Block Source Algebras in *p*-Solvable Groups

Dedicated to the memory of Donald G. Higman

1. Introduction

1.1. The purpose of this paper is to fill a gap that has remained open since 1979, when in the Santa Cruz conference we announced the main results on the so-called local structure of the blocks of finite *p*-solvable groups [6], which were mainly obtained from a suitable translation to algebras of Fong's reduction [4]. At that time, the term *local structure* referred to the paper by Alperin and Broué [2], but since that meeting it has become clear that, when studying a block of a finite group, the structure to describe is its *source algebra*.

1.2. As a matter of fact, in [6] we already described the source algebra of a *nilpotent block* in a finite *p*-solvable group, and one of the reasons for delaying the publication of our work on the blocks of *p*-solvable groups was that, after Santa Cruz, we concentrated our effort on determining the structure of the source algebra of nilpotent blocks in *any* finite group [10].

1.3. Another reason for delaying this publication was that, although the translation to algebras of Fong's reduction does indeed allow one to determine the structure of the source algebra of a block in finite *p*-solvable groups, this structure involves a *Dade P-algebra*, where *P* is a defect *p*-subgroup of the block, and only many years later did we find a way to prove its uniqueness. A last remark: although, for the sake of simplicity, we deal only with the source algebra of a block in characteristic p > 0, the interested reader will see that [10, Lemma 7.8] and [11, Cor. 3.7] allow one to determine the source algebra over a complete discrete valuation ring of characteristic 0.

2. Notation and Quoted Results

2.1. We fix a prime number p and an algebraically closed field of characteristic p. It is well known that Fong's reduction involves a central extension of the finite group we start with; precisely, it involves a central extension by a finite subgroup of k^* , and a handy way to unify our setting is to consider from the beginning a central extension \hat{G} of a finite group G by k^* . This is not more general since, nevertheless, \hat{G} always contains a *finite* subgroup G' covering G.

Received May 24, 2007. Revision received September 16, 2007.

LLUIS PUIG

2.2. Explicitly, we call k^* -group a group X endowed with an injective group homomorphism $\theta: k^* \to Z(X)$ (cf. [9, Sec. 5]) and call k^* -quotient of (X, θ) the group $X/\theta(k^*)$; we denote by X° the k^* -group formed by X and by the composition of θ with the automorphism $k^* \cong k^*$ mapping $\lambda \in k^*$ on λ^{-1} . We say that a k^* -group is *finite* whenever its k^* -quotient is finite. Usually, we denote by \hat{G} a k^* -group and by G its k^* -quotient, and we write $\lambda \cdot \hat{x}$ for the product of $\hat{x} \in \hat{G}$ by the image of $\lambda \in k^*$ in \hat{G} .

2.3. If \hat{G}' is a second k^* -group, we denote by $\hat{G} \times \hat{G}'$ the quotient of the direct product $\hat{G} \times \hat{G}'$ by the image in $\hat{G} \times \hat{G}'$ of the *inverse* diagonal of $k^* \times k^*$, which has the obvious structure of k^* -group with k^* -quotient $G \times G'$; moreover, if G = G' then we denote by $\hat{G} * \hat{G}'$ the k^* -group obtained from the inverse image of $\Delta(G) \subset G \times G$ in $\hat{G} \times \hat{G}'$, which is nothing but the so-called *sum* of both central extensions of *G* by k^* . In particular, we have a canonical k^* -group isomorphism

$$\hat{G} * \hat{G}^{\circ} \cong k^* \times G. \tag{2.3.1}$$

A k^* -group homomorphism $\varphi \colon \hat{G} \to \hat{G}'$ is a group homomorphism that preserves the k^* -multiplication.

2.4. Note that for any *k*-algebra *A* of finite dimension—just called *algebra* in the sequel—the group A^* of invertible elements has a canonical k^* -group structure. If *S* is a simple algebra then Aut_k(*S*) coincides with the k^* -quotient of S^* ; in particular, any finite group *G* acting on *S* determines—by *pull-back*—a k^* -group \hat{G} of k^* -quotient *G* together with a k^* -group homomorphism

$$\rho \colon \hat{G} \to S^* \tag{2.4.1}$$

(cf. [9, 5.7]).

2.5. If \hat{G} is a finite k^* -group, we call \hat{G} -interior algebra any algebra A endowed with a k^* -group homomorphism

$$\rho \colon \hat{G} \to A^*; \tag{2.5.1}$$

as usual, we write $\hat{x} \cdot a$ and $a \cdot \hat{x}$ instead of $\rho(\hat{x})a$ and $a\rho(\hat{x})$ for any $\hat{x} \in \hat{G}$ and any $a \in A$. Then, a \hat{G} -interior algebra homomorphism from A to another \hat{G} -interior algebra A' is a *not necessarily unitary* algebra homomorphism $f: A \to A'$ fulfilling $f(\hat{x} \cdot a) = \hat{x} \cdot f(a)$ and $f(a \cdot \hat{x}) = f(a) \cdot \hat{x}$; we say that f is an *embedding* whenever Ker $(f) = \{0\}$ and Im(f) = f(1)A'f(1). For a k^* -group homomorphism $\varphi: \hat{G}' \to \hat{G}$, we denote by $\operatorname{Res}_{\varphi}(A)$ the \hat{G}' -interior algebra defined by $\rho \circ \varphi$. Note that the conjugation induces an action of the k^* -quotient G of \hat{G} on A, so that A becomes an ordinary G-algebra; thus, all the pointed group language developed in [7] applies to \hat{G} -interior algebras.

2.6. For any k^* -subgroup \hat{H} of \hat{G} , a point α of \hat{H} on A is an $(A^H)^*$ -conjugacy class of primitive idempotents of A^H and the pair \hat{H}_{α} is a pointed k^* -group on A; we denote by $\mathcal{P}_A(\hat{H})$ the set of points of \hat{H} on A. For any $i \in \alpha$, iAi has the evident structure of an \hat{H} -interior algebra mapping $\hat{x} \in \hat{H}$ on $\hat{x} \cdot i = i \cdot \hat{x}$, and we denote by A_{α} one of these mutually $(A^H)^*$ -conjugate \hat{H} -interior algebras.

2.7. A second pointed k^* -group \hat{K}_{β} on A is *contained* in \hat{H}_{α} if \hat{K} is a k^* -subgroup of \hat{H} and if, for any $i \in \alpha$, there is a $j \in \beta$ such that ij = j = ji. Then it is quite clear that the $(A^K)^*$ -conjugation induces \hat{K} -interior algebra embeddings

$$f^{\alpha}_{\beta} \colon A_{\beta} \to \operatorname{Res}^{H}_{\hat{K}}(A_{\alpha}).$$
 (2.7.1)

More generally, we say that an injective k^* -group homomorphism $\varphi \colon \hat{K} \to \hat{H}$ is an *A*-fusion from \hat{K}_{β} to \hat{H}_{α} whenever there is a \hat{K} -interior algebra embedding

$$f_{\varphi} \colon A_{\beta} \to \operatorname{Res}_{\hat{K}}^{\hat{H}}(A_{\alpha})$$
 (2.7.2)

such that the inclusion $A_{\beta} \subset A$ and the composition of f_{φ} with the inclusion $A_{\alpha} \subset A$ are A^* -conjugate. We denote by $F_A(\hat{K}_{\beta}, \hat{H}_{\alpha})$ the set of such fusions (cf. [8, Def. 2.5]) and by $\tilde{F}_A(\hat{K}_{\beta}, \hat{H}_{\alpha})$ its quotient by the action of H, whereas we denote by $E_G(\hat{K}_{\beta}, \hat{H}_{\alpha})$ and $\tilde{E}_G(\hat{K}_{\beta}, \hat{H}_{\alpha})$ the respective subsets of fusions determined by elements of G; we set $F_A(\hat{H}_{\alpha}) = F_A(\hat{H}_{\alpha}, \hat{H}_{\alpha})$ and so forth.

