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1. Introduction

Let G be a finite Chevalley group over a finite field k = Fq of characteristic p (as
in [15] or [3]). Let B be a Borel subgroup of G with U = Op(B) (the unipotent
radical of B), and let T be a maximal torus such that B = UT. LetW = NG(T )/T

be the Weyl group of G. ThenW is a finite Coxeter group with distinguished gen-
erators S = {s1, . . . , sn}.

Let � be the root system associated with W, with {α1, . . . ,αn} the set of simple
roots corresponding to the generators si ∈ S, and let �+ (resp. �−) be the set of
positive (resp. negative) roots associated with them.

By the Bruhat decomposition, the (U,U)-double cosets are parameterized by
the elements of N = NG(T ) and the (B,B)-double cosets are parameterized by
the elements of W. The main result is a description of the set

BẇB ∩ ẏUx−1 ẋ−1

of representatives of the left B-cosets in the intersection

BwB ∩ yBx−1B,

for elements ẇ, ẋ, ẏ in N corresponding to elements w, x, y inW, by an algorithm
based on a reduced expression of w in terms of the generators s1, . . . , sn of W. Its
cardinality was shown by Iwahori [12] to be the structure constant

[ewex : ey]

for standard basis elements ew, ex , ey of the Iwahori Hecke algebra H(G,B). A
formula for the structure constants [ewex : ey] was proved by Kawanaka [13] and
is stated as follows:

[ewex : ey] =
∑
τ

qa(τ)(q − 1)b(τ),

where the sum is taken over a set of subexpressions τ of a fixed reduced expression
of w. The subexpressions are called K-sequences for (w, x, y) in what follows and
were first defined in Kawanaka’s paper [13]. The nonnegative integers a(τ) and
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b(τ) are defined by properties of the subexpressions. The description of the sets
BẇB ∩ ẏUx−1 ẋ−1 can be viewed as a geometric interpretation of Kawanaka’s for-
mula. (We use the notation Uw for Uẇ = U ∩ ẇB−ẇ−1 for a representative ẇ ∈
N of w ∈W and B− for the Borel subgroup opposite to B; then BẇB = UwẇB

with uniqueness of expression.)
In more detail, a nonempty set BẇB ∩ ẏUx−1 ẋ−1 can be identified with the set

of triples (u, b, v), with u ∈ Uw, b ∈ B, and v ∈ Ux−1, that satisfy the structure
equation

uẇb = ẏvẋ−1.

For such a triple (u, b, v) the elements b and v are uniquely determined by u∈Uw,
so it is natural to focus attention on the sets

U(w, x, y) = {u∈Uw : uẇB ∩ ẏUx−1 ẋ−1 
= ∅}.
The first part of the algorithm in Section 2 shows that each set U(w, x, y) can
be expressed as the disjoint union of nonempty subsets Uτ parameterized by K-
sequences for (w, x, y) and constructed from the root subgroups of G (see [4] for
a previous version of this result.) The second part of the algorithm gives all solu-
tions of the structure equation uẇb = ẏvẋ−1 with u∈Uτ .

The sets BẇB ∩ ẏUx−1 ẋ−1 are of interest not only in the case of finite Cheval-
ley groups but also for Chevalley groups G over the algebraically closed field k̄.

These are connected semisimple algebraic groups over k̄ [15, Sec. 5] with a Frobe-
nius endomorphism F such that the group GF of fixed points under the action of
F is a finite Chevalley group G as considered earlier. The algorithms in Section 2
also apply to this situation. We may assume that the representatives ẇ, ẋ, . . . be-
long to GF. Then the set of solutions (u, b, v) of the structure equation uẇb =
ẏvẋ−1 corresponding to BẇB∩ ẏUx−1 ẋ−1 and the sets corresponding to U(w, x, y)
and Uτ can be viewed as F -stable locally closed subvarieties of G.

The proof of the algorithm is an improved and extended version of the method
used in [4] to calculate U(w, x, y).

A Gelfand–Graev representation γ of G is an induced representation ψG for a
linear representation ψ of U in general position; that is, ψ |Uαi 
= 1 for each sim-
ple root subgroup Uαi , 1 ≤ i ≤ n. Let

e = |U |−1
∑
u∈U

ψ(u−1)u

be the primitive idempotent affording ψ in the group algebra CU of U over the
field of complex numbers. Then ψG is afforded by the left CG-module CGe. The
Hecke algebra of γ is the subalgebra H = eCGe of CG and is isomorphic to
(EndC CGe)◦. It is known that H is a commutative algebra, so that a Gelfand–
Graev representation γ is multiplicity-free.

A basis for H is given by the nonzero elements of the form ene, n ∈ N. The
standard basis elements are the nonzero elements of the form cn = ind(n)ene,
where ind(n) = |U : nUn−1 ∩U |; they are parameterized by the set N consisting
of those elements n∈N such that ene 
= 0. The structure constants [c#cm : cn] in
the formulas
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c#cm =
∑
n

[c#cm : cn]cn, #,m, n∈ N,

are algebraic integers.
We mention two methods for computing the structure constants [c#cm : cn],

#,m, n ∈ N. The first was used by Chang [2] to compute some of the structure
constants for the Hecke algebra of the Gelfand–Graev representation of GL3(k).

One computes #Um ∩ UnU for #,m ∈ N and all n ∈ N. This gives #em as a lin-
ear combination of certain elements unu′ with u, u′ ∈U and n∈N. Then multiply
on the left and right by e and use the facts that ue = ψ(u)e = eu for all elements
u ∈ U and ene = 0 for n /∈ N. The result is a formula for e#e · eme as a linear
combination of the elements ene, n∈ N.

The second method uses [7, Prop. 11.30] to obtain

[c#cm : cn] = |U |
∑

y∈U#U∩nUm−1U

a#(y)am(y
−1n)

(or 0 if the intersection U#U ∩ nUm−1U = ∅). In this formula,

a#(y) = |U |−1ψ(u−1
1 )ψ(u−1

2 ) and y = u1#u2 ∈U#U for ui ∈U,

and an(y) = 0 if y /∈UnU.

Let Un = U ∩ nB−n−1 for n ∈ N. The set U#U ∩ nUm−1m−1 is a set of repre-
sentatives for the left U-cosets in the intersection of one (U,U)-double coset with
the translate of another—namely, U#U ∩ nUm−1U. From the preceding formula,
the structure constants are determined if the sets U#U ∩ nUm−1m−1 are known.

The sets U#U ∩ nUm−1m−1 and the structure constants [c#cm : cn] are calcu-
lated in Section 3 (Corollary 3.2) using the result obtained in Section 2 concerning
the sets

BẇB ∩ ẏUx−1 ẋ−1.

