructed is clearly isomorphic to |E| × |F | � P1 × P1 and so is
2-dimensional. Denote by W0 ⊂ W

hyper
|H0|,p−3 this 2-dimensional subscheme.

E 0 F 0

R

−−−−−−−−−−−−−−−−>

E 0 F 0

partial
normalization

C 0

C 0

 
k points k points
k=1,2 k=1,2 

d points

R

Figure 1 The curves C0 and C̃0



On Families of Rational Curves in the Hilbert Square of a Surface 663

We will now show that any irreducible component W of W hyper
|H0|,p−3 has dimen-

sion ≤ 2.
A central observation, which will be used together with Theorem 4.6(b), is

that—given our choices of k—we have

E.H0 = F.H0 = d + k = p − k is odd. (5.22)

We start by considering families of reducible curves. These are all classified in
Proposition 5.19(d).

If the general element inW is of the form D ∪R for D ∈ |E+F |, then in order
for a partial desingularization D̃ ∪ Ẽ to be (degenerated) hyperelliptic we must
have deg(D̃∩ R̃) = 2, so we must desingularize 2(k−1) of the intersection points
of D ∩ R. Finally, since pa(D̃ ∪ R̃) = 3, we must have pa(D̃) = 2. Therefore
W ⊆ WD × {R} � WD , where WD ⊂ |D| is a subfamily of irreducible curves of
geometric genus ≤ 2. It follows from Lemma 2.3 that dim(W )≤ dim(WD)≤ 2.

If the general element inW is of the form D ∪E for D ∈ |F +R|, then in order
for a partial desingularization D̃ ∪ R̃ to be (degenerated) hyperelliptic we must
have deg(D̃ ∩ Ẽ) = 2. If the projection W → |E| is dominant then this means
that g1

2(D̃) ⊆ |f ∗E||D̃ , where f : S̃ → S denotes the composition of blow-ups
of S that induces the partial desingularization D̃ ∪ R̃ → D ∪ R. But this would
mean that |f ∗E||D̃ , which is base point free on D̃, is composed with the g1

2(D̃)—a
contradiction because deg(OD̃(f

∗E)) = E.D = E.H0 is odd by (5.22). There-
fore, the projection W → |E| is not dominant, whence dim(W ) ≤ dim(|D|) =
1
2D

2 + 1 = k ≤ 2, as desired. By symmetry, the case where the general element
in W is of the form D ∪ F (for D ∈ |E + R|) is treated in the same way.

Finally, we have to consider the case of a familyW ⊆ |H0| of irreducible curves.
Assume dim(W ) ≥ 3, and let C be a general curve parameterized by W. Then,
by Theorem 4.6(b), there exists an effective decomposition into moving classes
H0 ∼ M +N such that

g1
2(C̃ ) ⊆ |f ∗M||C̃ , |f ∗N ||C̃ ,

where f : S̃ → S denotes the succession of blow-ups of S that induces the nor-
malization C̃ → C. From Proposition 5.19(d) we see that we must have

g1
2(C̃ ) ⊆ |f ∗E||C̃ or g1

2(C̃ ) ⊆ |f ∗F ||C̃ ,

which means that either |f ∗E||C̃ or |f ∗F ||C̃ is composed with the g1
2(C̃ )—again a

contradiction, since both have odd degree by (5.22). We have therefore proved (b).
To prove (c), we will show that any [C0 ]∈W hyper

|H0|,p−3 (in the 2-dimensional irre-
ducible componentW0 considered before) deforms to a curve [Ct ]∈W hyper

|Ht |,p−3(St ),
for general [(St ,Ht)]∈Bp, that has precisely δ = p − 3 nodes (cf. (5.10)).

Toward this end, denote by S → Bp the universal family of K3 surfaces, let
f̃ : C̃ → W̃(δ) and I ⊂ W̃(δ) be as in the proof of Proposition 5.11, and letϕ : C̃I →
I be the restriction of f̃ .

Because the fiber over [(S0,H0)] of I → Bp as in (5.17) contains an open dense
subset of P1× P1, we can find a smooth irreducible curve B ⊂ I satisfying: For
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x ∈ B general, ϕ−1(x) is a (partial) desingularization of δ = p − 3 of the nodes
of a curve in W|Ht |,δ(St ) (cf. (5.4)) for general [(St ,Ht)]∈Bp and ϕ−1(x)∈H3 ⊂
M3;moreover, B contains a point x0 ∈ I such that ϕ−1(x0) is C̃0, as in (5.21), for
C0 general in W0.

Let ϕB : C̃B → B be the induced universal curve. The dualizing sheaf of
ϕ−1
B (x0) = C̃0 is globally generated (since each component intersects the others

in two points) and so, possibly after replacing B with an open neighborhood of x0,
we actually have a morphism γB : C̃B → P(ϕ̃∗(ωC̃/B)) over B that is 2 : 1 on the
general fiber ϕ−1

B (x), that contracts the rational component R̃ of ϕ−1
B (x0), and that

maps each of the two elliptic curves Ẽ0 and F̃0 2 : 1 onto (different) P1s (cf. (5.21)
and Figure 1).

