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Intersection Numbers and
Automorphisms of Stable Curves

Kefeng Liu & Hao Xu

1. Introduction

Denote by Mg,n the moduli space of stable n-pointed genus-g complex algebraic
curves. We have the morphism that forgets the last marked point

π : Mg,n+1 → Mg,n.

Denote by σ1, . . . , σn the canonical sections ofπ and byD1, . . . ,Dn the correspond-
ing divisors in Mg,n+1. Let ωπ be the relative dualizing sheaf. Then we have the
following tautological classes on moduli spaces of curves:

ψi = c1(σ
∗
i (ωπ));

κi = π∗
(
c1

(
ωπ

(∑
Di

))i+1);
λl = cl(π∗(ωπ)), 1 ≤ l ≤ g.

The classes κi were first introduced by Mumford [22] on Mg; their generalization
to Mg,n here is due to Arbarello–Cornalba [1]. For background materials about
the intersection theory of moduli spaces of curves, we refer to the book [19] and
the survey paper [24].

Hodge integrals are intersection numbers of the form

〈τd1 · · · τdnκa1 · · · κam
| λk1

1 · · · λkgg 〉 :=
∫

Mg,n

ψ
d1
1 · · ·ψdn

n κa1 · · · κam
λ
k1
1 · · · λkgg ,

which are rational numbers because the moduli spaces of curves are orbifolds.
They are nonzero only when

∑n
i=1 di + ∑m

i=1 ai + ∑g

i=1 iki = 3g − 3 + n.

Hodge integrals arise naturally in the localization computation of Gromov–
Witten invariants. They have been extensively studied by mathematicians and
physicists. Hodge integrals involving only ψ classes can be computed recursively
by the the celebrated Witten–Kontsevich theorem [18; 26], which can be equiva-
lently formulated by the DVV recursion relation [5]
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〈τk+1τd1 · · · τdn〉g

= 1

(2k + 3)!!

[ n∑
j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn〉g

+ 1

2

∑
r+s=k−1

(2r + 1)!! (2s + 1)!! 〈τrτsτd1 · · · τdn〉g−1

+ 1

2

∑
r+s=k−1

(2r + 1)!! (2s + 1)!!
∑

n=I
∐

J

〈
τr

∏
i∈I

τdi

〉
g ′

〈
τs

∏
i∈J

τdi

〉
g−g ′

]
,

(1)
where n = {1, 2, . . . , n}.

Now there are several new proofs of Witten’s conjecture; see [3; 14; 15; 16;
21; 23].

Let denom(r) denote the denominator of a rational number r in reduced form
(coprime numerator and denominator, positive denominator). For 2g − 2 + n ≥ 1
we define

Dg,n = lcm

{
denom

(∫
Mg,n

ψ
d1
1 · · ·ψdn

n

) ∣∣∣∣
n∑

i=1

di = 3g − 3 + n

}
,

and for g ≥ 2 we define

Dg = lcm

{
denom

(∫
Mg,n

ψ
d1
1 · · ·ψdn

n

) ∣∣∣∣
n∑

i=1

di = 3g − 3 + n, di ≥ 2, n ≥ 1

}
,

D̃g = lcm

{
denom

(∫
Mg

κa1 · · · κam

) ∣∣∣∣
m∑
i=1

am = 3g − 3

}
,

where lcm denotes the least common multiple. Note that Dg was previously de-
fined by Itzykson and Zuber [12].

We know that a neighborhood of � ∈ Mg,n is of the form U/Aut(�), where U

is an open subset of C3g−3+n. This gives the orbifold structure for Mg,n. Since de-
nominators of intersection numbers on Mg,n all come from these orbifold quotient
singularities, the divisibility properties of Dg,n and Dg should reflect the overall
behavior of singularities.

In Section 2, we study basic relations between Dg,n, Dg , and D̃g. In Section 3,
we briefly discuss automorphism groups of Riemann surfaces and stable curves.
In Section 4, we study prime factors of Dg and prove a strong form of a conjec-
ture of Itzykson and Zuber [12] concerning denominators of intersection numbers.
In Section 5, we present a conjectural multinomial-type property for intersection
numbers and verify it in low genera.