In Section 4 we explain connections between the description ofBẇB∩ẏUx−1 ẋ−1

and Deodhar’s results [10] on the sets BwB ∩ B−xB for elements x and w in W

such that x ≤ w with respect to the Bruhat order on the Coxeter group W. A
set of representatives of the left B-cosets in BwB ∩ B−xB is given by the set
BẇB ∩ ẇ0Uw0 x(w0 x)

• whose cardinality is the structure constant [ewe(w0 x)−1 :
ew0 ] in H(G,B) and is given by Kawanaka’s theorem as

∑
τ q

a(τ)(q − 1)b(τ),
where w0 is the element of maximal length in W and the sum is taken over K-
sequences for (w, (w0 x)

−1,w0). In [10], Deodhar proved that the cardinality of
the set BẇB ∩ ẇ0Uw0 x(w0 x)

• is given by the sum
∑

σ qm(σ)(q − 1)n(σ) over an-
other set of subexpressions σ of a reduced expression of w and that this cardinality
is equal to the Kazhdan–Lusztig polynomial Rx,w(q). The main point of Section 4
is to show that the two kinds of subexpressions of w coincide and that the inte-
gers a(τ) and b(τ) coincide with the integers m(σ) and n(σ) associated with the
subexpression σ = τ. The result is a formula for the Kazhdan–Lusztig polyno-
mial Rx,w(q) as a sum over K-sequences for (w, (w0 x)

−1,w0).

The values of the irreducible representations of the commutative semisimple
algebra H on standard basis elements are obtained as eigenvalues of matrices giv-
ing the regular representation of H and whose entries are the structure constants
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[c#cm : cn]. This idea was first applied by Frobenius ([11]; see also [6, Chap. II])
to define the characters of a finite group in terms of the eigenvalues of matrices af-
fording the regular representation of the center of the group algebra. The entries
of these matrices are structure constants of the center of the group algebra with
respect to the basis consisting of class sums.

The following result recalls well-known facts about the irreducible represen-
tations of the commutative semisimple algebra H referred to in the preceding
paragraph.

Proposition 1.1. Let {cn} be the standard basis elements of H, and let A# be the
matrix of left multiplication by c# with respect to the standard basis {cn, n ∈ N }
so that A# = ([c#cm : cn]). The primitive idempotents ε = εf in H form a basis of
H such that each idempotent ε corresponds to a unique irreducible representation
f of H and to an irreducible component of the Gelfand–Graev representation γ.

Moreover, each idempotent εf is an eigenvector for each matrix A# such that the
corresponding eigenvalues are the values f(c#) of the irreducible representation
f at the basis element c#.

The values of the irreducible representations f(c#) and the primitive idempotents
εf were calculated in [5] (see also [8] and Section 3) using the virtual repesenta-
tions RT,θ defined by Deligne and Lusztig [9]. It would be interesting to investi-
gate whether these formulas can be related to the eigenvalues of the matrices A#.

A problem involving the structure constants and the irreducible representations of
H, with an example for a Gelfand–Graev representation of SL2(k), is discussed
at the end of Section 3.

2. Calculation of BẇB ∩ ẏUx−1 ẋ−1

Let G denote a finite Chevalley group over k as in Section 1.
For each root α, there is a homomorphism (see [15, p. 46]) ϕ = ϕα : SL2(k) →

G such that ϕ takes(
1 t

0 1

)
→ xα(t),

(
1 0
t 1

)
→ x−α(t),

(
0 t

−t−1 0

)
→ wα(t)∈N,

(
t 0
0 t−1

)
→ hα(t)∈ T

for all t ∈ k. The elements wα(t) and hα(t) are given by

wα(t) = xα(t)x−α(−t−1)xα(t) and hα(t) = wα(t)wα(1)
−1

[15, p. 30]. By [15, Lemma 83, p. 242], if w = sk · · · s1 is a reduced expression of
an element w ∈W then ẇ = ṡk · · · ṡ1, with ṡi = wαi(ti) for some fixed choice of
ti ∈ k − {0}, is a representative in N of w that is independent of the choice of the
reduced expression chosen. In what follows we assume that representatives ẋ of
all elements x ∈W have been chosen in this way for a fixed choice of representa-
tives ṡi of the generators si ∈ S.
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We also need a consequence of the Bruhat decomposition for SL2 and an appli-
cation of the homomorphism ϕαi : SL2 → G described previously. Hereafter we
shall use the notation X∗ for the set of elements x 
= 1 in a group X.

Lemma 2.1. Let si ∈ S correspond to the simple root αi and assume, as usual,
that ṡi = wαi(ti) for ti ∈ k. Then there exist bijections fi, gi : U ∗

αi
→ U ∗

αi
such

that, for each u∈U ∗
αi

, there exist ti(u)∈ T such that

ṡ−1
i uṡi = fi(u)ṡi ti(u)gi(u).

As in [10], a subexpression τ of a fixed reduced expression w = sk · · · s1 is a se-
quence τ = (τk , . . . , τ1, τ0) of elements of W such that τiτ

−1
i−1 ∈ {1, si} for i =

1, . . . , k and τ0 = 1. Then the set of terminal elements τk of subexpressions of
w = sk · · · s1 coincides with the set of elements x ∈ W such that x ≤ w in the
Chevalley–Bruhat order (see [10]). A subexpression τ = (τk , . . . , τ1, τ0) is called
a K-sequence relative to the triple w = sk · · · s1, x, y of elements of W if it satis-
fies the conditions (2.10)(a–c) of [13] (see also [1, (3.19)], where the conditions are
stated in a different way). It is understood that a K-sequence for the triple (w, x, y)
is always given with reference to a fixed reduced expression w = sk · · · s1. Let
Jτ = {j : τjτ

−1
j−1 = sj} ∪ {0}. Then the defining conditions for a K-sequence state

that τk x = y and
#(spτj x) < #(τj x)

for each j ∈ Jτ and p in the interval between j and the next element in Jτ (or
simply all p > j if j is the maximal element of Jτ ). For each K-sequence τ, set

J−
τ = {j ∈ Jτ : #(sjτj ′x) < #(τj ′x)},

where j ′ ∈ Jτ is the predecessor of j, and define a pair of nonnegative integers by

a(τ) = |J−
τ |, b(τ) = k − |Jτ | + 1 = card{j > 0 : τjτ

−1
j−1 = 1}.

We can now state a more precise version of Kawanaka’s theorem [13, Lemma
2.14b]. For a finite Chevalley group G over k = Fq , let ew, ex , ey be standard basis
elements of the Iwahori Hecke algebra H(G,B). Then

[ewex : ey] = |BẇB ∩ ẏUx−1 ẋ−1| =
∑
τ

qa(τ)(q − 1)b(τ),

where the sum is taken over all K-sequences τ for w, x, y and where a(τ) and b(τ)

are the nonnegative integers defined previously.
Fix w, x, y in W, and let w = sk · · · s1, si ∈ S, be a reduced expression.