2.8. Note that any *p*-subgroup *P* of \hat{G} can be identified with its image in *G* and determines the *k**-subgroup $k^* \cdot P \cong k^* \times P$ of \hat{G} ; as usual, we consider the quotient and the algebra homomorphism

$$\operatorname{Br}_P \colon A^P \to A(P) = A^P / \sum_Q A_Q^P, \qquad (2.8.1)$$

where Q runs over the set of proper subgroups of P, and we call *local* any point γ of P on A not contained in Ker(Br_P). We denote by $\mathcal{LP}_A(P)$ the set of local points of P on A. More generally, we denote by \mathcal{L}_A the *local category of* A, where the objects are the *local pointed groups* on A and the morphisms are the A-fusions between them with the usual composition (cf. 2.6 and Definition 2.15 in [8]). Recall that the maximal *local pointed groups* P_{γ} contained in \hat{H}_{α} —called *defect pointed groups* of \hat{H}_{α} —are all mutually H-conjugate (cf. [7, Thm. 1.2]).

2.9. It is clear that the inclusion $k^* \subset k$ determines a *k*-algebra homomorphism to *k* from the group algebra kk^* of the group k^* , so that *k* becomes a kk^* -algebra. For any finite k^* -group \hat{G} , it is clear that the group algebra $k\hat{G}$ of the group \hat{G} is also a kk^* -algebra, and then we call k^* -group algebra of \hat{G} the algebra

$$k_*\hat{G} = k \otimes_{kk^*} k\hat{G}; \tag{2.9.1}$$

note that the dimension of $k_*\hat{G}$ coincides with |G|. Coherently, a *block* of \hat{G} is a primitive idempotent *b* of the center $Z(k_*\hat{G})$, so that $\alpha = \{b\}$ is a point of \hat{G} on $k_*\hat{G}$. If P_{γ} is a defect pointed group of \hat{G}_{α} then we call *source algebra of the block b* the *P*-interior algebra $(k_*\hat{G})_{\gamma} = (k_*\hat{G}b)_{\gamma}$. Recall that, for any *p*-subgroup *P* of \hat{G} , we have

$$(k_*\hat{G})(P) \cong k_*C_{\hat{G}}(P)$$
 (2.9.2)

(cf. 2.9.2 and Proposition 5.15 in [9]); moreover, recall that a local pointed group Q_{δ} on $k_*\hat{G}$ is *self-centralizing* if $C_P(Q) = Z(Q)$ for any local pointed group P_{γ} on $k_*\hat{G}$ containing Q_{δ} .

2.10. If \hat{G} is a finite k^* -group, $A = \hat{G}$ -interior algebra, and $\hat{H} = k^*$ -subgroup of \hat{G} , then as usual we denote by $\operatorname{Res}_{\hat{H}}^{\hat{G}}(A)$ the corresponding \hat{H} -interior algebra. Conversely, for any \hat{H} -interior algebra B, we consider the *induced* \hat{G} -*interior algebra*

$$\operatorname{Ind}_{\hat{H}}^{\hat{G}}(B) = k_* \hat{G} \otimes_{k_* \hat{H}} B \otimes_{k_* \hat{H}} k_* \hat{G}, \qquad (2.10.1)$$

where the distributive product is defined by the formula

$$(\hat{x} \otimes b \otimes \hat{y})(\hat{x}' \otimes b' \otimes \hat{y}') = \begin{cases} \hat{x} \otimes b.\hat{y}\hat{x}'.b' \otimes \hat{y}' & \text{if } \hat{y}\hat{x}' \in \hat{H}, \\ 0 & \text{otherwise} \end{cases}$$
(2.10.2)

for any $\hat{x}, \hat{y}, \hat{x}', \hat{y}' \in \hat{G}$ and any $b, b' \in B$ and where we map the element $\hat{x} \in \hat{G}$ on $\sum_{\hat{y}} \hat{x}\hat{y} \otimes 1_B \otimes \hat{y}^{-1}$, with $\hat{y} \in \hat{G}$ running over a set of representatives for \hat{G}/\hat{H} .

2.11. As mentioned in the Introduction, the source algebras we are looking for involve Dade *P*-algebras; precisely, for a finite *p*-group *P*, we call *Dade P-algebra* a simple algebra *S* endowed with an action of *P* that stabilizes a basis of *S* containing 1_S . Actually, the action of *P* on *S* can be lifted to a unique group homomorphism $P \rightarrow S^*$, and usually we consider *S* a *P*-interior algebra. As we shall see, this situation appears quite naturally when dealing with finite *p*-solvable groups and, as a matter of fact, it was Dade's motivation for introducing them in 1978 [3].

3. Fong Reduction for \hat{G} -Interior Algebras

3.1. In [4] Fong developed a reduction method for the characters of a finite group from the choice of a normal p'-subgroup. In fact, for a k^* -group \hat{G} with finite k^* -quotient G, Fong's arguments can be extended to \hat{G} -interior algebras in the following way. Let A be a \hat{G} -interior algebra and S a G-stable semisimple unitary subalgebra of A such that G acts transitively on the set I of primitive idempotents of the center Z(S) of S; let i be an element of I and denote by \hat{H} the stabilizer of i in \hat{G} . Then the k^* -quotient H of \hat{H} acts on the simple algebra Si determining a k^* -group \hat{H} , together with a k^* -group homomorphism $\rho: \hat{H} \to (Si)^*$ (cf. 2.4), and we set (cf. 2.3)

$$H^{*} = \hat{H} * (^{*}H)^{\circ}. \tag{3.1.1}$$

PROPOSITION 3.2. With the preceding assumptions, there exists an H^{-} -interior algebra B, unique up to isomorphisms, such that we have a \hat{G} -interior algebra isomorphism

$$A \cong \operatorname{Ind}_{\hat{H}}^{\hat{G}}(Si \otimes_k B) \tag{3.2.1}$$

mapping $s \in Si$ on $1 \otimes (s \otimes 1_B) \otimes 1$. In particular, A and B are Morita equivalent.

Proof. The multiplication by *i* determines an \hat{H} -interior algebra structure on iAi and, since *G* acts transitively on *I*, it is easily checked that we have a \hat{G} -interior algebra isomorphism $A \cong \operatorname{Ind}_{\hat{H}}^{\hat{G}}(iAi)$ mapping $a \in iAi$ on $1 \otimes a \otimes 1$ (cf. [9, 2.14.2]). Now, since *Si* is a unitary simple subalgebra of iAi, the multiplication in this algebra induces an algebra isomorphism

$$Si \otimes_k B \cong iAi,$$
 (3.2.2)

where B is the centralizer of Si in iAi (cf. [7, Prop. 2.1]).

Moreover, if $\hat{x} \in \hat{H}$ and $\hat{x} \in \hat{H}$ have the same image x in H then the element $\rho(\hat{x})^{-1} \cdot \hat{x}$ of iAi centralizes Si, so that it belongs to B; whereas if $(\hat{y}, \hat{y}) \in \hat{H} \times \hat{H}$ is another such a pair then we have

$$(\rho(\hat{x})^{-1} \cdot \hat{x})(\rho(\hat{y})^{-1} \cdot \hat{y}) = \rho(\hat{y})^{-1}(\rho(\hat{x})^{-1} \cdot \hat{x}) \cdot \hat{y} = \rho(\hat{x} \cdot \hat{y})^{-1} \cdot (\hat{x}\hat{y}), \quad (3.2.3)$$

so that *B* becomes an H^{-} -interior algebra and isomorphism (3.2.2) becomes an \hat{H} -interior algebra isomorphism.

