
Michigan Math. J. 58 (2009)

A Counterexample to Uniform Approximation
on Totally Real Manifolds in C3

Erlend Fornæss Wold

1. Introduction and Main Result

Let X be a closed subset of C
n. We say that X admits uniform approximation if

for any continuous function f ∈ C(X) and for all ε > 0 there exists a holomorphic
function g ∈ O(Cn) such that supx∈X|f(x) − g(x)| < ε. We will be concerned
with the case where X is a totally real manifold: a smooth manifold whose tangent
space at no point contains a nontrivial complex subspace (in which case there are
no Cauchy–Riemann equations on X!).

One of the first results in approximation theory in complex analysis was the
well-known theorem of Weierstrass [15]: If X ⊂ C is an in interval of the real
line, then X admits uniform approximation. This result was generalized by Carle-
man [4] to the effect that X could be taken to be the entire real line in the complex
plane. A complete characterization of the subsets of C that admit uniform approx-
imation now exists: X admits uniform approximation if and only if (i) C \ X has
no relatively compact components, (ii) X has no interior, and (iii) C \X is locally
connected at infinity (see e.g. [14]). In particular we have that a closed smooth
1-dimensional submanifold of the complex plane admits uniform approximation.

When considering the state of affairs in several complex variables it is natural to
consider the compact and noncompact cases separately. Hörmander and Wermer
showed that if X is a polynomially convex compact totally real manifold then X

admits uniform approximation [7]. It is also possible to get C k-approximation on
X—depending on the smoothness of X and the function f [11].

In the noncompact case the situation is best understood if the “size” ofX is small.
Following the work of Alexander [1], Gauthier and Zeron [5] have shown that uni-
form approximation is possible if X ⊂ C

n is a locally rectifiable dendrite—that
is, if it is closed and connected and has locally finite 1-dimensional measure and
if Ȟ1(X, Z) = 0. In the case of “bigger” sets it is known that one can take X =
R
n ⊂ C

n [6; 12]. Manne [9] has shown that if X is the union of two totally real
planes such thatX is polynomially convex, thenX admits uniform approximation.

The purpose of this paper is to produce an example that demonstrates the fol-
lowing theorem.

Theorem 1.1. There exists a proper C∞-smooth embedding φ : R
2 → C

3 such
that the following statements hold for M := φ(R2):
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(A) M is totally real and
(B) M is polynomially convex, yet
(C) M does not admit uniform approximation.

That the set M is polynomially convex means that M has an exhaustion of poly-
nomially convex compact sets.

We note that even though uniform approximation by entire functions fails,
Manne [8] has shown that there exists a neighborhood � of M such that uni-
form approximation is possible by functions holomorphic on �. Approximation
by functions on varying neighborhoods was shown by Nunemacher in [10].

2. Sketch of the Construction

Before plunging into the details we shall try to explain the main idea of the con-
struction. We will choose a smoothly bounded (topological) disk D0 contained in
the unit disk in the complex plane (D0 will agree with the unit disk on the right
half-plane). For each j ∈ N we define the shifted disk Dj = D0 + j · √

2. Then
∂Dj ∩ ∂Dj+1 will consist of exactly two points and ∂Dj ∩ ∂Dk will be empty when
k �= j±1. For a specific choice of functions fj ∈ O(Dj )∩C∞(D̄j ) and a sequence
of positive real numbers εj , we define the sets

(a) Aj := {(z,w)∈ C
2 | z∈Dj , w = fj(z)+ t · i, −εj ≤ t ≤ εj},

(b) Xj := {(z,w)∈ C
2 | z∈ ∂Dj , w = fj(z)+ t · i, −εj ≤ t ≤ εj}.

Then Aj is a family of holomorphic disks and Xj , which is a totally real annu-
lus, is the union of their boundaries. Now the main point is to choose the domain
D0 and the functions fj such that (i) Xi ∩ Xj = ∅ for all i �= j and (ii) for each
j ≥ 1 there is a piece Ej of Xj such that Mj := Xj \ Ej is a polynomially con-
vex disk and Ej ⊂ Aj−1. If we choose a point qj ∈ Aj for each j ∈ N then it is
not hard to see that uniform approximation cannot be possible on the union M̃ :=⋃∞

j=0(Mj ∪ {qj}); this is demonstrated in Lemma 3.3.

In Lemma 3.1 we construct a function f ∈ O(�) ∩ C∞(�) with very specific
information about the values of f over certain parts of �. We then use this f to
define the domain D0 and the functions fj , and we proceed to show that we can
likewise define sets Aj ,Mj ,Ej with the desired properties (Lemma 3.2). Finally,
in Lemma 3.4 we show that in C

3 we can find a totally real embedded R
2 that is

polynomially convex and contains M̃.