Let ẋ, ẏ, ẇ be chosen as in the preceding paragraph. We shall decompose
BẇB ∩ ẏUx−1 ẋ−1, assuming it is nonempty, as a union of nonempty subsets pa-
rameterized by the K-sequences for (w, x, y) corresponding to the decomposition
of U(w, x, y) obtained in [4].

We first require some preliminary results, which provide an inductive construc-
tion ofK-sequences and a matching inductive construction of the setsU(w, x, y) =
{u ∈ Uw : uẇB ∩ ẏUx−1 ẋ−1 
= ∅}. The sets U(w, x, y) are invariant under conju-
gation by elements of T. The sets U(w, x, y) are also independent of the choice of
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representatives ẇ, ẋ, ẏ of w, x, y, but the sets BẇB ∩ ẏUx−1 ẋ−1 are not. Neverthe-
less, the sets BẇB ∩ ẏUx−1 ẋ−1 are obtained by the algorithm given in this section.

Lemma 2.2. Let w = sk · · · s1 be a fixed reduced expression of w for k ≥ 1,
and let τ ′ = (τk−1, . . . , τ1, τ0) be a K-sequence for skw, x ′, y ′ with x ′, y ′ ∈W. (In
case #(w) = 1 it is understood that τ ′ = τ0 is a K-sequence for 1, x ′, x ′.) The
K-sequences τ = (τk , τk−1, . . . , τ1, τ0) = (τk , τ ′) for w, x, y (obtained from τ ′ by
adding τk), and the integers a(τ) and b(τ) associated with them, are as follows.

(i) τkτ
−1
k−1 = sk , x = x ′, y = sky

′, and #(sky
′) > #(y ′). In this case a(τ) =

a(τ ′) and b(τ) = b(τ ′).
(ii) τkτ

−1
k−1 = sk , x = x ′, y = sky

′, and #(sky
′) < #(y ′). In this case a(τ) =

a(τ ′) + 1 and b(τ) = b(τ ′).
(iii) τkτ

−1
k−1 = 1, x = x ′, y = y ′, and #(sky

′) < #(y ′). In this case a(τ) = a(τ ′)
and b(τ) = b(τ ′) + 1.

The proof is included in Kawanaka’s proof of Lemma 2.14b in [13].
In the discussion to follow, we use the fact thatUw = Uαk ṡkUskw ṡ

−1
k with unique-

ness, so that each element u ∈ Uw has the form u = u0 ṡku1ṡ
−1
k for uniquely de-

termined elements u0 ∈Uαk and u1 ∈Uskw. We also require that for each element
w ∈W there is an isomorphism of subgroups U = UwUww0

∼= Uw ×Uww0 , where
w0 is the unique element of maximal length in W.

Lemma 2.3. Let w = sk · · · s1 be a fixed reduced expression of w for k ≥ 1, and
let x, y ∈W. Then U(w, x, y) is either empty or is obtained from the nonempty sets
U(skw, x ′, y ′) for elements x ′, y ′ ∈W as follows.

(i) Let #(sky) < #(y), x ′ = x, and y ′ = sky. Then

U(w, x, y) = ṡkU(skw, x, sky)ṡ
−1
k .

(ii) Let #(sky) > #(y), x ′ = x, and y ′ = sky. Then there is a bijection of sets

U(w, x, y) = Uαk ṡkU(skw, x, sky)ṡ
−1
k

∼= Uαk × U(skw, x, sky).

(iii) Let #(sky) < #(y), x ′ = x, and y ′ = y. Then U(w, x, y) consists of the
elements u = u0 ṡku1ṡ

−1
k ∈ Uw, with u0 ∈ U ∗

αk
and u1 ∈ Uskw, such that

π(gk(u0)u1)∈U(skw, x, y), gk(u0) is as in Lemma 2.1, and π is the projec-
tion π : U → Uskw accompanying the decomposition U = Uskw × Uskww0 .

The map u = u0 ṡku1ṡ
−1
k → π(gk(u0)u1) from U(w, x, y) → U(skw, x, y)

is surjective. There is a bijection of sets,

U(w, x, y) ∼= U ∗
αk

× U(skw, x, y).

For the proofs of (i) and (ii), we refer to [4, pp. 40, 42]. We begin the proof of
(iii) by observing that, for all u0 ∈ U ∗

αk
and v ∈ Uskw, we have π(u0π(u

−1
0 v)) =

v. This follows from the decomposition U = Uskw × Uskww0 and is the beginning
of the proof that the map u = u0 ṡku1ṡ

−1
k → π(gk(u0)u1) from U(w, x, y) →

U(skw, x, y) is surjective.
Now let u′ ∈U(skw, x, y) and let

u′ṡ−1
k ẇb ′ = ẏv ′ẋ−1
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with b ′ ∈B and v ′ ∈Ux−1. By the previous remark and the fact that gk is a bijection,
there exist u0 ∈U ∗

αk
, u1 ∈Uskw, and u = u0 ṡku1ṡ

−1
k ∈Uw such that π(gk(u0)u1) =

u′. We aim to prove that u∈U(w, x, y). For later use we shall not only prove that
u ∈ U(w, x, y) but also will obtain all solutions of the structure equation uẇb =
ẏvẋ−1 from the solutions (u′, b ′, v ′), assumed known, of the structure equation
u′ṡ−1

k ẇb ′ = ẏv ′ẋ−1.

We have gk(u0)u1 = u′u′′ with u′′ ∈ Uskww0 determined by the factorization
U = UskwUskww0 . Then the structure equation u′ṡ−1

k ẇb ′ = ẏv ′ẋ−1 becomes
gk(u0)u1ṡ

−1
k ẇb ′′ = ẏv ′ẋ−1 with b ′′ = (ṡ−1

k ẇ)−1(u′′)−1ṡ−1
k ẇb ′ ∈ B. Put z =

tk(u0)
−1ṡ−1

k fk(u0)
−1ṡ−1

k ; then, solving for gk(u0), by Lemma 2.1 the structure
equation becomes

u0 ṡku1ṡ
−1
k ẇb ′′ = ẏẏ−1z−1ẏv ′ẋ−1,

with ẏ−1z−1ẏ = ũt for uniquely determined elements ũ ∈ U and t ∈ T because
#(sky) < #(y) and so ẏ−1(z−1)ẏ ∈ B. We then have tv ′ẋ−1 = tv ′t−1ẋ−1ẋt ẋ−1 ∈
Ux−1 ẋ−1t ′ for t ′ ∈ T. If ũ ∈Ux−1 then the required solutions of the structure equa-
tion uẇb = ẏvẋ−1 with u∈U(w, x, y) are (u = u0 ṡku1ṡ

−1
k , b ′′t ′−1, ũtv ′t−1). If ũ /∈

Ux−1 then the situation is handled as follows. One has ũtv ′t−1 = v1v
′
1 with v1 ∈

Ux−1 and v ′
1 ∈Ux−1w0 . Then v ′

1 can be conjugated past ẋ−1 and absorbed in the con-
tribution to the solution of the equation in B, since ẋv ′

1ẋ
−1 ∈ B. This completes,

among other things, the proof that u∈U(w, x, y).
Conversely, one must prove that, if u = u0 ṡku1ṡ

−1
k ∈U(w, x, y) as before, then

π(gk(u0)u1)∈U(skw, x, y). We have

u0 ṡku1ṡ
−1
k ẇB ∩ ẏUx−1 ẋ−1 
= ∅.

