
Michigan Math. J. 58 (2009)

An Explicit ∂̄-Integration Formula for
Weighted Homogeneous Varieties

J. Ruppenthal & E. S. Zeron

1. Introduction

As is well known, solving the ∂̄-equation forms a main part of complex analy-
sis; but it also has deep consequences for algebraic geometry, partial differential
equations, and other areas. In general, it is not easy to solve the ∂̄-equation. The
existence of solutions depends mainly on the geometry of the variety on which the
equation is considered. There is a vast literature about this subject on smooth man-
ifolds, both in books and papers (see e.g. [10; 11; 12]), but the theory on singular
varieties has been developed only recently.

Let� be a singular subvariety of the space C
n, and let λ be a bounded ∂̄-closed

differential form on the regular part of �. Fornæss, Gavosto, and Ruppenthal have
proposed a general technique for solving the ∂̄-equation λ = ∂̄g on the regular part
of �, a technique they have successfully applied to varieties of the form {zm =
w
k1
1 · · ·wknn } ⊂ C

n+1; see [6; 9; 14]. They exploit the fact that such a variety can
be considered as an m-sheeted analytic covering of the complex space C

n. The
∂̄-equation is then projected into C

n by the use of symmetric combinations, and it
is solved there with certain weights. The form g is constructed from the pull-back
of a finite set of previous solutions. There is a certain chance for this strategy to
work in general varieties, because any locally irreducible complex space can be
locally represented as a finitely sheeted analytic covering over a complex num-
ber space.

On the other hand, Acosta, Solís, and Zeron have developed an alternative tech-
nique for solving the ∂̄-equation (if λ is bounded) on any kind of singular quotient
variety embedded in C

m and generated by a finite group of unitary matrices, such
as hypersurfaces in C

3 with only a rational double point singularity; see [1; 2; 18].
They use the quotient structure in order to pull back the ∂̄-equation into a complex
space C

n and to solve the original equation by using symmetric combinations.
This strategy has the drawback that not all varieties are quotient ones.

In both of these approaches, the main strategy is to transfer the problem into some
nonsingular complex space, to solve the ∂̄-equation in this well-known situation,
and then to carry over the solution into the singular variety�. The main objective
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of this paper is to present and analyze an explicit formula for calculating solu-
tions g to the ∂̄-equation λ = ∂̄g on the regular part of the original variety �,
where� is a weighted homogeneous variety and λ is a ∂̄-closed (0,1)-differential
form with compact support. We analyze the weighted homogeneous varieties be-
cause they are a main model for classifying the singular subvarieties of C

n. A
detailed analysis of the weighted homogeneous varieties may be found in [4] (see
Sec. 4 of Chap. 2 and Apx. B).

Definition 1. Let β ∈ Z
n be a fixed integer vector with strictly positive entries

βk ≥ 1. A polynomial Q(z) holomorphic on C
n is said to be weighted homoge-

neous of degree d ≥ 1 with respect to β if the following equality holds for all s ∈ C

and z∈ C
n:

Q(sβ ∗ z) = s dQ(z) (1)

with the action

s β ∗ (z1, z2, . . . , zn) := (s β1z1, s β2z2, . . . , s βnzn). (2)

An algebraic subvariety � in C
n is said to be weighted homogeneous with re-

spect to β if � is the zero locus of a finite number of weighted homogeneous
polynomialsQk(z) of (possibly different) degrees dk ≥ 1 but all of them with re-
spect to the same fixed vector β.

Let � ⊂ C
n be any subvariety. We use the following notation throughout this

paper. The regular part �∗ = �reg is the complex manifold consisting of the reg-
ular points of �, and it is always endowed with the induced metric such that�∗ is
a Hermitian submanifold in C

n with corresponding volume element dV� and in-
duced norm |·|� on the Grassmannian�T ∗�∗. Thus, any Borel-measurable (0,1)-
form λ on�∗ admits a representation λ = ∑

k fk dzk , where the coefficients fk are
Borel-measurable functions on �∗ that satisfy the inequality |fk(w)| ≤ |λ(w)|�
for all points w ∈�∗ and indexes 1 ≤ k ≤ n. Notice that such a representation is
by no means unique (see [14, Lemma 2.2.1] for a more detailed treatment of this
point). We also introduce the L2-norm of a measurable (p, q)-form ℵ on an open
set U ⊂ �∗ via the formula

‖ℵ‖L2
p,q(U)

:=
(∫

U

|ℵ|2� dV�
)1/2

.

We can now present the main result of this paper. We will assume that the
∂̄-differentials are calculated in the sense of distributions, for we work with Borel-
measurable functions.

Theorem 2 (Main). Let � be a weighted homogeneous subvariety of C
n with

respect to a given vector β ∈ Z
n, where n ≥ 2 and all entries βk ≥ 1. Consider

a (0,1)-form λ given by
∑

k fk dzk , where the coefficients fk are all Borel-
measurable functions in � and where z1, . . . , zn are the Cartesian coordinates
of C

n. Let ρ ∈ C be fixed. The following function is well-defined for almost all
z∈� if the form λ is essentially bounded and has compact support in �:
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gρ(z) :=
n∑
k=1

βk

2πi

∫
w∈C

fk(w
β ∗ z) (w

βkzk) dw ∧ dw̄
w̄(w − ρ) . (3)

If �∗ is the regular part of � and if λ is ∂̄-closed on �∗ \ {0}, then the function
g0 is holomorphic on �∗ \ {0} and the function g1 is a solution of the ∂̄-equation
λ = ∂̄g1 on �∗ \ {0}.
Note that the origin of C

n is in general a singular point of � (according to Defi-
nition 1) so that �∗ \ {0} coincides with �∗. Theorem 2 is proved in Section 2 of
this paper. The main idea of the proof is to show that λ = ∂̄g1 when λ is ∂̄-closed.
This is a local statement, so we cover � by charts that we call generalized cones.
When we blow up these cones to complex manifolds, we realize that the integral
formula (3) looks essentially like the inhomogeneous Cauchy–Pompeiu integral
formula in one complex variable (see (15)), so we can deduce the statement of
Theorem 2 from some classical results.