COROLLARY 3.3. With the preceding assumptions, assume that B has a unique H-conjugacy class of maximal local pointed groups P_{γ} , that P has a local point on Si, and that the actions of $P \times P$ on A and B by left and right multiplication stabilize bases where $P \times \{1\}$ and $\{1\} \times P$ act freely. Then Si is a Dade P-algebra and, for any local pointed group Q_{δ} on B, we have a local point $\iota(\delta)$ of Q on A such that isomorphism (3.2.1) induces a Q-interior algebra embedding

$$A_{\iota(\delta)} \to \operatorname{Res}_{O}^{H}(Si) \otimes_{k} B_{\delta}, \qquad (3.3.1)$$

and this correspondence determines an equivalence of categories $\iota: \mathcal{L}_B \to \mathcal{L}_A$ between the local categories of B and A. In particular, A has a unique G-conjugacy class of maximal local pointed groups.

Proof. Since *P* stabilizes by conjugation a basis *Y* of *B* and since *P* has a local point on *B*, it fixes an element of *Y* (cf. [9, 2.8.4]) and therefore *Si* is a direct summand of *iAi* and *A* as *kP*-modules when *P* acts by conjugation. However, we are assuming that $P \times P$ stabilizes a basis of *A* by left and right multiplication; hence *P* stabilizes by conjugation a basis *Z* of *Si* and, since we are assuming that it has a local point on *Si*, *P* fixes an element of *Z* that can be replaced by 1_S , so that *Si* is a Dade *P*-algebra (cf. 2.11).

If R_{ε^A} is a local pointed group on A then R fixes at least one element of I having a nonzero image in A(R); that is to say, up to G-conjugation, we may assume that $R \subset \hat{H}$ and $Br_R^A(i) \neq 0$, so that R_{ε^A} comes from a local pointed group on $iAi \cong Si \otimes_k B$ (cf. [12, 2.11.2]), which forces

$$(Si)(R) \neq \{0\}$$
 and $B(R) \neq \{0\}$ (3.3.2)

since the *k*-algebra homomorphism $(Si)(R) \otimes_k B(R) \rightarrow (Si \otimes_k B)(R)$ (cf. [12, 7.9.2]) is unitary. In particular, *R* has local points on *B* and, since $\operatorname{Res}_R^H(Si)$ is a Dade *R*-algebra, we actually get

$$(iAi)(R) \cong (Si)(R) \otimes_k B(R) \tag{3.3.3}$$

(cf. [12, Lemma 7.10]).

Conversely, let Q_{δ} be a local pointed group on *B* and assume that $Q_{\delta} \subset P_{\gamma}$; once again, we get

$$(iAi)(Q) \cong (Si)(Q) \otimes_k B(Q) \tag{3.3.4}$$

and we know that (Si)(Q) is a simple algebra (cf. [11, 1.8.1]). In particular, the $B(Q)^*$ -conjugacy class $\operatorname{Br}_O^B(\delta)$ of primitive idempotents of B(Q) and the unique

LLUIS PUIG

conjugacy class of primitive idempotents of (Si)(Q) together determine a local point $\iota_i(\delta)$ of Q on iAi and therefore a local point $\iota(\delta)$ of Q on A (cf. [12, 2.11.2]) such that, for a suitable $j' \in \iota(\delta)$ fulfilling j'i = j' = ij', isomorphism (3.3.4) maps $\operatorname{Br}_Q^A(j')$ on $\operatorname{Br}_Q^S(\ell) \otimes \operatorname{Br}_Q^B(j)$, where ℓ is a suitable primitive idempotent of $(Si)^Q$ and $j \in \delta$. Actually, up to an identification via isomorphism (3.2.1), we may assume that

$$j'(\ell \otimes j) = j' = (\ell \otimes j)j' \tag{3.3.5}$$

and then we obtain a Q-interior algebra embedding

$$A_{\iota(\delta)} \to \operatorname{Res}_{O}^{H}(Si) \otimes_{k} B_{\delta}.$$
(3.3.6)

On the other hand, for a second local pointed group R_{ε} on *B* it follows from [8, Cor. 2.16] that

$$F_{Si\otimes_k B}(R_{\iota_i(\varepsilon)}, Q_{\iota_i(\delta)}) = F_A(R_{\iota(\varepsilon)}, Q_{\iota(\delta)});$$
(3.3.7)

once again, we may assume that $R_{\varepsilon} \subset P_{\gamma}$ and then, since *B* has a $(P \times P)$ -stable basis where $P \times \{1\}$ and $\{1\} \times P$ act freely, it follows from [5, Lemma 1.17] that

$$F_{Si\otimes_k B}(R_{\iota_i(\varepsilon)}, Q_{\iota_i(\delta)}) \subset F_B(R_\varepsilon, Q_\delta).$$
(3.3.8)

Moreover, since *A* and thus $Si \otimes_k B$ also have $(P \times P)$ -stable bases where $P \times \{1\}$ and $\{1\} \times P$ act freely, the same Lemma 1.17 in [5] applies to the fusions on $(Si)^{\circ} \otimes_k (Si \otimes_k B)$ and therefore, since we successively have *P*-algebra embeddings $k \to (Si)^{\circ} \otimes_k Si$ (cf. 1.3.2 and 1.3.3 in [11]) and

$$B \to (Si)^{\circ} \otimes_k Si \otimes_k B, \tag{3.3.9}$$

we still obtain (cf. [8, Prop. 2.14])

$$F_B(R_{\varepsilon}, Q_{\delta}) \subset F_{Si\otimes_k B}(R_{\iota_i(\varepsilon)}, Q_{\iota_i(\delta)}).$$
(3.3.10)

Finally, we obtain the equality

$$F_B(R_{\varepsilon}, Q_{\delta}) = F_A(R_{\iota(\varepsilon)}, Q_{\iota(\delta)}), \qquad (3.3.11)$$

which proves that the functor $\iota: \mathcal{L}_B \to \mathcal{L}_A$ is *fully faithful*. But we have already proved that this functor is *essentially surjective*, so that it is an equivalence of categories. We are done.

3.4. The main point in our Fong reduction is that, if *A* is a *block algebra* $k_*\hat{G}b$ for a block *b* of \hat{G} , then *i* is a block of \hat{H} and, moreover, if either *p* does not divide $\dim_k(Si)$ or we have $S = k_*\hat{K}b$ for some normal k^* -subgroup \hat{K} of \hat{G} having a block *d* of *defect zero* such that $db \neq 0$, then *B* is also a block algebra. Denote by *V* a simple *Si*-module, which becomes a $k_*\hat{H}$ -module throughout ρ (cf. 3.1).

PROPOSITION 3.5. With the preceding assumptions, if $A \cong k_* \hat{G}b$ for a block b of \hat{G} , then i is a block of \hat{H} that belongs to a point β of \hat{H} on A and we have $i(k_*\hat{G})i = k_*\hat{H}i$. In particular, we have an equivalence of categories $\mathcal{L}_{k_*\hat{H}i} \cong \mathcal{L}_{k_*\hat{G}b}$.

Proof. Since $i \cdot \hat{x} \cdot i = \hat{x} \cdot (i^{\hat{x}})i = 0$ for any $\hat{x} \in \hat{G} - \hat{H}$, we get $i(k_*\hat{G})i = k_*\hat{H}i$. Similarly, denoting by $\tau : k_*\hat{G} \to k$ the linear form vanishing on $\hat{G} - k^*$.1 and sending the unity element to 1, which clearly defines a nonsingular symmetric bilinear form, we have $i = \sum_{x \in G} \tau(i \cdot \hat{x})\hat{x}^{-1}$, where \hat{x} lifts $x \in G$ to \hat{G} , and thus, since

$$\tau(i \cdot \hat{x}) = \tau(i \cdot \hat{x} \cdot i^{\hat{x}}) = \tau(i^{\hat{x}}i \cdot \hat{x}) = 0 \quad \text{for any } \hat{x} \in \hat{G} - \hat{H},$$
(3.5.1)

i belongs to $Z(k_*\hat{H})$; moreover, since *b* is primitive in $Z(k_*\hat{G})$, the idempotent *i* must be primitive in $Z(k_*\hat{H})$ and, since $iAi = k_*\hat{H}i$, the idempotent *i* is primitive in A^H , too. On the other hand, assuming that $S = \bigoplus_{i \in I} k \cdot i$, it is quite clear that all the hypotheses in Corollary 3.3 hold and therefore the last statement follows from this corollary.