Acknowledgments. We would like to thank Professor Sergei Lando for valu-
able comments and interest in this work. The second author is grateful to Professor
Enrico Arbarello, Carel Faber, Sean Keel, Rahul Pandharipande, and Ravi Vakil
for answering several questions on moduli spaces of curves. We also thank the
referees for very helpful comments.
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2. Basic Properties of Dg

If we take k = −1 and k = 0 respectively in DVV formula (1), we get the string
equation 〈

τ0

n∏
i=1

τki

〉
g

=
n∑

j=1

〈
τkj−1

∏
i �=j

τki

〉
g

and the dilaton equation〈
τ1

n∏
i=1

τki

〉
g

= (2g − 2 + n)

〈 n∏
i=1

τki

〉
g

.

Their proof may be found in [19].

Lemma 2.1. If n ≥ 1, then

(i) D0,n = 1,
(ii) D1,n = 24,

(iii) Dg,1 = 24g · g!.

Proof. The lemma follows from the string equation, the dilaton equation, and the
following well-known formulas:

〈τd1 · · · τdn〉0 =
(

n − 3
d1 · · · dn

)
= (n − 3)!

d1! · · · dn!
;

〈τ1〉1 = 1

24
, 〈τ3g−2〉g = 1

24gg!
.

Their proofs can be found in [19; 26].

Note that D0,n = 1 is expected since M0,n is a smooth manifold.

Theorem 2.2. We have
Dg,n | Dg,n+1.

Proof. Let q s | Dg,n, where q is a prime number and q s+1 � Dg,n.

We sort {〈τd1 · · · τdn〉g | ∑n
i=1 di = 3g − 3 + n, 0 ≤ d1 ≤ · · · ≤ dn} in lexico-

graphical order, and we say 〈τk1 · · · τkn〉g ≺ 〈τm1 · · · τmn
〉g if there is some i such

that kj = mj , j < i, and ki < mi. Let 〈τk1 · · · τkn〉g be the minimal element with
respect to the lexicographical order such that its denominator is divisible by q s.

There exist integers c, d, ai, bi where i = 1, . . . , n − 1 such that

〈τ0τk1 · · · τkn+1〉g = 〈τk1 · · · τkn〉g +
n−1∑
i=1

〈τk1 · · · τki−1 · · · τkn−1τkn+1〉g

= c

q sd
+

n−1∑
i=1

bi

ai

.

We require q � c, q � d, and (ai, bi) = 1.
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For i = 1, . . . , n − 1 we have 〈τk1 · · · τki−1 · · · τkn−1τkn+1〉g ≺ 〈τk1 · · · τkn〉g and
so ai = q siei, where si < l and q � ei . We now have

〈τ0τk1 · · · τkn+1〉g = c
∏n−1

i=1 ei + qd
(∑n−1

j=1 q
s−sj−1 ∏

i �=j ei
)

q sd
∏n−1

i=1ei
;

we see that q cannot divide the numerator, so we have proved q s | Dg,n+1. Since
q is arbitrary, this proves the theorem.

Theorem 2.3. We have Dg,n | D̃g for all g ≥ 2 and n ≥ 1. Moreover, D̃g =
Dg,3g−3.

Proof. Let
πn : Mg,n → Mg,n−1

be the morphism that forgets the last marked point. Then (see [1]) we have

(π1 · · ·πn)∗(ψ a1+1
1 · · ·ψan+1

n ) =
∑
σ∈Sn

κσ , (2)

where κσ is defined as follows. Write the permutation σ as a product of ν(σ) dis-
joint cycles, including 1-cycles: σ = β1 · · ·βν(σ), where we think of the symmetric
group Sn as acting on the n-tuple (a1, . . . , an). Denote by |β| the sum of the ele-
ments of a cycle β. Then

κσ = κ|β1|κ|β2| · · · κ|βν(σ)|.

From equation (2), we get∫
Mg,n

ψ
a1+1
1 · · ·ψan+1

n =
∑
σ∈Sn

∫
Mg

κσ ,

so we have proved Dg,n | D̃g.