Multiply the left-hand side by ṡk ṡ
−1
k and apply Lemma 2.1 to ṡ−1

k u0 ṡk. Using the
assumption that #(sky) < #(y), it follows by reasoning similar to that used previ-
ously that

gk(u0)u1ṡ
−1
k ẇB ∩ ẏBẋ−1 
= ∅;

further use of the argument in the preceding paragraph yields π(gk(u0)u1) ∈
U(skw, x, y), completing the proof.

From the first statement in part (iii) it follows that there is a bijection

U(w, x, y) ∼= Y = {(u0, u1)∈U ∗
αk

× Uskw : π(u0u1)∈U(skw, x, y)}
given by u0 ṡku1ṡ

−1
k → (gk(u0), u1) for u0 ṡku1ṡ

−1
k ∈ U(w, x, y). One then shows

that the map
ξ : Y → U ∗

αk
× U(skw, x, y)

given by ξ(u0, u1) = (u0,π(u0u1)) is surjective, as follows. Let u0 ∈U ∗
αk

and v ∈
U(skw, x, y); then

ξ(u0,π(u−1
0 v)) = (u0,π(u0π(u

−1
0 v))) = (u0, v).

Finally, define the map

η : U ∗
αk

× U(skw, x, y) → Y

by setting η(u0, v) → (u0,π(u−1
0 v)); then it is easily verified, using the factoriza-

tion U = UwUww0 = Uww0Uw and the projection π, that ξ and η are inverses of
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each other. This completes the proof of the last statement in Lemma 2.3—namely,
that there is a bijection

U(w, x, y) ∼= U ∗
αk

× U(skw, x, y).

Let w, x, y be arbitrary elements of W such that U(w, x, y) 
= ∅. We shall de-
scribe, by induction on #(w) for a fixed reduced expression w = sk · · · s1 or s0 =
1, a family of nonempty T-invariant subsets Uτ of U(w, x, y) corresponding to
K-sequences τ for (w, x, y) such that U(w, x, y) is the disjoint union

U(w, x, y) =
⋃
τ

Uτ .

First assume w = s0 = 1. Then there is exactly one K-sequence τ = τ0 for
(1, x, y) in case x = y and none if x 
= y. If x = y then U(1, x, x) = {1} because
B ∩ ẋUx−1 ẋ−1 = 1, since ẋUx−1 ẋ−1 ⊆ U− and B ∩ U− = 1. So we put Uτ = 1 in
this case.

Next let w 
= 1 and let τ = (τk , τ ′) be a K-sequence for (w, x, y) with τ ′ a K-
sequence for (skw, x ′, y ′), as in one of the three cases in Lemma 2.2. Assume as an
induction hypothesis that Uτ ′ is the nonempty subset of U(skw, x ′, y ′) correspond-
ing to τ ′, and define Uτ ⊆ U(w, x, y) according to the three cases in Lemma 2.2
as follows.

In case (i) we have #(sky) < #(y), x = x ′, and y = sky
′. In this case, put

Uτ = ṡkUτ ′ ṡ−1
k ,

a nonempty subset of U(w, x, y) by Lemma 2.3(i).
In case (ii) we have #(sky) > #(y), x ′ = x, and y ′ = sky. Then put

Uτ = Uαk ṡkUτ ′ ṡ−1
k ,

and check that Uτ is a nonempty subset of U(w, x, y) (by part (ii) of Lemma 2.3)
and that there is a bijection of sets Uτ

∼= Uαk ×Uτ ′ . In case (iii) we have #(sky) <
#(y), x ′ = x, and y ′ = y, so we may assume that Uτ ′ is a nonempty subset of
U(skw, x, y). Let Uτ be the set of elements u0 ṡku1ṡ

−1
k ∈ Uw, with u0 ∈ U ∗

αk
and

u1 ∈Uskw, such that π(gk(u0)u1) ∈Uτ ′ . By the first statement in Lemma 2.3(iii),
Uτ is a nonempty subset of U(w, x, y). Moreover, by the second statement in
Lemma 2.3(iii), one has the bijection of sets

Uτ
∼= U ∗

αk
× Uτ ′ .

At this point it follows—by the preceding discussion, Lemma 2.3, and the appro-
priate induction hypothesis for the sets U(skw, x ′, y ′)—that U(w, x, y) is indeed
the disjoint union of the sets Uτ corresponding to K-sequences for (w, x, y).

The elements u∈U(w, x, y) are the first entries in solutions u, b, v of the struc-
ture equation uẇb = ẏvẋ−1. Given a solution u, b, v of the structure equation, by
Lemma 2.4 the other elements b, v and also the sets BẇB ∩ ẏUx−1 ẋ−1 are uniquely
determined if u is known.

Lemma 2.4. Let (u, b, v) be a solution of the structure equation uẇb = ẏvẋ−1

for ẇ, ẋ, ẏ. Then b and v are uniquely determined by u.
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Let uẇb = ẏvẋ−1 and uẇb ′ = ẏv ′ẋ−1 for u ∈Uw with b, b ′ ∈B and v, v ′ ∈Ux−1.

Then
(uẇb ′)−1uẇb = (ẏv ′ẋ−1)−1ẏvẋ−1

and
b ′−1b = ẋv ′−1vẋ−1 ∈B ∩ U− = 1.

Then b = b ′ and v = v ′, completing the proof of the lemma.

Corollary 2.1. With notation as before, for all w, x, y ∈W one has that

|U(w, x, y)| = |BẇB ∩ ẏUx−1 ẋ−1|
and is given by Kawanaka’s formula

∑
τ q

a(τ)(q −1)b(τ) in terms of K-sequences
for w, x, and y.

The next step is the construction of all solutions (u, b, v) of the structure equation
for (ẇ, ẋ, ẏ) using induction on #(w), starting from a fixed reduced expression
w = sk · · · s1 of w. We have shown that each element u ∈ U(w, x, y) belongs to
Uτ for a unique K-sequence τ. For such elements u the solutions (u, b, v) of the
structure equation are obtained by the algorithm to follow. In case w = 1 there
is just one K-sequence τ = τ0 for (1, x, y) with x = y and Uτ = {1} and none if
x 
= y, so U(1, x, x) = Uτ = {1}.