THEOREM 3.6. With the preceding assumptions, assume that $A \cong k_*\hat{G}b$ for a block b of \hat{G} and that p does not divide $\dim_k(V)$. Then we have $B \cong k_*H^c$ for a block c of H^{\uparrow} , and V is a simple k_*H^- module. In particular, we have an equivalence of categories $\mathcal{L}_{k_*H^c} \cong \mathcal{L}_{k_*\hat{G}b}$.

Proof. Because $Si \otimes_k B \cong i(k_*\hat{G})i = k_*\hat{H}i$, the respective images of \hat{H} and H^{\uparrow} still generate Si and B; in particular, V becomes a simple $k_*\hat{H}$ -module and, since i is primitive in $Z(k_*\hat{H})$, there is a block c of H^{\uparrow} such that we have a surjective H^{\uparrow} -interior algebra homomorphism $g: k_*H^{\uparrow}c \to B$. It remains to prove that g is also injective or, equivalently, that

$$\dim_k(k_*H^c) \le \dim_k(B). \tag{3.6.1}$$

Once again, since $Si \otimes_k B \cong i(k_*\hat{G})i = k_*\hat{H}i$, the structural homomorphism $\hat{H} \to Si \otimes_k k_* \hat{H}c$ determines a section *s* of the \hat{H} -interior algebra homomorphism

$$\mathrm{id}_{Si} \otimes g \colon Si \otimes_k k_* H^{\widehat{}} c \to Si \otimes_k B, \tag{3.6.2}$$

so the k_*H^{-} -interior algebra homomorphism

$$\mathrm{id}_{(Si)^{\circ}\otimes_{k}Si}\otimes g\colon (Si)^{\circ}\otimes_{k}Si\otimes_{k}k_{*}H^{2}c\to (Si)^{\circ}\otimes_{k}Si\otimes_{k}B$$
(3.6.3)

admits the section $id_{(Si)^{\circ}} \otimes s$.

On the other hand, since we assume that p does not divide dim_k(Si), it follows that k is a direct summand of Si as kH-modules and thus we have an H-interior algebra embedding $h: k \to (Si)^{\circ} \otimes_k Si \cong \text{End}_k(Si)$ (cf. [14, Ex. 4.15]). Hence the surjective H[^]-interior algebra homomorphism g can be embedded in homomorphism (3.6.3), determining an evident commutative diagram

and in particular, we have

$$(\mathrm{id}_{(Si)^{\circ}\otimes_{k}Si}\otimes g)(h(1)\otimes c) = h(1)\otimes 1_{B}.$$
(3.6.5)

Consequently, since both idempotents

$$j = h(1) \otimes c$$
 and $\ell = (\mathrm{id}_{(Si)^\circ} \otimes s)(h(1) \otimes 1_B)$ (3.6.6)

lift $h(1) \otimes 1_B$ to the algebra $T = ((Si)^\circ \otimes_k Si \otimes_k k_* H^\circ c)^H$ and since *j* is primitive, we have $j\ell^t = j = \ell^t j$ for a suitable $t \in T^*$ (cf. [14, Cor. 2.14]). However, since

$$h(1)((Si)^{\circ} \otimes_k Si)h(1) = k \cdot h(1)$$
 (3.6.7)

it follows that

$$j((Si)^{\circ} \otimes_k Si \otimes_k k_*H^{\circ}c)j = h(1) \otimes k_*H^{\circ}c \cong k_*H^{\circ}c,$$

and similarly we still have

 $(h(1) \otimes 1_B)((Si)^{\circ} \otimes_k Si \otimes_k B)(h(1) \otimes 1_B) = h(1) \otimes B \cong B.$ (3.6.8)

Then the multiplication by *j* maps $(\mathrm{id}_{(Si)^{\circ}} \otimes s)(h(1) \otimes B)^{t}$, which is an *H*⁻-interior subalgebra, *onto* $h(1) \otimes k_{*}H^{c}c$ because it maps $H^{\circ} \cdot \ell^{t}$ onto $h(1) \otimes H^{\circ}c$; this proves inequality (3.6.1).

At this point, setting $\beta = \{c\}$ and choosing a defect pointed group P_{γ} of H_{β}^{2} , it is clear that the actions of $P \times P$ on A and B by left and right multiplication stabilize bases where $P \times \{1\}$ and $\{1\} \times P$ act freely (cf. [8, 3.3]); moreover, since $B(P) \neq \{0\}$ (cf. 2.8), acting by conjugation P fixes at least one element in a P-stable basis of B (cf. [9, 2.8.4]). Hence it follows from isomorphism (3.2.1) that Si is a direct summand of A as kP-modules always via the action of P by conjugation. Consequently, since P still stabilizes a basis of A, P stabilizes a basis Z of Si and moreover, since p does not divide |Z|, P fixes an element of Z. In other words, Si with the action of P becomes a Dade P-algebra (cf. 2.11). Now, the last statement follows from Corollary 3.3 and we are done.

THEOREM 3.7. With the preceding assumptions, assume that $A \cong k_*\hat{G}b$ for a block b of \hat{G} and that $S = k_*\hat{K}b$ for a normal k^* -subgroup \hat{K} of \hat{G} having a block d of defect zero such that $db \neq 0$. Then K is a normal subgroup of H° and we have $B \cong k_*(H^{\circ}/K)\bar{c}$ for a block \bar{c} of H°/K . In particular, we have an equivalence of categories $\mathcal{L}_{k_*(H^{\circ}/K)\bar{c}} \cong \mathcal{L}_{k_*\hat{G}b}$.

Proof. We clearly may assume that i = db; then \hat{K} is contained in both \hat{H} and \hat{H} , which provides a canonical lifting of the k^* -quotient K to H^{\wedge} (cf. 2.3.1). Up to the identification of K with its canonical image in H^{\wedge} , we set $\bar{H}^{\wedge} = H^{\wedge}/K$ and $\bar{H} = H/K$. On the other hand, since H fixes d, multiplying by d the direct sum decomposition

$$k_*\hat{H} = \bigoplus_{\bar{x}\in H/K} (k_*\hat{K})\hat{x}, \qquad (3.7.1)$$

where \hat{x} lifts $\bar{x} \in \bar{H}$ to \hat{H} , yields

$$\dim_k(k_* Hd) = \dim_k(k_* Kd)|H/K|.$$
(3.7.2)

