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1. Introduction

1.1. The purpose of this paper is to fill a gap that has remained open since 1979,
when in the Santa Cruz conference we announced the main results on the so-called
local structure of the blocks of finitep-solvable groups [6], which were mainly ob-
tained from a suitable translation to algebras of Fong’s reduction [4]. At that time,
the term local structure referred to the paper by Alperin and Broué [2], but since
that meeting it has become clear that, when studying a block of a finite group, the
structure to describe is its source algebra.

1.2. As a matter of fact, in [6] we already described the source algebra of a nilpo-
tent block in a finite p-solvable group, and one of the reasons for delaying the
publication of our work on the blocks of p-solvable groups was that, after Santa
Cruz, we concentrated our effort on determining the structure of the source alge-
bra of nilpotent blocks in any finite group [10].

1.3. Another reason for delaying this publication was that, although the trans-
lation to algebras of Fong’s reduction does indeed allow one to determine the
structure of the source algebra of a block in finite p-solvable groups, this struc-
ture involves a Dade P -algebra, where P is a defect p-subgroup of the block,
and only many years later did we find a way to prove its uniqueness. A last re-
mark: although, for the sake of simplicity, we deal only with the source algebra of
a block in characteristicp > 0, the interested reader will see that [10, Lemma 7.8]
and [11, Cor. 3.7] allow one to determine the source algebra over a complete dis-
crete valuation ring of characteristic 0.

2. Notation and Quoted Results

2.1. We fix a prime number p and an algebraically closed field of characteristic
p. It is well known that Fong’s reduction involves a central extension of the finite
group we start with; precisely, it involves a central extension by a finite subgroup
of k∗, and a handy way to unify our setting is to consider from the beginning a
central extension Ĝ of a finite group G by k∗. This is not more general since, nev-
ertheless, Ĝ always contains a finite subgroup G′ covering G.
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2.2. Explicitly, we call k∗-group a group X endowed with an injective group
homomorphism θ : k∗ → Z(X) (cf. [9, Sec. 5]) and call k∗-quotient of (X, θ) the
group X/θ(k∗); we denote by X◦ the k∗-group formed by X and by the compo-
sition of θ with the automorphism k∗ ∼= k∗ mapping λ ∈ k∗ on λ−1. We say that
a k∗-group is finite whenever its k∗-quotient is finite. Usually, we denote by Ĝ a
k∗-group and by G its k∗-quotient, and we write λ · x̂ for the product of x̂ ∈ Ĝ by
the image of λ∈ k∗ in Ĝ.

2.3. If Ĝ′ is a second k∗-group, we denote by Ĝ ×̂ Ĝ′ the quotient of the direct
product Ĝ × Ĝ′ by the image in Ĝ × Ĝ′ of the inverse diagonal of k∗ × k∗, which
has the obvious structure of k∗-group with k∗-quotient G×G′; moreover, if G =
G′ then we denote by Ĝ ∗ Ĝ′ the k∗-group obtained from the inverse image of
�(G) ⊂ G×G in Ĝ ×̂ Ĝ′, which is nothing but the so-called sum of both central
extensions of G by k∗. In particular, we have a canonical k∗-group isomorphism

Ĝ ∗ Ĝ◦ ∼= k∗ × G. (2.3.1)

A k∗-group homomorphism ϕ : Ĝ → Ĝ′ is a group homomorphism that preserves
the k∗-multiplication.

2.4. Note that for any k-algebra A of finite dimension—just called algebra in the
sequel—the group A∗ of invertible elements has a canonical k∗-group structure. If
S is a simple algebra then Autk(S) coincides with the k∗-quotient of S ∗; in partic-
ular, any finite group G acting on S determines—by pull-back—a k∗-group Ĝ of
k∗-quotient G together with a k∗-group homomorphism

ρ : Ĝ → S ∗ (2.4.1)

(cf. [9, 5.7]).

2.5. If Ĝ is a finite k∗-group, we call Ĝ-interior algebra any algebra A endowed
with a k∗-group homomorphism

ρ : Ĝ → A∗; (2.5.1)

as usual, we write x̂ ·a and a · x̂ instead of ρ(x̂)a and aρ(x̂) for any x̂ ∈ Ĝ and any
a ∈ A. Then, a Ĝ-interior algebra homomorphism from A to another Ĝ-interior
algebra A′ is a not necessarily unitary algebra homomorphism f : A → A′ fulfill-
ing f(x̂ · a) = x̂ · f(a) and f(a · x̂) = f(a) · x̂; we say that f is an embedding
whenever Ker(f ) = {0} and Im(f ) = f(1)A′f(1). For a k∗-group homomorphism
ϕ : Ĝ′ → Ĝ, we denote by Resϕ(A) the Ĝ′-interior algebra defined by ρ �ϕ. Note
that the conjugation induces an action of the k∗-quotient G of Ĝ on A, so that A
becomes an ordinary G-algebra; thus, all the pointed group language developed
in [7] applies to Ĝ-interior algebras.

2.6. For any k∗-subgroup Ĥ of Ĝ, a point α of Ĥ on A is an (AH )∗-conjugacy
class of primitive idempotents of AH and the pair Ĥα is a pointed k∗-group on A;
we denote by PA(Ĥ ) the set of points of Ĥ on A. For any i ∈ α, iAi has the evi-
dent structure of an Ĥ-interior algebra mapping x̂ ∈ Ĥ on x̂ · i = i · x̂, and we
denote by Aα one of these mutually (AH )∗-conjugate Ĥ-interior algebras.
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2.7. A second pointed k∗-group K̂β onA is contained in Ĥα if K̂ is a k∗-subgroup
of Ĥ and if, for any i ∈ α, there is a j ∈ β such that ij = j = ji. Then it is quite
clear that the (AK)∗-conjugation induces K̂-interior algebra embeddings

f α
β : Aβ → ResĤ

K̂
(Aα). (2.7.1)

More generally, we say that an injective k∗-group homomorphism ϕ : K̂ → Ĥ is
an A-fusion from K̂β to Ĥα whenever there is a K̂-interior algebra embedding

fϕ : Aβ → ResĤ
K̂
(Aα) (2.7.2)

such that the inclusion Aβ ⊂ A and the composition of fϕ with the inclusion
Aα ⊂ A are A∗-conjugate. We denote by FA(K̂β , Ĥα) the set of such fusions (cf.
[8, Def. 2.5]) and by F̃A(K̂β , Ĥα) its quotient by the action of H, whereas we de-
note byEG(K̂β , Ĥα) and ẼG(K̂β , Ĥα) the respective subsets of fusions determined
by elements of G; we set FA(Ĥα) = FA(Ĥα , Ĥα) and so forth.