Let ν : C̃ ′B → C̃B be the normalization, and let

C̃ ′B
γ1 �� C̃ ′′B

γ2 �� P(ϕ̃∗(ωC̃B/B
))

be the Stein factorization of γB � ν. In particular, γ2 is finite of degree 2 onto its
image. Moreover, ν�ϕB : C̃ ′B → B is a flat family whose general fiber (ν�ϕB)−1(x)

is a desingularization of ϕ−1
B (x) ∈ C̃B. Let pg be the geometric genus of this gen-

eral fiber.
Let D ⊂ C̃ ′B be the strict transform via γ1 of the closure of the branch divisor of

γ2 on the smooth locus of C̃ ′′B. By Riemann–Hurwitz, for general x ∈ B we have
D.ϕ−1

B (x) = 2pg+2 whereas D.ϕ−1
B (x0) ≥ 8, because the curve γ1(ϕ

−1
B (x0)) con-

tains two smooth elliptic curves and each is mapped 2 : 1 by γ2 onto (different)
P1s. This implies pg = 3. Since for general x ∈ B we have pg ≤ pa(ϕ

−1
B (x)) =

p − δ = 3, we find that ϕ−1
B (x) is smooth. This means that the general curve

in W|Ht |,δ(St ), for (St ,Ht) ∈ Bp general, has precisely δ = p − 3 nodes; this
proves (c).

To prove (d), again we consider the morphism (up to possibly restricting I as
before)

γI : CI −→ P(ϕ∗(ωCI/I))

over I; except for some possible contractions of rational components in special
fibers over I, γI is relatively 2 : 1 onto its image. We have a natural morphism
h : CI → S that induces a natural map

& : im(γI) ��� Sym2(S ),

whose domain has nonempty intersection with every fiber over Bp.

Let R := im(&). Then R ∩ Sym2(St ) = RVt for general [(St ,Ht)] ∈ Bp. One
easily sees that

{Sym2(E ′)}E ′∈|E| ∪ {Sym2(F ′)}F ′∈|F | ⊆ R ∩ Sym2(S0).

Since the two varieties on the left are 3-folds, it follows that dim(&−1(ξ0)) =
0 for general ξ0 ∈ R ∩ Sym2(S0) ⊂ R. Thus, for general ξ ∈ R , we have
dim(&−1(ξ)) = 0 and so dim(R) = dim(CI) = dim(I ) + 1 = 22, whence
dim(RVt ) = 22− dim(Bp) = 3.
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Remark 5.23. For general [(St ,Ht)] ∈ Bp, the curves obtained in the last proof
have δ = p− 3 nonneutral nodes (cf. [21, Sec. 3]). In fact, a desingularization of
less than p − 3 nodes of Ct admits no g1

2, since a desingularization of fewer than
p − 3 nodes of C0 is clearly not stably equivalent to a curve in the hyperelliptic
locus H3 ⊂M3.

6. On the Mori Cone of the Hilbert Square
of a K3 Surface

In this section we first summarize central results on the Hilbert square of a K3 sur-
face and show how to compute the class of a rational curve in S [2]. Then we discuss
the relations between the existence of curves on S and the slope of the Mori cone
of S [2]—that is, the cone of effective classes in N1(S

[2]) = N1(S
[2])R. In particu-

lar, we show how to deduce the different bounds described in Section 1.2. Finally,
we discuss the relation between the existence of a curve on S with given singular
Brill–Noether number and the slope of the Mori cone of S [2].

6.1. Preliminaries on S [2] for a K3 Surface

Recall that for any smooth surface S we have

H 2(S [2], Z) � H 2(S, Z)⊕ Ze, (6.1)

where � := 2e is the class of the divisor parameterizing 0-dimensional sub-
schemes supported on a single point (see [5]). So we may identify a class in
H 2(S, Z) with its image in H 2(S [2], Z). When S is a K3 surface, the cohomol-
ogy group H 2(S [2], Z) is endowed with a quadratic form q, called the Beauville–
Bogomolov form, such that (a) its restriction to H 2(S, Z) is simply the cup product
on S, (b) the two factors H 2(S, Z) and Ze are orthogonal with respect to this form,
and (c) q(e) = −2. The decomposition (6.1) induces an isomorphism

Pic(S [2]) � Pic(S)⊕ Z[e], (6.2)

and each divisor D on S corresponds to the divisor on S [2] (by abuse of notation,
also indicated by D) consisting of length-2 subschemes with some support on D.

Given a primitive class α ∈ H2(S
[2], Z), there exists a unique class wα ∈

H 2(S [2], Q) such that α.v = q(wα , v) for all v ∈H 2(S [2], Z), and we set

q(α) := q(wα). (6.3)

We denote by ρα ∈H 2(S [2], Z) the corresponding primitive (1,1)-class such that
ρα = cwα for some c > 0 (see [24] for details).

If now Pic(S) = Z[H ], then the Néron–Severi group of S [2] has rank 2. We
may take as generators of N1(S

[2])R the class P1
� of a rational curve in the ruling

of the exceptional divisor � ⊂ S [2] and the class of the curve in S [2] defined as

{ξ ∈ S [2] | Supp(ξ) = {p0, y}, y ∈ Y },
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where Y is a curve in |H | and p0 is a fixed point on S. By abuse of notation, we
still denote the class of the curve in S [2] by Y. Note that we always have that

P1
� lies on the boundary of the Mori cone. (6.4)

The curve P1
� is contracted by the Hilbert–Chow morphism S [2] → Sym2(S), so

the pull-back of an ample divisor on Sym2(S) is nef but is zero along P1
�.

Hence, by (6.4), describing the Mori cone NE(S [2]) amounts to computing

slope(NE(S [2])) := inf
{
a
b

∣∣ aY − bP1
� ∈N1(S

[2]) is effective, a, b ∈Q+
}
. (6.5)

We will also call the (possibly infinite) number a/b associated to an irreducible
curve X ∼alg aY − bP1

� (a > 0, b ≥ 0) the slope of the curve X and denote it
by slope(X). Thus, the smaller is slope(X), the nearer is X to the boundary of
NE(S [2]).

