Points and Hyperplanes of the Universal Embedding Space of the Dual Polar Space $D W(5, q), q$ Odd

B. N. Cooperstein \& B. De Bruyn

Dedicated to the memory of Donald G. Higman

1. Introduction

A partial linear rank-2 incidence geometry, also called a point-line geometry, is a pair $\Gamma=(\mathcal{P}, \mathcal{L})$ consisting of a set \mathcal{P} whose elements are called points and a collection \mathcal{L} of distinguished subsets of \mathcal{P} whose elements are called lines, such that any two distinct points are contained in at most one line. The point-collinearity graph of Γ is the graph with vertex set \mathcal{P} where two points are adjacent if they are collinear (i.e., lie on a common line). By a subspace of Γ we mean a subset S of \mathcal{P} such that, if $l \in \mathcal{L}$ and $l \cap S$ contains at least two points, then $l \subset S$. A subspace S is singular if each pair of points in S is collinear-that is, if S is a clique in the collinearity graph of Γ. We say that (\mathcal{P}, \mathcal{L}) is a Gamma space (see [13]) if, for every $x \in \mathcal{P},\{x\} \cup \Gamma(x)$ is a subspace. A subspace $S \neq \mathcal{P}$ is a geometric hyperplane if it meets every line.

Let e be a positive integer, p a prime, and V a 6-dimensional vector space over the finite field $\mathbb{F}_{q}, q=p^{e}$, equipped with a nondegenerate alternating form f. Then every vector $\bar{u} \in V$ is isotropic, that is, satisfies $f(\bar{u}, \bar{u})=0$. A subspace U of V is called totally isotropic (with respect to f) if $f\left(\bar{u}_{1}, \bar{u}_{2}\right)=0$ for all $\bar{u}_{1}, \bar{u}_{2} \in U$.

Associated with (V, f) is a polar space denoted by $W(5, q)$. Here, by a polar space we mean a point-line geometry (P, L) that satisfies the following properties:

1. (P, L) is a Gamma space and, for every point p and line l, p is collinear with some point of l (this means that p is collinear with one point or all points of l);
2. no point p is collinear with every other point; and
3. there is an integer n called the rank of (P, L) such that, if $S_{0} \subset S_{1} \subset \cdots \subset S_{k}$ is a properly ascending chain of singular subspaces, then $k \leq n$.
When $n=2,(P, L)$ is said to be a generalized quadrangle.
The points (resp. lines) of $W(5, q)$ are the 1-dimensional (resp. 2-dimensional) subspaces of V that are totally isotropic with respect to f and where incidence is containment. In $W(5, q)$, two points $\left\langle\bar{u}_{1}\right\rangle_{V}$ and $\left\langle\bar{u}_{2}\right\rangle_{V}$ are collinear if and only if $f\left(\bar{u}_{1}, \bar{u}_{2}\right)=0$ (i.e., iff \bar{u}_{1} and \bar{u}_{2} are orthogonal).
[^0]Also associated with the alternating form f of V is a dual polar space $D W(5, q)$. The points (resp. lines) of $D W(5, q)$ are the 3 -spaces (resp. 2-spaces) of V that are totally isotropic with respect to f and where incidence is reverse containment. We denote the point-set and line-set of $D W(5, q)$ by \mathcal{P} and \mathcal{L}, respectively. In the incidence system (\mathcal{P}, \mathcal{L}), two "points" U_{1} and U_{2} are collinear if and only if $\operatorname{dim}\left(U_{1} \cap U_{2}\right)=2$. More generally, one can say that the distance $\mathrm{d}\left(U_{1}, U_{2}\right)$ (in the collinearity graph of $(\mathcal{P}, \mathcal{L})$) between two points U_{1} and U_{2} of $D W(5, q)$ is equal to $3-\operatorname{dim}\left(U_{1} \cap U_{2}\right)$. The lines of the dual polar space $D W(5, q)$ are maximal singular subspaces, so this geometry is also a Gamma space.

Alternatively, the geometries (P, L) and $(\mathcal{P}, \mathcal{L})$ can be defined as Lie incidence geometries (see [4]) by making use of a construction of Gamma spaces from a symmetrical orbital (orbit of the Symplectic group on the Cartesian products P^{2} or \mathcal{P}^{2}; see [13]).

By Shult and Yanushka [21] or Cameron [1], the set of totally isotropic 3spaces of V that contain a given 1 -space of V is a convex subspace of diameter 2 of $D W(5, q)$. Such a convex subspace is called a quad of $D W(5, q)$. The points and lines contained in a quad define a generalized quadrangle that is isomorphic to the classical generalized quadrangle $Q(4, q)$ (Payne and Thas [16, Sec. 3.1]).

In this paper we are concerned with classifying all the geometric hyperplanes of $D W(5, q), q$ odd, that arise from an embedding (to be defined). In the Main Theorem we will show that there are always six isomorphism classes of such hyperplanes.

The notion of a geometric hyperplane was introduced by Veldkamp (see [23; 24]) in his characterization of polar geometries for the explicit purpose of proving that such a geometry is embeddable. Geometric hyperplanes have been studied in many other contexts as well: for example, they arise in the classification by Cohen and Shult of the affine polar spaces (see [3]) and in Cuypers' characterization of the graph on 2300 vertices with automorphism group Co_{2}, the second Conway group [8]. Removing a geometric hyperplane with certain properties from an incidence geometry often allows one to create interesting affine geometries, and this was the motivation of Pasini and Shpectorov [15] in studying uniform hyperplanes in dual polar spaces and of Cooperstein and Pasini [7] in proving that ovoidal hyperplanes do not exist in $D W(5, q)$.

The research carried out in this paper is part of a larger project of classifying all hyperplanes of finite dual polar spaces of small rank. A complete classification of all hyperplanes of the Hermitian dual polar space $D H\left(5, q^{2}\right)$ was obtained by De Bruyn and Pralle [11; 12]. All hyperplanes of the dual polar space $D Q^{-}(7, q)$ arising from an embedding were classified by De Bruyn [9]. The classification of all hyperplanes of the dual polar spaces $D Q(6, q)$ and $D Q(8, q)$ that arise from their spin embeddings was obtained by Cardinali, De Bruyn, and Pasini [2], De Bruyn [9], Shult [19], and Shult and Thas [20]. A complete list of all hyperplanes of $D W(5, q), q$ even, arising from an embedding was given by Pralle [17] (for $q=2$) and by De Bruyn [10] (for arbitrary q even).

2. Technical Description of the Results

2.1. The Grassmann Embedding of $D W(5, q)$

We continue with the notation introduced in Section 1. Choose a basis $\mathcal{S}=$ $\left\{\bar{v}_{1}, \bar{w}_{1}, \bar{v}_{2}, \bar{w}_{2}, \bar{v}_{3}, \bar{w}_{3}\right\}$ in V such that $f\left(\bar{v}_{i}, \bar{w}_{i}\right)=1$ and $f\left(\bar{v}_{i}, \bar{v}_{j}\right)=f\left(\bar{w}_{i}, \bar{w}_{j}\right)=$ $f\left(\bar{v}_{i}, \bar{w}_{j}\right)=0$ for all $i, j \in\{1,2,3\}$ with $i \neq j$. Let $W:=\bigwedge^{3} V$ be the third exterior product of V that is a vector space of dimension $\binom{6}{3}=20$ over \mathbb{F}_{q}. Define now a bilinear form $g(\cdot, \cdot)$ from $W \times W$ to \mathbb{F}_{q} by setting $\alpha \wedge \beta$ equal to $g(\alpha, \beta)\left(\bar{v}_{1} \wedge \bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{2} \wedge \bar{v}_{3} \wedge \bar{w}_{3}\right)$ for all $\alpha, \beta \in W$. Since $\left(\bar{u}_{1} \wedge \bar{u}_{2} \wedge \bar{u}_{3}\right) \wedge$ $\left(\bar{u}_{4} \wedge \bar{u}_{5} \wedge \bar{u}_{6}\right)=(-1)^{9}\left(\bar{u}_{4} \wedge \bar{u}_{5} \wedge \bar{u}_{6}\right) \wedge\left(\bar{u}_{1} \wedge \bar{u}_{2} \wedge \bar{u}_{3}\right)$ for all vectors $\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{6} \in$ V, the form $g(\cdot, \cdot)$ is alternative. Obviously, it is also nondegenerate.