2.8. Note that any p-subgroup P of Ĝ can be identified with its image in G and
determines the k∗-subgroup k∗ ·P ∼= k∗ ×P of Ĝ; as usual, we consider the quo-
tient and the algebra homomorphism

BrP : AP → A(P ) = AP/∑
Q AP

Q, (2.8.1)

where Q runs over the set of proper subgroups of P, and we call local any point γ
of P on A not contained in Ker(BrP). We denote by LPA(P ) the set of local points
of P on A. More generally, we denote by LA the local category of A, where the
objects are the local pointed groups on A and the morphisms are the A-fusions be-
tween them with the usual composition (cf. 2.6 and Definition 2.15 in [8]). Recall
that the maximal local pointed groups Pγ contained in Ĥα—called defect pointed
groups of Ĥα—are all mutually H-conjugate (cf. [7, Thm. 1.2]).

2.9. It is clear that the inclusion k∗ ⊂ k determines a k-algebra homomorphism
to k from the group algebra kk∗ of the group k∗, so that k becomes a kk∗-algebra.
For any finite k∗-group Ĝ, it is clear that the group algebra kĜ of the group Ĝ is
also a kk∗-algebra, and then we call k∗-group algebra of Ĝ the algebra

k∗Ĝ = k ⊗kk∗ kĜ; (2.9.1)

note that the dimension of k∗Ĝ coincides with |G|. Coherently, a block of Ĝ is
a primitive idempotent b of the center Z(k∗Ĝ), so that α = {b} is a point of Ĝ
on k∗Ĝ. If Pγ is a defect pointed group of Ĝα then we call source algebra of the
block b theP -interior algebra (k∗Ĝ)γ = (k∗Ĝb)γ . Recall that, for anyp-subgroup
P of Ĝ, we have

(k∗Ĝ)(P ) ∼= k∗CĜ(P ) (2.9.2)

(cf. 2.9.2 and Proposition 5.15 in [9]); moreover, recall that a local pointed group
Qδ on k∗Ĝ is self-centralizing if CP (Q) = Z(Q) for any local pointed group Pγ

on k∗Ĝ containing Qδ.
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2.10. If Ĝ is a finite k∗-group, A a Ĝ-interior algebra, and Ĥ a k∗-subgroup of Ĝ,
then as usual we denote by ResĜ

Ĥ
(A) the corresponding Ĥ-interior algebra. Con-

versely, for any Ĥ-interior algebra B, we consider the induced Ĝ-interior algebra

IndĜ

Ĥ
(B) = k∗Ĝ ⊗k∗Ĥ B ⊗k∗Ĥ k∗Ĝ, (2.10.1)

where the distributive product is defined by the formula

(x̂ ⊗ b ⊗ ŷ)(x̂ ′ ⊗ b ′ ⊗ ŷ ′) =
{
x̂ ⊗ b.ŷx̂ ′.b ′ ⊗ ŷ ′ if ŷx̂ ′ ∈ Ĥ,

0 otherwise
(2.10.2)

for any x̂, ŷ, x̂ ′, ŷ ′ ∈ Ĝ and any b, b ′ ∈B and where we map the element x̂ ∈ Ĝ on∑
ŷ x̂ŷ ⊗ 1B ⊗ ŷ−1, with ŷ ∈ Ĝ running over a set of representatives for Ĝ/Ĥ.

2.11. As mentioned in the Introduction, the source algebras we are looking for in-
volve Dade P -algebras; precisely, for a finitep-group P, we call Dade P -algebra
a simple algebra S endowed with an action of P that stabilizes a basis of S con-
taining 1S. Actually, the action of P on S can be lifted to a unique group homomor-
phism P → S ∗, and usually we consider S a P -interior algebra. As we shall see,
this situation appears quite naturally when dealing with finite p-solvable groups
and, as a matter of fact, it was Dade’s motivation for introducing them in 1978 [3].

3. Fong Reduction for Ĝ-Interior Algebras

3.1. In [4] Fong developed a reduction method for the characters of a finite group
from the choice of a normal p ′-subgroup. In fact, for a k∗-group Ĝ with finite
k∗-quotient G, Fong’s arguments can be extended to Ĝ-interior algebras in the fol-
lowing way. Let A be a Ĝ-interior algebra and S a G-stable semisimple unitary
subalgebra of A such that G acts transitively on the set I of primitive idempotents
of the center Z(S) of S; let i be an element of I and denote by Ĥ the stabilizer of
i in Ĝ. Then the k∗-quotient H of Ĥ acts on the simple algebra Si determining a
k∗-group ˆH, together with a k∗-group homomorphism ρ : ˆH → (Si)∗ (cf. 2.4),
and we set (cf. 2.3)

H ˆ = Ĥ ∗ (ˆH )◦. (3.1.1)

Proposition 3.2. With the preceding assumptions, there exists an H ˆ-interior
algebra B, unique up to isomorphisms, such that we have a Ĝ-interior algebra
isomorphism

A ∼= IndĜ

Ĥ
(Si ⊗k B) (3.2.1)

mapping s ∈ Si on 1⊗ (s⊗1B)⊗1. In particular, A and B are Morita equivalent.

Proof. The multiplication by i determines an Ĥ-interior algebra structure on iAi

and, since G acts transitively on I, it is easily checked that we have a Ĝ-interior al-
gebra isomorphism A ∼= IndĜ

Ĥ
(iAi) mapping a ∈ iAi on 1⊗ a⊗1 (cf. [9, 2.14.2]).