Thus, setting $e = \text{Tr}_{H}^{G}(d)$ and applying Proposition 3.2 to the \hat{G} -interior algebra $k_{*}\hat{G}e$ with the *G*-stable semisimple algebra $k_{*}\hat{K}e$, we obtain a \hat{G} -interior algebra isomorphism

$$k_*\hat{G}e \cong \operatorname{Ind}_{\hat{H}}^{\hat{G}}(k_*\hat{K}d \otimes_k k_*\bar{H}^{\uparrow}); \qquad (3.7.3)$$

in particular, this isomorphism induces an algebra isomorphism

$$Z(k_*\hat{G}e) \cong Z(k_*\bar{H}^{\uparrow}) \tag{3.7.4}$$

mapping b on a block \bar{c} of $H^{/}/K$, and then it is quite clear that

$$k_* H^{\hat{c}} \cong B. \tag{3.7.5}$$

Now set $\alpha = \{b\}$ and choose a defect pointed group P_{γ} of \hat{G}_{α} . According to Proposition 3.5, we may assume that $P_{\gamma} \subset H_{\beta}$, so that P_{γ} comes from a local pointed group on $iAi \cong Si \otimes_k B$ (cf. [12, 2.11.2]), which forces

$$(Si)(P) \neq \{0\}$$
 and $B(P) \neq \{0\}$ (3.7.6)

because the *k*-algebra homomorphism $(Si)(P) \otimes_k B(P) \to (Si \otimes_k B)(P)$ (cf. [12, 7.9.2]) is unitary. In particular, since *P* stabilizes a basis *Z* of $Si = k_* \hat{K} db$, we know that *P* fixes an element of *Z* (cf. [9, 2.8.4]) and thus $\operatorname{Res}_P^H(Si)$ is a Dade *P*-algebra (cf. 2.11). However, *d* is a block of defect zero of \hat{K} and so we have $(Si)(R) = \{0\}$ for any nontrivial *p*-subgroup *R* of \hat{K} (cf. 2.8); thus we have $P \cap K = \{1\}$ and therefore *P* is isomorphic to its image \overline{P} in \overline{H}^{2} .

Consequently, since $A \cong k_* \hat{G}b$ and $k_* \bar{H} \hat{c} \cong B$, the actions of $P \times P$ on A and B by left and right multiplication stabilize bases where $P \times \{1\}$ and $\{1\} \times P$ act freely (cf. [8, 3.3]). Then, since

$$(Si \otimes_k B)(P) \cong (Si)(P) \otimes_k B(P) \tag{3.7.7}$$

(cf. [9, 2.8.4]), γ determines a local point $\bar{\gamma}$ of $P \cong \bar{P}$ on *B* (cf. [10, Prop. 5.6]) and it follows from [8, Thm. 3.1] that

$$F_B(\bar{P}_{\bar{\gamma}}) \cong N_{\bar{H}^{\wedge}}(\bar{P}_{\bar{\gamma}})/C_{\bar{H}^{\wedge}}(\bar{P}), \qquad (3.7.8)$$

so that the subgroup $F_B(\bar{P}_{\bar{\gamma}})$ of Aut (\bar{P}) stabilizes the Dade *P*-algebra *Si*. At this point, it follows from [5, Lemma 1.17] and [8, Prop. 2.14] that

$$F_A(P_{\gamma}) \cong F_B(P_{\bar{\gamma}}); \tag{3.7.9}$$

thus, since P_{γ} is a maximal local pointed group on $k_*\hat{G}b$, the Brauer First Main Theorem implies that $N_{\tilde{H}^{\uparrow}}(\bar{P}_{\tilde{\gamma}})/\bar{P} \cdot C_{\tilde{H}^{\uparrow}}(\bar{P})$ is a p'-group and hence that $\bar{P}_{\tilde{\gamma}}$ is a maximal local pointed group on $k_*\bar{H}^{\uparrow}\bar{c} \cong B$. Now, the last statement follows from Corollary 3.3 and we are done.

4. The *p*-Solvable *k**-Group Case

4.1. As before, \hat{G} is a k^* -group with finite k^* -quotient G, and in this section we assume that G is p-solvable. Let b be a block of \hat{G} and let S be a G-stable semisimple unitary subalgebra of $k_*\hat{G}b$ that is maximal such that p does not divide the dimension of its simple factors; since b is primitive in $Z(k_*\hat{G}b)$, the group Gacts transitively on the set I of primitive idempotents of Z(S) and we borrow the notation i, \hat{H} , \hat{P} , and $H^{\hat{}}$ from 3.1. According to Propositions 3.2 and 3.5 and to Theorem 3.6, *i* is a block of \hat{H} that belongs to a point β of \hat{H} on $k_*\hat{G}$ and, for a suitable block *c* of \hat{H} , we have \hat{G} - and \hat{H} -interior algebra isomorphisms

$$k_*\hat{G}b \cong \operatorname{Ind}_{\hat{H}}^{\hat{G}}(k_*\hat{H}i) \quad \text{and} \quad (k_*\hat{G})_\beta \cong k_*\hat{H}i \cong Si \otimes_k k_*H^{\uparrow}c \tag{4.1.1}$$

as well as an equivalence of categories $\iota: \mathcal{L}_{k_*H^{\uparrow_c}} \to \mathcal{L}_{k_*\hat{G}b}$; in particular, there is a defect pointed group P_{γ} of *b* contained in \hat{H}_{β} . Denote by $\mathbf{O}_{p'}(\hat{H}), \mathbf{O}_{p'}(\hat{H})$, and $\mathbf{O}_{p'}(H^{\uparrow})$ the respective inverse images in \hat{H}, \hat{H} , and H^{\uparrow} of $\mathbf{O}_{p'}(H)$.

PROPOSITION 4.2. Assume that G is p-solvable. Then P is a Sylow p-subgroup of H, we have $Si = k_* \mathbf{O}_{p'}(\hat{H})i$, and the inclusion $\mathbf{O}_{p'}(\hat{H})i \subset (Si)^*$ induces an H-stable k^* -group isomorphism $\sigma : k^* \times \mathbf{O}_{p'}(H) \cong \mathbf{O}_{p'}(H^*)$ such that

$$c = \frac{1}{|\mathbf{O}_{p'}(H)|} \sum_{y \in \mathbf{O}_{p'}(H)} \sigma(y) \quad and \quad k_* H^{\uparrow} c \cong k_* \frac{H^{\uparrow}}{\sigma(\mathbf{O}_{p'}(H))}.$$
(4.2.1)

Moreover, setting $Q = P \cap \mathbf{O}_{p',p}(H)$, the idempotent *c* is primitive in $(k_*H^{c})^Q$.

Proof. If *T* is an *H*-stable semisimple unitary subalgebra of k_*H^c such that *p* does not divide the dimension of its simple factors, then in the induced algebra $\operatorname{Ind}_{\hat{H}}^{\hat{G}}(Si \otimes_k k_*H^c)$ the direct sum $\sum_x \hat{x} \otimes (Si \otimes_k T) \otimes \hat{x}^{-1}$, where $x \in G$ runs over a set of representatives for G/H and $\hat{x} \in \hat{G}$ lifts *x*, determines a *G*-stable semisimple unitary subalgebra of $k_*\hat{G}b$ fulfilling the preceding condition and containing *S*. Thus, the maximality of *S* forces $T = k \cdot c$.

In particular, since the algebra $k_* \mathbf{O}_{p'}(H^{\uparrow})$ is semisimple, we obtain

$$k_* \mathbf{O}_{p'}(H^{\hat{}})c = k \cdot c, \qquad (4.2.2)$$

which forces $\mathbf{O}_{p'}(\hat{H})i \subset Si$. Then we necessarily have $\mathbf{O}_{p'}(\hat{H})i = \rho(\mathbf{O}_{p'}(\hat{H}))$ and thus still get an *H*-stable k^* -group isomorphism (cf. (2.3.1))

$$\sigma: k^* \times \mathbf{O}_{p'}(H) \cong \mathbf{O}_{p'}(H^{\hat{}}).$$
(4.2.3)

Therefore, setting

$$e = \frac{1}{|\mathbf{O}_{p'}(H)|} \sum_{\mathbf{y} \in \mathbf{O}_{p'}(H)} \sigma(\mathbf{y}) \quad \text{and} \quad L^{\hat{}} = \frac{H^{\hat{}}}{\sigma(\mathbf{O}_{p'}(H))}, \tag{4.2.4}$$

we have ec = c and that *c* determines a block of $L^{\hat{}}$; but since *H* is *p*-solvable, $C_L(\mathbf{O}_p(L)) = Z(\mathbf{O}_p(L))$ and therefore $\mathbf{O}_p(L)$ has a unique local point on $k_*L^{\hat{}} \cong k_*H^{\hat{}}e$ (cf. (2.9.2)) that actually has multiplicity 1 (cf. (2.9.2)). Moreover, it is easily checked that Ker(Br $_{\mathbf{O}_p(L)}$) $\subset J(k_*L^{\hat{}})$, so the unity element is primitive in $(k_*L^{\hat{}})^{\mathbf{O}_p(L)}$ (cf. (2.9.2)); hence *c* coincides with *e* and is primitive in $(k_*H^{\hat{}})^R$ for any *p*-subgroup *R* of *H* such that $\mathbf{O}_{p',p}(H) \subset \mathbf{O}_{p'}(H) \cdot R$.