The functions gρ defined in (3) have many interesting properties. For example,
it easily follows that

g1(z)− g0(z) =
n∑
k=1

βk

2πi

∫
w∈C

fk(w
β ∗ z) (w

βkzk) dw ∧ dw̄
|w|2(w − 1)

. (4)

The differential ∂̄[g1 − g0 ] = λ on �∗ \ {0} when λ is ∂̄-closed; moreover, the
value [g1 − g0 ](0) vanishes. The change of variables w = su in (3) yields some
useful identities: for every point z∈� and number s �= 0 in C,

gs(z) = g1(s
β ∗ z) and g0(z) = g0(s

β ∗ z). (5)

On the other hand, recalling some main principles of the proof, we also deduce
anisotropic Hölder estimates for the ∂̄-equation in the case where � is a homoge-
neous variety having only one singularity at the origin. The main idea is to use
the regularity properties of the Cauchy–Pompeiu formula. We obviously need to
specify the metric on�: given a pair of points z andw in�, we define dist�(z,w)
to be the infimum of the length of piecewise smooth curves connecting z and w
inside �. It is clear that such curves exist in this situation and that the length of
each curve can be measured in the regular part �∗ or in the ambient space C

n;
but both measures coincide, for �∗ carries the induced norm. The main result of
Section 3 is the following estimate.

Theorem 3 (Hölder). In the situation of Theorem 2, suppose that � is homo-
geneous (a cone) and has only one singularity at the origin of C

n, so that each
entry βk = 1 in Definition 1. Moreover, assume that the support of the form λ is
contained in a ball BR of radius R > 0 and center at the origin. Then, for each
parameter 0 < θ < 1, there exists a constant C�(R, θ) > 0 that does not depend
on λ and such that the following inequality holds for the function g1 given in (3)
and almost all points z and w in the intersection BR ∩�:

|g1(z)− g1(w)| ≤ C�(R, θ) · dist�(z,w)
θ · ‖λ‖∞. (6)
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Here ‖λ‖∞ denotes the essential supremum of |λ(·)|� on�; recall thatλ is bounded
and has compact support. We should mention that Theorem 3 is a significant im-
provement of the known results about Hölder regularity. Consider for example
{z2 = w1w2} ⊂ C

3. For this variety, Acosta, Fornæss, Gavosto, Solis, and Zeron
were able to prove the statement of Theorem 3 only for θ < 1/2 (see [1; 2; 6]);
Ruppenthal [14] showed the same statement for θ = 1/2. Previous outcomes are
all far away from the result of Theorem 3. This theorem is proved in Section 3,
where we consider the difference g = g1−g0 (see (4)) instead of g1.We can make
this reduction because � \ {0} is a homogeneous complex manifold and so the
holomorphic function g0 in (3) is, in fact, constant: equation (5) implies that g0(z)

is equal to g0(sz) for every s �= 0 in C (recall that each entry βk = 1), so that g0

is constant on all the complex lines C
∗ of � \ {0} passing through the origin. It

follows that g0 is constant on � because it is holomorphic, and thus constant, on
the compact projective manifold �̃ associated to � in CP

n−1.

Finally, similar techniques and a slight modification of equation (3) can also
be used to produce a ∂̄-solution operator with L2-estimates on homogeneous sub-
varieties with arbitrary singular locus as follows.

Theorem 4 (L2-estimates). Let � be a pure d-dimensional homogeneous sub-
variety of C

n, where n ≥ 2 and each entry βk = 1 in Definition 1. Consider a
(0,1)-form λ given by

∑
k fk dzk , where the coefficients fk are all square inte-

grable functions on � and where z1, . . . , zn are the Cartesian coordinates of C
n.

Then the following function is well-defined for almost all z∈� whenever the form
λ has compact support on � :

g(z) :=
n∑
k=1

1

2πi

∫
w∈C

fk(wz)
wd−1zk dw ∧ dw̄

w − 1
. (7)

If �∗ is the regular part of � and if λ is ∂̄-closed on�∗ \{0}, then the function g
is a solution of the ∂̄-equation λ = ∂̄g on �∗ \ {0}. Finally, if we assume that
the support of λ is contained in an open ball BR of radius R > 0 and center at the
origin, then there exists a constant C�(R, 2) > 0 that does not depend on λ and
such that

‖g‖L2(�∩BR) ≤ C�(R, 2) · ‖λ‖L2
0,1(�)

. (8)

We prove this theorem in Section 4. The proof is based on an analysis of the behav-
ior of norms under blowing up the origin and on the L2-regularity of the Cauchy–
Pompeiu formula. We should mention that—to our knowledge—an L2-solution
operator for forms with compact support is known only for isolated singularities,
so that Theorem 4 is a new result; see [8, Prop. 3.1].

The obstructions to solving the ∂̄-equation with L2-estimates on subvarieties
of C

n are not completely understood in general. An L2-solution operator (for
forms with noncompact support) is known only in the case where� is a complete
intersection (more precisely, a Cohen–Macaulay space) of pure dimension ≥ 3
with only isolated singularities. This operator was built by Fornæss, Øvrelid, and
Vassiliadou in [8] via an extension theorem for ∂̄-cohomology groups originally
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presented by Scheja [17]. Usually, the L2-results come with some obstructions to
the solvability of the ∂̄-equation. Different situations have been analyzed in the
works of Diederich, Fornæss, Øvrelid, Ruppenthal, and Vassiliadou: it is shown
that the ∂̄-equation is solvable with L2-estimates for forms lying in a closed sub-
space of finite codimension of the vector space of all the ∂̄-closed L2-forms pro-
vided the variety has only isolated singularities [3; 5; 8; 13; 15]. Moreover, in [7]
the ∂̄-equation is solved locally with some weighted L2-estimates for forms that
vanish to a sufficiently high order on the (arbitrary) singular locus of the given
varieties.