Now, since Si is a unitary simple subalgebra of iAi, the multiplication in this al-
gebra induces an algebra isomorphism
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Si ⊗k B ∼= iAi, (3.2.2)

where B is the centralizer of Si in iAi (cf. [7, Prop. 2.1]).
Moreover, if x̂ ∈ Ĥ and ˆx ∈ ˆH have the same image x in H then the ele-

ment ρ(ˆx)−1 · x̂ of iAi centralizes Si, so that it belongs to B; whereas if (ŷ, ˆy)∈
Ĥ × ˆH is another such a pair then we have

(ρ(ˆx)−1 · x̂)(ρ(ˆy)−1 · ŷ) = ρ(ˆy)−1(ρ(ˆx)−1 · x̂) · ŷ = ρ(ˆx ˆy)−1 · (x̂ŷ), (3.2.3)

so that B becomes an H ˆ-interior algebra and isomorphism (3.2.2) becomes an
Ĥ-interior algebra isomorphism.

Corollary 3.3. With the preceding assumptions, assume that B has a unique
H-conjugacy class of maximal local pointed groups Pγ , that P has a local point
on Si, and that the actions of P × P on A and B by left and right multiplication
stabilize bases where P ×{1} and {1}×P act freely. Then Si is a Dade P -algebra
and, for any local pointed group Qδ on B, we have a local point ι(δ) of Q on A

such that isomorphism (3.2.1) induces a Q-interior algebra embedding

Aι(δ) → ResHQ(Si) ⊗k Bδ , (3.3.1)

and this correspondence determines an equivalence of categories ι : LB → LA be-
tween the local categories of B and A. In particular, A has a unique G-conjugacy
class of maximal local pointed groups.

Proof. Since P stabilizes by conjugation a basis Y of B and since P has a local
point on B, it fixes an element of Y (cf. [9, 2.8.4]) and therefore Si is a direct sum-
mand of iAi and A as kP -modules when P acts by conjugation. However, we are
assuming that P ×P stabilizes a basis of A by left and right multiplication; hence
P stabilizes by conjugation a basis Z of Si and, since we are assuming that it has
a local point on Si, P fixes an element of Z that can be replaced by 1S , so that Si
is a Dade P -algebra (cf. 2.11).

If RεA is a local pointed group on A then R fixes at least one element of I hav-
ing a nonzero image in A(R); that is to say, up to G-conjugation, we may assume
that R ⊂ Ĥ and BrAR (i) �= 0, so that RεA comes from a local pointed group on
iAi ∼= Si ⊗k B (cf. [12, 2.11.2]), which forces

(Si)(R) �= {0} and B(R) �= {0} (3.3.2)

since the k-algebra homomorphism (Si)(R) ⊗k B(R) → (Si ⊗k B)(R) (cf. [12,
7.9.2]) is unitary. In particular, R has local points on B and, since ResHR(Si) is a
Dade R-algebra, we actually get

(iAi)(R) ∼= (Si)(R) ⊗k B(R) (3.3.3)
(cf. [12, Lemma 7.10]).

Conversely, let Qδ be a local pointed group on B and assume that Qδ ⊂ Pγ ;
once again, we get

(iAi)(Q) ∼= (Si)(Q) ⊗k B(Q) (3.3.4)

and we know that (Si)(Q) is a simple algebra (cf. [11, 1.8.1]). In particular, the
B(Q)∗-conjugacy class BrBQ(δ) of primitive idempotents of B(Q) and the unique
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conjugacy class of primitive idempotents of (Si)(Q) together determine a local
point ιi(δ) of Q on iAi and therefore a local point ι(δ) of Q on A (cf. [12, 2.11.2])
such that, for a suitable j ′ ∈ ι(δ) fulfilling j ′i = j ′ = ij ′, isomorphism (3.3.4)
maps BrAQ(j

′) on BrSQ(+) ⊗ BrBQ(j), where + is a suitable primitive idempotent of
(Si)Q and j ∈ δ. Actually, up to an identification via isomorphism (3.2.1), we may
assume that

j ′(+ ⊗ j) = j ′ = (+ ⊗ j)j ′ (3.3.5)

and then we obtain a Q-interior algebra embedding

Aι(δ) → ResHQ(Si) ⊗k Bδ. (3.3.6)

On the other hand, for a second local pointed group Rε on B it follows from [8,
Cor. 2.16] that

FSi⊗kB(Rιi(ε),Qιi(δ)) = FA(Rι(ε),Qι(δ)); (3.3.7)

once again, we may assume that Rε ⊂ Pγ and then, since B has a (P ×P)-stable
basis where P × {1} and {1} × P act freely, it follows from [5, Lemma 1.17] that

FSi⊗kB(Rιi(ε),Qιi(δ)) ⊂ FB(Rε,Qδ). (3.3.8)

Moreover, since A and thus Si⊗k B also have (P ×P)-stable bases where P ×{1}
and {1} × P act freely, the same Lemma 1.17 in [5] applies to the fusions on
(Si)◦ ⊗k (Si ⊗k B) and therefore, since we successively have P -algebra embed-
dings k → (Si)◦ ⊗k Si (cf. 1.3.2 and 1.3.3 in [11]) and

B → (Si)◦ ⊗k Si ⊗k B, (3.3.9)

we still obtain (cf. [8, Prop. 2.14])

FB(Rε,Qδ) ⊂ FSi⊗kB(Rιi(ε),Qιi(δ)). (3.3.10)

Finally, we obtain the equality

FB(Rε,Qδ) = FA(Rι(ε),Qι(δ)), (3.3.11)

which proves that the functor ι : LB → LA is fully faithful. But we have already
proved that this functor is essentially surjective, so that it is an equivalence of cat-
egories. We are done.

3.4. The main point in our Fong reduction is that, if A is a block algebra k∗Ĝb

for a block b of Ĝ, then i is a block of Ĥ and, moreover, if eitherp does not divide
dimk(Si) or we have S = k∗K̂b for some normal k∗-subgroup K̂ of Ĝ having a
block d of defect zero such that db �= 0, then B is also a block algebra. Denote
by V a simple Si-module, which becomes a k∗ˆH-module throughout ρ (cf. 3.1).