3. The Construction

Let � denote the open unit disk in C and let �(√
2

)
denote the open disk of ra-

dius 1 centered at the point
√

2. We choose two subsets of �: A := � \ �(√
2

)

and B := � ∩ �(√
2

)
. Let {z1, z2} = ∂� ∩ ∂�(√

2
)

(with z1 having positive
imaginary part). Note that ∂�(√

2
) ∩ � ∩ R = {√

2 − 1
}
. Let Q be the interior
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of a closed (topological) disk obtained by smoothing the corners of the square
[−1,1] × [−1,1] in such a way that Q is invariant under reflections with respect
to both axes. Choose Q such that {−1} × [− 1

2 , 1
2

] ⊂ ∂Q (the precise number
1
2 is irrelevant to the construction) and such that ∂Q is C∞-smooth. Let QL =
Q ∩ {Re(z) < 0} and QR = Q ∩ {Re(z) > 0}. We define �L/R similarly.

Lemma 3.1. There exists a C∞-smooth homemorphism f : � → Q, conformal
on �, such that:

(1) f(A) = QL;
(2) f(B) = QR;
(3) f(−1) = −1, f(1) = 1, f

(√
2 − 1

) = 0, f(z1) = i, and f(z2) = −i; and
(4) f(z̄) = f(z) for all z∈ �.

Proof. The map f will be the composition of two maps. First, the map

ϕ(z) = z − (√
2 − 1

)

1 − (√
2 − 1

)
z

is a holomorphic automorphism of � that maps B to �R with ϕ
(√

2 − 1
) = 0,

ϕ(z1) = i, ϕ(z2) = −i, ϕ(−1) = −1, and ϕ(1) = 1. To see this, let ϕ̃(z) := z+1
1−z

,
a Möbius transformation that sends � onto the right half-plane with ϕ̃(−1) = 0
and ϕ̃(1) = ∞. It sends the piece of ∂� with strictly positive imaginary part to
the positive imaginary axis. The map ϕ̃

(
z − √

2
)

has the corresponding proper-
ties for �(√

2
)
, and ϕ̃

(
z − √

2
) = 1

/(√
2 + 1

) · ϕ(z). It is well known that ϕ ∈
Authol(�), and it follows that ϕ maps B onto �R. Since the piece of ∂B ∩ � with
positive imaginary part is sent to the positive imaginary axis, we have φ(z1) = i

and consequently ϕ(z2) = −i. Clearly ϕ(z̄) = ϕ(z) for all z∈ �.
To create the second map, let ψ be a conformal map that maps the part of �L

with positive imaginary part onto the part ofQL with positive imaginary part. The
existence of ψ follows from the Riemann mapping theorem, and—since it is pos-
sible to interpolate over three points in ∂� by elements of Authol(�)—we may
assume that ψ(−1) = −1, ψ(0) = 0, and ψ(i) = i. By the Schwarz reflection
principle, ψ extends to a map ψ : � → Q. Then ψ(z̄) = ψ(z) for all z ∈ � and
so f := ψ � ϕ satisfies (1)–(4). See [3] for the fact that f is C∞-smooth up to the
boundary.

Pick two points y0
1 ∈ ∂B ∩ �(√

2
)

and y0
2 = ȳ0

1 such that Re(f(y0
i )) = 1 for i =

1, 2 (see Figure 3.1). Let x0
1 := y0

1 − √
2 and x0

2 := y0
2 − √

2. Since x0
1 , x0

2 ∈A it
follows that Re(f(x0

i )) = α for some −1 < α < 0.
For any 0 < δ ≤ 1

2 , let I1
0(δ) denote the line segment I1

0(δ) := {−1} × [−δ, δ]
and let I 2

0 (δ) := {0}×[−δ, δ]. Let γ 1
0(δ) := f −1(I1

0(δ)) and γ 2
0 (δ) := f −1(I 2

0 (δ)).

Pick a δ0 ≤ 1
2 and choose a smoothly bounded domain D0 ⊂ � as in the figure.

The domain D0 should have the following properties:
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Figure 3.1

(i) D0 ⊂ �, and D0 agrees with � on the right half-plane;
(ii)

[
D0 + √

2
] ∩D0 = {y0

1, y0
2};

(iii) γ 1
0(δ

0) ⊂ ∂D0; and
(iv) γ 2

0 (δ
0) ⊂ D0.