On the other hand, any
∫

Mg
κa1 · · · κam

can be written as a sum of
∫

Mg,n
ψ

d1
1 · · ·

ψdn
n ’s. This can be seen by induction on the number of kappa classes. For integrals

with only one kappa class, we have
∫

Mg,n
κa1ψ

d1
1 · · ·ψdn

n = ∫
Mg,n+1

ψ
a1+1
n+1 ψ

d1
1 · · ·

ψdn
n ; we also have∫

Mg,n

κa1 · · · κam
ψ

d1
1 · · ·ψdn

n =
∫

Mg,n+m

ψ
a1+1
n+1 · · ·ψam+1

n+m ψ
d1
1 · · ·ψdn

n

− {integrals with at most m − 1 κ classes},
thus finishing the induction argument. So we have proved D̃g = Dg,3g−3.

Corollary 2.4. For g ≥ 2, we have Dg = D̃g.

We have computed Dg for g ≤ 20 using the DVV formula (1) and observed the
following conjectural exact values of Dg (see also [20]).
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Conjecture 2.5. Letp be a prime number and g ≥ 2. Let ord(p, n) denote the
maximum integer such that pord(p,n) | n. Then:

(i) ord(2, Dg) = 3g + ord(2, g!);
(ii) ord(3, Dg) = g + ord(3, g!);

(iii) ord(p, Dg) = ⌊ 2g
p−1

⌋
forp ≥ 5, where �x� denotes the maximum integer that

is not larger than x.

On the other hand, we may obtain explicit expressions for multiples of Dg by
applying either Kazarian–Lando’s formula [15] expressing intersection indices by
Hurwitz numbers or Proposition 4.4.

3. Automorphism Groups of Stable Curves

First we recall some facts about automorphisms of compact Riemann surfaces,
following [8].

Let X be a compact Riemann surface of genus g and let Aut(X) be the group of
conformal automorphisms of X. It’s a classical theorem of Hurwitz that if g ≥ 2
then |Aut(X)| ≤ 84(g − 1).

Let G ⊂ Aut(X) be a group of automorphisms of X, and consider the natural
map

π : X → X/G.

We know that π has degree |G| and that X/G is a compact Riemann surface of
genus g0.

The mapping π is branched only at the fixed points of G, and the branching
order

b(P ) = ordGP − 1,

where GP is the isotropy group at P ∈X that is known to be cyclic.
Let P1, . . . ,Pr be a maximal set of inequivalent fixed points of elements of

G \ {1} (i.e., Pi �= h(Pj ) for all h∈G and all i �= j).

Let ni = ordGPi
. Then the total branch number of π is given by

B =
r∑

i=1

|G|
ni

(ni − 1) = |G|
r∑

i=1

(
1 − 1

ni

)
.

The Riemann–Hurwitz formula now reads

2g − 2 = |G|
[

2g0 − 2 +
r∑

i=1

(
1 − 1

ni

)]
,

so we have
|G| | (2g − 2) · lcm(n1, . . . , nr). (3)

This fact is crucial in the study of automorphism groups of compact Riemann
surfaces.

The following is a special case of a theorem due to W. Harvey [11, Thm. 6].
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Proposition 3.1 [11]. The minimum genus g of a compact Riemann surface that
admits an automorphism of order pr (p prime) is given by

g = max

{
2,

p − 1

2
pr−1

}
.

In (3), we have ni = ordGPi
and GPi

is cyclic, so Proposition 3.1 implies the fol-
lowing result.

Corollary 3.2. Let X be a compact Riemann surface of genus g ≥ 2 and let
G = |Aut(X)|. Then

ord(p, |G|) ≤
⌊

logp

2pg

p − 1

⌋
+ ord(p, 2(g − 1)).

In particular, p � |G| if p > 2g + 1.

Definition 3.3. A node on a curve is a point that is locally analytically isomor-
phic to a neighborhood of the orgin of xy = 0 in the complex plane C2.

If � is a nodal curve, define its normalization �̃ to be the Riemann surface
obtained by “ungluing” its nodes. Let p : �̃ → � denote the canonical normal-
ization map. The preimages in �̃ of the nodes of � are called node branches.

A stable curve is a connected and compact nodal curve, which means that its
singular points are nodes and satisfy the stability conditions: (i) each genus-0
component has at least three node branches; (ii) each genus-1 component has at
least one node branch.