Now let #(w) = 1, so ẇ = ṡ1, and let τ = (τ1, τ0) be a K-sequence for (s1, x, y)
corresponding to one of the three cases in Lemma 2.2, starting from theK-sequence
τ0 for (1, x ′, y ′)with x ′ = y ′. For case (i), τ1 = s1, x = x ′, y = s1y

′, and #(s1y
′) >

#(y ′). Then, by the previous discussion, Uτ = ṡ1Uτ0 ṡ
−1
1 = {1} and the unique so-

lution of the structure equation uṡ1b = ṡ1ẏ
′v(ẏ ′)−1 with u = 1 is (1,1,1). For

case (ii), τ1 = s1, x = x ′, y = s1y
′, and #(s1y

′) < #(y ′). In this case, Uτ = Uα1

and the solutions of the structure equation uṡ−1
1 b = ẏvẋ−1 for u∈Uα1 are

(u,1, ẏ−1uẏ),

noting that ẏ−1uẏ ∈ Ux−1. For case (iii), τ1 = τ0, x = x ′, y = y ′ = x ′, and
#(s1y) < #(y). In this case,

Uw = Us1 = Uα1 and Uτ = {u0 ∈U ∗
α1

: π(g1(u0))∈Uτ0 = 1} = U ∗
α1
.

First assume #(x) = 1. Then the assumptions imply that x = s1, ẋ = ẏ = ṡ1, and
there is a unique solution of the structure equation u0 ṡ1b = ṡ1vṡ

−1
1 using the homo-

morphism ϕα1 : SL2(k) → G and the Bruhat decomposition in SL2(k). Now let
#(x) > 1; then #(s1x) < #(x) implies ẋ = ṡ1ẋ1 with #(s1x1) > #(x1). For each
v ∈U ∗

α1
one has ẋ−1

1 vẋ1 ∈U because #(s1x1) > #(x1). Moreover,

ṡ1ẋ1(ẋ
−1
1 vẋ1)ẋ

−1
1 ṡ−1

1 = ṡ1vṡ
−1
1 ∈U−

and so ẋ−1
1 vẋ1 ∈ Ux−1. The unique solution of the structure equation u0 ṡ1b =

ṡ1vṡ
−1
1 with u0 ∈ U ∗

α1
from the case #(x) = 1 now yields the unique solution

(u, b, ẋ−1
1 vẋ1) of the structure equation for (s1, x, y); that is,

u0 ṡ1b = ẏẋ−1
1 vẋ1ẋ

−1
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since ẏẋ−1
1 = ṡ1 and ẋ1ẋ

−1 = ṡ−1
1 . Note that in case (iii) there is no solution to

the structure equation uṡ1b = ẏvẋ−1 in case u = 1 and x = y, since this would
contradict the fact that Bẏ−1ṡ1B 
= Bẋ−1B by the uniqueness part of the Bruhat
decomposition. This completes the discussion of the solutions of the structure
equation for the case #(w) = 1.

We shall now prove the inductive step. Assume #(w) > 1, and let τ be a K-
sequence for w, x, y such that τ = (τk , τ ′) with τ ′ a K-sequence for (skw, x ′, y ′)
corresponding to the three cases of Lemmas 2.2 and 2.3. We further assume that
Uτ is a nonempty subset of U(w, x, y) obtained from Uτ ′ ⊆ U(skw, x ′, y ′), as in
the discussion following Lemma 2.3. We consider the cases (i)–(iii) separately,
and in each case we obtain the solutions of the structure equation for each element
of Uτ starting from solutions of the structure equation for (skw, x ′, y ′).

(i) τkτ
−1
k−1 = sk , x = x ′, y = sky

′, and #(sky
′) > #(y ′). Then Uτ = ṡkUτ ′ ṡ−1

k .

Consider as an induction hypothesis that the solutions of the structure equation
u′ṡ−1

k ẇb ′ = ẏ ′v ′ẋ ′−1 with u′ ∈ Uτ ′ , b ′ ∈ B, and v ′ ∈ Ux ′−1 are known. For each
such solution (u′, b ′, v ′), the equation

ṡku
′ṡ−1
k ẇb ′ = ṡk ẏ

′v ′(ẋ ′)−1 = ẏv ′ẋ−1

clearly gives all solutions (u, b, v) of the structure equation uẇb = ẏvẋ−1 for
u∈Uτ .

(ii) τkτ
−1
k−1 = sk , x = x ′, y = sky

′, and #(sky
′) < #(y ′). Then Uτ =

Uαk ṡkUτ ′ ṡ−1
k , and the induction hypothesis in this case gives the solutions (u′, b ′, v ′)

of the structure equations u′ṡkẇb ′ = ẏ ′v ′ẋ ′−1 for each u′ ∈ Uτ ′ . Then ẏ = ṡ−1
k ẏ ′

and the equations become ṡ−1
k u′ṡkẇb ′ = ẏv ′ẋ ′−1. Multiply each such equation by

u0 ∈Uαk ; then
u0 ṡ

−1
k u′ṡkẇb ′ = ẏẏ−1u0ẏv

′ẋ−1,

noting that ẏ−1u0ẏ ∈ U because #(sky) > #(y). If ẏ−1Uαk ẏ ⊆ Ux−1 then the
elements

(u0 ṡ
−1
k u′ṡk , b ′, ẏ−1u0ẏv

′)

are a complete set of solutions of the structure equations for (w, x, y) with
u0 ṡ

−1
k u′ṡk ∈Uτ . If, on the other hand, an element ẏ−1u0ẏ /∈Ux−1, then ẏ−1u0ẏv

′ =
v1v

′
1 with v1 ∈ Ux−1 and v ′

1 ∈ Ux−1w0; the solution of the structure equation for
(w, x, y) in this case is

(u0 ṡ
−1
k u′ṡk , b ′(ẋv ′

1ẋ
−1)−1, v1)

since ẋv ′
1ẋ

−1 ∈U.

(iii) τkτ
−1
k−1 = 1, x = x ′, y = y ′, and #(sky) < #(y). We first recall the connec-

tion between Uτ and Uτ ′ . By the discussion following Lemma 2.3, we have Uτ
∼=

U ∗
αk

× Uτ ′ and

Uτ = {u0 ṡku1ṡ
−1
k ∈U ∗

αk
ṡkUskw ṡ

−1
k : π(gk(u0)u1)∈Uτ ′ },

where ṡ−1
k u0 ṡk = fk(u0)ṡk tk(u0)gk(u0) as in Lemma 2.1 and where π : U →

Uskw is the projection associated with the decomposition U = UskwUskww0 . Let
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u′ ∈Uτ ′ ⊆ U(skw, x, y) and let u0 ṡku1ṡ
−1
k ∈Uτ correspond to u′ as described pre-

viously. We then obtain, by the argument given in the proof of the first part of
Lemma 2.3(iii), all solutions of the structure equation uẇb = ẏvẋ−1 from the so-
lutions (u′, b ′, v ′), assumed known, of the structure equation u′ṡ−1

k ẇb ′ = ẏv ′ẋ−1.

This completes the proof of the following theorem.