Define disks Dj = D0 + j · √
2 for all integers j ≥ 0, and let fj : Dj →

C be defined inductively by f0 := f ; then fj(z) := fj−1
(
z − √

2
) + 1. Let

{xj1 , xj2 , yj1 , yj2 } = {x0
1 , x0

2 , y0
1, y0

2 } + j · √
2, and for all δ ≤ δ0 let γ i

j (δ) =
γ i

0(δ)+ j · √
2, I ij (δ) = I i0(δ)+ j · √

2, and 'j(δ) := ∂Dj \ γ 1
j (δ).

The following properties are easily confirmed for all j and all δ ≤ δ0:

(v) Re(fj(z)) = −1 + j for all z∈ γ 1
j (δ);

(vi) Re(fj(z)) = j for all z∈ γ 2
j (δ);

(vii) Re(fj(x
j

i )) = α + j, where −1 < α < 0;
(viii) Re(fj(y

j

i )) = 1 + j ;
(ix) ∂Dj ∩ ∂Dj+1 = {yj1 , yj2 } = {xj+1

1 , xj+1
2 };

(x) ∂Dj ∩ ∂Dk = ∅ for k �= j ± 1; and
(xi) fj

(
j · √

2 + (√
2 − 1

)) = j = fj+1
(
j · √

2 + (√
2 − 1

))
.

For 0 ≤ δ ≤ δ0 and ε > 0 we define the following sets:

(xii) Mj(δ, ε) := {(z,w)∈ C
2 | z∈'j(δ), w = fj(z)+ t · i, t ∈ [−ε, ε]};

(xiii) Ej(δ, ε) := {(z,w)∈ C
2 | z∈ γ 1

j (δ), w = fj(z)+ t · i, t ∈ [−ε, ε]};
(xiv) At

j := {(z,w)∈ C
2 | z∈Dj , w = fj(z)+ t · i}; and

(xv) Aj(ε) = ⋃
t∈[−ε,ε] A

t
j .
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The setsMj(δ, ε) are totally real disks, and the unionMj(δ, ε)∪Ej(δ, ε) bounds
the family of analytic disksAj(ε). Moreover, if j �= k thenMj(δ, ε)∩Mk(δ

′, ε ′) =
∅ for all δ, δ ′ ≤ δ0 and all ε, ε ′ > 0. Hence 'j(δ) ∩ 'j+1(δ

′) = {yj1 , yj2 } =
{xj+1

1 , xj+1
2 }, so in this case (xii) follows from (vii) and (viii). If k �= j ± 1 then

'j(δ) ∩'k(δ
′) = ∅ by (x).

For j ≥ 0 let qj ∈ C
2 denote the point qj = (

j · √
2, f(0) + j

)
. Then qj ∈A0

j

for all j. For a positive number µj we will now let Bµj(qj ) denote the ball of
radius µj centered at the point qj .

Lemma 3.2. There are sequences of strictly positive real numbers δ ′
j < δj ≤ δ0,

εj < ε ′
j , and µj <

√
2 − 1 such that :

(1) Ej+1(δj+1, εj+1) ⊂ Aj(εj ) for j = 0,1, 2, . . .; and
(2) any finite union

⋃m
j=0(Mj(δ

′
j , ε

′
j ) ∪ Bµj(qj )) is polynomially convex.

Proof. The proof proceeds by induction on j. Let δ0 := δ0, choose any ε0 > 0,
and let δ ′

0 < δ0 and ε ′
0 > ε0. We have that M0(ε

′
0, δ ′

0) is polynomially convex be-
cause it projects onto a polynomially convex smooth arc in the plane and the fibers
are straight lines. If µ0 is chosen small enough, then (2) holds with m = 0 and
(1) is void at this step.

Assume now that we have chosen εj , ε ′
j , δj , δ ′

j , and µj for 0 ≤ j ≤ N and that
(1) and (2) hold for 0 ≤ j,m ≤ N. If t1 is small enough, then from (vi), (xi), and
the definition of AN(εN) it follows that

γ 2
N(t1)× I 2

N(t1) ⊂ AN(εN).