Stability is equivalent to the finiteness of the automorphism group. Suppose � is
a stable curve of arithmetic genus g such that its normalization has m components
�1, . . . ,�m of genus g1, . . . , gm.

Definition 3.4. An automorphism ϕ of the dual graph . of � will be called
geometric if it is induced by an automorphism of the corresponding stable curve
�. All geometric automorphisms of . form a group GAut(.), which is a sub-
group of Aut(.).

The notion of geometric automorphism is introduced by Opstall and Veliche [25]
in their study of sharp bounds for the automorphism group of stable curves of a
given genus.

Theorem 3.5. Let Ãut(�i) be the group of automorphisms of �i fixing node
branches on �i. Then

|Aut(�)| = |GAut(.)| ·
m∏
i=1

|Ãut(�i)|.

Proof. First note the following fact. If f(x) and g(y) are two holomorphic func-
tions defined near the origin of C1 and satisfy f(0) = g(0), then F(x, y) =
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f(x) + g(y) − f(0) is a holomorphic function near the origin of C2 satisfying
F(x, 0) = f(x) and F(0, y) = g(y). So to check whether a function on a nodal
curve is analytic, we need only check whether it is analytic restricting to each con-
nected component.

There is a natural map p : Aut(�) → GAut(.) mapping an automorphism of
� to the induced automorphism on its dual graph ..

For each b ∈GAut(.), fix a Tb ∈Aut(�) such that p(Tb) = b. If fi ∈ Ãut(�i)

for i = 1, . . . ,m, we denote by (f1, . . . , fm) ∈ Aut(�) the gluing morphism. We
define the map

GAut(.) ×
m∏
i=1

Ãut(�i) −→ Aut(�),

(b, f1, . . . , fm) �−→ Tb � (f1, . . . , fm).

It’s not difficult to see that this map is, in fact, bijective. Its converse is

Aut(�) −→ GAut(.) ×
m∏
i=1

Ãut(�i),

T �−→ (p(T ), (T −1
p(T ) � T )

∣∣
�1

, . . . , (T −1
p(T ) � T )

∣∣
�m

).

Thus we have proved the theorem.

Proposition 3.6. Let � be a stable curve of arithmetic genus g ≥ 2. If a prime
number p divides |Aut(�)|, then p ≤ 2g + 1.

Proof. Let’s assume that there are δ nodes on � and δi node branches on each �i.

Then we have the following relations:

g =
m∑
i=1

(gi − 1) + δ + 1, (4)

2gi + δi − 2 ≥ 1, (5)

2δ =
m∑
i=1

δi . (6)

Summing up (5) for i = 1, . . . , n and substituting (4) and (6) into (5), we get

m ≤ 2g − 2.

Now let eij denote the number of edges between �i and �j in the dual graph of
�. Then it’s obvious that eij ≤ g + 1.

Since |Aut(.)| divides m!
∏

(i,j)(eij!), which is not divisible by prime numbers
greater than 2g + 1, and since gi ≤ g, the proposition follows from Theorem 3.5
and Corollary 3.2.

We remark that Proposition 3.6 may not hold for nonstable nodal curves.
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4. Prime Factors of Dg

Definition 4.1. In [7], the generating function

F(x1, . . . , xn) =
∞∑
g=0

∑
∑

di=3g−3+n

〈τd1 · · · τdn〉g
n∏

i=1

x
di
i

is called the n-point function.

In particular, the 2-point function has a simple explicit form due to Dijkgraaf
(see [7]):

F(x1, x2) = 1

x1 + x2
exp

(
x3

1

24
+ x3

2

24

) ∞∑
k=0

k!

(2k + 1)!

(
1

2
x1x2(x1 + x2)

)k

.

Lemma 4.2. Let p be a prime number and let g ≥ 2. Then the following state-
ments hold :

(i) if p > 2g + 1, then p � Dg,2;
(ii) if g + 1 ≤ p ≤ 2g + 1, then

p | denom〈τ(p−1)/2τ3g−1−(p−1)/2〉g;
(iii) if 2g+1 is prime, then (2g+1) | denom〈τdτ3g−1−d〉g if and only if g ≤ d ≤

2g − 1;
(iv) if 2g + 1 is prime, then ord(2g + 1,Dg,2) = 1.