Consequently, we have

$$k_* H^{\hat{}} c \cong k_* L^{\hat{}} \tag{4.2.5}$$

and {*c*} is the unique local point of *R* on k_*H^2 ; this forces *P* to be a Sylow *p*-subgroup of *H* because $N_H(P_{\{c\}})/P \cdot C_H(P)$ is a *p'*-group by the Brauer First

Main Theorem. Moreover, since $(k_*\hat{G})_{\beta} \cong Si \otimes_k k_*H^{\hat{c}}$, *R* has a unique local point ε on $k_*\hat{G}$ such that $R_{\varepsilon} \subset \hat{H}_{\beta}$ (cf. Proposition 5.6 and Corollary 5.8 in [10]).

Finally, $T = k_* \mathbf{O}_{p'}(\hat{H})i$ is an *H*-stable semisimple unitary subalgebra of $k_* \hat{H}i$ and therefore—denoting by *j* a primitive idempotent of Z(T), by \hat{K} the stabilizer of *j* in \hat{H} , and by *C* the centralizer of Tj in $j(k_*\hat{H})j$ —it follows from Proposition 3.2 that, for a suitable $k_*\hat{K}$ -interior algebra structure on $Tj \otimes_k C$, we have a \hat{H} -interior algebra isomorphism

$$k_* \hat{H}i \cong \operatorname{Ind}_{\hat{K}}^H(Tj \otimes_k C). \tag{4.2.6}$$

More precisely, it follows from Theorem 3.6 that *C* is the block algebra of a suitable k^* -group with k^* -quotient *K* and, since

$$\mathbf{O}_{p'}(\hat{H}) \subset \hat{K} \quad \text{and} \quad \mathbf{O}_{p'}(\hat{H})j \subset Tj,$$

$$(4.2.7)$$

the inverse image of $O_{p'}(H)$ in this k^* -group has a trivial image in C; therefore,

$$\dim_k(C) \le |K: \mathbf{O}_{p'}(H)|. \tag{4.2.8}$$

Furthermore, since $T \subset Si$ we have

$$|H:K|\dim_k(Tj) \le \dim_k(Si), \tag{4.2.9}$$

the inequality being strict whenever $K \neq H$.

On the other hand, isomorphisms (4.1.1) and (4.2.6) imply that

$$\dim_k(Si)|H: \mathbf{O}_{p'}(H)| = \dim_k(k_*Hi) = |H: K|^2 \dim_k(Tj) \dim_k(C).$$
(4.2.10)

Hence the preceding inequalities are actually equalities, so we have K = H, j = i, and T = Si as claimed.

COROLLARY 4.3. Assume that G is p-solvable, set $Q = P \cap \mathbf{O}_{p',p}(H)$, and denote by γ and δ the respective local points of P and Q on $k_*\hat{G}$ such that $Q_\delta \subset P_{\gamma} \subset H_{\beta}$. Then Q_{δ} is the unique local pointed group on $k_*\hat{G}$ that fulfills the following conditions:

- (4.3.1) $Q_{\delta} \triangleleft P_{\gamma}, C_P(Q) = Z(Q), and \mathbf{O}_p(\tilde{E}_G(Q_{\delta})) = \{1\};$
- (4.3.2) $E_G(R_{\varepsilon}, P_{\gamma}) = E_{N_G(Q_{\delta})}(R_{\varepsilon}, P_{\gamma})$ for any local pointed group R_{ε} on $k_*\hat{G}$ contained in P_{γ} .

Proof. With notation as in Proposition 4.2, set $\hat{L} = H^{\gamma}(\mathbf{O}_{p'}(H))$. It follows from this proposition that the unity element is primitive in $(k_*\hat{L})^Q$ and so determines local points γ° and δ° of P and Q, respectively, on $k_*\hat{L}$; since we have $k_*\hat{L} \cong k_*H^{\circ}c$, these local points determine local points γ and δ of P and Q, respectively, on $k_*\hat{G}$ (cf. Proposition 5.6 and Corollary. 5.8 in [10] and Proposition 2.14 in [8]). Therefore, P normalizes Q_{δ} and the p-solvability of H forces $C_P(Q) = Z(Q)$.

Moreover, it follows from Theorem 3.6 that, for any local pointed group R_{ε} on $k_*\hat{G}$ contained in P_{γ} , we have

$$E_G(R_\varepsilon, P_\gamma) = E_L(R_{\varepsilon^\circ}, P_{\gamma^\circ}), \qquad (4.3.3)$$

where ε° denotes the corresponding local point of R on $k_*\hat{L}$. However, the uniqueness of δ forces $N_H(Q_{\delta}) = N_H(Q)$ and thus, by the Frattini argument, we obtain $H = \mathbf{O}_{p'}(H).N_H(Q_{\delta})$. Consequently, it is easily checked that we still have

$$E_G(R_{\varepsilon}, P_{\gamma}) = E_{N_H(Q_{\delta})}(R_{\varepsilon}, P_{\gamma}).$$
(4.3.4)

In particular, $E_G(Q_{\delta}) \cong N_H(Q)/C_H(Q)$ and so we still get

$$\mathbf{O}_p(E_G(Q_\delta)) = \{1\}.$$
 (4.3.5)

Finally, if T_{θ} is a local pointed group on $k_*\hat{G}b$ fulfilling conditions (4.3.1) and (4.3.2), then we have $E_G(Q_{\delta}) = E_{N_G(T_{\theta})}(Q_{\delta})$ and therefore $E_T(Q_{\delta})$ is a normal *p*-subgroup of $E_G(Q_{\delta})$, so that $\tilde{E}_T(Q_{\delta}) = \{1\}$. Hence, we have

$$T \subset P \cap Q.C_G(Q) = Q \tag{4.3.6}$$

 \square

and, by symmetry, the equality follows.

4.4. With notation as in Proposition 4.2, set $\hat{L} = H^{\hat{}}/\sigma(\mathbf{O}_{p'}(H))$ and consider $k_*\hat{L}$ endowed with the obvious group homomorphism $P \rightarrow (k_*\hat{L})^*$ as a *P*-interior algebra. Then isomorphisms (4.1.1) and (4.2.1) yield a *P*-interior algebra embedding

$$(k_*\hat{G})_{\gamma} \to \operatorname{Res}_P^{\hat{H}}(Si) \otimes_k k_*\hat{L},$$
(4.4.1)

which already gives a satisfactory description of a source algebra of the block *b except* that we know nothing about the uniqueness of the left tensor factor. In order to get this we need the following lemma, which we prove in a more general context.

LEMMA 4.5. Let \hat{L} and \hat{L}' be k^* -groups with respective finite k^* -quotients L and L' fulfilling

$$C_L(\mathbf{O}_p(L)) = Z(\mathbf{O}_p(L)) \quad and \quad C_{L'}(\mathbf{O}_p(L')) = Z(\mathbf{O}_p(L')), \tag{4.5.1}$$

and denote by P a Sylow p-subgroup of L. If $\tau: P \to \hat{L}'$ is an injective group homomorphism and if T is a Dade P-algebra such that there exists a P-interior algebra embedding

$$k_*\hat{L} \to T \otimes_k k_*\hat{L}', \tag{4.5.2}$$

then T is similar to k and \hat{L} isomorphic to \hat{L}' .