By a general result due to Huybrechts [32, Prop. 3.2] and Boucksom [11], a di-
visor D on S [2] is ample if and only if q(D) > 0 and D.R > 0 for any (possibly
singular) rational curve R ⊂ S [2]. As a consequence, if the Mori cone is closed
then the boundary (which remains to be determined) is generated by the class of a
rational curve (the other boundary is generated by P1

�, by (6.4)). This would mean
that slope(NE(S [2])) = sloperat(NE(S [2])), where

sloperat(NE(S [2])) := inf
{
a
b

∣∣ aY − bP1
� ∈N1(S

[2])

is the class of a rational curve, a, b ∈Q+
}
. (6.6)

(A priori, one has only slope(NE(S [2])) ≤ sloperat(NE(S [2])).)

Hassett and Tschinkel proposed in [24] a conjectural description of the Mori
cone of hyperkähler 4-folds that is deformation equivalent to the Hilbert square of
a K3 surface (cf. [24, Conj. 3.1]) as well as of the numerical and geometric prop-
erties of the rational curves that are extremal in the Mori cone (cf. [24, Conj. 3.6]).
We refer the reader to [25], where one implication of [24, Conj. 3.1] is proved.

6.2. The Classes of Rational Curves in S [2]

Assume that Pic(S) = Z[H ] with pa(H ) = pa ≥ 2. Let X ⊂ S [2] be an irre-
ducible rational curve. Let CX ⊂ S be the corresponding curve as in Section 2.1,
and assume that CX ∈ |mH | with m ≥ 1 (in particular, m ≥ 2 if we are in case
(II)). We can write

X ∼alg a1Y + a2P
1
�.

Since X.H = m(2pa − 2), Y.H = 2pa − 2, and P1
�.H = 0 (by the very definition

of H as a divisor in S [2]) and since Y.e = 0 and P1
�.e = −2, we obtain

X ∼alg mY −
(
g0(X)+ 1

2

)
P1
�, (6.7)

where g0(X) := X.e− 1.
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To computeg0(X), consider the diagram (2.1). Since ν∗XOX(�) � (ν∗XOX(e))
⊗2,

the double cover f is defined by ν∗XOX(�). By Riemann–Hurwitz we there-
fore have

g0(X) = pa(C̃X). (6.8)

Note that in (II) and (III) of the correspondence in Section 2.1, X.e = g0(X)+1
is precisely the length of the intersection scheme C̃X,1 ∩ C̃X,2, where C̃X =
C̃X,1 ∪ C̃X,2. In (III), since ν̃ : C̃X → S contracts one of the two components
of C̃X to a point xX ∈ S, we obtain

g0(X) = multxX(CX)− 1 (if CX is of type (III)). (6.9)

One can check that, for all divisors D in S [2], one has X.D = q(wX,D) with

wX := mH −
(
g0(X)+ 1

2

)
e∈H 2(S [2], Q). (6.10)

In particular, 2wX ∈H 2(S [2], Z).

From (6.5) and (6.7) we see that searching for irreducible rational curves in (or
at least “near”) the boundary of the Mori cone of S [2], or with negative square
q(X), amounts to searching for irreducible curves in |mH | with (partial) hyper-
elliptic normalizations of high genus (case (I)), or for irreducible rational curves
in |mH | with high multiplicity at a point (case (III)), or for irreducible rational
curves on S with some correspondence between some coverings of their normal-
izations (case (II)). Also, we should search for curves with as low m as possible.
Now m ≥ 2 in case (II), as remarked before. Moreover, by a result of Chen [14,
Thm.1.1], any rational curve in |H | on a general S is nodal (the same is also conjec-
tured for rational curves in |mH | for m > 1; see [13, Conj. 1.2]), so that g0(X) ≤ 1
if CX is of type (III) in these cases, by (6.9). Hence, we see that the most natural
candidates are irreducible curves in |H | with hyperelliptic normalizations.

By the foregoing results, an irreducible curve C ∈ |mH | with hyperelliptic nor-
malization defines (by the unicity of the g1

2) a unique irreducible rational curve
X = RC ⊂ S [2] with class

RC ∼alg mY −
(
g0(C)+ 1

2

)
P1
�, (6.11)

where g0(C) := g0(RC) is well-defined as

g0(C) := the arithmetic genus of a minimal partial desingularization

of C admitting a g1
2. (6.12)

(For example, if C is nodal then we simply take the desingularization of the non-
neutral nodes of C; cf. [21, Sec. 3]). From (6.5) we then get

slope(NE(S [2])) ≤ 2m

g0(C)+ 1
≤ 2m

pg(C)+ 1
if there exists a C ∈ |mH | with hyperelliptic normalization (6.13)

and, by (6.3) and (6.10),
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q(RC) = 2m2(pa −1)− (g0(C)+ 1)2

2
≤ 2m2(pa −1)− (pg(C)+ 1)2

2
. (6.14)

In particular, the higher is g0(C) (or pg(C))—and thus the more “unexpected” is
the curve on S from a Brill–Noether theory point of view—the lower is the bound
on the slope of NE(S [2]) and the more negative is the square q(RC) in S [2].

6.3. The Invariant ρsing , Seshadri Constants,
Curves with Hyperelliptic Normalizations,

and the Slope of the Mori Cone

In [21] we introduced a singular Brill–Noether invariant,

ρsing(pa , r, d, g) := ρ(g, r, d)+ pa − g, (6.15)

in order to study linear series on the normalization of singular curves. Precisely,
we proved the following result.