Proof. From the 2-point function, we get

〈τdτ3g−1−d〉g =
g∑

i=0

∑
k

(
g − k

i

)(
k − 1

d − 3i − k

)
k!

(g − k)! 24g−k(2k + 1)! 2k

+ (−1)d mod 3

g! 24g

(
g − 1⌊

d
3

⌋ )
,

where the summation range of k is max
( d1−3i+1

2 ,1
) ≤ k ≤ min(g − i, d1 − 3i).

Then the lemma follows easily.

Theorem 4.3. Let p be a prime number, let g ≥ 2, and let ord(p, q) denote the
maximum integer such that pord(p,q) | q. Then:

(i) if p > 2g + 1, then p � Dg;
(ii) for any prime p ≤ 2g + 1, we have p | Dg;

(iii) if 2g + 1 is prime, then ord(2g + 1, Dg) = 1;
(iv) ord(2, Dg) = 3g + ord(2, g!).

Proof. For part (i), we use induction on the pair of genus and the number of
marked points (g, n) to prove that denominators of all ψ-class intersection num-
bers 〈τd1 · · · τdn〉g are not divisible by prime numbers greater than 2g + 1. If p >

2g + 1, then p � Dg,2 has been proved in Lemma 4.2(i). Also D2 = 27 · 32 · 5 is
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not divisible by p > 5. Hence we may assume that g ≥ 3 and n ≥ 3. We rewrite
the DVV formula as

〈τd1 · · · τdn〉g

= 1

(2d1 +1)!!

[ n∑
j=2

(2d1 + 2dj −1)!!

(2dj −1)!!
〈τd2 · · · τdj+d1−1 · · · τdn〉g

+ 1

2

∑
r+s=d1−1

(2r +1)!! (2s +1)!! 〈τrτsτd2 · · · τdn〉g−1

+ 1

2

∑
r+s=d1−1

(2r +1)!! (2s +1)!!
∑

{2, . . .,n}=I
∐

J

〈
τr

∏
i∈I

τdi

〉
g ′

〈
τs

∏
i∈J

τdi

〉
g−g ′

]
.

For n ≥ 3 marked points we may take d1 ≤ g; then, by induction on (g, n), it’s
easy to see that the denominator of the right-hand side is not divisible by prime
numbers greater than 2g +1. Part (ii) follows from Lemma 2.1(iii), Theorem 2.3,
and Lemma 4.2(ii).

For part (iii), we again use induction on (g, n) as in the proof of part (i). We
may assume that n ≥ 3. In view of Lemma 4.2(iii)–(iv), we need only prove
ord(2g +1,Dg,n) ≤ 1. If n > 3, then we may take d1 < g in 〈τd1 · · · τdn〉g , whose
denominator is not divisible by (2g + 1)2. This is easily seen by induction on the
right-hand side of the DVV formula. So there is only left to prove that the denom-
inator of 〈τgτgτg〉g is not divisible by (2g + 1)2. We have

〈τgτgτg〉g = 1

(2g + 1)!!

[
2(4g − 1)!!

(2g − 1)!!
〈τgτ2g−1〉g + {lower genus terms}

]
.

Since the factor 2g + 1 in the denominator of 〈τgτ2g−1〉 will be cancelled by
(4g − 1)!!, we have proved (iii) by induction.

For part (iv), since 〈τ3g−2〉g = 1/24gg! we have ord(2, Dg) ≥ 3g + ord(2, g!).
The reverse inequality can be seen from the DVV formula by induction on (g, n)
and noting that

1

2

∑
r+s=k−1

(2r + 1)!! (2s + 1)!!
∑

n=I
∐

J

〈
τr

∏
i∈I

τdi

〉
g ′

〈
τs

∏
i∈J

τdi

〉
g−g ′

=
∑

r+s=k−1

(2r + 1)!! (2s + 1)!!
∑

{2,...,n}=I
∐

J

〈
τrτd1

∏
i∈I

τdi

〉
g ′

〈
τs

∏
i∈J

τdi

〉
g−g ′

.

For a single intersection number, we have the following estimate on its denomi-
nator.