Proof. Through embedding (4.5.2), any local pointed group R_{ε} on $k_*\hat{L}$ determines a local point ε' of R on $k_*\hat{L}'$ such that, denoting by ρ the unique local point of R on T, (4.5.2) induces an R-interior algebra embedding

$$(k_*\hat{L})_{\varepsilon} \to T_{\rho} \otimes_k (k_*\hat{L}')_{\varepsilon'} \tag{4.5.3}$$

(cf. Proposition 5.6 and Corollary 5.8 in [10] and Proposition 2.14 in [8]). Moreover, since there is a *P*-interior algebra embedding $k \to T^{\circ} \otimes_k T$ (cf. [10, 5.7]), from (4.5.3) we easily derive the embedding

$$(k_*\hat{L}')_{\varepsilon'} \to (T_\rho)^\circ \otimes_k (k_*\hat{L})_{\varepsilon}; \tag{4.5.4}$$

in particular, since $(T_{\rho})(R) \cong k$ (cf. [10, Cor. 5.8]), if R_{ε} is self-centralizing (cf. 2.9) then, setting $R' = \tau(R)$, we have

$$(k_*\hat{L}')_{\varepsilon'}(R') \cong (k_*\hat{L})_{\varepsilon}(R) \cong kZ(R) \cong kZ(R').$$
(4.5.5)

Therefore, according to [13, Lemma 2.14], $R'_{\varepsilon'}$ is self-centralizing, too.

Set $Q = \mathbf{O}_p(L)$. Actually, since $\operatorname{Ker}(\operatorname{Br}_Q) \subset J(k_*\hat{L})$ and since we assume that $C_L(Q) = Z(Q)$, the unity element is primitive in $(k_*\hat{L})^Q$ (cf. (2.9.2)) and therefore $\gamma = \{\mathbf{1}_{k_*\hat{L}}\}$ is the unique point of P on $k_*\hat{L}$, which is maximal local. In this situation, setting $P' = \tau(P)$, denoting by γ' the corresponding local point of P' on $k_*\hat{L}'$, and considering the corresponding embeddings (4.5.3) and (4.5.4), it follows from [5, Lemma 1.17] that

$$E_L(R_{\varepsilon}, P_{\gamma}) \cong E_{L'}(R'_{\varepsilon'}, P'_{\gamma'}).$$
 (4.5.6)

Hence, by the Brauer First Main Theorem, the maximality of P_{γ} implies that $\tilde{E}_L(P_{\gamma})$ is a p'-group; then, since $P'_{\gamma'}$ is self-centralizing, isomorphism (4.5.6) implies that $P'_{\gamma'}$ is maximal local on k_*L' and so P' contains $\mathbf{O}_p(L')$ (cf. [1, Sec. 13, Thm. 6]). Consequently, according to our assumption on L', we have $\gamma' = \{1_{k_*\hat{L}'}\}$ and $C_{L'}(P') = Z(P')$, which implies that P' is a Sylow *p*-subgroup of L'.

At this point, the existence of embedding (4.5.4) for $R_{\varepsilon} = P_{\gamma}$ shows that our hypotheses are actually symmetric on \hat{L} and \hat{L}' . On the other hand, considering the point $\delta = \gamma$ of Q on $k_*\hat{L}$, it follows easily from the isomorphism $E_L(Q_{\delta}) \cong E_{L'}(Q'_{\delta'})$ that

$$|L| = |Q||E_L(Q_{\delta})| \le |N_{L'}(Q'_{\delta'})| \le |L'|$$
(4.5.7)

and thus, by symmetry, we obtain |L| = |L'|, $Q' = O_p(L')$, and $\delta' = \gamma'$. More precisely, by isomorphisms (4.5.6) we can apply [5, Thm. 1.8] to show that *L* and *L'* are isomorphic.

Moreover, by [10, Thm. 5.3], the isomorphism $E_L(Q_{\delta}) \cong E_{L'}(Q'_{\delta'})$ can be lifted to a k^* -group isomorphism $\hat{E}_L(Q_{\delta}) \cong \hat{E}_{L'}(Q'_{\delta'})$; but in our situation it is clear that

$$\hat{E}_L(Q_\delta) \cong \hat{L}/\mathbf{O}_p(L)$$
 and $\hat{E}_{L'}(Q'_{\delta'}) \cong \hat{L}'/\mathbf{O}_p(L').$ (4.5.8)

That is to say, from now on we may assume that $\hat{L} = \hat{L}'$ and that the unity element is primitive in T^{P} .

Since $(k_*\hat{L})(Q) \cong kZ(Q)$, embedding (4.5.2) induces a P/Q-algebra embedding (cf. [10, Cor. 5.8])

$$k \to T(Q), \tag{4.5.9}$$

which, since T^P covers $T(Q)^P$ (cf. [9, 2.8.4]), is actually an isomorphism. However, it is clear that embedding (4.5.2) determines an embedding between the corresponding semisimple quotients, so that setting $S(k_*\hat{L}) = k_*\hat{L}/J(k_*\hat{L})$ yields a *P*-algebra embedding

$$S(k_*\hat{L}) \to T \otimes_k S(k_*\hat{L}),$$
 (4.5.10)

which tensored by $S(k_*\hat{L})^\circ$ determines another embedding,

$$h: \mathbf{S}(k_*\hat{L}) \otimes_k \mathbf{S}(k_*\hat{L})^\circ \to T \otimes_k \mathbf{S}(k_*\hat{L}) \otimes_k \mathbf{S}(k_*\hat{L})^\circ.$$
(4.5.11)

Furthermore, since Q acts trivially on $S(k_*\hat{L})$, the image of h is contained in $T^Q \otimes_k S(k_*\hat{L}) \otimes_k S(k_*\hat{L})^\circ$. Consequently, since $T(Q) \cong k$ (cf. (4.5.9)), h induces a P-algebra automorphism

$$h(Q): \mathbf{S}(k_*\hat{L}) \otimes_k \mathbf{S}(k_*\hat{L})^{\circ} \cong \mathbf{S}(k_*\hat{L}) \otimes_k \mathbf{S}(k_*\hat{L})^{\circ}$$
(4.5.12)

mapping $s \in S(k_*\hat{L}) \otimes_k S(k_*\hat{L})^\circ$ on $Br_Q(h(s))$.

On the other hand, it is well known (cf. [14, Cor. 12.10]) that some simple $k_*\hat{L}$ module M has a dimension prime to p and, in particular, that there is a point λ of L on $S(k_*\hat{L}) \otimes_k S(k_*\hat{L})^\circ$ such that

$$(\mathbf{S}(k_*\hat{L}) \otimes_k \mathbf{S}(k_*\hat{L})^\circ)_\lambda \cong k. \tag{4.5.13}$$

It then follows from [14, Thm. 7.2] that λ is contained in a local point of *P* on $S(k_*\hat{L}) \otimes_k S(k_*\hat{L})^\circ$ and hence, choosing $j \in \lambda$, there is a primitive idempotent j' in $(S(k_*\hat{L}) \otimes_k S(k_*\hat{L})^\circ)^P$ such that (cf. [10, Prop. 5.6])

$$h(j)(1 \otimes j')^{a} = h(j) = (1 \otimes j')^{a} h(j)$$
(4.5.14)

for some invertible element *a* of $(T \otimes_k S(k_*\hat{L}) \otimes_k S(k_*\hat{L})^\circ)^P$. Therefore, since $\operatorname{Br}_Q(1 \otimes j') = j'$ and j' is primitive in $(S(k_*\hat{L}) \otimes_k S(k_*\hat{L})^\circ)^P$, it follows from equalities (4.5.14) that $\operatorname{Br}_Q(h(j)) = j'^{\operatorname{Br}_Q(a)}$; in particular, isomorphism (4.5.13) implies that

$$j'(\mathbf{S}(k_*\hat{L}) \otimes_k \mathbf{S}(k_*\hat{L})^\circ)j' \cong k.$$
(4.5.15)

Finally, according to equalities (4.5.14), h and the conjugation by a determine a P-algebra embedding

$$k \cong j(\mathbf{S}(k_*\hat{L}) \otimes_k \mathbf{S}(k_*\hat{L})^\circ) j \to T \otimes_k j'(\mathbf{S}(k_*\hat{L}) \otimes_k \mathbf{S}(k_*\hat{L})^\circ) j' \cong T, \quad (4.5.16)$$

which proves that T is similar to k (cf. [11, 1.7.2]).