Theorem 2.1. Let ẇ, ẋ, ẏ be representatives, chosen as before, of elementsw, x, y
of the Weyl groupW of the Chevalley groupG, and assume thatUwẇB ∩ ẏUx−1 ẋ−1

is nonempty. We may identify UwẇB ∩ ẏUx−1 ẋ−1 with the set of solutions (u, b, v)
of the structure equation uẇb = ẏvẋ−1 with u ∈ Uw, b ∈ B, and v ∈ Ux−1; fur-
thermore, we shall identify (UwẇB ∩ ẏUx−1 ẋ−1)τ with the set of solutions of the
equation such that u∈Uτ .

(i) The set
UwẇB ∩ ẏUx−1 ẋ−1

is the disjoint union of subsets (UwẇB∩ ẏUx−1 ẋ−1)τ indexed by K-sequences
τ for (w, x, y).

(ii) Each subset (UwẇB∩ ẏUx−1 ẋ−1)τ is described by the set of solutions (u, b, v)
of the structure equation

uẇb = ẏvẋ−1,

with u∈Uτ , b ∈B, and v ∈Ux−1 corresponding to a given K-sequence τ, and
is obtained by the algorithm given in this section based on a fixed reduced
expression for the element w ∈ W in terms of the distinguished generators
s1, . . . , sn of W.

(iii) Each subset Uτ , and each set of solutions (u, b, v) of the structure equation
corresponding to (UwẇB ∩ ẏUx−1 ẋ−1)τ , is in bijective correspondence with
the product of root subgroups∏

α∈�τ

Uα ×
∏
β∈�∗

τ

U ∗
β

for subsets �τ and �∗
τ of the positive root system �+ of cardinalities a(τ)

and b(τ), respectively.

3. The Sets U�U∩ nUm−1m for �, m, n∈ N and
the Structure Constants [c�cm : cn]

The formula in the Introduction (from [7, Prop. 11.30]) for the structure constants
[c#cm : cn] involves the sets U#U ∩ nUm−1m−1 for #,m, n ∈ N. We shall obtain a
description of these constants in terms of the sets UwẇB ∩ ẏUx−1 ẋ−1 calculated in
Section 2.

Let #,m, n correspond to w, x, y inW, and let ẇ, ẋ, ẏ be representatives in N of
w, x, y chosen as in Section 2. Then #∈ ẇT, m∈ ẋT, and n∈ ẏT, and we can write
# = ẇtw = t ′

wẇ, m = ẋtx = t ′
x ẋ, and n = ẏty = t ′

y ẏ for uniquely determined
elements tw, t ′

w, . . . in T. Note that t ′
w = ẇtwẇ

−1, . . . ; this means that the elements
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t ′
w, t ′

x , t ′
y are given by the algorithms for multiplication in a Chevalley group if the

elements tw, tx , and ty are known.

Proposition 3.1. Let (#,m, n) and (ẇ, ẋ, ẏ) be as before with # = ẇtw =
t ′
wẇ, . . . for elements tw, t ′

w, . . . in T. Then

U#B ∩ nUm−1m−1 = t ′
y(UwẇB ∩ ẏUx−1 ẋ−1)(t ′

x)
−1.

Moreover, if (u, b, v) is a solution of the structure equation uẇb = ẏvẋ−1, then

u′ = t ′
yu(t

′
y)

−1, b ′ = (tw)
−1ẇ−1t ′

yẇb(t ′
x)

−1, v ′ = v

is a solution of the equation u′#b ′ = nv ′m−1 with u′ ∈ Uw, b ′ ∈ B, and v ′ ∈ Ux−1,
and b ′ and v ′ are uniquely determined by u′.

The first result follows from the formulas relating ẋ, ẏ to m, n and the fact that Uw

is stable under conjugation by elements of T, so that

t ′
yUwẇB(t

′
x)

−1 = Uw#B.

For the second statement, from

uẇb = ẏvẋ−1 ∈UwẇB ∩ ẏUx−1 ẋ−1

we obtain, from the first part of the proof,

t ′
y uẇb(t ′

x)
−1 = t ′

y ẏvẋ
−1(t ′

x)
−1 ∈U#B ∩ nUm−1m−1

and
t ′
yu(t

′
y)

−1ẇtw(tw)
−1ẇ−1t ′

yẇb(t ′
x)

−1 = nvm−1.

The last statement follows from Lemma 2.4.

Corollary 3.1. A solution (u, b, v) of the structure equation uẇb = ẏvẋ−1 cor-
responds to an element u′#b ′ = nv ′m−1 ∈U#U ∩ nUm−1m−1 if and only if b ′ ∈U

or (what amounts to the same thing) iff t t−1
w ẇ−1t ′

yẇ(t ′
x)

−1 = 1, where b = tũ for
t ∈ T and ũ∈U. When t satisfies these conditions, b ′ = t ′

x ũ(t
′
x)

−1 ∈U.

Corollary 3.2. Let #,m, n∈ N correspond to w, x, y ∈W as before.

(i) The set U#U ∩nUm−1m−1 is the disjoint union of subsets (U#B ∩nUm−1m−1)τ
that corresponds to those K-sequences τ for w, x, and y such that the set
t ′
y(UwẇB ∩ ẏUx−1 ẋ−1)τ(t

′
x)

−1 is nonempty and consists of elements u′#b ′ =
nv ′m−1 with b ′ ∈U as in Corollary 3.1.

(ii) The structure constants of standard basis elements c#, cm, cn of the Hecke al-
gebra H of a Gelfand–Graev representation γ of G are given by the formula

[c#cm : cn] =
∑
τ

∑
u#u1=nvm−1∈(U#U∩nUm−1m−1)τ

ψ((uu1)
−1v).

As an example we calculate some structure constants of the Hecke algebra of a
Gelfand–Graev representation of SL2(k) (see [5, Sec. 5]). We start with the solu-
tions (u, b, v) of the structure equation uṡb = ṡvṡ−1 with ṡ = (

0 1
−1 0

)
. Let
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u =
(

1 a

0 1

)
, b =

(
c cd

0 c−1

)
, v =

(
1 e

0 1

)
.

Then the structure equation has a unique solution for each u 
= 1 in U given by
c = −a−1, d = a, and e = −a−1.

Let λ,µ, ν ∈ k∗ and put

# =
(

0 λ

−λ−1 0

)
, m =

(
0 µ

−µ−1 0

)
, n =

(
0 ν

−ν−1 0

)
.