There is a second line of research about the ∂̄-operator on complex projective
varieties. Although that area clearly has much in common with the topic of ∂̄-
equations on analytic subvarieties of C

n, it is a somewhat different theory because
of the strong global tools that cannot be used in the (local) situation of Stein spaces
(owing to the lack of compactness).

Since the estimates in Theorems 3 and 4 are given only for homogeneous vari-
eties, in Section 5 we propose a useful technique for generalizing the estimates in
Theorems 3 and 4 so as to consider weighted homogeneous subvarieties instead
of homogeneous ones. We do not elaborate on this in detail because it is more
or less straightforward and it is not clear whether the results would be optimal in
that case.

2. Proof of Main Theorem

Let {Qk} be the set of polynomials on C
n that defines the algebraic variety � as

its zero locus. The definition of weighted homogeneous varieties implies that the
polynomials Qk(z) are all weighted homogeneous with respect to the same fixed
vector β. Equation (1) automatically yields that every point s β ∗ z lies in � for
all s ∈ C and z ∈ �, so each coefficient fk(·) in equations (3) and (4) is well-
evaluated in �. Moreover, fixing any point z ∈ �, the given hypotheses imply
that the following Borel-measurable functions are all bounded and have compact
support in C:

w �→ fk(w
β ∗ z).

Hence, the function gρ(z) in (3) is well-defined for almost all z ∈�. We shall
prove that g1(z) is a solution of the equation ∂̄g1 = λ if the (0,1)-formλ is ∂̄-closed.
We may suppose, without loss of generality and because of the given hypotheses,
that the regular part of � does not contain the origin. Let ξ �= 0 be any fixed point
in the regular part of �. We may suppose by simplicity that the first entry ξ1 �= 0,
and so we define the following mapping η : C

n → C
n and variety Y :

η(y) := (y1/ξ1)
β ∗ (ξ1, y2, y3, . . . , yn) for y ∈ C

n,

Y := {ŷ ∈ C
n−1 : Qk(ξ1, ŷ) = 0 ∀k}. (9)

The action s β ∗ z was given in (2). We have that η(ξ) = ξ and that the follow-
ing identities hold for all s ∈ C and ŷ ∈ C

n−1 (recall equation (1) and the fact that
� is the zero locus of the polynomials {Qk}):
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Qk(η(s, ŷ)) = (s/ξ1)
dkQk(ξ1, ŷ) and so

η(C∗ × Y ) = {z∈� : z1 �= 0}. (10)

The symbol C
∗ stands for C \ {0}. The mapping η is locally a biholomorphism

whenever the first entry y1 �= 0. Whence the point ξ lies in the regular part of the
variety C × Y, because ξ = η(ξ) also lies in the regular part of � and ξ1 �= 0.
Thus, we can find a biholomorphism

π = (π2, . . . ,πn) : U → Y ⊂ C
n−1,

defined from an open domain U in C
d−1 onto an open set in the regular part of

Y, such that π(ζ) is equal to (ξ2, . . . , ξn) for some ζ ∈ U. Consider the following
holomorphic mapping defined for all points s ∈ C and x ∈U :

*(s, x) := s β ∗ (ξ1,π(x)) = η(sξ1,π(x))∈�. (11)

The image *(C × U) will be called a generalized cone from now on. Notice
that *(C∗ × U) lies in the regular part of �, for π(U) is contained in the regu-
lar part of Y. The mapping *(s, x) is locally a biholomorphism whenever s �= 0
because η is also a local biholomorphism for y1 �= 0. Finally, the image *(1, ζ)
is equal to ξ. Hence, recalling the differential form λ and the function g1 defined
in (3), we need only prove that the pull-back *∗λ is equal to ∂̄(g1 �*) = ∂̄*∗g1

inside C
∗ × U in order to conclude that the ∂̄-equation λ = ∂̄g1 holds in a neigh-

borhood of ξ. Consider the following identity obtained by inserting (2) and (11)
into (3) (we define π1(x) ≡ ξ1):

g1(*(s, x)) =
n∑
k=1

βk

2πi

∫
C

fk(*(ws, x))
(ws)βkπk(x) dw ∧ dw̄

w̄(w − 1)
. (12)

The given hypotheses on λ yield that the pull-back*∗λ is ∂̄-closed and bounded
in C

∗ ×U, so it is also bounded and ∂̄-closed in C ×U (see [14, Lemma 4.3.2] or
[18, Lemma (2.2)]). We can use equations (2) and (11) to calculate*∗λ when λ is
given by

∑
k fk dzk :

*∗λ = F0(s, x)ds̄ +
∑
j≥1

Fj(s, x)dxj ,

where

F0(s, x) =
n∑
k=1

fk(*(s, x))βk sβk−1πk(x), (13)

Fj(s, x) =
n∑
k=1

fk(*(s, x))

[
s βk
∂πk

∂xj

]
. (14)

Recall that π1(x) ≡ ξ1. Equation (11) and the fact that λ has compact support
on � also imply that the previous function F0(s, x) has compact support on every
complex line C×{x} for all x ∈U. Hence, the Cauchy–Pompeiu integral (applied
to *∗λ) solves the ∂̄-equation *∗λ = ∂̄G in the product C × U if we define
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G(s, x) := 1

2πi

∫
u∈C

F0(u, x)

u− s du ∧ dū (15)

for s ∈ C and x ∈ U. Finally, equations (12) and (15) are identical when s �= 0,
for we only need to apply the change of variables u = ws. Thus, the differen-
tial ∂̄*∗g1 (resp. ∂̄g1) is equal to the form *∗λ (resp. λ) in the product C

∗ × U
(resp. an open neighborhood of ξ); therefore, the ∂̄-equation λ = ∂̄g1 holds in the
regular part of � because ξ �= 0 was chosen in an arbitrary way in the regular part
of �.