Theorem 6.16. Let S be a K3 surface such that Pic(S) � Z[H ] with pa :=
pa(H ) ≥ 2. Let C ∈ |H | and let C̃ → C be a partial normalization of C such
that g := pa(C̃ ). Then, if ρsing(pa , r, d, g) < 0, it follows that C̃ carries no gr

d .

Proof. One easily sees that the proof of [21, Thm. 1] also holds for a partial nor-
malization of C.

For r = 1 and d = 2, we have

ρsing(pa ,1, 2, g) < 0 ⇐⇒ g >
pa + 2

2
. (6.17)

In particular, a consequence of Theorem 6.16 is the following.

Theorem 6.18. Let S be a smooth, projective K3 surface with Pic(S) � Z[H ],
and let pa := pa(H ) ≥ 2. Let Y and P1

� be the generators of N1(S
[2]) with no-

tation as in Section 6.1. Then, for X ⊂ S [2] an effective 1-cycle such that X ∼alg

Y − kP1
�, we have k ≤ pa+4

4 .

Proof. We can assume that X is an irreducible curve. Then, precisely as in the
case of a rational curve, X corresponds either (a) to the data of an irreducible curve
C ∈ |H | on S with a partial normalization C̃ admitting a 2 : 1 morphism onto the
normalization X̃ of X or (b) to the data of an irreducible curve C ∈ |H | on S to-
gether with a point x0 := xX ∈ S. (The case corresponding to (II) in Section 2.1
does not occur because the coefficient of Y is 1, just as in the case of a rational X
explained before.)

In the latter case µ(X) = {x0 + C} ⊂ Sym2(S), where µ : S [2]→ Sym2(S) is
the Hilbert–Chow morphism as usual, and one easily computes k = 1

2 multx0(C)

as in the rational case discussed previously. Since clearly multx0(C) ≤ 2 if pa =
2 and multx0(C) ≤ 3 if pa = 3, we have k ≤ pa+4

4 in these two cases. If pa ≥ 4
then—since dim|H | − 3− (pa − 4) = 1 and since being singular at a given point
imposes at most three independent conditions on |H |—we can find an irreducible
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curve C ′ ∈ |H | that is different from C, is singular at x0, and passes through at
least pa − 4 points of C. Therefore,

2pa − 2 = H 2 = C ′.C ≥ multx0(C
′) ·multx0(C)+ pa − 4

≥ 2 multx0(C)+ pa − 4,

whence multx0(C) ≤ (pa + 2)/2 and so k ≤ (pa + 2)/4.
So in the first case, precisely as in the rational case before,

k = pa(C̃ )+ 1

2
− pg(X) (6.19)

from Riemann–Hurwitz. By Brill–Noether theory on X̃, it follows that C̃ carries
a g1

d with

d ≤ 2

⌊
pg(X)+ 3

2

⌋
.

By Theorem 6.16 we have ρsing(pa(C),1, d,pa(C̃ )) ≥ 0, and therefore pa(C̃ ) ≤
d − 1+ pa(C)/2. The desired result now follows.

By the proof of Theorem 6.18 we see that, if C ∈ |mH | is an irreducible curve and
if x0 ∈ C, then the class of the corresponding curve µ−1∗ {x0 + C} ⊂ S [2] is given
by mY − 1

2 multx0(C)P1
�. Hence

slope(NE(S [2])) ≤ inf
m∈N

(
inf

C∈|mH |

(
inf
x∈C

2m

multx(C)

))

= inf
m∈N

2

H 2

(
inf

C∈|mH |

(
inf
x∈C

C.H

multx(C)

))
.

It follows that

slope(NE(S [2])) ≤ ε(H )

pa − 1
, (6.20)

where

ε(H ) := inf
x∈S

(
inf
C#x

C.H

multx(C)

)
(and the infimum is taken over all irreducible curves C ⊂ S passing through x) is
the (global ) Seshadri constant of H (cf. [4; 17, Sec. 6; 18]). These constants are
very difficult to compute; for instance, the only cases where they have been com-
puted on general, primitively polarized K3 surfaces are when H 2 = α2, where
ε(H ) = α (cf. [3; 33]). However, it is well known that ε(H ) ≤ √H 2 on any
surface (see e.g. [55, Rem. 1]). Hence, by (6.20) we obtain our next theorem.

Theorem 6.21. Let (S,H ) be a primitively polarized K3 surface of genus pa :=
pa(H ) ≥ 2 such that Pic(S) � Z[H ]. Then (cf. (6.5))

slope(NE(S [2])) ≤ ε(H )

pa − 1
≤

√
2

pa − 1
. (6.22)

In particular, (6.22) shows that there is no lower bound on the slope of the Mori
cone ofS [2] ofK3 surfaces as the degree of the polarization tends to infinity; that is,
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inf{slope(NE(S [2])) | S is a projective K3 surface} = 0. (6.23)

The same fact about sloperat(NE(S [2])) will follow from (7.4) and (7.9) to follow.
Note that by [33] one always has ε(H ) ≥ ⌊√

H 2
⌋ − 2

/⌊√
H 2

⌋ + 1 under the
hypotheses of Theorem 6.21. It follows that

ε(H )

pa − 1
≥

⌊√
2pa − 2

⌋− 2/3

pa − 1
for (S,H ) as in Theorem 6.21, (6.24)

showing that there is a natural limit to how good a bound one can obtain on the
slope(NE(S [2])) by using Seshadri constants.