For every point $x=\left\langle\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\rangle_{V}$ of $D W(5, q)$, let $\varepsilon(x)$ denote the 1 -space $\left\langle\bar{u}_{1} \wedge \bar{u}_{2} \wedge \bar{u}_{3}\right\rangle_{W}$ of $W=\bigwedge^{3} V$. This 1-space is independent from the generating set $\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}$ of x. It is well known that the subspace M of W generated by all 1 -spaces $\varepsilon(x), x \in \mathcal{P}$, is 14 -dimensional. One readily verifies that a basis of M is given by the set $\mathcal{S}_{M}:=\left\{p_{i} \mid 1 \leq i \leq 14\right\}$, where

$$
\begin{gathered}
p_{1}=\bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{3}, \quad p_{2}=\bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{3}, \quad p_{3}=\bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{3} \\
p_{4}=\bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{3}, \quad p_{5}=\bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{3}, \quad p_{6}=\bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{3} \\
p_{7}=\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{3}, \quad p_{8}=\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{3} \\
p_{9}=\bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{2}-\bar{v}_{1} \wedge \bar{v}_{3} \wedge \bar{w}_{3}, \quad p_{10}=\bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{2}-\bar{w}_{1} \wedge \bar{v}_{3} \wedge \bar{w}_{3} \\
p_{11}=\bar{v}_{1} \wedge \bar{w}_{1} \wedge \bar{v}_{2}-\bar{v}_{2} \wedge \bar{v}_{3} \wedge \bar{w}_{3}, \quad p_{12}=\bar{v}_{1} \wedge \bar{w}_{1} \wedge \bar{w}_{2}-\bar{w}_{2} \wedge \bar{v}_{3} \wedge \bar{w}_{3} \\
p_{13}=\bar{v}_{1} \wedge \bar{w}_{1} \wedge \bar{v}_{3}-\bar{v}_{2} \wedge \bar{w}_{2} \wedge \bar{v}_{3}, \quad p_{14}=\bar{v}_{1} \wedge \bar{w}_{1} \wedge \bar{w}_{3}-\bar{v}_{2} \wedge \bar{w}_{2} \wedge \bar{w}_{3}
\end{gathered}
$$

For all $i, j \in\{1, \ldots, 14\}$ we have $g\left(p_{i}, p_{j}\right)=0$ except when $\{i, j\}$ is equal to $\{1,8\}$, $\{2,7\},\{3,6\},\{4,5\},\{9,10\},\{11,12\}$, or $\{13,14\}$. Hence, the form $g(\cdot, \cdot)$ defines a nondegenerate alternating form in the 14 -space M. For every subspace U of M, let $U^{\perp_{g}}=\{m \in M \mid g(u, m)=0$ for all $u \in U\}$.

The map ε defines a full projective embedding of the dual polar space $D W(5, q)$ into the projective space $\mathrm{PG}(M) \cong \mathrm{PG}(13, q)$. This embedding is called the Grassmann embedding of $D W(5, q)$. If $q \neq 2$, then by results in [5] and [14] we know that the Grassmann embedding of $D W(5, q)$ is absolutely universal [18]. This implies that all full embeddings of $D W(5, q), q \neq 2$, can be obtained from its Grassmann embedding by taking so-called quotients.

If π is a hyperplane of $\operatorname{PG}(M)$, then $\varepsilon^{-1}(\varepsilon(\mathcal{P}) \cap \pi)$ is a (geometric) hyperplane of $D W(5, q)$ —namely, a proper subset of \mathcal{P} intersecting each line of $D W(5, q)$ in either a unique point or the whole line. We will say that the hyperplane $\varepsilon^{-1}(\varepsilon(\mathcal{P}) \cap \pi)$ arises from the embedding ε.

2.2. The Automorphism Groups of $W(5, q)$ and $D W(5, q)$

Before proceeding to our main theorem, we describe the automorphism groups of $W(5, q)$ and $D W(5, q)$. Suppose θ is a permutation of the point-set of $W(5, q)$.

Then θ will be an automorphism of $W(5, q)$ if and only if it induces a permutation on the set of all ordered pairs of distinct collinear points of $W(5, q)$. Similarly, a permutation of \mathcal{P} will be an automorphism of $D W(5, q)$ if and only if it induces a permutation of the set of all ordered pairs of distinct collinear points of $D W(5, q)$. It is not difficult to see that automorphism groups of $D W(5, q)$ and $W(5, q)$ are isomorphic.

That automorphisms of $W(5, q)$ induce automorphisms of $D W(5, q)$ is fairly straightforward. That automorphisms of $D W(5, q)$ induce automorphisms of $W(5, q)$ follows from two facts: (i) the quads of $D W(5, q)$ are characterized as the convex subspaces of diameter 2 and (ii) these are in one-to-one correspondence with the points of $W(5, q)$. We proceed to describe the $\operatorname{group} \operatorname{Aut}(W(5, q)) \cong$ $\operatorname{Aut}(D W(5, q))$.

Recall that $\mathcal{S}=\left\{\bar{v}_{1}, \bar{w}_{1}, \bar{v}_{2}, \bar{w}_{2}, \bar{v}_{3}, \bar{w}_{3}\right\}$ is a basis of V such that $f\left(\bar{v}_{i}, \bar{w}_{i}\right)=1$ and $f\left(\bar{v}_{i}, \bar{v}_{j}\right)=f\left(\bar{w}_{i}, \bar{w}_{j}\right)=f\left(\bar{v}_{i}, \bar{w}_{j}\right)=0$ for all $i, j \in\{1,2,3\}$ with $i \neq j$. A similarity of (V, f) is a linear transformation $\sigma \in \mathrm{GL}(V)$ such that $f\left(\sigma\left(\bar{u}_{1}\right), \sigma\left(\bar{u}_{2}\right)\right)=$ $\lambda_{\sigma} \cdot f\left(\bar{u}_{1}, \bar{u}_{2}\right)$ for all $\bar{u}_{1}, \bar{u}_{2} \in V$. Here λ_{σ} is a nonzero scalar that depends on σ but is independent of \bar{u}_{1} and \bar{u}_{2}. We denote by $G_{f} \leq \mathrm{GL}(V)$ the group of all similarities. An isometry is a similarity σ with $\lambda_{\sigma}=1$. We denote by S_{f} the group of all isometries; S_{f} is normal in G_{f} and is isomorphic to $\operatorname{Sp}\left(6, \mathbb{F}_{q}\right)$. Clearly, similarities induce automorphisms of $W(5, q)$. The kernel of the action of G_{f} on P is the center of G_{f} and consists of all the scalar transformations $\lambda \cdot I_{V}$, where λ is a nonzero scalar. Denote by $P G_{f}$ the quotient $G_{f} / Z\left(G_{f}\right)$ and by $P S_{f}$ the quotient of S_{f} by $S_{f} \cap Z\left(G_{f}\right)$. We note that $S_{f} \cap Z\left(G_{f}\right)=Z\left(S_{f}\right)=\left\langle-I_{V}\right\rangle$ and therefore $S_{f} Z\left(G_{f}\right) / Z\left(G_{f}\right) \cong S_{f} / Z\left(S_{f}\right)$. Thus, we may consider $P S_{f}$ to be a subgroup of $P G_{f}$. The group $P S_{f}$ is the simple group $P \operatorname{Sp}\left(6, \mathbb{F}_{q}\right)$. The index of $P S_{f}$ in $P G_{f}$ is 2 (see [22]). For $i=1,2,3$, if σ^{*} is the linear transformation of V that fixes \bar{v}_{i} and takes \bar{w}_{i} to $d \bar{w}_{i}$ with d a given nonsquare in \mathbb{F}_{q}, then $\sigma^{*} \in G_{f} \backslash S_{f}$ and consequently $P G_{f}=P S_{f}\left\langle\sigma^{*}\right\rangle$. This describes the automorphisms of $W(5, q)$ that are induced by linear transformations of V. In addition, there are "field automorphisms".

For $\bar{u} \in V$, denote by $[\bar{u}]_{\mathcal{S}}$ the coordinate vector of \bar{u} with respect to the basis \mathcal{S} of V. For every $\gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, define a map $T_{\gamma}: V \rightarrow V$ by $\left[T_{\gamma}(\bar{v})\right]_{\mathcal{S}}=\gamma\left([\bar{v}]_{\mathcal{S}}\right)$. Then T_{γ} induces a permutation of the point-set of $W(5, q)$ that preserves orthogonality and therefore induces an automorphism of $W(5, q)$. If $A=\left\{T_{\gamma} \mid\right.$ $\left.\gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)\right\}$, then $\operatorname{Aut}(W(5, q))=P G_{f} A=P S_{f}\left\langle\sigma^{*}\right\rangle A$.

2.3. The Main Results

Every element θ of G_{f} gives rise to a unique element $\theta^{\prime} \in \operatorname{GL}\left(\bigwedge^{3} V\right)$ such that $\theta^{\prime}\left(\bar{u}_{1} \wedge \bar{u}_{2} \wedge \bar{u}_{3}\right)=\theta\left(\bar{u}_{1}\right) \wedge \theta\left(\bar{u}_{2}\right) \wedge \theta\left(\bar{u}_{3}\right)$ for all $\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3} \in V$. Obviously, θ^{\prime} fixes M and hence gives rise to an element $\hat{\theta} \in \mathrm{GL}(M)$. For all $\alpha, \beta \in W=\Lambda^{3} V$,

$$
\begin{equation*}
g\left(\theta^{\prime}(\alpha), \theta^{\prime}(\beta)\right)=\operatorname{det}(\theta) \cdot g(\alpha, \beta) \tag{2.1}
\end{equation*}
$$

Hence $\hat{\theta}$ is a similarity of (M, g). Now define $\widehat{G_{f}}:=\left\{\hat{\theta} \mid \theta \in G_{f}\right\}$ and $\widehat{S_{f}}:=$ $\left\{\hat{\theta} \mid \theta \in S_{f}\right\}$. By (2.1),

$$
\begin{equation*}
(\phi(U))^{\perp_{g}}=\phi\left(U^{\perp_{g}}\right) \tag{2.2}
\end{equation*}
$$

for every $\phi \in \widehat{G_{f}}$ and every subspace U of M.