If t ′1 < t1 and if s1 and s2 are small enough, it follows from (v), (xi), and the defi-
nition of EN+1(εN+1, δN+1) that

EN+1(εN+1, δN+1) ⊂ γ 1
N+1(t

′
1)× I1

N+1(t1) ⊂ γ 2
N(t1)× I 2

N(t1)

for all εN+1 ≤ s1 and δN+1 ≤ s2. Choose δ ′
N+1 < s2. If ε ′

N+1 < s1 is chosen
small enough then

⋃N
j=0(Mj(ε

′
j , δ ′

j ) ∪ Bµj(qj )) ∪MN+1(ε
′
N+1, δ

′
N+1) is polynomi-

ally convex: By assumption, K := ⋃N
j=0(Mj(ε

′
j , δ ′

j ) ∪ Bµj(qj )) is polynomially
convex, and we have that K ∪MN+1(0, δ ′

N+1) is polynomially convex since C :=
MN+1(0, δ ′

N+1) is a simply connected smooth curve and since K ∩ C = ∅ (see
e.g. the main theorem in [13] or [14, Thm. 3.1.1]). Let U,V be open sets such
that U ∩ V = ∅, and let K ⊂ U and C ⊂ V. There exists a neighborhood � of
K ∪C such that � ⊂⊂ U ∪V and such that � is polynomially convex. If ε ′

N+1 is
small enough then MN+1(ε

′
N+1, δ

′
N+1) ⊂ �, and since MN+1(ε

′
N+1, δ

′
N+1) is poly-

nomially convex (it projects onto a smooth arc) it follows that the union with K is
polynomially convex (this follows from the Oka–Weil theorem).

Choose εN+1 < ε ′
N+1 and δ ′

N+1 < δN+1 < s2. Finally, choose µN+1 small
enough.

At this point we fix sequences of numbers as in the previous lemma, and we refer
to our sets simply as Mj , M ′

j , Ej , Aj , and Bj := Bµj(qj ). (Here M ′
j denotes the

set Mj(δ
′
j , ε

′
j ).) We let M̃ denote the union M̃ = ⋃∞

i=0 Mi ∪ qi.
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Lemma 3.3. Uniform approximation is not possible on M̃.

Proof. Define g(qj ) = j and g|Mj
≡ 0 for all j ≥ 0. Assume to get a contradic-

tion that there is an h∈ O(C2) such that supx∈M̃{|h(x)− g(x)|} < 1
2 .

Let N ≥ 1 be a natural number such that ‖h‖E0 ≤ N. By assumption we have
that |h(qN+1)| > N. By the maximum principle, h|

A0
N+1

must take its maximum

on ∂A0
N+1 ⊂ MN+1 ∪ EN+1. By assumption ‖h‖MN+1 <

1
2 , so there exists a point

pN ∈ EN+1 ⊂ AN (by Lemma 3.2(1)) such that |h(pN)| > N. Then pN lies in
A
tN
N for some tN ∈ [−εN , εN ].
Again h|

A
tN
N

must take its maximum on ∂A
tN
N ⊂ MN ∪ EN , and this must hap-

pen at a point pN−1 ∈ EN ⊂ AN−1. Continuing this argument, we end up with a
point p0 ∈E0 such that |h(p0)| > N, which is a contradiction.

Now we regard the set M̃ as being contained in C
2 × {0} ⊂ C

2 × C = C
3.

Lemma 3.4. There exists a C∞-smooth and proper embedding φ : R
2 → C

3 such
that M̃ ⊂ M := φ(R2) and such that M is totally real and polynomially convex.

Proof. We start by choosing a C∞-smooth proper immersion g : R → C such that
g(R) contains all the curves '′

j . The image g(R) should look like the curve in
Figure 3.2.

Figure 3.2

For each j we first connect '′
j to '′

j+1 by a smooth curve lj between the end-
point of '′

j with negative imaginary part and the endpoint of '′
j+1 with positive

imaginary part. The curve lj will intersect '′
j−1 at a single point vj for j ≥ 1.

Let l−1 be a smooth curve between the point {−1} and the endpoint of '′
0 with

positive imaginary part. Let 4 denote the union of all these curves with the inter-
val (−∞, −1). The image g(R) should be a smoothing of 4 that creates no new
self-intersection points; g(R) should contain the curves '′

j , and we make sure that
it passes through all points

{
j · √

2
}

for j ≥ 0. Moreover we make sure that, for
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all real numbers t, there are only a finite number of points on g(R) whose real part
equals t. If we let Ik := [2k, 2k + 1] and Jk := [2k + 1, 2k + 2], then we may
assume the following:

(a) g|Ik , g|Jk , and g|{t≤0} are all embeddings;
(b) g(Ik) = '′

k;
(c) g

(
2k + 4

3

) = vk for k ≥ 1;
(d) g

(
2k + 5

3

) = k · √
2 for k ≥ 0;

(e) g(Ij ) ∩ g(Ik) = {yj1 , yj2 } if k = j + 1, and if k �= j ± 1 then the intersection
is empty;

(f ) g(Ij ) ∩ g(Jk) = {vk} if j = k − 1 ≥ 0, and otherwise the intersection is
empty;

(g) g(Ji) ∩ g(Jk) = ∅ for all i �= k; and
(h) g({t < 0}) ∩ g({t > 0}) = ∅.