We conclude this section by showing that the function g0 in (3) is holomorphic
on �∗ \ {0}. The previous condition is equivalent to proving that *∗g0 is holo-
morphic on C

∗ ×U. We easily have that*∗g0 is constant with respect to the first
entry s ∈ C

∗, because

g0(*(s, x)) =
n∑
k=1

βk

2πi

∫
C

fk(*(ws, x))
(ws)βkπk(x) dw ∧ dw̄

|w|2

= 1

2πi

∫
C

F0(u, x)
du ∧ dū
u

.

Here we have made the change of variables u = ws and have used equation (13).
We may also calculate the derivatives with respect to xj , using equation (14) and
the fact that ∂̄λ = 0:

∂g0(*(s, x))

∂xj
= 1

2πi

∫
C

∂F0(u, x)

∂xj
· du ∧ dū

u

= −1

2πi

∫
C

∂Fj(u, x)

∂ū
· du ∧ dū

u
= Fj(0, x) = 0.

Previous derivations are all calculated in the sense of distributions. Neverthe-
less, the fact that they all vanish is sufficient to assure that *∗g0 is holomorphic
with respect to x; see [10, p. 12]. Hence, the function g0 is holomorphic on a
neighborhood of the arbitrary point ξ �= 0 in �∗ because *∗g0 is also constant
with respect to the first entry s.

3. Hölder Estimates

In this section, we will prove anisotropic Hölder estimates on the subvariety
� ⊂ C

n in the particular case when � is homogeneous (a cone) and has only
one isolated singularity at the origin (Lemma 5). These estimates lead easily to
optimal Hölder estimates on such varieties (Theorem 3). We will later show in
Section 5 how we can use previous results in order to deduce Hölder estimates on
weighted homogeneous varieties with an isolated singularity as well.

The given hypotheses imply that� \{0} is a homogeneous complex manifold in
C
n. Consider the holomorphic function g0 defined on � \ {0} by (3) with ρ = 0.

Equation (5) yields that g0(z) is equal to g0(sz) for every s �= 0 in C because
all entries βk = 1, so that g0 is constant on all the complex lines C

∗ of � \ {0}
passing through the origin. Hence, the function g0 is constant on � because it
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is well-defined, holomorphic, and constant on the compact projective manifold
�̃ associated to � in CP

n−1. Previous facts imply that we just need to show the
Hölder estimate (6) for the function defined in (4):

g(z) := g1(z)− g0 =
n∑
k=1

1

2πi

∫
t∈C

fk(tz)
zk dt ∧ dt̄
t(t − 1)

. (16)

We shall soon see that it is easier to work with this function g(z) than with g1(z).

In particular, note that g(0) = 0.
We divide the proof of Theorem 3 into four parts. First, we reduce the problem

to working on suitable cones that cover the original subvariety �. We then cal-
culate Hölder estimates for any pair of points in the same line through the origin,
followed by estimates for any two points that lie in the same slice of a given suitable
cone. Finally, we combine both kinds of estimates to deduce general anisotropic
Hölder estimates (Lemma 5), thereby proving the statement of Theorem 3.

3.1. Reduction to Suitable Cones

Consider the compact link K obtained by intersecting � with the unit sphere bB
of radius

√
n and center at the origin in C

n. Note that every point ξ ∈ K has at
least one coordinate with absolute value |ξk| ≥ 1. Our arguments will follow those
used in proving the Main Theorem.

Thus, given any point ξ ∈K, we construct a generalized cone that contains it.
For example, if the first entry |ξ1| ≥ 1, we build the subvariety Yξ as in (9). Then
we consider a biholomorphism πξ defined from an open setUξ ⊂ C

m into a neigh-
borhood of (ξ2, . . . , ξn) in Yξ as well as the mapping *ξ defined as in (11) from
C ×Uξ into �. We also restrict the domain of *ξ to a smaller set C ×U ′′

ξ , where
U ′′
ξ � U ′

ξ � Uξ , the open set U ′
ξ is smoothly bounded, and πξ (U ′′

ξ ) is an open
neighborhood of (ξ2, . . . , ξn) in Yξ . We also assume that both U ′

ξ and U ′′
ξ are sim-

ply connected. The generalized cone *ξ(C × U ′′
ξ ) obviously contains ξ, as we

wanted. We proceed in a similar way for any other entry |ξk| ≥ 1.
Now, since the link K is compact, we may choose finitely many (let us say N)

points ξ 1, . . . , ξN inK such thatK itself is covered by their associated generalized
cones Cj := *ξj (C × U ′′

ξj
). We assert that the analytic set � is covered by the

cones Cj . Let z be any point in � \ {0}. It is easy to deduce the existence of s ∈
C

∗ such that s β ∗ z lies inK; thus there exists an index 1 ≤ j ≤ N such that s β ∗ z
also lies in Cj . We may suppose that the first entry |ξj1 | ≥ 1 and that *ξj is given
as in (11). Hence, there is a pair (t, x) in the Cartesian product C

∗ × U ′′
ξj

with

s β ∗ z = *ξj (t, x) = t β ∗ (ξj1 ,πξj (x)) and so

z = (t/s)β ∗ (ξj1 ,πξj (x)) = *ξj (t/s, x).
The previous identity shows that the entire analytic set � is covered by the N

generalized conesC1, . . . ,CN. On the other hand, in order to prove the Hölder con-
tinuity of (6), we take a fixed parameter 0 < θ < 1 and a pair of points z and w in
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the intersection of� with the open ballBR of radiusR > 0 and center at the origin
in C

n. We want to show that there is a constant C�(θ) > 0 that is not dependent
on z or w and such that

|g(z)− g(w)| ≤ C�(θ) · dist�(z,w)
θ · ‖λ‖∞. (17)

The first step is to show that we need only verify the previous Hölder inequality
if the points z and w are both contained in BR ∩Cj , where Cj is a unique general-
ized cone defined as in the preceding paragraphs. Let ε > 0 be a given parameter.
The definition of dist�(z,w) implies the existence of a piecewise smooth curve
γε : [0,1] → � joining z and w (i.e., γε(0) = z and γε(1) = w) such that

length(γε) =
∫ 1

0
‖γ ′(t)‖ dt ≤ dist�(z,w)+ ε.