Proposition 4.4. If p ≥ 3 is a prime number, then

ord(p, denom〈τd1 · · · τdn〉g) ≤ ord

(
p,

n∏
j=1

(2dj + 1)!!

)
.
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Proof. Following Dijkgraaf ’s notation [4], let

〈τ̃d1 · · · τ̃dn〉g =
n∏

j=1

(2dj + 1)!! · 〈τd1 · · · τdn〉g.

Then the DVV formula can be written as〈
τ̃k

n∏
j=1

τ̃dj

〉
g

=
n∑

j=1

(2dj +1)〈τ̃d1 · · · τ̃dj+k−1 · · · τ̃dn〉g + 1

2

∑
r+s=k−2

〈
τ̃r τ̃s

n∏
j=1

τ̃dj

〉
g−1

+ 1

2

∑
r+s=k−2
n=I

∐
J

〈
τ̃r

∏
i∈I

τ̃di

〉
g ′

〈
τ̃s

∏
i∈J

τ̃di

〉
g−g ′

,

where n = {1, . . . , n}.
Because 〈τ̃1〉1 = 1

8 , by induction on (g, n) it is easy to show that, for any prime
number p ≥ 3,

p � denom〈τ̃d1 · · · τ̃dn〉g.
The proposition is proved.

Lemma 4.5. Let Bm denote the Bernoulli numbers in the expansion

t

e t − 1
=

∞∑
m=0

Bm

tm

m!
.

The denominator of B2m is given by ∏
(p−1)|2m

p,

where the product is taken over the primes p.

Proof. The lemma follows easily from Staudt’s theorem (see [10]),

−B2m ≡
∑

(p−1)|2m

1

p
(mod1),

where the sum is taken over the primes p.

Theorem 4.6. The denominator of intersection numbers of the form∫
Mg,n

ψ
d1
1 · · ·ψdn

n κa1 · · · κam
λ
k1
1 · · · λkgg (7)

can only contain prime factors less than or equal to 2g + 1.

Proof. Mumford [22] proved the following formula for the Chern character of a
Hodge bundle:

ch2m−1(E) = B2m

(2m)!

[
κ2m−1 −

n∑
i=1

ψ 2m−1
i + 1

2

∑
ξ∈5

lξ∗

(2m−2∑
i=0

ψi
1(−ψ2)

2m−2−i

)]
.
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We know that any λi can be expressed as a polynomial of chj(E)’s:

λi =
∑
µ�i

(−1)i−l(µ)
∏
r≥1

((r − 1)!)mr

mr !
chµ(E), i ≥ 1,

where the sum ranges over all partitions µ of i, mr is the number of r in µ, and
chµ(E) = chµ1(E) · · · chµl

(E).

By Faber’s algorithm [6], we can reduce any Hodge integral (7) to a sum of inte-
grals with only ψ and κ classes using the Mumford formula. So the extra denomi-
nators that may have prime factors larger than 2g+1 come only from B2m/(2m)!.

Note that ch0(E) = g, ch2r (E) = 0 for r ≥ 1, and chr (E) = 0 for r ≥ 2g. So
the theorem follows from Lemma 4.5 and Theorem 4.3(1).

In view of Proposition 3.6, Theorem 4.6 should also follow from Mumford’s [22]
definition of the Chow ring of Mg,n. We include a proof here because it’s concep-
tually simple and direct.

Lemma 4.7. If 2 ≤ p ≤ g + 1 is a prime number, then ord(p,Dg,3) ≥ 2.

Proof. From Lemma 2.1(3) we have 24g | Dg,3, so Lemma 4.7 is obvious forp =
2 or 3. We assume p ≥ 5 hereafter.

The following formulation of the special 3-point function is due to Faber [7]:

Fg(x, y, −y)

=
∑
b≥0

2b∑
j=0

(−1)j〈τ3g−2bτjτ2b−j〉g x3g−2by2b

=
∑

a+b+c=g
b≥a

(a + b)!

4a+b24c(2a + 2b + 1)!! (b − a)! (2a + 1)! c!
x3a+3c+by2b.

If p >
2g+1

3 , then consider the coefficient of x3g−p+1yp−1 in Fg(x, y, −y):

[Fg(x, y, −y)]x3g−p+1yp−1

=
∑

a+b+c=g

a≤ p−1
2

(a + b)!