THEOREM 4.6. Assume that G is p-solvable. With notation as before, denote by γ the local point of P on $k_*\hat{G}$ such that $P_{\gamma} \subset H_{\beta}$. Then there exist a k^* -group \hat{L} , with finite k^* -quotient L, endowed with an injective group homomorphism $\tau : P \rightarrow \hat{L}$, and a Dade P-algebra T both unique up to isomorphisms, that fulfill the following conditions:

(4.6.1) $C_L(\mathbf{O}_p(L)) = Z(\mathbf{O}_p(L))$ and the unity element is primitive in T^P ; (4.6.2) there is a *P*-interior algebra embedding

$$(k_*\hat{G})_{\gamma} \to T \otimes_k k_*\hat{L}. \tag{4.6.3}$$

 \square

In particular, P has a unique local point γ' on $T \otimes_k k_* \hat{L}$, and this embedding induces a P-interior algebra isomorphism $(k_*\hat{G})_{\gamma} \cong (T \otimes_k k_* \hat{L})_{\gamma'}$.

Proof. From 4.4 we already know that there exist a k^* -group \hat{L}' , with a finite p-solvable k^* -quotient L' such that $\mathbf{O}_{p'}(L') = \{1\}$, endowed with an injective group homomorphism $\tau' \colon P \to \hat{L}'$ such that the image of P is a Sylow p-subgroup of L', together with a Dade P-algebra T' with the unity element primitive in T'^P , admitting a P-interior algebra embedding

$$(k_*\hat{G})_{\gamma} \to T' \otimes_k k_*\hat{L}', \tag{4.6.4}$$

which already proves the existence statement.

Moreover, since there is a *P*-interior algebra embedding (cf. [10, 5.7])

$$k \to T^{\prime \circ} \otimes_k T^{\prime}$$

and since the unity element is primitive in $(k_*\hat{L}')^P$, it follows from embedding (4.6.4) that

$$k_*\hat{L}' \to T'^\circ \otimes_k (k_*\hat{G})_\gamma. \tag{4.6.5}$$

Consequently, for \hat{L} and T as in the statement of the theorem, we have another *P*-interior algebra embedding

$$k_*\hat{L}' \to (T'^\circ \otimes_k T) \otimes_k k_*\hat{L} \tag{4.6.6}$$

and it then follows from Lemma 4.5 that $T'^{\circ} \otimes_k T$ is similar to k or, equivalently, that T is similar to T'. Because the unity elements are primitive in T^P and T'^P , T and T' are actually isomorphic. We are done.

4.7. We now give a "constructive" description of the Dade *P*-algebra that appears in a source *P*-interior algebra of the block *b*. Consider the *chains* $\{Z_n\}_{n\in\mathbb{N}}$ and $\{T_n\}_{n\in\mathbb{N}}$ of *G*-stable semisimple unitary subalgebras of $k_*\hat{G}b$ defined recursively by

$$Z_0 = k.b, \quad T_n = \sum_{\{j\} \in \mathcal{P}(Z_n)} k_* \mathbf{O}_{p'}(\hat{G}_j) j, \quad Z_{n+1} = Z(T_n), \tag{4.7.1}$$

where \hat{G}_j denotes the stabilizer of j in \hat{G} for any $n \in \mathbb{N}$ and any $\{j\} \in \mathcal{P}(Z_n)$. It is clear that $Z_n \subset Z(T_n) = Z_{n+1}$ and that $T_n \subset T_{n+1}$, so the union

$$T = \bigcup_{n \in \mathbb{N}} T_n \tag{4.7.2}$$

is also a *G*-stable semisimple unitary subalgebra of $k_*\hat{G}b$; in fact, $T = T_n$ for some $n \in \mathbb{N}$.

4.8. Choosing a primitive idempotent *j* of *Z*(*T*) fixed by *P* such that $s_{\gamma}(j) \neq 0$, which is possible because γ is local, and denoting by \hat{K} the stabilizer of *j* in \hat{G} , we see that the maximality of *T* forces $k_* \mathbf{O}_{p'}(\hat{K}) j = Tj$. In particular, denote by \hat{K} the *k**-group determined by the action of *K* on *Tj* and, as before, set $\hat{K} = \hat{K} * (\hat{K})^\circ$; then, up to suitable identifications, \hat{K} and \hat{K} contain $\mathbf{O}_{p'}(\hat{K})$ and $\mathbf{O}_{p'}(K)$, respectively, and it follows from Proposition 3.2 and Theorem 3.6 that we have a \hat{G} -interior algebra isomorphism

$$k_* \hat{G}b \cong \operatorname{Ind}_{\hat{K}}^G(k_* \mathbf{O}_{p'}(\hat{K}) j \otimes_k k_* (K^{\widehat{}}/\mathbf{O}_{p'}(K)))$$
(4.8.1)

since the unity element is the unique block of $K^{\prime}/\mathbf{O}_{p'}(K)$ (cf. Proposition 4.2). Consequently, we obtain a *P*-interior algebra embedding

$$(k_*\hat{G})_{\gamma} \to k_*\mathbf{O}_{p'}(\hat{K})j \otimes_k k_*(K^{\wedge}/\mathbf{O}_{p'}(K))$$
(4.8.2)

and then Theorem 4.6 applies.

References

- J. Alperin, *Local representation theory*, Cambridge Stud. Adv. Math., 11, Cambridge Univ. Press, Cambridge, 1986.
- [2] J. Alperin and M. Broué, *Local methods in block theory*, Ann. of Math. (2) 110 (1979), 143–157.
- [3] E. Dade, Endo-permutation modules over p-groups I, II, Ann. of Math. (2) 107, 108 (1978), 459–494, 317–346.
- [4] P. Fong, On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263–284.
- [5] B. Külshammer and L. Puig, *Extensions of nilpotent blocks*, Invent. Math. 102 (1990), 17–71.
- [6] L. Puig, Local block theory in p-solvable groups, Santa Cruz conference on finite groups (Santa Cruz, 1979), Proc. Sympos. Pure Math., 37, pp. 385–388, Amer. Math. Soc., Providence, RI, 1980.
- [7] ——, Pointed groups and construction of characters, Math. Z. 176 (1981), 265–292.
- [8] ——, Local fusions in block source algebras, J. Algebra 104 (1986), 358–369.
- [9] ——, Pointed groups and construction of modules, J. Algebra 116 (1988), 4–129.
- [10] —, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), 77–116.
- [11] ——, Affirmative answer to a question of Feit, J. Algebra 131 (1990), 513–526.
- [12] ——, On the local structure of Morita and Rickard equivalences between Brauer blocks, Progr. Math., 178, Birkhäuser, Basel, 1999.
- [13] ——, Source algebras of p-central group extensions, J. Algebra 235 (2001), 359–398.
- [14] ——, *Blocks of finite groups*, Springer Monogr. Math., Springer-Verlag, New York, 2002.

CNRS Université Paris 7 94340 Joinville-le-Pont France

puig@math.jussieu.fr