Then #,m, n ∈ N, and we can now compute [c#cn : cm]. The elements #,m, n
are related to ṡ as in the discussion before Proposition 3.1. There is just one K-
sequence for (s, s, s). The solutions of the structure equation u′#u′

1 = nv ′m−1 are,
by Proposition 3.1 and Corollary 3.1,

u′ =
(

1 ν 2a

0 1

)
, u′

1 =
(

1 µ2a

0 1

)
, v ′ =

(
1 −a−1

0 1

)
,

with a as before. Then a is determined by the condition (from Corollary 3.1) that
b ′ ∈ U and is given by a = −λµ−1ν−1. Upon substituting the computed value of
a in the matrices u′, u′

1, v ′ and applying Corollary 3.2, one has

[c#cm : cn] = χ(λµν−1 + λµ−1ν + λ−1µν),

where the linear character ψ defining the Gelfand–Graev representation of SL2(k)

is given by ψ(u) = χ(a) with u = (
1 a
0 1

)
and χ a nontrivial additive character of

the additive group of k.
To conclude this section, we recall the main result of [5] and state a problem

concerning it, illustrated by an example involving SL2(k). Let G = G(k̄) be a
Chevalley group over the algebraic closure k̄ of k with a Frobenius endomorphism
F such that the group of fixed elements GF is the Chevalley groupG over k consid-
ered previously. Let B = UT0 be the F -stable Borel subgroup of G containing the
split F -stable maximal torus T0 with U the unipotent radical of B such that B =
BF, U = UF, and T0 = TF

0 are the subgroups of G appearing in Proposition 3.1.
Let γ = ψG be a Gelfand–Graev representation of G = GF as in Section 1, with
H the Hecke algebra of γ and c#, cm, . . . the standard basis elements of H. We can
now state a formula (cf. [5, Thm. 4.2]) for the values of the irreducible represen-
tations of H on standard basis elements of H. The proof is based on the character
formula for the virtual representations RG

T,θ of Deligne and Lusztig [9] in a suit-
able algebraically closed field K of characteristic 0.

Theorem 3.1. The irreducible representations of H in the fieldK are parameter-
ized by the geometric conjugacy classes of pairs (T, θ) consisting of an F -stable
maximal torus T in G and an irreducible representation θ of the finite torus T =
TF. Each irreducible representation fT,θ of H can be factored,

fT,θ = θ̃ � fT,

with fT a homomorphism of algebras from H to KT, independent of θ, and θ̃ is
an extension of θ to an irreducible representation of the group algebra KT. Let
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fT(c#) = ∑
t∈T fT(c#)(t)t. Then fT(c#)(t) is given by the following formula in-

volving the Green function Q
CG(t)◦
T and the linear character ψ of U such that

γ = ψG:

fT(c#)(t) = ind #〈QG
T , γ〉−1|U |−1|CG(t)

◦F |−1

×
∑

g∈G,u∈U,(gu#g−1)ss=t

ψ(u−1)Q
CG(t)◦
T ((gu#g−1)uni),

where g = gssguni is the Jordan decomposition of an element g ∈G and 〈λ,µ〉 is
the scalar product of K-valued class functions on G.

The next result simply expresses the fact that fT is a homomorphism of algebras
from H to KT.

Corollary 3.3 (Torus homomorphism identity). The elements fT(c#)(t) sat-
isfy the identity∑

s∈T
fT(c#)(ts)fT(cm)(s

−1) =
∑
n

[c#cm : cn]fT(cn)(t)

for all t ∈ T and standard basis elements c#, cm, cn of H.

As an illustration, we work out this torus homomorphism identity for the Coxeter
torus T in the finite Chevalley group G = SL2(k) = GF with G = SL2(k̄) and
k = Fq. As in [5, Sec. 5], we let ψG be a Gelfand–Graev representation of G with

ψ(u) = χ(a) and u =
(

1 a

0 1

)

and let χ be a nontrivial character of the additive group of k. For the Coxeter torus
T of G one has

T = TF ∼= C,

where C = {ξ ∈ Fq2 : ξ q+1 = 1}, so |C| = q + 1. Let c#, cm, . . . be the standard
basis elements of the Hecke algebra H, as in the example considered earlier in this
section. By [5, Thm. 5.2],

fT(c#)(ξ) = −χ(λ(ξ + ξ−1)), ξ ∈C,

where we have identified C with the finite torus T = TF.

The torus homomorphism identity for the Coxeter torus in SL2(k) then becomes∑
ξ∈C

χ(ξ(λγ + µ) + ξ q(λγ q + µ))

= −
∑
ν∈k∗

χ(ν + (λγ + µ)(λγ q + µ)ν−1) + qδλγ+µ,0

for all γ ∈ C. We have used the formula for the structure constants [c#cm : cn]
from earlier in the section to work out the right-hand side of this identity.

The preceding identity is a consequence of Theorem 3.1. It relates an exponen-
tial sum over the quadratic extension field Fq2 of k to an exponential sum over the
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field k = Fq and can also be proved directly, either by an analysis of quadratic
equations over k (as in [2, Lemma 1.2]) or as an application of the Davenport–
Hasse theorem for Gauss sums. The problem mentioned before is to work out the
coefficient functions fT(c#)(t) as exponential sums using Theorem 3.1, in the gen-
eral case, and then to prove the torus homomorphism identities directly using the
formula for the structure constants [c#cm : cn] from Corollary 3.2. A solution to
the problem would give an alternative approach to the computation of the values
of the irreducible representations fT,θ of H (or the spherical functions on G asso-
ciated with a Gelfand–Graev representation) and might be of independent interest.
The problem was solved for all three classes of maximal tori in the groups GL3(k)

by Chang [2].

4. On BwB ∩ B− xB and the
Kazhdan–Lusztig Polynomials Rx,w

In [10, Thm. 1.3], Deodhar proved that the polynomials Rx,w of Kazhdan and
Lusztig [14] are given by a formula

Rx,w(q) =
∑

σ∈D,π(σ)=x

qm(σ)(q − 1)n(σ),

where the sum is taken over the set D of distinguished subexpressions σ of a re-
duced expression w = t1 · · · tk of w ∈ W and where the ti belong to the set of
distinguished generators S of W. Deodhar also stated that, if G is a finite Cheval-
ley group over the field k of q elements, then Rx,w = |(BwB ∩B−xB)/B|. In this
section we shall prove that the distinguished subexpressions coincide with the set
of K-sequences for (w, (w0 x)

−1,w0), and we obtain a different formula for the
polynomials Rx,w by using K-sequences instead of distinguished subexpressions.

In what follows we shall use well-known properties of the Bruhat order x ≤ y in
W ; we continue to use the notation ẇ for representatives in N of elements w ∈W.

Theorem 4.1. Let G be a finite Chevalley group over the field k of q elements,
and let x and w be elements of the Weyl group W of G. Let B− be the opposite
Borel subgroup to B; thus B− = w0Bw0, where w0 is the element of maximal
length in W.

(i) The set BwB ∩ B−xB is nonempty if and only if x ≤ w. In that case∣∣∣∣BwB ∩ B−xB)

B

∣∣∣∣ = |UwẇB ∩ ẇ0Uw0 x(w0 x)
•| =

∑
τ

qa(τ)(q − 1)b(τ),

where the sum is taken over all K-sequences τ for (w, (w0 x)
−1,w0).