Proposition 3.5. With the preceding assumptions, if A ∼= k∗Ĝb for a block b

of Ĝ, then i is a block of Ĥ that belongs to a point β of Ĥ on A and we have
i(k∗Ĝ)i = k∗Ĥi. In particular, we have an equivalence of categories Lk∗Ĥi

∼=
Lk∗Ĝb.
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Proof. Since i · x̂ · i = x̂ · (ix̂)i = 0 for any x̂ ∈ Ĝ− Ĥ, we get i(k∗Ĝ)i = k∗Ĥi.

Similarly, denoting by τ : k∗Ĝ → k the linear form vanishing on Ĝ − k∗.1 and
sending the unity element to 1, which clearly defines a nonsingular symmetric bi-
linear form, we have i = ∑

x∈G τ(i · x̂)x̂−1, where x̂ lifts x ∈ G to Ĝ, and thus,
since

τ(i · x̂) = τ(i · x̂ · ix̂) = τ(ix̂ i · x̂) = 0 for any x̂ ∈ Ĝ − Ĥ, (3.5.1)

i belongs to Z(k∗Ĥ ); moreover, since b is primitive in Z(k∗Ĝ), the idempotent i
must be primitive in Z(k∗Ĥ ) and, since iAi = k∗Ĥi, the idempotent i is primi-
tive in AH, too. On the other hand, assuming that S = ⊕

i∈I k · i, it is quite clear
that all the hypotheses in Corollary 3.3 hold and therefore the last statement fol-
lows from this corollary.

Theorem 3.6. With the preceding assumptions, assume that A ∼= k∗Ĝb for a
block b of Ĝ and thatp does not divide dimk(V ). Then we have B ∼= k∗H ˆc for a
block c of H ˆ, and V is a simple k∗ˆH-module. In particular, we have an equiv-
alence of categories Lk∗H ˆc ∼= Lk∗Ĝb.

Proof. Because Si ⊗k B ∼= i(k∗Ĝ)i = k∗Ĥi, the respective images of ˆH and
H ˆ still generate Si and B; in particular, V becomes a simple k∗ˆH-module and,
since i is primitive in Z(k∗Ĥ ), there is a block c of H ˆ such that we have a sur-
jective H ˆ-interior algebra homomorphism g : k∗H ˆc → B. It remains to prove
that g is also injective or, equivalently, that

dimk(k∗H ˆc) ≤ dimk(B). (3.6.1)

Once again, since Si ⊗k B ∼= i(k∗Ĝ)i = k∗Ĥi, the structural homomorphism
Ĥ → Si⊗k k∗H ˆc determines a section s of the Ĥ-interior algebra homomorphism

idSi ⊗ g : Si ⊗k k∗H ˆc → Si ⊗k B, (3.6.2)

so the k∗H ˆ-interior algebra homomorphism

id(Si)◦⊗kSi ⊗ g : (Si)◦ ⊗k Si ⊗k k∗H ˆc → (Si)◦ ⊗k Si ⊗k B (3.6.3)

admits the section id(Si)◦ ⊗ s.

On the other hand, since we assume thatp does not divide dimk(Si), it follows
that k is a direct summand of Si as kH-modules and thus we have an H-interior
algebra embedding h : k → (Si)◦ ⊗k Si ∼= Endk(Si) (cf. [14, Ex. 4.15]). Hence
the surjective H ˆ-interior algebra homomorphism g can be embedded in homo-
morphism (3.6.3), determining an evident commutative diagram

(Si)◦ ⊗k Si ⊗k k∗H ˆc �� (Si)◦ ⊗k Si ⊗k B

k∗H ˆc ��

��

B

��

(3.6.4)

and in particular, we have

(id(Si)◦⊗kSi ⊗ g)(h(1) ⊗ c) = h(1) ⊗ 1B. (3.6.5)
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Consequently, since both idempotents

j = h(1) ⊗ c and + = (id(Si)◦ ⊗ s)(h(1) ⊗ 1B) (3.6.6)

lift h(1) ⊗ 1B to the algebra T = ((Si)◦ ⊗k Si ⊗k k∗H ˆc)H and since j is primi-
tive, we have j+t = j = +tj for a suitable t ∈ T ∗ (cf. [14, Cor. 2.14]). However,
since

h(1)((Si)◦ ⊗k Si)h(1) = k · h(1) (3.6.7)
it follows that

j((Si)◦ ⊗k Si ⊗k k∗H ˆc)j = h(1) ⊗ k∗H ˆc ∼= k∗H ˆc,

and similarly we still have

(h(1) ⊗ 1B)((Si)
◦ ⊗k Si ⊗k B)(h(1) ⊗ 1B) = h(1) ⊗ B ∼= B. (3.6.8)

Then the multiplication by j maps (id(Si)◦ ⊗s)(h(1)⊗B)t, which is anH ˆ-interior
subalgebra, onto h(1) ⊗ k∗H ˆc because it maps H ˆ · +t onto h(1) ⊗ H ˆc; this
proves inequality (3.6.1).

At this point, setting β = {c} and choosing a defect pointed groupPγ ofHβ̂ , it is
clear that the actions of P ×P on A and B by left and right multiplication stabilize
bases where P ×{1} and {1}×P act freely (cf. [8, 3.3]); moreover, since B(P ) �=
{0} (cf. 2.8), acting by conjugation P fixes at least one element in a P -stable basis
of B (cf. [9, 2.8.4]). Hence it follows from isomorphism (3.2.1) that Si is a direct
summand of A as kP -modules always via the action of P by conjugation. Con-
sequently, since P still stabilizes a basis of A, P stabilizes a basis Z of Si and
moreover, since p does not divide |Z|, P fixes an element of Z. In other words,
Si with the action of P becomes a Dade P -algebra (cf. 2.11). Now, the last state-
ment follows from Corollary 3.3 and we are done.

Theorem 3.7. With the preceding assumptions, assume that A ∼= k∗Ĝb for a
block b of Ĝ and that S = k∗K̂b for a normal k∗-subgroup K̂ of Ĝ having a block
d of defect zero such that db �= 0. Then K is a normal subgroup of H ˆ and we
have B ∼= k∗(H /̂K)c̄ for a block c̄ of H /̂K. In particular, we have an equiva-
lence of categories Lk∗(H /̂K)c̄

∼= Lk∗Ĝb.