Now suppose as before that $\gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, and let \mathcal{B} be the basis $\left\{\bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{3}\right.$, $\left.\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{3}\right\} \cup\left\{\bar{v}_{i} \wedge \bar{v}_{j} \wedge \bar{w}_{k}, \bar{v}_{k} \wedge \bar{w}_{i} \wedge \bar{w}_{j} \mid 1 \leq i, j, k \leq 3, i<j\right\}$ of W. Let T_{γ}^{\prime} be the \mathbb{F}_{p}-linear map of W defined by $\left[T_{\gamma}^{\prime}(\alpha)\right]_{\mathcal{B}}=\gamma\left([\alpha]_{\mathcal{B}}\right)$. We have $T_{\gamma}^{\prime}\left(\bar{u}_{1} \wedge \bar{u}_{2} \wedge \bar{u}_{3}\right)=T_{\gamma}\left(\bar{u}_{1}\right) \wedge T_{\gamma}\left(\bar{u}_{2}\right) \wedge T_{\gamma}\left(\bar{u}_{3}\right)$ for all $\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3} \in V$. For all $\alpha, \beta \in$ W, we have

$$
\begin{equation*}
g\left(T_{\gamma}^{\prime}(\alpha), T_{\gamma}^{\prime}(\beta)\right)=\gamma(g(\alpha, \beta)) \tag{2.3}
\end{equation*}
$$

Note that T_{γ}^{\prime} fixes each of the vectors of the basis \mathcal{S}_{M} of M and hence induces an \mathbb{F}_{p}-linear map $\widehat{T_{\gamma}}: M \rightarrow M$. By (2.3),

$$
\begin{equation*}
\left(\widehat{T_{\gamma}}(U)\right)^{\perp_{g}}=\widehat{T_{\gamma}}\left(U^{\perp_{g}}\right) \tag{2.4}
\end{equation*}
$$

for every subspace U of M.
Let $\overline{G_{f}}$ (resp. $\widehat{\bar{G}_{f}}$) denote the group of \mathbb{F}_{p}-linear maps of V (resp. W) generated by G_{f} and $T_{\gamma}, \gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ (resp. $\widehat{G_{f}}$ and $\widehat{T_{\gamma}}, \gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$). By our previous discussion, for every $\theta \in \overline{G_{f}}$ there exists a unique \mathbb{F}_{p}-linear map $\theta^{\prime}: W \rightarrow W$ such that $\theta^{\prime}\left(\bar{u}_{1} \wedge \bar{u}_{2} \wedge \bar{u}_{3}\right)=\theta\left(\bar{u}_{1}\right) \wedge \theta\left(\bar{u}_{2}\right) \wedge \theta\left(\bar{u}_{3}\right)$ for all $\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3} \in V$. The map θ^{\prime} stabilizes M and hence induces an \mathbb{F}_{p}-linear map $\hat{\theta}: M \rightarrow M$. Obviously, $\hat{\theta} \in \widehat{\widehat{G_{f}}}$. Moreover, the map $\theta \mapsto \hat{\theta}$ is an isomorphism between the groups $\overline{G_{f}}$ and $\overline{G_{f}}$.

It is the main purpose of this paper to determine the orbits of the group $\operatorname{Aut}(D W(5, q))$ on the hyperplanes of $D W(5, q), q$ odd, that arise from its Grassmann embedding. Because the Grassmann embedding of $D W(5, q), q$ odd, is absolutely universal, it follows that the hyperplanes of $D W(5, q), q$ odd, arising from the Grassmann embedding are all the hyperplanes of that dual polar space that arise from an embedding.

Determining the orbits of $\operatorname{Aut}(D W(5, q))$ on the hyperplanes of $D W(5, q)$ is equivalent to the enumeration of all $\widehat{\overline{G_{f}}}$-orbits on the hyperplanes of M. By equations (2.2) and (2.4), this is equivalent to enumerating the orbits of $\widehat{\widehat{G_{f}}}$ on the 1 -spaces of M-that is, the points of $\operatorname{PG}(M)$. We will achieve our objective by first enumerating the orbits of $\widehat{S_{f}}$ on the 1-spaces of M and then determining when these \widehat{S}_{f}-orbits fuse when the group is extended to all of $\operatorname{Aut}(D W(5, q))$.

Before stating the Main Theorem, we need to define some extra vectors in M. Unless indicated otherwise, in the sequel we will always assume that q is an odd prime power. Let $d \in \mathbb{F}_{q}$ be such that d is a nonsquare (if -1 is a nonsquare then we take d equal to -1). Define the following additional vectors of M :

$$
\begin{gathered}
p_{15}=p_{1}+p_{4}, \quad p_{16}=p_{1}+d p_{4}, \quad p_{17}=p_{1}+p_{4}+p_{6}, \quad p_{18}=p_{1}+p_{8} \\
p_{19}=p_{1}+d p_{8}, \quad p_{20}=d p_{1}+p_{4}+p_{6}+p_{7}, \quad p_{21}=d p_{2}+d p_{3}+d p_{5}+p_{8}
\end{gathered}
$$

Also, set $P_{i}=\left\langle p_{i}\right\rangle_{W}$ and $H_{i}=\varepsilon^{-1}\left(P_{i}^{\perp_{g}} \cap \varepsilon(\mathcal{P})\right)$ for every $i \in\{1, \ldots, 21\}$. We can now state our main theorem.

Main Theorem. Let q be an odd prime power. Then the group $\operatorname{Aut}(D W(5, q))$ has six orbits on the geometric hyperplanes of $D W(5, q)$ that arise from an embedding with representatives $H_{1}, H_{15}, H_{16}, H_{17}, H_{18}$, and H_{20}. The sizes of the orbits are given in Table 1.

Table 1 The orbits of $\operatorname{Aut}(D W(5, q)), q$ odd, on the geometric hyperplanes of $D W(5, q)$

Type	Representative	Orbit size
I	H_{1}	$\left(q^{3}+1\right)\left(q^{2}+1\right)(q+1)$
II	H_{15}	$\frac{\left(q^{6}-1\right) q^{2}\left(q^{2}+1\right)}{2(q-1)}$
III	H_{16}	$\frac{\left(q^{6}-1\right) q^{2}\left(q^{2}-1\right)}{2(q-1)}$
IV	H_{17}	$q^{3}\left(q^{6}-1\right)\left(q^{2}+1\right)(q+1)$
V	H_{18}	$\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}+1\right)}{2}$
VI	H_{20}	$\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}-1\right)}{2}$

The Main Theorem is a consequence of the following two results, which we will prove in Sections 3 and 4 (respectively).

Point Enumeration Theorem. (i) If -1 is a nonsquare in \mathbb{F}_{q}, q odd, then the group $\widehat{S_{f}}$ has six orbits on the point-set of $\mathrm{PG}(M)$ with representatives P_{1}, P_{15}, P_{16}, P_{17}, P_{18}, and P_{20}. The orbit sizes and the stabilizers of each representative are given in Table 2.
(ii) If -1 is a square in \mathbb{F}_{q}, q odd, then the group $\widehat{S_{f}}$ has eight orbits on the point-set of $\mathrm{PG}(M)$ with representatives $P_{1}, P_{15}, P_{16}, P_{17}, P_{18}, P_{19}, P_{20}$, and P_{21}. The orbit sizes and stabilizers are given in Table 3.

To prove the Point Enumeration Theorem, we will show in both cases that the conjectured representatives given in the tables are all in different orbits; we then compute their stabilizers and hence their orbit sizes. Since in both cases the sum of the orbit sizes is $\frac{q^{14}-1}{q-1}$, it will follow that we have enumerated all the \widehat{S}_{f}-orbits on the points of M.

Fusion Theorem. (i) Assume that -1 is a nonsquare in \mathbb{F}_{q} with q odd. Then the automorphisms of $D W(5, q)$ induced by σ^{*} and $T_{\gamma}, \gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, fix each of the $\widehat{S_{f}}$-orbits of the hyperplanes $H_{1}, H_{15}, H_{16}, H_{17}, H_{18}$, and H_{20}.
(ii) Assume that -1 is a square in \mathbb{F}_{q} with q odd. Then the automorphisms of $D W(5, q)$ induced by σ^{*} and $T_{\gamma}, \gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, fix each of the $\widehat{S_{f}}$-orbits of the hyperplanes H_{1}, H_{15}, H_{16}, and H_{17}. On the other hand, the $\widehat{S_{f}}$-orbits of H_{18} and H_{19} become a single orbit, as do the $\widehat{S_{f}}$-orbits of H_{20} and H_{21}.

The Main Theorem classifies all hyperplanes of $D W(5, q), q$ odd, arising from an embedding. As previously mentioned, all hyperplanes of $D W(5, q), q$ even, arising from an embedding were classified in [17] (for $q=2$, with the aid of a computer) and [10] (for arbitrary $q=2^{m}$, without the use of a computer).