The bound in (6.22) is not (necessarily) obtained by rational curves in S [2].

However, the presence of pg(X) in (6.19) suggests that better bounds will be ob-
tained by rational curves in S [2]. (Of course, if the Mori cone is closed then the
bound will indeed be obtained by rational curves, as explained at the end of Sec-
tion 6.1.) In fact, in Propositions 7.2 and 7.7 the bound (6.22) will be improved,
for infinitely many values of H 2, by rational curves.

We now return to the study of irreducible rational curves in S [2] and to the
sloperat(NE(S [2])).

Given Theorem 6.16 and (6.17), a natural question to ask is whether there exist
singular curves in |H |with hyperelliptic normalizations of geometric genus pg for
3 ≤ pg ≤ pa+2

2 . It is natural to try to construct such curves with at most nodes
as singularities, since then one has better control of their deformations and their
parameter spaces (the Severi varieties considered in Section 5). After the positive
answer given to the above existence problem (with nodal curves) for the specific
values pg = 3 and pa = 4, 5 in [21, Exs. 2.8 and 2.10], Theorem 5.2 gives the
first examples to our knowledge of positive answers for primitively polarized K3
surfaces of any degree.

In Remark 5.23 we showed that pg(C) = g0(C) = 3 for these constructed
curves C ∈ |H | (cf. (6.12)), so that the classes of the associated rational curves
RC ⊂ S [2] are, using (6.10),

wRC
= H − 2e, (6.25)

with
q(wRC

) = q(RC) = 2p − 10 ≥ −2.

Moreover, given (6.13), Theorem 5.2 yields the following (cf. (6.6)).

Corollary 6.26. Let (S,H ) be a general, primitively polarized K3 surface of
genus pa(H ) ≥ 4. Then

sloperat(NE(S [2])) ≤ 1

2
. (6.27)

Note that the existence of nodal curves of geometric genus 2 in |H |—which was
already known and, as explained at the beginning of Section 5, follows from the
nonemptiness of the Severi varieties on general K3 surfaces—leads to the less
good bound of 2

3 . Hence (6.27) is, again as far as we know, the first “nontrivial”
bound on the slope of rational curves holding for all degrees of the polarization.
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As already mentioned, for infinitely many degrees of the polarization we will ac-
tually improve this bound in Propositions 7.2 and 7.7.

Remark 6.28. We do not know whether there will always be components in
|H |hyper (whenever nonempty) of singular curves with hyperelliptic normaliza-
tions such that the singularities of the general member are as nice as possible—
that is, all nodes and all nonneutral [21, Sec. 3].

7. PPP2 s and 3-Folds Birational to PPP1-Bundles
in the Hilbert Squares of K3 Surfaces

In this section we give examples of general, primitively polarized K3 surfaces
(S,H ), of infinitely many degrees, such that S [2] contains either a P2 or a 3-fold
birational to a P1-bundle, thus showing both possibilities described in Proposi-
tion 3.6.

The examples are similar to Voisin’s constructions in [58, Sec. 3]. The idea is to
start with a smooth quartic surface S0 such that S [2]

0 contains an “obvious” P2 or a
3-fold birational to a P1-bundle over S0; use the involution on the quartic to pro-
duce another such P2 or uniruled 3-fold; and then deform S0, keeping the latter
one but losing the former in the Hilbert square.

We remark that the question of existence of P2s in S [2] when S is K3 is an inter-
esting problem because of the following fact. A P2 in S [2] gives rise to a birational
map from S [2] onto another hyperkähler 4-fold; conversely, any birational trans-
formation X ��� X ′ between projective symplectic 4-folds can be factorized into
a finite sequence of Mukai flops [41, Thm. 0.7] by [62, Thm. 2] (see also [12;
30; 63]). Therefore, in the case of a K3 surface, if S [2] contains no P2s then S [2]

admits no other birational model than itself. Also, uniruled divisors govern the
birational Kähler cone of a hyperkähler manifold X [32].

7.1. P2s in S [2]

The first nontrivial case, the case of degree 10, is particularly easy.

Example 7.1 (Hassett). Let S ⊂ P6 be a general K3 surface of degree 10. By
[42] the surface S is a complete intersection S = G ∩ T ∩ Q, where G :=
Grass(2, 5) is the Grassmannian of lines in P 4 embedded in P9 by its Plücker
embedding, T is a general 6-dimensional linear subspace of P9, and Q is a hyper-
quadric in P9. Set Y := G ∩ T. Then Y is a Fano 3-fold of index 2. Let F(Y ) be
its variety of lines. It is classically known (see e.g. [19] for a modern proof ) that
F(Y ) ∼= P2. Then we may embed this plane in S [2] by mapping the point corre-
sponding to a line [D] to D∩Q. By generality, S does not contain any line, so that
this map is a morphism.

The construction behind the following result, which generalizes the previous ex-
ample, was shown to us by B. Hassett.

Proposition 7.2. Let (S,H ) be a general, primitively polarized K3 surface of
degree H 2 = 2(n2 − 9n+ 19) for n ≥ 6. Then S [2] contains a P2.
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The class wD ∈H 2(S [2], Q) corresponding to a line D ⊂ P2 is

wD = H − 2n− 9

2
e; (7.3)

in particular,

sloperat(NE(S [2])) ≤ 2

2n− 9
. (7.4)

Moreover, the curves C ⊂ S with hyperelliptic normalizations associated to the
lines D ⊂ P2 ⊂ S [2] lie in |H | and have geometric genus pg = 2n − 10, and
ρsing(pa(C), 1, 2,pg) = n(n− 13)+ 42 ≥ 0.