Proof. We clearly may assume that i = db; then K̂ is contained in both Ĥ and
ˆH, which provides a canonical lifting of the k∗-quotient K to H ˆ (cf. 2.3.1). Up
to the identification of K with its canonical image in H ˆ, we set H̄ ˆ = H /̂K and
H̄ = H/K. On the other hand, since H fixes d, multiplying by d the direct sum
decomposition

k∗Ĥ =
⊕

x̄∈H/K

(k∗K̂)x̂, (3.7.1)

where x̂ lifts x̄ ∈ H̄ to Ĥ, yields

dimk(k∗Ĥd ) = dimk(k∗K̂d )|H/K|. (3.7.2)

Thus, setting e = TrGH(d ) and applying Proposition 3.2 to the Ĝ-interior algebra
k∗Ĝe with the G-stable semisimple algebra k∗K̂e, we obtain a Ĝ-interior algebra
isomorphism
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k∗Ĝe ∼= IndĜ

Ĥ
(k∗K̂d ⊗k k∗H̄ ˆ); (3.7.3)

in particular, this isomorphism induces an algebra isomorphism

Z(k∗Ĝe) ∼= Z(k∗H̄ ˆ) (3.7.4)

mapping b on a block c̄ of H /̂K, and then it is quite clear that

k∗H̄ ˆc̄ ∼= B. (3.7.5)

Now set α = {b} and choose a defect pointed group Pγ of Ĝα. According to
Proposition 3.5, we may assume that Pγ ⊂ Hβ , so that Pγ comes from a local
pointed group on iAi ∼= Si ⊗k B (cf. [12, 2.11.2]), which forces

(Si)(P ) �= {0} and B(P ) �= {0} (3.7.6)

because the k-algebra homomorphism (Si)(P ) ⊗k B(P ) → (Si ⊗k B)(P ) (cf.
[12, 7.9.2]) is unitary. In particular, since P stabilizes a basis Z of Si = k∗K̂db,
we know that P fixes an element of Z (cf. [9, 2.8.4]) and thus ResHP (Si) is a
Dade P -algebra (cf. 2.11). However, d is a block of defect zero of K̂ and so we
have (Si)(R) = {0} for any nontrivial p-subgroup R of K̂ (cf. 2.8); thus we have
P ∩ K = {1} and therefore P is isomorphic to its image P̄ in H̄ ˆ.

Consequently, since A ∼= k∗Ĝb and k∗H̄ ˆc̄ ∼= B, the actions of P × P on A

and B by left and right multiplication stabilize bases where P × {1} and {1} × P

act freely (cf. [8, 3.3]). Then, since

(Si ⊗k B)(P ) ∼= (Si)(P ) ⊗k B(P ) (3.7.7)

(cf. [9, 2.8.4]), γ determines a local point γ̄ of P ∼= P̄ on B (cf. [10, Prop. 5.6])
and it follows from [8, Thm. 3.1] that

FB(P̄γ̄ ) ∼= NH̄ ˆ(P̄γ̄ )/CH̄ ˆ(P̄ ), (3.7.8)

so that the subgroup FB(P̄γ̄ ) of Aut(P̄ ) stabilizes the Dade P -algebra Si. At this
point, it follows from [5, Lemma 1.17] and [8, Prop. 2.14] that

FA(Pγ ) ∼= FB(P̄γ̄ ); (3.7.9)

thus, since Pγ is a maximal local pointed group on k∗Ĝb, the Brauer First Main
Theorem implies that NH̄ ˆ(P̄γ̄ )/P̄ · CH̄ ˆ(P̄ ) is a p ′-group and hence that P̄γ̄ is a
maximal local pointed group on k∗H̄ ˆc̄ ∼= B. Now, the last statement follows from
Corollary 3.3 and we are done.

4. The p-Solvable k∗-Group Case

4.1. As before, Ĝ is a k∗-group with finite k∗-quotient G, and in this section we
assume that G is p-solvable. Let b be a block of Ĝ and let S be a G-stable semi-
simple unitary subalgebra of k∗Ĝb that is maximal such that p does not divide
the dimension of its simple factors; since b is primitive in Z(k∗Ĝb), the group G

acts transitively on the set I of primitive idempotents of Z(S) and we borrow the
notation i, Ĥ, ˆH, ρ, and H ˆ from 3.1. According to Propositions 3.2 and 3.5 and
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to Theorem 3.6, i is a block of Ĥ that belongs to a point β of Ĥ on k∗Ĝ and, for
a suitable block c of H ˆ, we have Ĝ- and Ĥ-interior algebra isomorphisms

k∗Ĝb ∼= IndĜ

Ĥ
(k∗Ĥi) and (k∗Ĝ)β ∼= k∗Ĥi ∼= Si ⊗k k∗H ˆc (4.1.1)

as well as an equivalence of categories ι : Lk∗H ˆc → Lk∗Ĝb; in particular, there is
a defect pointed group Pγ of b contained in Ĥβ. Denote by Op ′(Ĥ ), Op ′(ˆH ), and
Op ′(H ˆ) the respective inverse images in Ĥ, ˆH, and H ˆ of Op ′(H ).

Proposition 4.2. Assume that G is p-solvable. Then P is a Sylow p-subgroup
of H, we have Si = k∗Op ′(Ĥ )i, and the inclusion Op ′(Ĥ )i ⊂ (Si)∗ induces an
H-stable k∗-group isomorphism σ : k∗ × Op ′(H ) ∼= Op ′(H ˆ) such that

c = 1

|Op ′(H )|
∑

y∈Op ′ (H )

σ(y) and k∗H ˆc ∼= k∗
H ˆ

σ(Op ′(H ))
. (4.2.1)

Moreover, setting Q = P ∩ Op ′,p(H ), the idempotent c is primitive in (k∗H ˆc)Q.
Proof. If T is an H-stable semisimple unitary subalgebra of k∗H ˆc such that p
does not divide the dimension of its simple factors, then in the induced algebra
IndĜ

Ĥ
(Si⊗k k∗H ˆc) the direct sum

∑
x x̂⊗(Si⊗kT )⊗x̂−1, where x ∈G runs over a

set of representatives for G/H and x̂ ∈ Ĝ lifts x, determines a G-stable semisimple
unitary subalgebra of k∗Ĝb fulfilling the preceding condition and containing S.