Table 2 The $\widehat{S_{f}}$-orbits on the points of $\operatorname{PG}(M)$ when -1 is a nonsquare in \mathbb{F}_{q}

Type	Representative	Orbit size	Stabilizer
I	P_{1}	$\left(q^{3}+1\right)\left(q^{2}+1\right)(q+1)$	$q^{6} \cdot \mathrm{GL}(3, q)$
II	P_{15}	$\frac{\left(q^{6}-1\right) q^{2}\left(q^{2}+1\right)}{2(q-1)}$	$q^{5} \cdot \operatorname{SL}(2, q) \times \operatorname{SL}(2, q) \times \mathbb{Z}_{q-1} \cdot 2$
III	P_{16}	$\frac{\left(q^{6}-1\right) q^{2}\left(q^{2}-1\right)}{2(q-1)}$	$q^{5} \cdot \operatorname{SL}\left(2, q^{2}\right) \times \mathbb{Z}_{q-1} \cdot 2$
IV	P_{17}	$q^{3}\left(q^{6}-1\right)\left(q^{2}+1\right)(q+1)$	$q^{5} \cdot \operatorname{SL}(2, q) \mathbb{Z}_{q-1} \cdot 2$
V	P_{18}	$\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}+1\right)}{2}$	$\mathbb{Z}_{2} \times \operatorname{SL}(3, q)$
VI	P_{20}	$\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}-1\right)}{2}$	$\mathbb{Z}_{2} \times \operatorname{SU}(3, q)$

Table 3 The $\widehat{S_{f}}$-orbits on the points of $\mathrm{PG}(M)$ when -1 is a square in \mathbb{F}_{q}

Type	Representative	Orbit size	Stabilizer
I	P_{1}	$\left(q^{3}+1\right)\left(q^{2}+1\right)(q+1)$	$q^{6} \cdot \mathrm{GL}(3, q)$
II	P_{15}	$\frac{\left(q^{6}-1\right) q^{2}\left(q^{2}+1\right)}{2(q-1)}$	$q^{5} \cdot \operatorname{SL}(2, q) \times \operatorname{SL}(2, q) \times \mathbb{Z}_{q-1} \cdot 2$
III	P_{16}	$\frac{\left(q^{6}-1\right) q^{2}\left(q^{2}-1\right)}{2(q-1)}$	$q^{5} \cdot \operatorname{SL}\left(2, q^{2}\right) \times \mathbb{Z}_{q-1} \cdot 2$
IV	P_{17}	$q^{3}\left(q^{6}-1\right)\left(q^{2}+1\right)(q+1)$	$q^{5} \cdot \operatorname{SL}(2, q) \mathbb{Z}_{q-1} \cdot 2$
Va	P_{18}	$\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}+1\right)}{4}$	$\mathbb{Z}_{2} \times \operatorname{SL}(3, q) \cdot 2$
Vb	P_{19}	$\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}+1\right)}{4}$	$\mathbb{Z}_{2} \times \operatorname{SL}(3, q) \cdot 2$
VIa	P_{20}	$\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}-1\right)}{4}$	$\mathbb{Z}_{2} \times \operatorname{SU}(3, q) \cdot 2$
VIb	P_{21}	$\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}-1\right)}{4}$	$\mathbb{Z}_{2} \times \operatorname{SU}(3, q) \cdot 2$

Several combinatorial properties of the hyperplanes of $D W(5, q), q$ odd, that arise from an embedding were already obtained by the authors in [6]. For each hyperplane H of $D W(5, q), q$ odd, they determined (using purely combinatorial and geometrical techniques) the total number of quads Q for which $Q \cap H$ is a certain configuration of points in Q and the total number of points x for which $\Delta(x) \cap H$ is a certain configuration of points in $\Delta(x)$. Here, $\Delta(x)$ denotes the set of points equal to or collinear with x. On the basis of these combinatorial properties, the authors were able to divide the set of hyperplanes of $D W(5, q), q$ odd, into six classes: Type I hyperplanes, Type II hyperplanes, ..., Type VI hyperplanes. This terminology is consistent with that used in our paper. By the Main Theorem, each of the six classes defined in [6] is actually an isomorphism class.

3. Proof of the Point Enumeration Theorem

3.1. Notation and a Few Lemmas

We will continue with the notation introduced in Sections 1 and 2.
Let $\delta \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ such that $\delta^{2}=d$. We may suppose that (i) $\bar{w}_{i}=\delta \bar{v}_{i}$ for every $i \in$ $\{1,2,3\}$ and (ii) V is a 3 -dimensional vector space over $\mathbb{F}_{q^{2}}$ with basis $\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}$ and a 6-dimensional vector space over \mathbb{F}_{q} with basis $\mathcal{S}=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}, \bar{w}_{1}, \bar{w}_{2}, \bar{w}_{3}\right\}$. Recall that $\bigwedge^{3} V$ must be regarded as the third exterior power of V as a vector space over the field \mathbb{F}_{q}.

Lemma 3.1. If τ is an $\mathbb{F}_{q^{2}}$-linear transformation of V with $\operatorname{det}(\tau)=1$, then $\hat{\tau}$ centralizes the vectors p_{20} and p_{21}.

Proof. Let $E_{i j}$ denote the 3×3 matrix with a 1 in the (i, j) th entry and 0 s elsewhere, and set $\chi_{i j}=\left\{I_{3}+\alpha E_{i j} \mid \alpha \in \mathbb{F}_{q^{2}}\right\}$ for all $i, j \in\{1,2,3\}$ with $i \neq j$. Also, set $w_{1}=E_{12}-E_{21}+E_{33}$ and $w_{2}=E_{11}+E_{23}-E_{32}$. Then the group $\operatorname{SL}\left(3, q^{2}\right)$ is generated by χ_{13}, w_{1}, and w_{2}. Hence it suffices to prove that the induced action of each of these centralizes p_{20} and p_{21}.

Let $\alpha=a+b \delta$ where $a, b \in \mathbb{F}_{q}$, and suppose that τ is the $\mathbb{F}_{q^{2}}$-linear transformation of V whose associated matrix with respect to the basis $\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}$ is equal to $I_{3}+\alpha E_{13}$. Then the matrix of τ with respect to \mathcal{S} is $\left(\begin{array}{cc}A & d B \\ B\end{array}\right)$, where $A=I_{3}+a E_{13}$ and $B=b E_{13}$. It is now quite straightforward to compute the induced action of τ on p_{20} and $p_{21}: \hat{\tau}\left(p_{20}\right)$ is equal to

$$
\begin{aligned}
\hat{\tau}\left(d \bar{v}_{1} \wedge\right. & \left.\bar{v}_{2} \wedge \bar{v}_{3}+\bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{3}+\bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{3}+\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{3}\right) \\
= & d\left[\bar{v}_{1} \wedge \bar{v}_{2} \wedge\left(a \bar{v}_{1}+\bar{v}_{3}+b \bar{w}_{1}\right)\right]+\bar{v}_{1} \wedge \bar{w}_{2} \wedge\left((d b) \bar{v}_{1}+a \bar{w}_{1}+\bar{w}_{3}\right) \\
& +\bar{w}_{1} \wedge \bar{v}_{2} \wedge\left((d b) \bar{v}_{1}+a \bar{w}_{1}+\bar{w}_{3}\right)+\bar{w}_{1} \wedge \bar{w}_{2} \wedge\left(a \bar{v}_{1}+\bar{v}_{3}+b \bar{w}_{1}\right) \\
= & d \bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{3}+(d b) \bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{1}+\bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{3}+a \bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{1} \\
& +\bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{3}+(d b) \bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{1}+\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{3}+a \bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{1} \\
= & p_{20},
\end{aligned}
$$

since $\bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{1}=-\bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{1}$ and $\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{1}=-\bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{1}$.
Similarly, $\hat{\tau}\left(p_{21}\right)$ is equal to

$$
\begin{aligned}
\hat{\tau}\left(d \bar{v}_{1} \wedge\right. & \left.\bar{v}_{2} \wedge \bar{w}_{3}+d \bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{3}+d \bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{3}+\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{3}\right) \\
= & d\left[\bar{v}_{1} \wedge \bar{v}_{2} \wedge\left((d b) \bar{v}_{1}+a \bar{w}_{1}+\bar{w}_{3}\right)\right]+d\left[\bar{v}_{1} \wedge \bar{w}_{2} \wedge\left(a \bar{v}_{1}+\bar{v}_{3}+b \bar{w}_{1}\right)\right] \\
& \quad+d\left[\bar{w}_{1} \wedge \bar{v}_{2} \wedge\left(a \bar{v}_{1}+\bar{v}_{3}+b \bar{w}_{1}\right)\right]+\bar{w}_{1} \wedge \bar{w}_{2} \wedge\left((d b) \bar{v}_{1}+a \bar{w}_{1}+\bar{w}_{3}\right) \\
= & (d a) \bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{1}+d \bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{3}+(d b) \bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{1}+d \bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{3} \\
& \quad+(d a) \bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{1}+d \bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{v}_{3}+(d b) \bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{1}+\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{3} \\
= & p_{21} .
\end{aligned}
$$

The matrix of w_{1} with respect to \mathcal{S} is $\left(\begin{array}{cc}A & O \\ O & A\end{array}\right)$, where $A=E_{12}-E_{21}+E_{33}$ and O is the 3×3 matrix with all entries equal to 0 . Now $\widehat{w_{1}}\left(p_{20}\right)$ is equal to

$$
\begin{aligned}
\widehat{w_{1}}\left(d \bar{v}_{1} \wedge\right. & \left.\bar{v}_{2} \wedge \bar{v}_{3}+\bar{v}_{1} \wedge \bar{w}_{2} \wedge \bar{w}_{3}+\bar{w}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{3}+\bar{w}_{1} \wedge \bar{w}_{2} \wedge \bar{v}_{3}\right) \\
= & d\left(-\bar{v}_{2}\right) \wedge \bar{v}_{1} \wedge \bar{v}_{3}+\left(-\bar{v}_{2}\right) \wedge \bar{w}_{1} \wedge \bar{w}_{3} \\
& \quad+\left(-\bar{w}_{2}\right) \wedge \bar{v}_{1} \wedge \bar{w}_{3}+\left(-\bar{w}_{2}\right) \wedge \bar{w}_{1} \wedge \bar{v}_{3} \\
= & p_{20}
\end{aligned}
$$

since $\left(-\bar{v}_{2}\right) \wedge \bar{v}_{1}=\bar{v}_{1} \wedge \bar{v}_{2},\left(-\bar{w}_{2}\right) \wedge \bar{w}_{1}=\bar{w}_{1} \wedge \bar{w}_{2},\left(-\bar{v}_{2}\right) \wedge \bar{w}_{1}=\bar{w}_{1} \wedge \bar{v}_{2}$, and $\left(-\bar{w}_{2}\right) \wedge \bar{v}_{1}=\bar{v}_{1} \wedge \bar{w}_{2}$.