Proof. Consider the lattice ZF ⊕ ZG with intersection matrix[
F 2 F.G

G.F G2

]
=

[
2 n

n 4

]
, n ≥ 6.

Because its signature is (1,1), it follows from a result of Nikulin [44] (see also [40,
Cor. 2.9(i)]) that there is an algebraic K3 surface S0 with the given Picard lat-
tice. Performing Picard–Lefschetz reflections on the lattice, we can assume that
G is nef by [2, VIII, Prop. 3.9]. By Riemann–Roch and Serre duality, we have
G > 0 and F > 0. Straightforward computations on the Picard lattice rule out the
existence of divisors , satisfying ,2 = −2 and ,.F ≤ 0 or ,.G ≤ 1 or satisfy-
ing ,2 = 0 and ,.F = 1 or ,.G = 1, 2. By [49] it follows that both |F | and |G|
are base point free, that ϕ|F | : S0 → P2 is a double cover, and that ϕ|G| : S0 →
P3 is an embedding onto a smooth quartic not containing lines. As explained in
Section 4, S [2]

0 contains a P2 arising from the double cover.
If D0 is a line on the P2 then the corresponding class in H 2(S

[2]
0 , Q) is wD0 =

2F − 3e, which coincides with the corresponding integral class ρD0 (cf. [24,
Ex. 5.1]).

Since S0 is a quartic surface not containg lines, S [2]
0 admits an involution

ι : S [2]
0 → S

[2]
0 ; ξ %→ (Dξ ∩ S0) \ ξ,

by [6, Prop. 11], where Dξ is the line determined by ξ and where the “\” means that
we take the residual subscheme. The corresponding involution on cohomology is
given by

v %→ q(G− e, v) · (G− e)− v

(cf. e.g. [45, (4.1.6)–(4.1.7)]). The involution sends the P2 into another P2, and
the corresponding class associated to a line on it is

q(G− e, 2F − 3e) · (G− e)− (2F − 3e) = 2((n− 3)G−F )− (2n− 9)e. (7.5)

In order to obtain a general K3 with the desired property, we now deform S
[2]
0 .

More precisely, we consider a general deformation of S [2]
0 such that (i) e remains

algebraic and (ii) ι(P2) is preserved. Deformations satisfying (i) form a count-
able union of hyperplanes in the deformation space of S [2]

0 , which is smooth and
of dimension 21, and may be characterized as those of the form S [2], where S is a
K3 surface (see [5, Thm. 6 and Rem. 2]). Deformations preserving ι(P2) can be
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characterized as those preserving the image in H 2(S [2], Z) of the class of the line
in ι(P2) as an algebraic class (see [24, Thm. 4.1 and Cor. 4.2] or [58])—that is,
using (7.5), those deformations keeping H := (n−3)G−F ∈ Pic(S [2]

0 ) or, equiv-
alently, H ∈ Pic(S) by (6.2). Since H 2 = [(n− 3)G−F ]2 = 2(n2− 9n+19) ≥
2 for n ≥ 6 and since H is primitive, it follows from [35, Thm. 14] that those de-
formations form a divisor in the 20-dimensional space of deformations keeping e
algebraic.

We therefore obtain a 19-dimensional space of deformations of S [2]
0 whose gen-

eral member is S [2], where (S,H ) is a general, primitively polarized (algebraic)
K3 surface of degree H 2 = 2(n2 − 9n+ 19) for n ≥ 6 and where S [2] contains a
plane.

The class wD ∈ H 2(S [2], Q) corresponding to the line D is as in (7.3), yield-
ing (7.4).

Because S is general, it does not contain smooth rational curves and so the P2

is not of the form C[2] for a smooth rational curve C on S. By Lemma 2.4, the
lines in the P2 in S [2] give rise to a 2-dimensional family V of curves on S with
hyperelliptic normalizations so that RV = µ(P2), where µ : S [2] → Sym2(S) is
the Hilbert–Chow morphism. By (7.3) we have D.H = H 2; hence, by the very
definition of the divisor H in H 2(S [2], Z), the lines in the P2 correspond to curves
C ∈ |H |. Comparing (6.10) and (7.3), we see that g0(C) = 2n − 10 (cf. (6.12)).
Now we note that the general line in the P2 is not tangent to � = 2e. (Indeed,
this follows by deformation: in S

[2]
0 we have that ι(P2) ∩ � is a smooth plane

sextic because there is a composite map S0 → P2 → ι(P2) that is finite of de-
gree 2 and hence ramified along a smooth sextic, since S0 is a smooth K3.) We
thus have pg(C) = 2n− 10, and we compute ρsing = n(n− 13)+ 42 ≥ 0 (recall
that n ≥ 6).

The examples provided by Proposition 7.2 are interesting in several respects. Ob-
serve first that q(D) = −5/2 (cf. (6.3)), in accordance with the prediction in [24,
Conj. 3.6].

The proposition shows in particular that the correspondence in Remark 3.7 is
not one-to-one, and it also shows that the case dim(V ) = dim(RV) = 2 of Prop-
osition 3.6 actually occurs.

Furthermore, the result gives nontrivial examples of curves in |H | with hyper-
elliptic normalizations, and it answers the hyperelliptic existence problem in the
affirmative forpa = n2−9n+20 andpg = 2n−10, n ≥ 6. Moreover, (7.4) shows
that there is no lower bound on sloperat(NE(S [2])) because the degree of the polar-
ization tends to infinity. The same conclusion follows from (7.9) in Proposition 7.7.
In fact, both the bounds (7.4) and (7.9) yield better bounds on slope(NE(S [2])) than
does (6.22).