Choose a C∞-smooth function h : R → C such that the following hold:

(i) h(t) = fj(g(t)) for all t ∈ Ij ;
( j) Re

(
h
(
2j + 4

3

)) �= Re(fj−1(vj )); and
(k) h

(
2j + 5

3

) = f(0)+ j.

We define first a smooth, proper embedding ψ : R
2 → C

2 by

ψ(x, y) := (g(x),h(x)+ y · i).
This map is injective because our choices have been made such that if g(x1) =
g(x2) then Re(h(x1)) �= Re(h(x2)) if x1 �= x2.

It is clear that ψ(R2) is totally real. Since M̃ ⊂ ψ(R2), it follows from
Lemma 3.3 that uniform approximation is not possible on ψ(R2). To get a poly-
nomially convex surface we will now bend “most” of ψ(R2) into C

3, keeping M̃
in C

2.

Let P ′
j ⊂ R

2 denote the set P ′
j := Ij × [−ε ′

j , ε ′
j ]. We have:

(l) ψ(P ′
j ) = M ′

j for all j ≥ 0; and

(m) ψ
((

2j + 5
3 , 0

)) = qj for all j ≥ 0.

Let Pj := ψ−1(Mj ) ⊂⊂ P ′
j . For each j let Sj ⊂ R

2 be a closed disk centered at
(
2j + 5

3 , 0
)

such that ψ(Sj ) ⊂⊂ Bj . Let χ : R
2 → [0,1] be a C∞-smooth function

such that

(n) χ |Pj∪{(2j+5/3,0)} ≡ 0 and
(o) χ(x, y) = 1 for all (x, y)∈ R

2 ∖(⋃∞
i=0(P

′
i ∪ Si)

)
.

We define our final embedding by

φ := ψ + χ · Re(g) · e3.

Then φ(R2) is polynomially convex. Note first that Z ′ := φ
(⋃m

i=0(P
′
i ∪ Si)

)

is polynomially convex for all m ∈ N. It follows from Lemma 3.2 that Z :=
ψ

(⋃m
i=0(P

′
i ∪ Si)

) ⊂ C
2 is polynomially convex, and it follows from [14, Thm.

6.3.1] together with the Oka–Weil theorem that P(Z) = C(Z). Since Z ′ is a graph
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over Z ⊂ C
2 in C

3 it follows that P(Z ′) = C(Z ′), and Z ′ is polynomially convex
by [14, Thm. 1.2.10].

Let π3 denote the projection onto the third coordinate in C
3. Restricted to M

we have that π3 is a real-valued function. According to [14, Thm. 1.2.16], a com-
pact set K ⊂ M is polynomially convex if and only if π−1

3 (t0) ∩ K is poly-
nomially convex for each t0 ∈ R. Let Xj be a compact exhaustion of R

2 by
squares that pick up exactly one pair (P ′

j , Sj ) for each increase of j. The follow-
ing shows that φ(Xj ) is polynomially convex for each j. Consider first a set Y :=(⋃k

i=1{xi} × [−R,R]
) ∪ (⋃m

i=0 P
′
i ∪ Si

)
, where x1, . . . , xk is a finite set of points

and where R∈ R
+ and m∈ N

+. We have seen that φ
(⋃m

i=0 P
′
i ∪ Si

)
is polynomi-

ally convex, so by [13] the set φ(Y ) is polynomially convex. It now follows from
[14, Thm. 6.3.1] and [13] that P(φ(Y )) = C(φ(Y )); hence any relatively closed
subset of φ(Y ) is polynomially convex.

Fix a t0 and assume that π−1
3 (t0) ∩ φ(Xj ) �= ∅. Define

L := φ−1(π−1
3 (t0) ∩ φ(Xj )) = {(x, y)∈Xj | χ(x, y) · Re(g(x)) = t0}.

By assumption there are only a finite number of xj such that Re(g(xj )) = t0. Since
χ ≡ 1 on L

∖(⋃j

i=0 P
′
i ∪ Si

)
, it follows that L

∖(⋃j

i=0 P
′
i ∪ Si

) ⊂ ⋃k
j=1{xj} ×

[−R,R] for some R ∈ R. So L is a closed subset of a set on the same form as Y,
and by the preceding arguments φ(L) is polynomially convex.

Adding a third component to the embedding ψ does not change the fact that the
image is totally real.
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