In an entirely similar way, one shows that $\widehat{w_{1}}\left(p_{21}\right)=p_{21}, \widehat{w_{2}}\left(p_{20}\right)=p_{20}$, and $\widehat{w_{2}}\left(p_{21}\right)=p_{21}$.

Recall that every point $x \in \mathcal{P}$ gives rise to a 1-space $\varepsilon(x)$ of M, that is, a point $\varepsilon(x)$ of $\operatorname{PG}(M)$. For a line $l \in \mathcal{L}$, we define $\varepsilon(l):=\{\varepsilon(x) \mid x \in l\}$. We denote by \tilde{l} the 2 -space of M generated by the 1 -spaces $\varepsilon(x), x \in l$. We put $\tilde{\mathcal{P}}=\hat{\mathcal{P}}=\{\varepsilon(x) \mid$ $x \in \mathcal{P}\}, \hat{\mathcal{L}}=\{\varepsilon(l) \mid l \in \mathcal{L}\}$, and $\tilde{\mathcal{L}}=\{\tilde{l} \mid l \in \mathcal{L}\}$.

Let X be a point of $\mathrm{PG}(V)$. By abuse of notation, we will also write $X \in \operatorname{PG}(V)$. The set $Q(X)=\left\{x \in \mathcal{P} \mid X \subset x \subset X^{\perp}\right\}$ is a convex subspace of $D W(5, q)$ that defines a generalized quadrangle isomorphic to $Q(4, q)$. We set $\mathcal{Q}:=\{Q(X) \mid$ $X \in \operatorname{PG}(V)\}$ and refer to the elements of \mathcal{Q} as quads of $D W(5, q)$. For $Q \in \mathcal{Q}$, we will denote by \hat{Q} the collection $\{\varepsilon(x) \mid x \in Q\}$ and by \tilde{Q} the subspace of M spanned by the elements of \hat{Q}. We refer to both \hat{Q} and \tilde{Q} as the quads of M. Set $\tilde{\mathcal{Q}}=\{\tilde{Q} \mid Q \in \mathcal{Q}\}$.

For every point u of $D W(5, q), \Delta(u)$ denotes the set of points of $D W(5, q)$ that are collinear or equal to u. If $P=\varepsilon(u) \in \tilde{\mathcal{P}}$, then we define $\Delta(P):=\varepsilon(\Delta(u))$ and $M(P)$ is the subspace of M spanned by the elements of $\Delta(P)$. We call $M(P)$ the hemisphere of P.

Lemma 3.2. Let $X, Y \in \operatorname{PG}(V)$. Then the following statements hold:
(i) if $X \perp_{f} Y$, then $\tilde{Q}(X) \cap \tilde{Q}(Y) \in \tilde{\mathcal{L}}$;
(ii) if X and Y are not orthogonal, then $\tilde{Q}(X) \cap \tilde{Q}(Y)=0$.

Proof. (i) The group $\overline{G_{f}}$ is transitive on pairs $\{X, Y\}$ of 1-spaces of V such that $X \perp_{f} Y$. Therefore we can take $X=\left\langle\bar{v}_{1}\right\rangle$ and $Y=\left\langle\bar{v}_{2}\right\rangle$. Then

$$
\tilde{Q}(X)=\left\langle p_{1}, p_{2}, p_{3}, p_{4}, p_{9}\right\rangle, \quad \tilde{Q}(Y)=\left\langle p_{1}, p_{2}, p_{5}, p_{6}, p_{11}\right\rangle
$$

and $\tilde{Q}(X) \cap \tilde{Q}(Y)=\left\langle p_{1}, p_{2}\right\rangle \in \tilde{\mathcal{L}}$.
(ii) The group $\overline{G_{f}}$ is also transitive on pairs $\{X, Y\}$ of 1-spaces of V such that X and Y are nonorthogonal with respect to f. We can take $X=\left\langle\bar{v}_{1}\right\rangle$ and $Y=\left\langle\bar{w}_{1}\right\rangle$. Now $\tilde{Q}(X)=\left\langle p_{1}, p_{2}, p_{3}, p_{4}, p_{9}\right\rangle$ and $\tilde{Q}(Y)=\left\langle p_{5}, p_{6}, p_{7}, p_{8}, p_{10}\right\rangle$. Therefore, $\tilde{Q}(X) \cap \tilde{Q}(Y)=0$ as claimed.

This result implies the next corollary, which is fundamental.
Corollary 3.3. Let $\tilde{Q} \in \tilde{\mathcal{Q}}$ and $P \in \operatorname{PG}(\tilde{Q}) \backslash \tilde{\mathcal{P}}$. Then \tilde{Q} is the unique quad of M that contains P.

Lemma 3.4. Let $P \in \tilde{\mathcal{P}}$ and $Q \in \tilde{\mathcal{Q}}$ be such that $P \notin Q$. Let R denote the unique point of $Q \cap \tilde{\mathcal{P}}$ at distance 1 from P. Then $M(P) \cap Q=R$.

Proof. Since $\widehat{\widehat{G_{f}}}$ is transitive on the pairs (P, Q) with $P \in \tilde{\mathcal{P}}, Q \in \tilde{\mathcal{Q}}$, and $P \notin Q$, we may without loss of generality suppose that $Q=\tilde{Q}\left(\left\langle\bar{v}_{1}\right\rangle\right)$ and $P=\left\langle p_{8}\right\rangle$. Then $R=$ $\left\langle p_{4}\right\rangle$. Now $Q=\left\langle p_{1}, p_{2}, p_{3}, p_{4}, p_{9}\right\rangle$ and $M(P)=\left\langle p_{4}, p_{6}, p_{7}, p_{8}, p_{10}, p_{12}, p_{14}\right\rangle ;$ hence $M(P) \cap Q=\left\langle p_{4}\right\rangle=R$.
Corollary 3.5. Let $P \in \tilde{\mathcal{P}}$ and $R \in \mathrm{PG}(M(P)) \backslash \tilde{\mathcal{P}}$. If R is contained in a quad, then this quad necessarily contains P.

Lemma 3.6. Let $\tilde{Q} \in \tilde{\mathcal{Q}}$ and $R \in \operatorname{PG}(\tilde{Q}) \backslash \tilde{P}$. Then there exists a $P \in \tilde{\mathcal{P}}$ such that $R \in \operatorname{PG}(M(P))$.

Proof. Let \tilde{L} be contained in \tilde{Q} where $L \in \mathcal{L}$. Then $\tilde{Q}=\bigcup_{P \in \tilde{L}}\langle\tilde{Q} \cap \Delta(P)\rangle \subset$ $\bigcup_{P \in \tilde{Q}} M(P)$.

Our next lemma shows that, if a point is contained in two distinct hemispheres, then in fact it is contained in a quad.

Lemma 3.7. Let P and P^{\prime} be distinct points of $\tilde{\mathcal{P}}$, and let $X \in \operatorname{PG}\left(M(P) \cap M\left(P^{\prime}\right)\right)$. Then there is a quad \tilde{Q} containing P such that $X \subset \tilde{Q}$.
Proof. For every $t \in\{1,2,3\}, \widehat{\overline{G_{f}}}$ is transitive on the pairs $\left(P, P^{\prime}\right)$ of points of $\tilde{\mathcal{P}}$ with $d\left(P, P^{\prime}\right)=t$. Therefore we can take $\left(P, P^{\prime}\right)$ to be one of $\left(P_{1}, P_{2}\right),\left(P_{1}, P_{4}\right)$, or $\left(P_{1}, P_{8}\right)$. For every $i \in\{1,2,4,8\}$, set $M_{i}=M\left(P_{i}\right)$. Then

$$
\begin{aligned}
M_{1}=\left\langle p_{1}, p_{2}, p_{3}, p_{5}, p_{9}, p_{11}, p_{13}\right\rangle, & M_{2}=\left\langle p_{1}, p_{2}, p_{4}, p_{6}, p_{9}, p_{11}, p_{14}\right\rangle \\
M_{4}=\left\langle p_{2}, p_{3}, p_{4}, p_{8}, p_{9}, p_{12}, p_{14}\right\rangle, & M_{8}=\left\langle p_{4}, p_{6}, p_{7}, p_{8}, p_{10}, p_{12}, p_{14}\right\rangle .
\end{aligned}
$$

Now $M_{1} \cap M_{2}=\left\langle p_{1}, p_{2}, p_{9}, p_{11}\right\rangle$. This space is covered by $\bigcup \tilde{Q}(\langle\bar{v}\rangle)$ where $\bar{v} \in$ $\left\langle\bar{v}_{1}, \bar{v}_{2}\right\rangle$. Also $M_{1} \cap M_{4}=\left\langle p_{2}, p_{3}, p_{9}\right\rangle$ and this is contained in $\tilde{Q}\left(\left\langle\bar{v}_{1}\right\rangle\right)$. Finally, $M_{1} \cap M_{8}=0$.

This lemma has an important corollary as follows.
Corollary 3.8. Assume $X \in \operatorname{PG}(M(P))$ for $P \in \tilde{\mathcal{P}}$ and assume X is not contained in a quad that contains P. Then P is the unique point of $\tilde{\mathcal{P}}$ for which $X \in \operatorname{PG}(M(P))$.

3.2. Points Contained in At Least One Hemisphere

We now show that the points P_{1}, P_{15}, P_{16}, and P_{17} are in distinct orbits of $\widehat{S_{f}}$, with orbit sizes and stabilizers as shown in Tables 2 and 3. We also show that the union of these orbits comprises all points of $\operatorname{PG}(M)$ that are contained in at least one hemisphere.