Thus, the maximality of S forces T = k · c.
In particular, since the algebra k∗Op ′(H ˆ) is semisimple, we obtain

k∗Op ′(H ˆ)c = k · c, (4.2.2)

which forces Op ′(Ĥ )i ⊂ Si. Then we necessarily have Op ′(Ĥ )i = ρ(Op ′(ˆH ))

and thus still get an H-stable k∗-group isomorphism (cf. (2.3.1))

σ : k∗ × Op ′(H ) ∼= Op ′(H ˆ). (4.2.3)

Therefore, setting

e = 1

|Op ′(H )|
∑

y∈Op ′ (H )

σ(y) and Lˆ = H ˆ
σ(Op ′(H ))

, (4.2.4)

we have ec = c and that c determines a block of Lˆ; but since H is p-solvable,
CL(Op(L)) = Z(Op(L)) and therefore Op(L) has a unique local point on k∗Lˆ ∼=
k∗H ˆe (cf. (2.9.2)) that actually has multiplicity 1 (cf. (2.9.2)). Moreover, it is
easily checked that Ker(BrOp(L)) ⊂ J(k∗Lˆ), so the unity element is primitive in
(k∗Lˆ)Op(L) (cf. (2.9.2)); hence c coincides with e and is primitive in (k∗H ˆ)R for
any p-subgroup R of H such that Op ′,p(H ) ⊂ Op ′(H ) · R.

Consequently, we have
k∗H ˆc ∼= k∗Lˆ (4.2.5)

and {c} is the unique local point of R on k∗H ˆc; this forces P to be a Sylow
p-subgroup of H because NH(P{c})/P · CH(P ) is a p ′-group by the Brauer First
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Main Theorem. Moreover, since (k∗Ĝ)β ∼= Si ⊗k k∗H ˆc, R has a unique local
point ε on k∗Ĝ such that Rε ⊂ Ĥβ (cf. Proposition 5.6 and Corollary 5.8 in [10]).

Finally, T = k∗Op ′(Ĥ )i is an H-stable semisimple unitary subalgebra of k∗Ĥi

and therefore—denoting by j a primitive idempotent of Z(T ), by K̂ the stabilizer
of j in Ĥ, and by C the centralizer of Tj in j(k∗Ĥ )j—it follows from Proposi-
tion 3.2 that, for a suitable k∗K̂-interior algebra structure on Tj ⊗k C, we have a
Ĥ-interior algebra isomorphism

k∗Ĥi ∼= IndĤ

K̂
(Tj ⊗k C). (4.2.6)

More precisely, it follows from Theorem 3.6 that C is the block algebra of a suit-
able k∗-group with k∗-quotient K and, since

Op ′(Ĥ ) ⊂ K̂ and Op ′(Ĥ )j ⊂ Tj, (4.2.7)

the inverse image of Op ′(H ) in this k∗-group has a trivial image in C; therefore,

dimk(C) ≤ |K : Op ′(H )|. (4.2.8)

Furthermore, since T ⊂ Si we have

|H : K| dimk(Tj) ≤ dimk(Si), (4.2.9)

the inequality being strict whenever K �= H.

On the other hand, isomorphisms (4.1.1) and (4.2.6) imply that

dimk(Si)|H : Op ′(H )| = dimk(k∗Ĥi)

= |H : K|2 dimk(Tj) dimk(C). (4.2.10)

Hence the preceding inequalities are actually equalities, so we haveK = H, j = i,
and T = Si as claimed.

Corollary 4.3. Assume that G is p-solvable, set Q = P ∩ Op ′,p(H ), and de-
note by γ and δ the respective local points of P and Q on k∗Ĝ such that Qδ ⊂
Pγ ⊂ Hβ. Then Qδ is the unique local pointed group on k∗Ĝ that fulfills the fol-
lowing conditions:

(4.3.1) Qδ � Pγ , CP (Q) = Z(Q), and Op(ẼG(Qδ)) = {1};
(4.3.2) EG(Rε,Pγ ) = ENG(Qδ)(Rε,Pγ ) for any local pointed group Rε on k∗Ĝ

contained in Pγ .

Proof. With notation as in Proposition 4.2, set L̂ = H /̂σ(Op ′(H )). It follows
from this proposition that the unity element is primitive in (k∗L̂)Q and so deter-
mines local points γ ◦ and δ◦ of P and Q, respectively, on k∗L̂; since we have
k∗L̂ ∼= k∗H ˆc, these local points determine local points γ and δ of P and Q,
respectively, on k∗Ĝ (cf. Proposition 5.6 and Corollary. 5.8 in [10] and Proposi-
tion 2.14 in [8]). Therefore, P normalizes Qδ and the p-solvability of H forces
CP (Q) = Z(Q).

Moreover, it follows from Theorem 3.6 that, for any local pointed group Rε on
k∗Ĝ contained in Pγ , we have



334 Lluis Puig

EG(Rε,Pγ ) = EL(Rε◦ ,Pγ ◦), (4.3.3)

where ε◦ denotes the corresponding local point ofR on k∗L̂. However, the unique-
ness of δ forces NH(Qδ) = NH(Q) and thus, by the Frattini argument, we obtain
H = Op ′(H ).NH (Qδ). Consequently, it is easily checked that we still have

EG(Rε,Pγ ) = ENH (Qδ)(Rε,Pγ ). (4.3.4)

In particular, EG(Qδ) ∼= NH(Q)/CH(Q) and so we still get

Op(ẼG(Qδ)) = {1}. (4.3.5)

Finally, if Tθ is a local pointed group on k∗Ĝb fulfilling conditions (4.3.1) and
(4.3.2), then we have EG(Qδ) = ENG(Tθ )(Qδ) and therefore ET (Qδ) is a normal
p-subgroup of EG(Qδ), so that ẼT (Qδ) = {1}. Hence, we have

T ⊂ P ∩ Q.CG(Q) = Q (4.3.6)

and, by symmetry, the equality follows.