(ii) The K-sequences τ for (w, (w0 x)
−1,w0) computed from a reduced expres-

sion w = sk · · · s1 coincide with the distinguished subexpressions σ of the
reduced expression w = t1 · · · tk , where t1 = sk , t2 = sk−1, . . . such that
π(σ) = x. Moreover, for corresponding subexpressions τ and σ, the non-
negative integers a(τ) and b(τ) associated with τ coincide with the integers
m(σ) and n(σ) associated with σ.
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(iii) The Kazhdan–Lusztig polynomial

Rx,w =
∣∣∣∣BwB ∩ B−xB

B

∣∣∣∣ with x ≤ w

and is equal to the formula stated in part (i) involving the sum over K-
sequences for (w, (w0 x)

−1,w0).

We first examine part (i) of the theorem. The set BwB ∩ B−xB is nonempty if
and only if there exists at least one K-sequence τ for (w, (w0 x)

−1,w0). For such
a K-sequence τ = (τk , . . . , τ1, τ0) we have τk(w0 x)

−1 = w0, so τk = x. Since
the terminal elements τk of K-sequences satisfy the condition τk ≤ w, we have
x ≤ w. Later we will use Deodhar’s results in [10] to prove that if x ≤ w then
the intersection is nonempty. Assuming the intersection is nonempty, the rest of
part (i) follows from Kawanaka’s results (Lemma 2.14(b) and Theorem 2.6(b) in
[13]) stated in Corollary 2.1.

Let w = sk · · · s1 be a reduced expression, and let τ = (τk , . . . , τ1, τ0) be a
K-sequence for (w, (w0 x)

−1,w0). We shall prove that τ is then a distinguished
subexpression σ = (σ0, σ1, . . . , σk) of the reduced expression t1 · · · tk = w =
sk · · · s1 such that π(σ) = x. To be a subexpression means (see [10, p. 502]) that
σ0 = 1 and σ−1

j−1σj ∈ {1, tj} for 1 ≤ j ≤ k and also that the map π from the set of
subexpressions σ to the elements x such that x ≤ w is defined by π(σ) = σk. To
be a distinguished subexpression [10, Def. 2.3] means that the following inequal-
ities hold in the Bruhat order: σj ≤ σj−1tj for 1 ≤ j ≤ k.

The assumption that τ is a K-sequence for (w, (w0 x)
−1,w0) implies that τk =

x ≤ w, as we have seen in the discussion of part (i). The definition of K-sequence
requires further that, if j ∈ Jτ = {0} ∪ {j : τj = sjτj−1}, then #(spτj(w0 x)

−1) <

#(τj(w0 x)
−1) for p in the interval between j and the next element of Jτ (taken

in increasing order), or simply that all p > j if j is the maximal element of Jτ .
In order to prove that τ is a distinguished subexpression, it is enough to consider
the case τj+1 = τj (or σk−j = σk−j−1 for corresponding subexpressions of w =
t1 · · · tk). Then the preceding condition implies, by the length-reversing properties
of multiplication by w0, that #(sj+1τj x

−1) > #(τj x
−1). Now x = τk and τj x

−1 =
τjτ

−1
k . In order to work with this expression we write the given subexpression as

τk = s̄k · · · s̄1 with s̄i = si or 1 according to the definition of τ. The condition
#(sj+1τj x

−1) > #(τj x
−1) becomes, upon setting x = τk and using our convention,

#(sj+1s̄j+1 · · · s̄k) > #(s̄j+1 · · · s̄k). Since the length function is invariant under tak-
ing inverses, the preceding formula implies that #(s̄k · · · s̄j+1sj+1) > #(s̄k · · · s̄j+1)

or, in terms of the Bruhat order, s̄k · · · s̄j+1sj+1 ≥ s̄k · · · s̄j+1. The condition τj+1 =
τj implies that s̄k · · · s̄j+1 = s̄k · · · s̄j+2. Combining these pieces of information
and substituting sk = t1, sk−1 = t2, . . . , we obtain σk−j tk−j ≥ σk−j whenever
σk−j = σk−j−1, and this means that the subexpression σ corresponding to τ is a
distinguished subexpression.

Let τ be a K-sequence for (w, (w0 x)
−1,w0) identified with the distinguished

subexpressionσ as in the preceding paragraph. We shall prove that the nonnegative
integers a(τ) and b(τ) associated with τ coincide with the integers m(σ) and n(σ)
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associated with σ as in [10, p. 502]. We clearly have b(τ) = n(σ) because both
are equal to the cardinality of the set {j : τj−1 = τj} for 1 ≤ j ≤ k.

Next consider a(τ). We have a(τ) = |J−
τ |, where

J−
τ = {j ∈ Jτ : #(sjτj ′(w0 x)

−1) < #(τj ′(w0 x)
−1)}

for j ′ the predecessor of j in Jτ . By the reasoning used earlier, x = τk and J−
τ =

{j ∈ Jτ : #(sjτj ′τ−1
k ) > #(τj ′τ−1

k )}. Using the convention introduced previously,
we have τj ′τ−1

k = s̄j ′+1 · · · s̄k. Since j is the next element in Jτ to j ′, it follows that
τj ′ = τj ′+1 = · · · = τj−1 and τj ′τ−1

k = τj−1τ
−1
k = s̄j · · · s̄k. The condition that j ∈

J−
τ is #(sj s̄j · · · s̄k) > #(s̄j · · · s̄k). But sj s̄j · · · s̄k = s̄j+1 · · · s̄k and so the condition

becomes, after taking inverses, #(s̄k · · · s̄j+1) > #(s̄k · · · s̄j+1sj ). The preceding
steps can be reversed, and it follows that

a(τ) = |{j : σj−1 > σj}| = m(σ)

by the definition of m(σ) in [10, p. 502].
Now assume that the intersection BwB ∩ w0Bw0 x is nonempty for some ele-

ment x ≤ w. Then we have, by part (i) of the proposition and [10, Cor. 1.2],

|BwB ∩ w0Bw0 xB|
|B| =

∑
τ

qa(τ)(q − 1)b(τ) ≤
∑
σ

qm(σ)(q − 1)n(σ)

= |BwB ∩ w0Bw0 xB|
|B| ,

where the first sum is taken over all K-sequences for (w, (w0 x)
−1,w0) and the

second over all distinguished subexpressions σ with π(σ) = x. It follows that ≤
can be replaced by =, and we conclude that the two sets of subexpressions τ and
σ coincide.

Finally, let x ≤ w. Then by [10, Sec. 5] there exists a distinguished subexpres-
sion σ such that π(σ) = x, and it follows that the intersection BwB ∩ w0Bw0 xB

is nonempty (see the proof of Corollary 1.2 in [10, p. 505]). Then part (iii) of the
proposition follows from [10, Thm. 1.3] and the preceding paragraph. At this point
we have also proved part (ii) of the theorem.
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