The orbit of P_{1} is just $\tilde{\mathcal{P}}$. There are $\left(q^{3}+1\right)\left(q^{2}+1\right)(q+1)$ such points, and the stabilizer $S_{P_{1}}:=\left(\widehat{S_{f}}\right)_{P_{1}}$ of P_{1} is isomorphic to the subgroup of S_{f} that fixes a maximal totally isotropic subspace of V. The group $S_{P_{1}}$ has a normal elementary abelian subgroup $E\left(P_{1}\right)$ of order q^{6}. This subgroup has a complement $L\left(P_{1}\right) \cong$ GL $(3, q)$, which justifies the entries of line I of Table 3 and Table 4.

For a point X of $\mathrm{PG}(V)$, the stabilizer in $\widehat{S_{f}}$ of $\tilde{Q}(X)$ is isomorphic to $S_{X}:=$ $\left(S_{f}\right)_{X}$. The group S_{X} has a normal subgroup $E(X)$ of order q^{5}, which is a special
group. This subgroup has a complement $L(X)$ that is isomorphic to $L(X)^{\prime} \times Z(X)$, where $L(X)^{\prime} \cong \mathrm{Sp}(4, q)$ is the commutator subgroup of $L(X)$ and $Z(X) \cong \mathbb{Z}_{q-1}$. Note that $L(X)^{\prime} / Z\left(L(X)^{\prime}\right) \cong \Omega(5, q)$. In fact, the group $L(X)$ preserves a quadratic form on $\tilde{Q}(X)$, which we now describe.

Let $X=\left\langle\bar{v}_{1}\right\rangle$, and set $V(X)=\left\langle\bar{v}_{2}, \bar{w}_{2}, \bar{v}_{3}, \bar{w}_{3}\right\rangle$. Observe that $X \wedge \bigwedge^{2}\left(X^{\perp}\right)=$ $X \wedge \bigwedge^{2}(V(X))$ has dimension 6 . We denote this space by $D(X)$. Any vector \bar{v} is in $D(X)$ and can be written as $\bar{v}_{1} \wedge \alpha$ for $\alpha \in \bigwedge^{2}(V(X))$. Also, for $\alpha, \beta \in$ $\wedge^{2}(V(X))$, we have that $\alpha \wedge \beta$ is a multiple of $\bar{v}_{2} \wedge \bar{v}_{3} \wedge \bar{w}_{2} \wedge \bar{w}_{3}$. Thus, define $b: \bigwedge^{2}(V(X)) \times \bigwedge^{2}(V(X)) \rightarrow \mathbb{F}_{q}$ by $\alpha \wedge \beta=b(\alpha, \beta)\left(\bar{v}_{2} \wedge \bar{v}_{3} \wedge \bar{w}_{2} \wedge \bar{w}_{3}\right)$. This defines a nondegenerate symmetric bilinear form of Witt index 3. Now define $\hat{b}: D(X) \times D(X) \rightarrow \mathbb{F}_{q}$ by $\hat{b}\left(\bar{v}_{1} \wedge \alpha, \bar{v}_{1} \wedge \beta\right)=b(\alpha, \beta)$; this also is a nondegenerate symmetric bilinear form of Witt index 3 . The space $\tilde{Q}(X)$ is the subspace of $D(X)$ that is orthogonal to $\bar{v}_{1} \wedge \bar{v}_{2} \wedge \bar{w}_{2}+\bar{v}_{1} \wedge \bar{v}_{3} \wedge \bar{w}_{3}$ with respect to \hat{b}. The group $L(X)$ has three orbits on the projective points of $\tilde{Q}(X)$: the singular points of the quadratic form \hat{b}, which are the points of $\hat{Q}(X)$; and the two classes of nonsingular points with respect to \hat{b}. Note that $\hat{b}\left(p_{9}, p_{9}\right)=\hat{b}\left(p_{15}, p_{15}\right)=2$. Also, $p_{9}^{\perp} \hat{b}=$ $\left\langle p_{1}, p_{2}, p_{3}, p_{4}\right\rangle$, which is a nondegenerate hyperbolic subspace of $(\tilde{Q}(X), \hat{b})$. On the other hand, $\hat{b}\left(p_{16}, p_{16}\right)=2 d$ and, since $\hat{b}\left(p_{15}, p_{15}\right) \cdot \hat{b}\left(p_{16}, p_{16}\right)=4 d$ is a nonsquare, it follows that P_{15} and P_{16} are in different classes of nonsingular points of $(\tilde{Q}(X), \hat{b})$ and hence are representatives of the two classes. Since there are $\frac{q^{6}-1}{q-1}$ quads $Q(X)$ for $X \in \operatorname{PG}(V)$ and since, for each X, there are $\frac{q^{2}\left(q^{2}+1\right)}{2}$ points in the class of P_{15} contained in $\tilde{Q}(X)$ and $\frac{q^{2}\left(q^{2}-1\right)}{2}$ points in the class of P_{16} contained in $\tilde{Q}(X)$, the entries of lines II and III of Table 3 and Table 4 are justified.

We now make use of Corollary 3.3 and simple counting to show that, for $P \in$ $\tilde{\mathcal{P}}$, there are points in $M(P)$ that are not from classes I, II, or III.

Lemma 3.9. The following statements hold for a point $P \in \tilde{\mathcal{P}}$:
(i) the number of points of type I in $\mathrm{PG}(M(P))$ is $1+q\left(q^{2}+q+1\right)$;
(ii) the number of points of type II in $\mathrm{PG}(M(P))$ is $\frac{q^{2}\left(q^{2}+q+1\right)(q+1)}{2}$;
(iii) the number of points of type III in $\operatorname{PG}(M(P))$ is $\frac{q^{2}\left(q^{2}+q+1\right)(q-1)}{2}$;
(iv) there are $q^{3}\left(q^{3}-1\right)$ points in $\mathrm{PG}(M(P))$ that do not belong to a quad.

Proof. (i): The points of type I in $M(P)$ are precisely $\Delta(P)$. There are $q^{2}+q+1$ lines on P, each with q points of $\Delta(P)$ apart from P.
(ii) and (iii): The point P belongs to $q^{2}+q+1$ quads. For a quad \tilde{Q} containing P, we know that $M(P) \cap \tilde{Q}$ is the hyperplane of \tilde{Q} spanned by $\Delta(P) \cap \hat{Q}$. A simple count yields that $M(P) \cap \tilde{Q}$ contains $\frac{q^{2}(q+1)}{2}$ points of type II and $\frac{q^{2}(q-1)}{2}$ points of type III. The second and third parts follow from this.
(iv): The number of points that have been accounted for is

$$
\begin{aligned}
1+q+q^{2}+q^{3}+\left(q^{2}+q+1\right)\left[\frac{q^{2}(q+1)}{2}\right. & \left.+\frac{q^{2}(q-1)}{2}\right] \\
& =1+q+q^{2}+2 q^{3}+q^{4}+q^{5}
\end{aligned}
$$

Since $|\operatorname{PG}(M(P))|=\frac{q^{7}-1}{q-1}$, there are $q^{6}-q^{3}=q^{3}\left(q^{3}-1\right)$ remaining points.

Lemma 3.10. The stabilizer S_{P} of a point $P \in \tilde{\mathcal{P}}$ is transitive on the points of $\mathrm{PG}(M(P))$ that do not belong to quads.
Proof. Since $\widehat{S_{f}}$ is transitive on $\tilde{\mathcal{P}}$, we can take $P=P_{2}$ and $M(P)=M_{2}$. Recall that $S_{P}=E(P) \cdot L(P)$, where $E(P)$ is elementary abelian of order q^{6} and $L(P) \cong$ GL $(3, q)$. The subgroup $E(P)$ fixes every projective line of the form $P+P^{\prime}$ with $P^{\prime} \in \Delta(P) \backslash\{P\}$ and, for such a line, is transitive on $\mathrm{PG}\left(P+P^{\prime}\right) \backslash\{P\}$. This implies that $E(P)$ acts trivially on the 6-dimensional quotient space $M(P) / P$. The action of the complement, $L(P)$, on $M(P) / P$ is equivalent to the action of $\operatorname{GL}(3, q)$ on the space $\operatorname{Sym}(3, q)$ of 3×3 symmetric matrices for which the action is given by $g \circ m=g^{\mathrm{T}} m g$ (where g^{T} denotes the transpose of the matrix g). Under this action, every matrix is equivalent to a diagonal matrix and there are six orbits on nonzero vectors, two each for rank 1, 2, and 3. Representatives for the orbits on vectors are as follows:
(1) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$;
(2) $\left(\begin{array}{lll}d & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$;
(3) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$;
(4) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & 0\end{array}\right)$;
(5) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$;
(6) $\left(\begin{array}{lll}d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d\end{array}\right)$.

Note that the vectors in (1) and (2) give rise to the same point of $\operatorname{PG}(\operatorname{Sym}(3, q))$, as do the vectors in (5) and (6); however, the vectors in (3) and (4) do not.

Consequently, $L(P)$ has four orbits on the points of $M(P) / P$. However, for any 2-space U of $M(P)$ containing P, the group $E(P)$ is transitive on $\mathrm{PG}(U) \backslash\{P\}$ and therefore S_{P} has four orbits on the points of $\operatorname{PG}(M(P)) \backslash\{P\}$. The point P_{1} is a representative of one orbit, and the points P_{15} and P_{16} are the representatives of two other orbits. Thus, there is one other orbit consisting of all those points of $\mathrm{PG}(M(P))$ that do not belong to quads.