Finally, the conics on the P2 give a 5-dimensional family V(2) of irreducible
curves with hyperelliptic normalizations on S. Of course, this family has obvious
nonintegral members that correspond to nonintegral conics. More generally: for
any m ≥ 3, the (3m−1)-dimensional family of nodal rational curves in |OP2(m)|
(cf. [15, Thm. 1.1]) yields corresponding families V(m) of curves in |mH | with
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hyperelliptic normalizations where dimV(m) = 3m − 1 ≥ 5 and dim(RV) = 2,
showing in particular that the case dim(V ) > dim(RV) = 2 of Proposition 3.6
actually occurs.

In the case of the conics, we compute pg = 4n−19 as before; since pa(2H ) =
4n2 − 36n+ 77, we get ρsing = 4n(n−11)+117 ≥ −3 in these cases. This does
not contradict [21, Thm. 1].

7.2. 3-folds Birational to P1-Bundles in S [2]

We start with an explicit example in the special case of a quartic surface.

Example 7.6. In the case of a general quartic S in P3, we can find a P1-bundle
over S in S [2] that arises from the 2-dimensional family of hyperplane sections of
geometric genus 2. In fact, taking the tangent plane through the general point of
S, we obtain a nodal curve of geometric genus 2. We derive in this way a familyV
of nodal curves with hyperelliptic normalizations in the hyperplane linear system.
This family is parameterized by an open subset of S, and the locus in S [2] covered
by the associated rational curves is birational to a P1-bundle over this open subset.
To see this, set Cp := (S ∩ TpS) and let C̃p be the normalization of Cp. Note that
the g1

2 on C̃p, as viewed on Cp, is given by the pencil of lines in TpS through the
node p. If, for two distinct points p, q ∈ S, the g1

2 on C̃p and C̃q had two common
points, say x and y (so that the map &V in (2.5) sends (p, x + y) and (q, x + y)

to the same point x + y in Sym2(S)), then the line TpS ∩ TqS, which is bitangent
to S, would also pass through x and y. This is absurd, since deg(S) = 4.

By (6.10), the class w ∈H 2(S [2], Q) corresponding to the curves of geometric
genus 2 is w = H − 3

2 e, whence q(w) = −1/2 as predicted by [24, Conj. 3.6].
Moreover, performing the usual involution on the quartic, we send the constructed
uniruled 3-fold to another one, with corresponding fiber class given by e, so that
it simply is the P1-bundle � over S. This shows that also our original 3-fold was
smooth and thus a P1-bundle over S.

We now give a series of examples of general K3 surfaces whose Hilbert squares
contain 3-folds birational to P1-bundles.

Proposition 7.7. Let (S,H ) be a general, primitively polarized K3 surface of
degree H 2 = 2(d 2 − 1) for d ≥ 2. Then S [2] contains a 3-fold birational to a
P1-bundle over a K3 surface.

The class wf ∈H 2(S [2], Q) corresponding to a fiber is

wf = H − de∈H 2(S [2], Z); (7.8)

in particular,

sloperat(NE(S [2])) ≤ 1

d
. (7.9)

Moreover, the curves C ⊂ S with hyperelliptic normalizations associated to the
fibers of the 3-fold lie in |H | and have geometric genus pg = 2d −1, and we have
ρsing(pa(C), 1, 2,pg) = d(d − 4)+ 4 ≥ 0.
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Proof. This time we start with the lattice ZF ⊕ ZG with intersection matrix[
F 2 F.G

G.F G2

]
=

[−2 d

d 4

]
, d ≥ 2.

As in the proof of Proposition 7.2, one easily shows that there is an algebraic K3
surface S0 with Pic(S0) = ZF ⊕ ZG, that ϕ|G| : S0 → P3 is an embedding onto
a smooth quartic not containing lines, and that F is a smooth, irreducible rational
curve.

We now consider the divisor F ⊂ S
[2]
0 , defined as the length-2 schemes with

some support along F. One easily sees that this is a 3-fold birational to a P1-bundle
over S0 and that the class in H 2(S

[2]
0 , Z) corresponding to the fibers f is ρf = F

(cf. [24, Ex. 4.6]).
The involution on the quartic sends this 3-fold to another 3-fold birational to a

P1-bundle over S0, and the corresponding class of the fibers is dG−F − de. This
latter 3-fold satisfies the conditions in [24, Thm. 4.1] by [24, Ex. 4.6], so that—as
in the previous proposition—we can deform S

[2]
0 , keeping e algebraic and H :=

dG− F. The rest now follows as in the proof of Proposition 7.2.

The square of the class of the fibers of the uniruled 3-folds constructed here is
q(f ) = −2, as predicted in [24, Conj. 3.6].

The obtained family V of curves on S with hyperelliptic normalizations has
dim(V ) = 2 and dim(RV) = 3, showing that also this case of Proposition 3.6 ac-
tually occurs. This family gives nontrivial examples of curves in |H | with hyper-
elliptic normalizations and gives a positive answer to the hyperelliptic existence
problem for pa = 2(d 2 − 1) and pg = 2d − 1 for every d ≥ 2. Note that the case
d = 2 is the one described in [21, Ex. 2.8].
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Appendix: Partial Desingularizations
of Families of Nodal Curves

Edoardo Sernes i

In this appendix we show how to construct simultaneous partial desingularizations
of families of nodal curves, generalizing the well-known procedure of simultane-
ous total desingularization described in [4].