The image of γε is completely contained in BR ∩� because� is homogeneous
(a cone). So now we are done if the points z and w are both contained in the same
generalized cone Cj . Otherwise, we run over the curve γε from z to w, picking up
a finite set {zk} inside γε ⊂ BR such that the initial point z0 = z, the final point
zN = w, two consecutive elements zj and zj+1 lie in the same generalized cone,
and no three arbitrary elements of {zk} lie in the same generalized cone. In partic-
ular we may also suppose, without loss of generality, that z0 = z is in C1, the final
point zN = w is in CN , and any other point zj is in the intersection Cj ∩ Cj+1 for
every index 1 ≤ j < N. Thus, two consecutive points zj−1 and zj lie in the same
generalized cone Cj ∩BR for each index 1 ≤ j ≤ N. Assume for the moment that
there exist constants Cj�(θ) > 0 such that

|g(zj−1)− g(zj )| ≤ Cj�(θ) · dist�(zj−1, zj )
θ · ‖λ‖∞

for all 1 ≤ j ≤ N. Then it follows that

|g(z)− g(w)| ≤
N∑
j=1

|g(zj−1)− g(zj )| ≤
N∑
j=1

C
j

�(θ) dist�(zj−1, zj )
θ‖λ‖∞

≤ C�(θ) · [dist�(z,w)+ ε]θ · ‖λ‖∞,

where we have chosen C�(θ) = ∑
j C

j

�(θ). Since the previous inequality holds
for all ε > 0, it follows that we only need to prove that the Hölder estimate (17)
holds under the assumption that z and w are both contained in the intersection of
a unique generalized cone Cj with the open ball BR of radius R > 0 and center at
the origin in C

n. Moreover, we can suppose without loss of generality that Cj is
indeed the generalized cone given in (11).

We now determine what the assumptions on λwould imply for*∗λ. Recall the
given hypotheses: the subvariety� is homogeneous and has only one isolated sin-
gularity at the origin of C

n, so that each entry βk = 1 in Definition 1. We fix a
point ξ in the link K ⊂ � and assume that its first entry |ξ1| ≥ 1. The subvari-
ety Y is then given in (9), and the biholomorphism π is defined from an open set



450 J. Ruppenthal & E. S. Zeron

U ⊂ C
m into a neighborhood of (ξ2, . . . , ξn) in Y. Let λ be a (0,1)-form as in the

hypotheses of Theorem 2. We may easily calculate the pull-back *∗λ, with the
mapping * given in (11) for all s ∈ C and x ∈U, as

*(s, x) = s(1,...,1) ∗ (ξ1,π(x)) = (sξ1, sπ(x))∈�. (18)

The pull-back *∗λ = F0(s, x)ds̄ + ∑
j Fj dxj satisfies:

F0(s, x) =
n∑
k=1

fk(*(s, x))πk(x), π1(x) ≡ ξ1; (19)

Fj(s, x) =
n∑
k=2

fk(*(s, x))

[
s
∂πk

∂xj

]
.

The hypotheses of Theorem 3 yield that the support of every fk is contained in
a ball of radius R > 0 and center at the origin. Whence equation (18) and |ξ1| ≥ 1
imply that each function Fk(s, x) vanishes whenever |s| > R.

Consider a pair of simply connected open sets in C
m such that U ′ is smoothly

bounded, U ′′ � U ′ � U, and π(U ′′) is an open neighborhood of (ξ2, . . . , ξn) in Y.
The biholomorphism π has a Jacobian (determinant) that is bounded from above
and below (away from zero) in the compact closure U ′. Hence there exists a con-
stantD1 > 0 such that the following identities hold for every point (s, x) in C×U ′
and each index 1 ≤ j ≤ m:

|F0(s, x)| ≤ D1 · ‖λ‖∞; (20)

|Fj(s, x)| ≤ D1 · |s| · ‖λ‖∞. (21)

We can now show that the Hölder estimate (17) holds for all points z and w in
the intersection of the generalized cone *(C × U ′′) with the ball BR , so we con-
clude that the same estimate holds on BR ∩�.

3.2. Hölder Estimates for Points in the Same Line

Fix the parameter 0 < θ < 1. We shall analyze two different cases. First, we as-
sume there exist a point x ∈U ′′ and two complex numbers s and s ′ such that z =
*(s, x) andw = *(s ′, x). In this case we say that z andw lie in the same complex
line. Equation (18) and the fact that |ξ1| ≥ 1 together yield that |s| is bounded:

|s| ≤ |sξ1| ≤ ‖z‖ < R. (22)

Define the new function G(s, x) as the pull-back of (16):

G(s, x) := g(*(s, x)) = g1(*(s, x))− g0. (23)

We easily have that ∂̄G = *∗λ on C
∗ ×U because ∂̄g1 = λ and* is a biholomor-

phism; see the conclusions of Theorem 2. We may calculateG(s, x) via equations
(18)–(19) and the change of variables u = st :

G(s, x) =
n∑
k=1

1

2πi

∫
t∈C

fk(*(st, x))
sπk(x) dt ∧ dt̄
t(t − 1)

= s

2πi

∫
|u|≤R

F0(u, x)
du ∧ dū
u(u− s) .
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Recall that F0(u, x) vanishes whenever |u| > R. It is then easy to see that
G(s, x) is bounded in C × U and that G(0, x) = 0. Hence, [14, Lemma 4.3.2]
implies that ∂̄G is equal to *∗λ in C × U. We also have that

|g(z)− g(w)| = |G(s, x)−G(s ′, x)|
= 1

2π

∣∣∣∣
∫

|u|≤R
F0(u, x)