The point P_{17} is a point of $M\left(P_{2}\right)$ that does not belong to a quad. In view of Corollary 3.8 and Lemmas 3.9 and 3.10, it now follows that the orbit of P_{17} has $|\tilde{\mathcal{P}}| \times\left(q^{6}-q^{3}\right)=q^{3}\left(q^{6}-1\right)\left(q^{2}+1\right)(q+1)$.

3.3. Points Not Belonging to a Hemisphere

We now turn our attention to points that do not belong to $M(P)$ for any point $P \in \tilde{\mathcal{P}}$.

Since the group $\widehat{S_{f}}$ is transitive on $\tilde{\mathcal{P}}$ and since, for a point $P \in \tilde{\mathcal{P}}$, the normal abelian group $E(P)$ acts regularly on the points P^{\prime} with $d\left(P, P^{\prime}\right)=3$, it follows that $\widehat{S_{f}}$ is transitive on ordered pairs $\left(P, P^{\prime}\right)$ of points from $\tilde{\mathcal{P}}$ at distance 3 . One such pair is $\left(P_{1}, P_{8}\right)$. By [6, Cor. 5.3], an element of $\widehat{S_{f}}$ that stabilizes a given point of $\left\langle P_{1}, P_{8}\right\rangle \backslash\left\{P_{1}, P_{8}\right\}$ must either stabilize the ordered pair (P_{1}, P_{8}) or interchange P_{1} and P_{8}.

The stabilizer $S_{\left(P_{1}, P_{8}\right)}$ of the ordered pair $\left(P_{1}, P_{8}\right)$ is isomorphic to GL $(3, q)$. The normal subgroup $\operatorname{SL}(3, q)$ acts trivially on both the points P_{1} and P_{8}, whereas
an element of $Z\left(S_{\left(P_{1}, P_{8}\right)}\right)$ will multiply p_{8} by a scalar a and multiply p_{1} by $1 / a$. Such an element takes the point $\left\langle p_{1}+p_{8}\right\rangle$ to $\left\langle p_{1}+a^{2} p_{8}\right\rangle$.

There is also a group element that interchanges the points P_{1} and P_{8} and, specifically, takes p_{1} to p_{8} and p_{8} to $-p_{1}$. This transformation takes the point $\left\langle p_{1}+p_{8}\right\rangle$ to $\left\langle p_{1}-p_{8}\right\rangle$. If -1 is a nonsquare in \mathbb{F}_{q} then all the points of $\left\langle P_{1}, P_{8}\right\rangle \backslash\left\{P_{1}, P_{8}\right\}$ are in the same orbit. On the other hand, if -1 is a square in \mathbb{F}_{q} then $\left\langle p_{1}+p_{8}\right\rangle$ and $\left\langle p_{1}+d p_{8}\right\rangle$ are in different orbits. We obtain in the former case a single orbit with representative P_{18} and orbit size $\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}+1\right)}{2}$; in the latter case we have two orbits, with representatives P_{18} and P_{19}, each with orbit size $\frac{q^{6}\left(q^{4}-1\right)\left(q^{3}+1\right)}{4}$.

We next show that the group S_{f} contains a subgroup $G \cong \mathrm{GU}\left(3, q^{2}\right)$. Recall that δ is an element of $\mathbb{F}_{q^{2}}$ such that $\delta^{2}=d$ and $\bar{w}_{i}=\delta \bar{v}_{i}$ for every $i \in\{1,2,3\}$. For any $\alpha \in \mathbb{F}_{q^{2}}$, put $\bar{\alpha}:=\alpha^{q}$. Note that for $\alpha=a+b \delta$ we have $\bar{\alpha}=a-b \delta$.

Now define a map $h: V \times V \rightarrow \mathbb{F}_{q^{2}}$ as follows $\left(\alpha_{i}, \beta_{i} \in \mathbb{F}_{q^{2}}\right)$:

$$
h\left(\sum_{i=1}^{3} \alpha_{i} \bar{v}_{i}, \sum_{i=1}^{3} \beta_{i} \bar{v}_{i}\right)=\frac{1}{2 \bar{\delta}} \sum_{i=1}^{3} \alpha_{i} \bar{\beta}_{i} .
$$

Since $\operatorname{tr}(\delta)=0$, this defines a skew Hermitian form on V. It then follows that the map $f^{\prime}: V \times V \rightarrow \mathbb{F}_{q}$ given by $f^{\prime}(\bar{v}, \bar{w})=\operatorname{tr}(h(\bar{v}, \bar{w}))$ is an alternating form. We claim that $f^{\prime}=f$. We compute $f^{\prime}\left(\bar{v}_{i}, \bar{v}_{j}\right), f^{\prime}\left(\bar{w}_{i}, \bar{w}_{j}\right)$, and $f^{\prime}\left(\bar{v}_{i}, \bar{w}_{j}\right)$ for $i \neq j$ and $f^{\prime}\left(\bar{v}_{i}, \bar{w}_{i}\right)$ for $i=1,2,3$.

By definition, $h\left(\bar{v}_{i}, \bar{v}_{j}\right)=h\left(\bar{w}_{i}, \bar{w}_{j}\right)=h\left(\bar{v}_{i}, \bar{w}_{j}\right)=0$ for $i \neq j$; consequently, we need only compute $f^{\prime}\left(\bar{v}_{i}, \bar{w}_{i}\right)$. By definition this is $\operatorname{tr}\left(h\left(\bar{v}_{i}, \delta \bar{v}_{i}\right)\right)=\operatorname{tr}(\bar{\delta} / 2 \bar{\delta})=$ $\operatorname{tr}(1 / 2)=1$, so our claim holds.

It now follows that if σ is an isometry of (V, h)-that is, a unitary transfor-mation-then σ is an isometry of the symplectic space (V, f). Therefore, if $G=$ $\left\{\sigma \in \mathrm{GL}_{\mathbb{F}_{q^{2}}}(V) \mid h\left(\sigma\left(\bar{u}_{1}\right), \sigma\left(\bar{u}_{2}\right)\right)=h\left(\bar{u}_{1}, \bar{u}_{2}\right) \forall \bar{u}_{1}, \bar{u}_{2} \in V\right\}$, then $G \cong \mathrm{GU}\left(3, q^{2}\right)$ and $G<S_{f}$. Let G^{\prime} be the derived subgroup of G; then G^{\prime} is isomorphic to $\mathrm{SU}\left(3, q^{2}\right)$. By Lemma 3.1, it follows that $\widehat{G^{\prime}}$ centralizes $\left\langle p_{20}, p_{21}\right\rangle$.

We next determine the stabilizer of the point P_{20}. We will first show in a series of lemmas that if $\bar{v}, \bar{w} \in\left\langle p_{20}, p_{21}\right\rangle$ and if $\theta \in S_{f}$ satisfies $\theta(\bar{v})=\bar{w}$, then $\theta\left(\left\langle p_{20}, p_{21}\right\rangle\right)=\left\langle p_{20}, p_{21}\right\rangle$.

Let V^{\prime} denote the 6-dimensional vector space over $\mathbb{F}_{q^{2}}$ with basis \mathcal{S}. For a vector $\bar{x}=a_{1} \bar{v}_{1}+a_{2} \bar{v}_{2}+a_{3} \bar{v}_{3}+b_{1} \bar{w}_{1}+b_{2} \bar{w}_{2}+b_{3} \bar{w}_{3} \in V^{\prime}$ we define $\bar{x}^{q}=$ $a_{1}^{q} \bar{v}_{1}+a_{2}^{q} \bar{v}_{2}+a_{3}^{q} \bar{v}_{3}+b_{1}^{q} \bar{w}_{1}+b_{2}^{q} \bar{w}_{2}+b_{3}^{q} \bar{w}_{3}$. For $\theta \in \mathrm{GL}(V)$ we denote by $\bar{\theta}$ the element induced by θ in $\mathrm{GL}\left(V^{\prime}\right)$ and by $\overline{\theta^{\prime}}$ the corresponding element of $\operatorname{GL}\left(\bigwedge^{3} V^{\prime}\right)$.

Lemma 3.11. Let $\left\{\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{6}\right\}$ and $\left\{\bar{e}_{1}^{\prime}, \bar{e}_{2}^{\prime}, \ldots, \bar{e}_{6}^{\prime}\right\}$ be two bases of V^{\prime} such that $\bar{e}_{1} \wedge \bar{e}_{2} \wedge \bar{e}_{3}+\bar{e}_{4} \wedge \bar{e}_{5} \wedge \bar{e}_{6}=\bar{e}_{1}^{\prime} \wedge \bar{e}_{2}^{\prime} \wedge \bar{e}_{3}^{\prime}+\bar{e}_{4}^{\prime} \wedge \bar{e}_{5}^{\prime} \wedge \bar{e}_{6}^{\prime}$. Then $\left\{\left\langle\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\rangle\right.$, $\left.\left\langle\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{6}\right\rangle\right\}=\left\{\left\langle\bar{e}_{1}^{\prime}, \bar{e}_{2}^{\prime}, \bar{e}_{3}^{\prime}\right\rangle,\left\langle\bar{e}_{4}^{\prime}, \bar{e}_{5}^{\prime}, \bar{e}_{6}^{\prime}\right\rangle\right\}$.