4.4. With notation as in Proposition 4.2, set L̂ = H /̂σ(Op ′(H )) and con-
sider k∗L̂ endowed with the obvious group homomorphism P → (k∗L̂)∗ as a
P -interior algebra. Then isomorphisms (4.1.1) and (4.2.1) yield a P -interior alge-
bra embedding

(k∗Ĝ)γ → ResˆH
P (Si) ⊗k k∗L̂, (4.4.1)

which already gives a satisfactory description of a source algebra of the block b

except that we know nothing about the uniqueness of the left tensor factor. In
order to get this we need the following lemma, which we prove in a more general
context.

Lemma 4.5. Let L̂ and L̂′ be k∗-groups with respective finite k∗-quotients L and
L′ fulfilling

CL(Op(L)) = Z(Op(L)) and CL′(Op(L
′)) = Z(Op(L

′)), (4.5.1)

and denote by P a Sylow p-subgroup of L. If τ : P → L̂′ is an injective group
homomorphism and if T is a Dade P -algebra such that there exists a P -interior
algebra embedding

k∗L̂ → T ⊗k k∗L̂′, (4.5.2)

then T is similar to k and L̂ isomorphic to L̂′.

Proof. Through embedding (4.5.2), any local pointed groupRε on k∗L̂ determines
a local point ε ′ of R on k∗L̂′ such that, denoting by ρ the unique local point of R
on T, (4.5.2) induces an R-interior algebra embedding

(k∗L̂)ε → Tρ ⊗k (k∗L̂′)ε ′ (4.5.3)

(cf. Proposition 5.6 and Corollary 5.8 in [10] and Proposition 2.14 in [8]). More-
over, since there is a P -interior algebra embedding k → T ◦ ⊗k T (cf. [10, 5.7]),
from (4.5.3) we easily derive the embedding
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(k∗L̂′)ε ′ → (Tρ)
◦ ⊗k (k∗L̂)ε; (4.5.4)

in particular, since (Tρ)(R) ∼= k (cf. [10, Cor. 5.8]), if Rε is self-centralizing (cf.
2.9) then, setting R ′ = τ(R), we have

(k∗L̂′)ε ′(R ′) ∼= (k∗L̂)ε(R) ∼= kZ(R) ∼= kZ(R ′). (4.5.5)

Therefore, according to [13, Lemma 2.14], R ′
ε ′ is self-centralizing, too.

Set Q = Op(L). Actually, since Ker(BrQ) ⊂ J(k∗L̂) and since we assume that
CL(Q) = Z(Q), the unity element is primitive in (k∗L̂)Q (cf. (2.9.2)) and there-
fore γ = {1k∗L̂} is the unique point of P on k∗L̂, which is maximal local. In this
situation, setting P ′ = τ(P ), denoting by γ ′ the corresponding local point of P ′
on k∗L̂′, and considering the corresponding embeddings (4.5.3) and (4.5.4), it fol-
lows from [5, Lemma 1.17] that

EL(Rε,Pγ ) ∼= EL′(R ′
ε ′ ,P ′

γ ′). (4.5.6)

Hence, by the Brauer First Main Theorem, the maximality of Pγ implies that
ẼL(Pγ ) is ap ′-group; then, since P ′

γ ′ is self-centralizing, isomorphism (4.5.6) im-
plies that P ′

γ ′ is maximal local on k∗L′ and so P ′ contains Op(L
′) (cf. [1, Sec. 13,

Thm. 6]). Consequently, according to our assumption on L′, we have γ ′ = {1k∗L̂′ }
and CL′(P ′) = Z(P ′), which implies that P ′ is a Sylow p-subgroup of L′.

At this point, the existence of embedding (4.5.4) for Rε = Pγ shows that our
hypotheses are actually symmetric on L̂ and L̂′. On the other hand, considering
the point δ = γ of Q on k∗L̂, it follows easily from the isomorphism EL(Qδ) ∼=
EL′(Q′

δ ′) that
|L| = |Q||EL(Qδ)| ≤ |NL′(Q′

δ ′)| ≤ |L′| (4.5.7)

and thus, by symmetry, we obtain |L| = |L′|, Q′ = Op(L
′), and δ ′ = γ ′. More

precisely, by isomorphisms (4.5.6) we can apply [5, Thm. 1.8] to show that L and
L′ are isomorphic.

Moreover, by [10,Thm. 5.3], the isomorphismEL(Qδ) ∼= EL′(Q′
δ ′) can be lifted

to a k∗-group isomorphism ÊL(Qδ) ∼= ÊL′(Q′
δ ′); but in our situation it is clear that

ÊL(Qδ) ∼= L̂/Op(L) and ÊL′(Q′
δ ′) ∼= L̂′/Op(L

′). (4.5.8)

That is to say, from now on we may assume that L̂ = L̂′ and that the unity element
is primitive in T P.

Since (k∗L̂)(Q) ∼= kZ(Q), embedding (4.5.2) induces a P/Q-algebra embed-
ding (cf. [10, Cor. 5.8])

k → T(Q), (4.5.9)

which, since T P covers T(Q)P (cf. [9, 2.8.4]), is actually an isomorphism. How-
ever, it is clear that embedding (4.5.2) determines an embedding between the cor-
responding semisimple quotients, so that setting S(k∗L̂) = k∗L̂/J(k∗L̂) yields a
P -algebra embedding

S(k∗L̂) → T ⊗k S(k∗L̂), (4.5.10)

which tensored by S(k∗L̂)◦ determines another embedding,
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h : S(k∗L̂) ⊗k S(k∗L̂)◦ → T ⊗k S(k∗L̂) ⊗k S(k∗L̂)◦. (4.5.11)