4a+b24c(2a + 2b + 1)!! (b − a)! (2a + 1)! c!
,

where b = p−1
2 . We must have c < p, so it’s not difficult to see that only the term

with a = b = p−1
2 can contain factor p2 in the denominator.

If p ≤ 2g+1
3 , then

[Fg(x, y, −y)]xgy2g = 1

4g(2g + 1)!!

and ord(p, (2g + 1)!!) ≥ 2. Hence we have proved the lemma.

Theorem 4.8. Let X be a compact Riemann surface of genus g ′ ≥ 2 and let
g ≥ g ′. Then |Aut(X)| divides Dg,3.
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Proof. We first prove the case g ′ = g.

Let p denote a prime number. By Corollary 3.2, it is sufficient to prove⌊
logp

2pg

p − 1

⌋
+ ord(p, 2(g − 1)) ≤ ord(p,Dg,3) (8)

for all prime p ≤ 2g + 1.
If max(g, 5) ≤ p ≤ 2g + 1, then

⌊
logp

2pg
p−1

⌋ ≤ 1 and ord(p, 2(g − 1)) = 0;
therefore, by Theorem 4.3(2), inequality (8) holds. Next we assume 5 ≤ p ≤
g−1. Before addressingp = 2 andp = 3, we examine three subcases as follows.

Case (i). Ifp = g −1 ≥ 5 is prime, then (g −1)(g − 2) > 2g. By Lemma 4.7,
we have ⌊

logg−1
2g(g − 1)

g − 2

⌋
+ 1 ≤ 2 ≤ ord(g − 1,Dg,3).

Case (ii). Otherwise, if p � (g −1) then, since ord(p, 2(g −1)) = 0, it follows
that g! | Dg,3 and ord(p, g!) ≥ ⌊ g

p

⌋; hence, in order to check (8), it’s sufficient
to prove ⌊

logp

2pg

p − 1

⌋
≤

⌊
g

p

⌋
.

Let g = kp + r, where −p ≤ r < 0. Then
⌊ g

p

⌋ = k − 1. Since for fixed k the
left-hand side takes its maximum value when g = kp −1, we need only prove the
above inequality for g = kp − 1, which is equivalent, for all k ≥ 2 and p ≥ 5, to

pk >
2p(kp − 1)

p − 1
(i.e., pk − pk−1 − 2kp + 2 > 0),

which is not difficult to check.

Case (iii). If p | (g − 1) and 5 ≤ p < g − 1, let ord(p, 2(g − 1)) = r. Then
pr | (g − 1) and we have

ord(p,Dg,3) ≥ ord(p, g!) =
⌊
g

p

⌋
+

⌊
g

p2

⌋
+

⌊
g

p3

⌋
+ · · ·

≥
⌊
g

p

⌋
+ r − 1.

So it’s sufficient to prove ⌊
logp

2pg

p − 1

⌋
+ 1 ≤

⌊
g

p

⌋
.

Let g = kp + 1 and k ≥ 2. We need to prove

pk >
2p(kp + 1)

p − 1
(i.e., pk − pk−1 − 2kp − 2 > 0).

The inequality holds except in the case where p = 5, k = 2, and g = 11, which
should be treated separately. We have

ord(5, |G|) ≤
⌊

log5
110

4

⌋
+ 1 = 3
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and ord(5,D11,3) = 3; in fact,

D11,3 = 241 · 315 · 53 · 72 · 112 · 13 · 17 · 19 · 23.

We have finished checking in this case.

Now we consider when p = 2 or p = 3. Note that 24gg! | Dg,3. If p = 2, then
it’s sufficient to prove that log2 4g ≤ 3g −1. Ifp = 3, then it’s sufficient to prove
that log3 3g ≤ g. Both cases are easy to check, so we have concluded the proof of
the theorem when g ′ = g.

The proof of the cases g ′ < g can be proved by exactly the same argument and
using Lemma 4.7.

There exists a compact Riemann surface X of genus 6 with |Aut(X)| = 150 (see
Table 13 in [2]). However, the power of 5 in D6,2 = 222 · 38 · 5 · 7 · 11 · 13 is only
1, so |Aut(X)| � D6,2. In this sense, we may say that Theorem 4.8 is optimal.