(
1

u− s − 1

u− s ′

)
du ∧ dū

∣∣∣∣.
It is well known that there exists a constant D2(R, θ) > 0, depending only on

the radius R > 0 and the parameter θ, such that

|g(z)− g(w)| ≤ D2(R, θ)|s − s ′|θD1‖λ‖∞. (24)

Note that we have used (20), and see [14, chap. 6.1] for a (more general) version
of inequality (24). The analysis in the previous paragraphs shows that (17) holds
in the first case. Besides, since both g(0) and G(0, x) vanish, we also obtain the
following useful estimate:

|G(s, x)| = |g(z)| ≤ D2(R, θ)D1|s|θ‖λ‖∞. (25)

3.3. Hölder Estimates for Points in the Same Slice

Let z and ŵ be a pair of points in the intersection of *(C × U ′′) with the ball
BR. Assume that there exist a complex number s �= 0 and a pair of points x and
x ′ in the open set U ′′ such that z = *(s, x) and ŵ = *(s, x ′). We say, in this
case, that z and ŵ lie in the same slice. By a unitary change of coordinates that
does not destroy the inequality (21), we may assume that the entries of x and x ′
are all equal, with the possible exception of the first one. In other words, we may
assume that both x and x ′ lie in the complex line L := C × {(x2, . . . , xm)}. Recall
that the differential ∂̄G is equal to*∗λ in the open set C ×U, according to defini-
tion (23) and the paragraphs that follow it. We can therefore evaluate g(z) via the
inhomogeneous Cauchy–Pompeiu formula on the line L:

g(z) = G(s, x) = 1

2πi

∫
L∩U ′

F1(s, t, x2, . . . , xm)
dt ∧ dt̄
t − x1

+ 1

2πi

∫
L∩bU ′

G(s, t, x2, . . . , xm)
dt

t − x1
,

because x is in L ∩ U ′′ and U ′′ � U ′. We introduce some notation in order to
simplify the analysis. The symbols I1(s, x) and I2(s, x) will denote the preceding
integrals on the set L ∩ U ′ and the boundary L ∩ bU ′, respectively. In particular,
we have

g(ŵ) = G(s, x ′) = I1(s, x
′)+ I2(s, x

′).

Recall that x and x ′ are both in L ∩ U ′′ and that the difference x − x ′ is equal
to the vector (x1 − x ′

1, 0, . . . , 0). Inequality (21) implies the existence of a constant
D3(θ) > 0, depending only on the diameter of U ′ and the parameter θ, such that

|I1(s, x)− I1(s, x
′)| ≤ D3(θ)|x1 − x ′

1|θD1|s|‖λ‖∞. (26)
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We can calculate similar estimates for I2 as follows. Let δ > 0 be the distance
between the compact sets U ′′ and bU ′ in C

m. We obviously have that δ > 0 be-
cause U ′′ � U ′. The following estimates are deduced from (25) and the mean
value theorem, and the maximum is calculated over all v in L ∩ U ′′ :

|I2(s, x)− I2(s, x
′)| ≤ |x1 − x ′

1|
2π

max
v

∣∣∣∣
∫
L∩bU ′

G(s, t, x2, . . . ) dt

(t − v)2
∣∣∣∣ (27)

≤ |x1 − x ′
1|

2π
· length(L ∩ bU ′)

δ2
D2(R, θ)D1|s|θ‖λ‖∞. (28)

3.4. Hölder Estimates for Any Two Points

The estimates (24), (26), and (28) can be summarized in the following lemma. It
is convenient to recall that the points x and x ′ are both contained in the bounded
set U ′′ � C

m. Moreover, we also have that |s| < R and |s ′| < R because z, w,
and ŵ are all contained in the ball BR; recall the proof of (22).

Lemma 5 (Anisotropic estimates). In the situation of Theorem 2 and Theorem 3,
consider the functions g and * given in (16) and (18), respectively, and the
bounded open set U ′′ � C

m defined at the end of Section 3.1. Then, for every pa-
rameter 0 < θ < 1, there is a constant D4(R, θ) > 0 that does not depend on
λ and such that the following statements hold for all the points z = *(s, x) and
w = *(s ′, x ′) in the intersection of *(C × U ′′) with the ball BR:

(i) |g(z)− g(w)| ≤ D4(R, θ)|s − s ′|θ‖λ‖∞ whenever x = x ′ (i.e., z and w are
in the same line); and

(ii) |g(z)− g(w)| ≤ D4(R, θ)‖x− x ′‖θ |s|θ‖λ‖∞ whenever s = s ′ (i.e., z and w
are in the same slice).

It is now easy to prove that the Hölder estimates given in (6) and (17) hold for all
points z and w that fulfil the assumptions of Lemma 5—namely, those points that
lie in the intersection of the generalized cone *(C × U ′′) with the ball BR. The
definition of * given in (18) allows to write down the following identities:

z = *(s, x) = s(ξ1,π(x)), w = *(s ′, x ′) = s ′(ξ1,π(x ′)). (29)

Fix the point z ′ := *(s, x ′) = s(ξ1,π(x ′)), which is in the same line as w and
in the same slice as z. We can suppose without loss of generality that z ′ ∈BR be-
cause z and w also lie in BR. Otherwise, if the norm ‖z ′‖ ≥ R then we only need
to use *(s ′, x) instead. We can easily deduce the following estimate from (29)
and the fact that |ξ1| ≥ 1:

|s − s ′| ≤ |sξ1 − s ′ξ1| ≤ ‖z− w‖ ≤ dist�(z,w).

Recall that π is a biholomorphism whose Jacobian (determinant) is bounded
from above and below (away from zero) on the compact set U ′′. Hence, recall-
ing (29), we can deduce the existence of a constantD5 > 0, depending only on π
and U ′′, such that
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|s| · ‖x − x ′‖
D5

≤ |s| · ‖π(x)− π(x ′)‖ ≤ ‖z− z ′‖
≤ ‖z− w‖ + ‖w − z ′‖ = ‖z− w‖ + |s − s ′| · ‖(ξ1,π(x ′))‖
≤ dist�(z,w) · [2 + ‖π(x ′)‖].