Furthermore, since Q acts trivially on S(k∗L̂), the image of h is contained in
T Q ⊗k S(k∗L̂)⊗k S(k∗L̂)◦. Consequently, since T(Q) ∼= k (cf. (4.5.9)), h induces
a P -algebra automorphism

h(Q) : S(k∗L̂) ⊗k S(k∗L̂)◦ ∼= S(k∗L̂) ⊗k S(k∗L̂)◦ (4.5.12)

mapping s ∈ S(k∗L̂) ⊗k S(k∗L̂)◦ on BrQ(h(s)).
On the other hand, it is well known (cf. [14, Cor. 12.10]) that some simple k∗L̂-

module M has a dimension prime to p and, in particular, that there is a point λ of
L on S(k∗L̂) ⊗k S(k∗L̂)◦ such that

(S(k∗L̂) ⊗k S(k∗L̂)◦)λ ∼= k. (4.5.13)

It then follows from [14, Thm. 7.2] that λ is contained in a local point of P on
S(k∗L̂)⊗k S(k∗L̂)◦ and hence, choosing j ∈ λ, there is a primitive idempotent j ′
in (S(k∗L̂) ⊗k S(k∗L̂)◦)P such that (cf. [10, Prop. 5.6])

h(j)(1 ⊗ j ′)a = h(j) = (1 ⊗ j ′)ah(j) (4.5.14)

for some invertible element a of (T ⊗k S(k∗L̂) ⊗k S(k∗L̂)◦)P. Therefore, since
BrQ(1 ⊗ j ′) = j ′ and j ′ is primitive in (S(k∗L̂) ⊗k S(k∗L̂)◦)P, it follows from
equalities (4.5.14) that BrQ(h(j)) = j ′BrQ(a); in particular, isomorphism (4.5.13)
implies that

j ′(S(k∗L̂) ⊗k S(k∗L̂)◦)j ′ ∼= k. (4.5.15)

Finally, according to equalities (4.5.14), h and the conjugation by a determine
a P -algebra embedding

k ∼= j(S(k∗L̂) ⊗k S(k∗L̂)◦)j → T ⊗k j
′(S(k∗L̂) ⊗k S(k∗L̂)◦)j ′ ∼= T, (4.5.16)

which proves that T is similar to k (cf. [11, 1.7.2]).

Theorem 4.6. Assume that G is p-solvable. With notation as before, denote by
γ the local point of P on k∗Ĝ such that Pγ ⊂ Hβ. Then there exist a k∗-group L̂,
with finite k∗-quotientL, endowed with an injective group homomorphism τ : P →
L̂, and a Dade P -algebra T both unique up to isomorphisms, that fulfill the fol-
lowing conditions:

(4.6.1) CL(Op(L)) = Z(Op(L)) and the unity element is primitive in T P;
(4.6.2) there is a P -interior algebra embedding

(k∗Ĝ)γ → T ⊗k k∗L̂. (4.6.3)

In particular, P has a unique local point γ ′ on T ⊗k k∗L̂, and this embedding
induces a P -interior algebra isomorphism (k∗Ĝ)γ ∼= (T ⊗k k∗L̂)γ ′ .

Proof. From 4.4 we already know that there exist a k∗-group L̂′, with a finite p-
solvable k∗-quotient L′ such that Op ′(L′) = {1}, endowed with an injective group
homomorphism τ ′ : P → L̂′ such that the image of P is a Sylow p-subgroup of
L′, together with a Dade P -algebra T ′ with the unity element primitive in T ′P,
admitting a P -interior algebra embedding
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(k∗Ĝ)γ → T ′ ⊗k k∗L̂′, (4.6.4)

which already proves the existence statement.
Moreover, since there is a P -interior algebra embedding (cf. [10, 5.7])

k → T ′◦ ⊗k T
′

and since the unity element is primitive in (k∗L̂′)P, it follows from embedding
(4.6.4) that

k∗L̂′ → T ′◦ ⊗k (k∗Ĝ)γ . (4.6.5)

Consequently, for L̂ and T as in the statement of the theorem, we have another
P -interior algebra embedding

k∗L̂′ → (T ′◦ ⊗k T ) ⊗k k∗L̂ (4.6.6)

and it then follows from Lemma 4.5 that T ′◦ ⊗k T is similar to k or, equivalently,
that T is similar to T ′. Because the unity elements are primitive in T P and T ′P,
T and T ′ are actually isomorphic. We are done.

4.7. We now give a “constructive” description of the Dade P -algebra that ap-
pears in a source P -interior algebra of the block b. Consider the chains {Zn}n∈N

and {Tn}n∈N of G-stable semisimple unitary subalgebras of k∗Ĝb defined recur-
sively by

Z0 = k.b, Tn =
∑

{j}∈P(Zn)

k∗Op ′(Ĝj )j, Zn+1 = Z(Tn), (4.7.1)

where Ĝj denotes the stabilizer of j in Ĝ for any n ∈ N and any {j} ∈ P(Zn). It
is clear that Zn ⊂ Z(Tn) = Zn+1 and that Tn ⊂ Tn+1, so the union

T =
⋃
n∈N

Tn (4.7.2)

is also a G-stable semisimple unitary subalgebra of k∗Ĝb; in fact, T = Tn for
some n∈ N.

4.8. Choosing a primitive idempotent j of Z(T ) fixed by P such that sγ(j) �= 0,
which is possible because γ is local, and denoting by K̂ the stabilizer of j in Ĝ,
we see that the maximality of T forces k∗Op ′(K̂)j = Tj. In particular, denote by
ˆK the k∗-group determined by the action of K on Tj and, as before, set K ˆ =
K̂ ∗ (ˆK)◦; then, up to suitable identifications, ˆK and ˆK contain Op ′(K̂) and
Op ′(K), respectively, and it follows from Proposition 3.2 and Theorem 3.6 that
we have a Ĝ-interior algebra isomorphism

k∗Ĝb ∼= IndĜ

K̂
(k∗Op ′(K̂)j ⊗k k∗(K /̂Op ′(K))) (4.8.1)

since the unity element is the unique block of K /̂Op ′(K) (cf. Proposition 4.2).
Consequently, we obtain a P -interior algebra embedding

(k∗Ĝ)γ → k∗Op ′(K̂)j ⊗k k∗(K /̂Op ′(K)) (4.8.2)

and then Theorem 4.6 applies.
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