The following immediate corollary of Theorem 4.8 is a conjecture of Itzykson
and Zuber, stated at the end of [12, Sec. 5].

Corollary 4.9. For 1 < g ′ ≤ g, the order of automorphism group of any com-
pact Riemann surface of genus g ′ divides Dg.

We remark that the statement of Corollary 4.9 doesn’t hold for stable curves: there
exists some stable curve, of genus g, whose automorphism group order does not
divide Dg. A counterexample can be constructed as follows. Let n = ⌊ 2g

p−1

⌋
Rie-

mann surfaces of genus p−1
2 be attached to a sphere at e2πi/n for 0 ≤ i ≤ n − 1.

When n ≥ p, the order of automorphism group of such a stable curve will have a
power of p larger than

⌊ 2g
p−1

⌋
(see Conjecture 2.5).

5. A Conjectural Numerical Property
of Intersection Numbers

During our work on intersection numbers, we noticed a multinomial-type prop-
erty for intersection numbers. Although the property is still conjectural, we feel
that it would establish interesting constraints on intersection numbers of moduli
spaces and so briefly present it here.

From

〈τd1 · · · τdn〉0 =
(

n − 3
d1 · · · dn

)
= (n − 3)!

d1! · · · dn!
,

we see that if d1 < d2 then

〈τd1τd2 · · · τdn〉0 ≤ 〈τd1+1τd2−1 · · · τdn〉0.

Now we prove that the same inequality holds in genus 1.

Proposition 5.1. For
∑n

i=1di = n and d1 < d2, we have

〈τd1τd2 · · · τdn〉1 ≤ 〈τd1+1τd2−1 · · · τdn〉1.
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Proof. We prove the inequality by induction on n. If n = 2, then

〈τ0τ2〉1 = 〈τ1τ1〉1 = 1

24
.

Now assume that the proposition has been proved for n − 1. We may also as-
sume that d2 − d1 ≥ 2, for otherwise the result is trivial. So by the symmetry
property of intersection numbers, we may assume without loss of generality that
dn = 0 or dn = 1.

If dn = 1 then, by the dilaton equation, we have

〈τd1τd2 · · · τdn〉1 = (n − 1)〈τd1τd2 · · · τdn−1〉1,

〈τd1+1τd2−1 · · · τdn〉1 = (n − 1)〈τd1+1τd2−1 · · · τdn−1〉1.

So 〈τd1τd2 · · · τdn〉1 ≤ 〈τd1+1τd2−1 · · · τdn〉1 holds in this case by induction.
If dn = 0 then, by the string equation, we have

〈τd1τd2 · · · τdn〉1 = 〈τd1−1τd2 · · · τdn−1〉1 + 〈τd1τd2−1 · · · τdn−1〉1

+
n−1∑
i=3

〈τd1τd2 · · · τdi−1 · · · τdn−1〉1,

〈τd1+1τd2−1 · · · τdn〉1 = 〈τd1τd2−1 · · · τdn−1〉1 + 〈τd1+1τd2−2 · · · τdn−1〉1

+
n−1∑
i=3

〈τd1+1τd2−1 · · · τdi−1 · · · τdn−1〉1.

So 〈τd1τd2 · · · τdn〉1 ≤ 〈τd1+1τd2−1 · · · τdn〉1 holds again by induction.

Now we formulate the following conjecture.

Conjecture 5.2. For
∑n

i=1 di = 3g − 3 + n and d1 < d2,

〈τd1τd2 · · · τdn〉g ≤ 〈τd1+1τd2−1 · · · τdn〉g.
In other words: The more evenly 3g − 3 + n is distributed among indices, the
larger are the intersection numbers.

By the same argument of Proposition 5.1, we can see that for each g it’s enough
to check only those intersection numbers with n ≤ 3g −1 and d3 ≥ 2, . . . , dn ≥ 2.

We checked Conjecture 5.2 for g ≤ 16 with the help of Faber’s Maple program.
Moreover, for n = 2 we checked all g ≤ 300 using Dijkgraaf ’s 2-point function;
and for n = 3 we checked all g ≤ 50 using Zagier’s 3-point function.
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