Thus, there exists a constant D6 > 0, depending only on π and U ′′, such that the
following identities hold for all the points z = *(s, x) and w = *(s ′, x ′) in the
intersection of *(C × U ′′) with the ball BR:

|s − s ′| ≤ D6 · dist�(z,w), |s| · ‖x − x ′‖ ≤ D6 · dist�(z,w).

Recall that z ′ is in the same line as w and in the same slice as z. Lemma 5 then
yields that

|g(z)− g(w)| ≤ |g(z)− g(z ′)| + |g(z ′)− g(w)|
≤ D4(R, θ)[|s|θ · ‖x − x ′‖θ + |s − s ′|θ ]‖λ‖∞
≤ D4(R, θ)2Dθ

6 dist�(z,w)
θ‖λ‖∞.

This completes the proof that the Hölder estimates given in (6) and (17) hold
for all pairs of points z and w in the intersection of the ball BR with the general-
ized cone*(C ×U ′′). We can therefore conclude that the same Hölder estimates
hold for arbitrary points z and w in BR ∩ � (we need only recall the reduction
argument of Section 3.1).

4. L2-Estimates

We prove Theorem 4 in this section. Recall that � is a pure d-dimensional ho-
mogeneous subvariety of C

n with arbitrary singular locus, so that n ≥ 2 and each
entry βk = 1 in Definition 1. Moreover, the (0,1)-form λ is given by

∑
k fk dzk ,

where the coefficients fk are all square-integrable functions in�. Assume that the
support of λ is contained in the open ball BR of radius R > 0 and center at the ori-
gin. We begin by showing that the function g given in (7) is indeed well-defined
for almost all z∈�. In particular, we have that

g(z) =
n∑
k=1

Hk(z)

2πi
, Hk(z) :=

∫
|w|≤R/‖z‖

fk(wz)
wdzk dw ∧ dw̄
w(w − 1)

. (30)

Hence, we need only show that the following integrals exist:∫
w∈C

∫
z∈�∩BR

∣∣∣∣fk(wz)w
dzk

w(w − 1)

∣∣∣∣ dV� dVC <∞. (31)

Recall that dV� and dVC are the respective volume forms on� and C. A direct
application of Fubini’s theorem yields that the integrals in (30) are all well-defined
for almost all z in � ∩ BR; they are also well-defined for almost all z ∈ � be-
cause the radius R can be as large as we like. The fact that � is a pure 2d-real
dimensional and homogeneous (cone) subvariety implies the existence of a con-
stant C0 > 0 such that the following equations hold for all w ∈ C and real ρ > 0:
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∫
z∈�∩Bρ

‖z‖2 = C0ρ
2d+2,

∫
z∈�

|fk(wz)|2 = ‖fk‖2
L2(�)

|w|2d . (32)

Recall that each ‖fk‖2
L2(�)

<∞ because of the given hypotheses. Observe that
we need not calculate the integral (31) in the Cartesian product of C times�∩BR.
We can simplify the calculations by integrating over the set 9 defined next, be-
cause fk(wz) = 0 whenever ‖wz‖ ≥ R:

9 := {(w, z)∈ C ×� : ‖z‖ < R, ‖wz‖ < R}. (33)

By use of (32), it follows easily that∥∥∥∥ fk(wz)w
d

|w2 − w|2/3

∥∥∥∥
2

L2(9)

≤
∫
w∈C

∫
z∈�

|fk(wz)wd |2
|w2 − w|4/3

≤ ‖fk‖2
L2(�)

∫
w∈C

1

|w2 − w|4/3
<∞ (34)

and that∥∥∥∥ zk

|w2 − w|1/3

∥∥∥∥
2

L2(9)

≤
∫
w∈C

∫
z∈�∩BR‖z‖<R/|w|

‖z‖2

|w2 − w|2/3

≤
∫

|w|≤1

C0R
2d+2

|w2 − w|2/3
+

∫
|w|>1

C0(R/|w|)2d+2

|w2 − w|2/3
<∞. (35)

The last integral in the first line of (35) must be separated into two parts depend-
ing on the value of |w|. Then one must apply (32) with ρ equal to R or R/|w|,
respectively.

Now the Cauchy–Schwartz inequality ‖ab‖L1 ≤ ‖a‖L2‖b‖L2 allows us to de-
duce (31) from the inequalities (34) and (35): we need only integrate over the set
9 given in (33).

The next step is to show that g in (30) satisfies the differential equation ∂̄g = λ
on the regular part �∗. We can simply follow, step by step, the proof presented in
Section 2. The only difference is that we must use a weighted Cauchy–Pompeiu
integral in (13) and (15), with m = d − 1 integer:

G(s, x) := 1

2πi

∫
u∈C

F0(u, x)

u− s
[
um

sm

]
du ∧ dū, (36)

where

F0(u, x) =
n∑
k=1

fk(*(u, x))πk(x).

Notice that *(u, x) = u(ξ1,π(x)) because each entry βk = 1 in (2) and (11). We
must prove that um*∗λ lies in L2

0,1(C ×U) and is ∂̄-closed. It is easy to calculate
the pull-back of the volume form dV� :

*∗dV� =
∑

|I |=|J |=d
βI,J(z)dzI ∧ dzJ

∣∣∣
z=u(ξ1,π(x))

= <(x)|u|2d−2[du ∧ dū] ∧
d−1∧
k=1

[dxk ∧ dxk]. (37)
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Recall that x lies inU ⊂ C
d−1. Since� is a d-dimensional homogeneous (cone)

subvariety of C
n, it follows that the coefficients βI,J(z) are all invariant under the

transformations z �→ uz and so <(x) depends only on the values of π(x) and all
its partial derivatives (it is constant with respect to u). That* is a biholomorphism
from C

∗ × U onto its image also implies that < cannot vanish. Hence, choosing
a smaller set U if necessary, we can suppose that |<| is bounded from below by a
constantM > 0. It is then easy to see that um*∗λ is L2

0,1, because

M

∫
C×U

|um*∗fk|2 dVC×U ≤
∫
*(C×U)

|fk|2 dV� ≤ ‖λ‖2
L2

0,1(�)
<∞.