We work over an algebraically closed field k of characteristic 0. For every mor-
phism X → Y and every y ∈ Y, we denote by X(y) the scheme-theoretic fiber
of y.

Theorem A.1. Let
f : C −→ V

be a flat projective family of curves, with C and V algebraic schemes, such that
all fibers have at most ordinary double points (nodes) as singularities. Let δ ≥ 1
be an integer. Then there is a commutative diagram,

Dδ ↪ ��

q
���

��
��

��
�

C ′

f ′
��

�� C
f

��

E(δ)
α �� V ,

with the following properties.

(i) α is finite and unramified, the square is Cartesian, and q is an étale cover of
degree δ.

(ii) The left triangle defines a marking of all δ-tuples of nodes of fibers of f. In
particular, f ′ parameterizes all curves of the family f having at least δ nodes
and, for each η ∈E(δ), Dδ(η) ⊂ C ′(η) is a set of δ nodes of the curve C ′(η).

(iii) The diagram is universal with respect to properties (i) and (ii). Precisely, if

D̃ ↪ ��

q̃
����

��
��

��
��

Ẽ ×V C
f̃

��

�� C
f

��

Ẽ
�� V

is a diagram with properties analogous to those of (i) and (ii), then there is
a unique factorization

The author is a member of MIUR-GNSAGA at INdAM “F. Severi”.
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Ẽ
ϕ−−→ E(δ)

α−−→ V

such that q̃ and f̃ are obtained by pulling back q and f ′ by ϕ.

If, moreover, E(δ) is normal, then the preceding diagram can be enlarged as
follows:

C̄
β

��

Dδ ↪ ��

q
���

��
��

��
�

C ′

f ′
��

�� C
f

��

E(δ)
α �� V ,

where:

(iv) β is a birational morphism such that, for each η ∈E(δ), the restriction

β(η) : C̄(η) −→ C ′(η)
is the partial normalization at the nodes Dδ(η); and

(v) the composition f̄ := f ′ � β is flat.

Proof. Consider the first relative cotangent sheaf T 1
C/V . Since all fibers of f are

nodal, it follows that T 1
C/V commutes with base change ([3, Lemma 4.7.5] or [5])

and thus on every fiber C(v), v ∈V, it restricts to T 1
C(v), which is the structure sheaf

of the scheme of nodes of C(v). We therefore have

T 1
C/V = OE

for a closed subscheme E ⊂ C supported on the nodes of the fibers of f. Consider
the composition

fE : E ⊂ C f−−→ V.

By construction, it follows that fE is finite and unramified. Now fix δ ≥ 1 and
consider the fiber product

E ×V · · · ×V E︸ ︷︷ ︸
δ

.

Because fE is finite and unramified, it follows from [2, Exp.1, Prop. 3.1] and by in-
duction on δ (see [3, Lemma 4.7.11(i)]) that we have a disjoint union decomposition

E ×V · · · ×V E = �
∐

Eδ ,

where � is the union of all the diagonals and Eδ consists of all the ordered δ-tuples
of distinct points of E mapping to the same point of V. Moreover, the natural pro-
jection morphism

Eδ −→ V

is finite and unramified.
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There is a natural action of the symmetric group /δ on Eδ that commutes with
the projection toV. We denote the quotient Eδ//δ by E(δ). Since the composition

Eδ −→ E(δ) −→ V

is finite and unramified and since the first morphism is an étale cover, the mor-
phism α : E(δ)→ V is finite and unramified. Note that if, for a closed point v ∈V,
C(v) has δ + t nodes as the only singularities with t > 0, then α−1(v) has degree(
δ+t
t

)
. Now let

Dδ = {(η, e) : e ∈ Supp(η)} ⊂ E(δ) ×V E.

Then the first projection defines the tautological family

Dδ

q

��

⊂ E(δ) ×V E ⊂ E(δ) ×V C

E(δ) ,

(A.2)

which is an étale cover of degree δ. The fiber Dδ(η) is the δ-tuple parameterized
by η for each η ∈E(δ). (If δ = 1, then E(1) = E and D1 ⊂ E×V E is the diagonal.)
We therefore have the following diagram:

Dδ ↪ ��

q
���

��
��

��
�

C ′

f ′
��

�� C
f

��

E(δ)
α �� V ,

where C ′ = E(δ) ×V C. The fibers of f ′ are all the curves of the family f having
at least δ nodes. For each η ∈ E(δ) the divisor Dδ(η) ⊂ C ′(η) marks the set of δ
nodes parameterized by η. This proves parts (i) and (ii).

Part (iii) follows because (a) α : E(δ)→ V is the relative Hilbert scheme of de-
gree δ of fE : E→ V and (b) the family (A2) is the universal family.

Assume that E(δ) is normal. Then we can normalize C ′ locally around Dδ as in
[4, Thm. 1.3.2] to obtain a birational morphism β that has the required properties
(iv) and (v).

A typical example of the situation considered in the theorem is whenV parameter-
izes a complete linear system of curves on an algebraic surface. If the morphism
fE is self-transverse of codimension 1 (see [3, Def. 4.7.13]), then the Severi va-
riety of irreducible δ-nodal curves is nonsingular and of codimension δ and also
E(δ) is nonsingular (see [3, Lemma 4.7.14]); hence the theorem applies and the si-
multaneous partial desingularization exists. This happens, for example, with the
linear systems of plane curves [3, Prop. 4.7.17].
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