Here we have used equation (37) withm = d −1. Working as in Section 2, it fol-
lows from [14, Lemma 4.3.2] that um*∗λ is ∂̄-closed and that the differential ∂̄G
is equal to [sm*∗λ]/sm = *∗λ. Hence, the function g given in (30) is a solu-
tion to ∂̄g = λ on �∗ because g(*(s, x)) is identically equal to (36) after setting
u = sw and π1(x) ≡ ξ1.

Finally, we must calculate the L2-norm of g in order to prove the L2-estimates
(8). It is well known that the Cauchy–Pompeiu formula is anL2-bounded operator:

∫
|t |<R

∣∣∣∣ 1

2πi

∫
|u|<R

h(u)
du ∧ dū
u− t

∣∣∣∣
2

dVC(t) �
∫

|t |<R
|h(t)|2 dVC. (38)

The reader may find a complete proof in [12] or [14], for example.
Let �̃ be the projective variety associated to� in the space CP

n−1; recall that�
is a pure d-dimensional homogeneous subvariety of C

n. We use the fact that any
integral on� can be decomposed as a pair of nested integrals on C and �̃; that is:∫

z∈�
?(z) dV�(z) =

∫
[z]∈�̃

∫
t∈C

?(żt)|t |2d−2 dVC(t) dV�̃([z]),

where ż ∈� is any representative of [z] ∈ �̃ with ‖ż‖ = 1. It is easy to calculate
each norm ‖Hk‖L2(�) in (30) with m = d − 1 and u = wt :

∫
z∈�∩BR

∣∣∣∣zk
∫

|w|<R/‖z‖
fk(wz)w

d

w(w − 1)
dVC(w)

∣∣∣∣
2

dV�

≤
∫

[z]∈�̃

∫
|t |<R

|t |2
∣∣∣∣
∫

|wt |<R
fk(wżt)w

m

w − 1
dVC(w)

∣∣∣∣
2

|t |2m dVC dV�̃

=
∫

[z]∈�̃

∫
|t |<R

|t |2
∣∣∣∣
∫

|u|<R
fk(uż)u

m

(u− t)t m−1
· dVC(u)

|t |2
∣∣∣∣

2

|t |2m dVC dV�̃

=
∫

[z]∈�̃

∫
|t |<R

∣∣∣∣
∫

|u|<R
fk(uż)u

m

u− t dVC(u)

∣∣∣∣
2

dVC dV�̃

�
∫

[z]∈�̃

∫
|t |<R

|fk(t ż)t m|2 dVC dV�̃

=
∫
z∈�∩BR

|fk(z)|2 dV� = ‖fk‖2
L2(�)

≤ ‖λ‖2
L2

0,1(�)
.
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Here we have used equation (38) with h(u) = fk(uż)um. This completes the proof
of Theorem 4 because, by equation (30),

‖g‖L2(�) ≤
n∑
k=1

‖Hk‖L2(�)

2π
� ‖λ‖L2

0,1(�)
.

5. Weighted Homogeneous Estimates

We want to close this paper by presenting a useful technique for generalizing the
estimates given in Theorems 3 and 4 so as to consider weighted homogeneous
subvarieties instead of cones. Let X ⊂ C

n be a weighted homogeneous subvari-
ety with only one singularity at the origin and defined as the zero locus of a finite
set of polynomials {Qk}. Thus, the polynomialsQk(x) are all weighted homoge-
neous with respect to the same vector β ∈ Z

n, and each entry βk ≥ 1. Define the
following holomorphic mapping:

< : C
n → C

n with <(z) = (zβ1
1 , zβ2

2 , . . . , zβnn ). (39)

It is easy to see that each polynomialQk(<) is homogeneous, so the subvariety
� ⊂ C

n defined as the zero locus of {Qk(<)} is a cone. Moreover, since < is lo-
cally a biholomorphism in C

n \ {0}, it follows that � has only one singularity at
the origin as well. Consider a (0,1)-form ℵ given by the sum

∑
k fk dxk , where

the coefficients fk are all Borel-measurable functions in X and where x1, . . . , xn
are the Cartesian coordinates of C

n.

We may follow two different paths when solving the equation ∂̄h = ℵ. We may
apply Theorem 2 whenever ℵ is bounded and has compact support on X, thereby
obtaining the solution

h(x) =
n∑
k=1

βk

2πi

∫
w∈C

fk(w
β ∗ x)(w

βkxk ) dw ∧ dw̄
w̄(w − 1)

.

Otherwise, we may consider the pull-back<∗ℵ and then apply Theorem 3 to solve
the equation ∂̄g = <∗ℵ on �. We easily have that

<∗ℵ =
n∑
k=1

fk(<(z))βkzk
βk−1dzk and

g(z) =
n∑
k=1

βk

2πi

∫
w∈C

fk(<(wz))
(wzk )

βk dw ∧ dw̄
w̄(w − 1)

.

Both paths yield exactly the same solution because g(z) is identically equal to
h(<(z)). Recall that wβ ∗ <(z) is equal to <(wz) for all w ∈ C and z ∈ C

n.

Hence we may calculate the solution g and then use the Hölder estimates given in
equation (6) to obtain

|g(z)− g(w)| ≤ C�(R, θ) · dist�(z,w)
θ · ‖<∗ℵ‖∞.

A final step is to push forward these estimates in order to deduce similar Hölder
estimates for the solution h on X (see [18] for a detailed analysis of the proce-
dure). On the other hand, we can use a similar procedure for L2-estimates; in that
case, the subvariety X could have arbitrary singularities.
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