Proof. Put $\alpha:=\bar{e}_{1} \wedge \bar{e}_{2} \wedge \bar{e}_{3}+\bar{e}_{4} \wedge \bar{e}_{5} \wedge \bar{e}_{6}=\bar{e}_{1}^{\prime} \wedge \bar{e}_{2}^{\prime} \wedge \bar{e}_{3}^{\prime}+\bar{e}_{4}^{\prime} \wedge \bar{e}_{5}^{\prime} \wedge \bar{e}_{6}^{\prime}$. For every vector \bar{x} of V^{\prime}, let $A_{\bar{x}}$ denote the subspace of V^{\prime} consisting of all vectors \bar{y} satisfying $\alpha \wedge \bar{x} \wedge \bar{y}=0$. Let B be the subset of V^{\prime} consisting of all vectors \bar{x} of V^{\prime} such that $\operatorname{dim}\left(A_{\bar{x}}\right) \geq 4$. We will now prove that $B=\left\langle\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\rangle \cup\left\langle\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{6}\right\rangle$.

In a completely similar way, one can also prove that $B=\left\langle\bar{e}_{1}^{\prime}, \bar{e}_{2}^{\prime}, \bar{e}_{3}^{\prime}\right\rangle \cup\left\langle\bar{e}_{4}^{\prime}, \bar{e}_{5}^{\prime}, \bar{e}_{6}^{\prime}\right\rangle$, which then implies that $\left\{\left\langle\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\rangle,\left\langle\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{6}\right\rangle\right\}=\left\{\left\langle\bar{e}_{1}^{\prime}, \bar{e}_{2}^{\prime}, \bar{e}_{3}^{\prime}\right\rangle,\left\langle\bar{e}_{4}^{\prime}, \bar{e}_{5}^{\prime}, \bar{e}_{6}^{\prime}\right\rangle\right\}$.

Put $\bar{x}=\delta_{1} \bar{e}_{1}+\delta_{2} \bar{e}_{2}+\cdots+\delta_{6} \bar{e}_{6}$ and $\bar{y}=a_{1} \bar{e}_{1}+a_{2} \bar{e}_{2}+\cdots+a_{6} \bar{e}_{6}$. Then the fact that $\alpha \wedge \bar{x} \wedge \bar{y}=0$ implies that

$$
\left[\begin{array}{cccccc}
-\delta_{2} & \delta_{1} & 0 & 0 & 0 & 0 \\
-\delta_{3} & 0 & \delta_{1} & 0 & 0 & 0 \\
0 & -\delta_{3} & \delta_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & -\delta_{5} & \delta_{4} & 0 \\
0 & 0 & 0 & -\delta_{6} & 0 & \delta_{4} \\
0 & 0 & 0 & 0 & -\delta_{6} & \delta_{5}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

So, $\operatorname{dim}\left(V_{\bar{x}}\right) \geq 4$ if and only if the rank of

$$
\left[\begin{array}{cccccc}
-\delta_{2} & \delta_{1} & 0 & 0 & 0 & 0 \\
-\delta_{3} & 0 & \delta_{1} & 0 & 0 & 0 \\
0 & -\delta_{3} & \delta_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & -\delta_{5} & \delta_{4} & 0 \\
0 & 0 & 0 & -\delta_{6} & 0 & \delta_{4} \\
0 & 0 & 0 & 0 & -\delta_{6} & \delta_{5}
\end{array}\right]
$$

is at most 2 . This happens precisely when $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(0,0,0)$ or $\left(\delta_{4}, \delta_{5}, \delta_{6}\right)=$ $(0,0,0)$, that is, when $\bar{x} \in\left\langle\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\rangle \cup\left\langle\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{6}\right\rangle$.

The proof of the following lemma is straightforward.
Lemma 3.12. For all $a, b \in \mathbb{F}_{q},(a+b \delta) \cdot\left(\bar{w}_{1}+\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}+\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}+\delta \bar{v}_{3}\right)+$ $(a-b \delta) \cdot\left(\bar{w}_{1}-\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}-\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}-\delta \bar{v}_{3}\right)=2 a \cdot p_{21}+2 b d \cdot p_{20}$.

Corollary 3.13. The vectors of the 2 -space $\left\langle p_{20}, p_{21}\right\rangle$ of $\bigwedge^{3} V$ are precisely the vectors of the form $(a+b \delta) \cdot\left(\bar{w}_{1}+\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}+\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}+\delta \bar{v}_{3}\right)+$ $(a-b \delta) \cdot\left(\bar{w}_{1}-\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}-\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}-\delta \bar{v}_{3}\right)$, where $a, b \in \mathbb{F}_{q}$.

By Lemma 3.11 and Corollary 3.13, we have the following result.
Corollary 3.14. If $\theta \in S_{f}$ such that $\hat{\theta}$ maps a nonzero vector of $\left\langle p_{20}, p_{21}\right\rangle$ to a nonzero vector of $\left\langle p_{20}, p_{21}\right\rangle$, then $\hat{\theta}$ stabilizes $\left\langle p_{20}, p_{21}\right\rangle$. Moreover, one of the following statements holds.
(i) $\overline{\theta^{\prime}}$ stabilizes the 1 -spaces $\left\langle\left(\bar{w}_{1}+\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}+\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}+\delta \bar{v}_{3}\right)\right\rangle$ and $\left\langle\left(\bar{w}_{1}-\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}-\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}-\delta \bar{v}_{3}\right)\right\rangle$ of $\bigwedge^{3} V^{\prime}$.
(ii) $\bar{\theta}^{\prime}$ interchanges the 1-spaces $\left\langle\left(\bar{w}_{1}+\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}+\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}+\delta \bar{v}_{3}\right)\right\rangle$ and $\left\langle\left(\bar{w}_{1}-\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}-\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}-\delta \bar{v}_{3}\right)\right\rangle$ of $\bigwedge^{3} V^{\prime}$.

Let W_{f} denote the subgroup of S_{f} consisting of all $\theta \in S_{f}$ for which $\hat{\theta}$ stabilizes $\left\langle p_{20}, p_{21}\right\rangle$. Let U_{f} denote the normal subgroup of W_{f} consisting of all $\theta \in W_{f}$
for which case (i) of Corollary 3.14 occurs. Put $\widehat{W_{f}}:=\left\{\hat{\theta} \mid \theta \in W_{f}\right\}$ and $\widehat{U_{f}}:=$ $\left\{\hat{\theta} \mid \theta \in U_{f}\right\}$.

Remark 3.15. Let θ be an element of U_{f}, let μ_{1} be the restriction of $\bar{\theta}$ to the 3-space $\left\langle\bar{w}_{1}+\delta \bar{v}_{1}, \bar{w}_{2}+\delta \bar{v}_{2}, \bar{w}_{3}+\delta \bar{v}_{3}\right\rangle$ of V^{\prime}, and let μ_{2} be the restriction of $\bar{\theta}$ to the 3 -space $\left\langle\bar{w}_{1}-\delta \bar{v}_{1}, \bar{w}_{2}-\delta \bar{v}_{2}, \bar{w}_{3}-\delta \bar{v}_{3}\right\rangle$ of V^{\prime}. Then $1=\operatorname{det}(\bar{\theta})=$ $\operatorname{det}\left(\mu_{1}\right) \cdot \operatorname{det}\left(\mu_{2}\right)$.

Now let \bar{x} be an arbitrary vector of $\left\langle\bar{w}_{1}+\delta \bar{v}_{1}, \bar{w}_{2}+\delta \bar{v}_{2}, \bar{w}_{3}+\delta \bar{v}_{3}\right\rangle$. Since $\bar{x}+\bar{x}^{q} \in V$, we have $\bar{y}:=\bar{\theta}\left(\bar{x}+\bar{x}^{q}\right)=\bar{\theta}(\bar{x})+\bar{\theta}\left(\bar{x}^{q}\right) \in V$. Also, $\bar{y}=\bar{y}^{q}=$ $\left[\bar{\theta}\left(\bar{x}^{q}\right)\right]^{q}+[\bar{\theta}(\bar{x})]^{q}$. Since there exist unique $\bar{y}_{1} \in\left\langle\bar{w}_{1}+\delta \bar{v}_{1}, \bar{w}_{2}+\delta \bar{v}_{2}, \bar{w}_{3}+\delta \bar{v}_{3}\right\rangle$ and $\bar{y}_{2} \in\left\langle\bar{w}_{1}-\delta \bar{v}_{1}, \bar{w}_{2}-\delta \bar{v}_{2}, \bar{w}_{3}-\delta \bar{v}_{3}\right\rangle$ such that $\bar{y}=\bar{y}_{1}+\bar{y}_{2}$, we necessarily have $\bar{\theta}\left(\bar{x}^{q}\right)=[\bar{\theta}(\bar{x})]^{q}$. Hence $\mu_{2}\left(\bar{x}^{q}\right)=\bar{\theta}\left(\bar{x}^{q}\right)=[\bar{\theta}(\bar{x})]^{q}=\left[\mu_{1}(\bar{x})\right]^{q}$.

By the previous paragraph, $\operatorname{det}\left(\mu_{2}\right)=\left[\operatorname{det}\left(\mu_{1}\right)\right]^{q}$. If $\operatorname{det}\left(\mu_{1}\right)=a+b \delta$, then $\operatorname{det}\left(\mu_{2}\right)=a-b \delta$ and, since $\operatorname{det}\left(\mu_{1}\right) \cdot \operatorname{det}\left(\mu_{2}\right)=1$, we have $a^{2}-b^{2} d=1$.

Conversely, let $a, b \in \mathbb{F}_{q}$ such that $a^{2}-b^{2} d=1$. Then the element of GL(V) determined by

$$
\begin{aligned}
& \bar{v}_{1} \mapsto a \cdot \bar{v}_{1}+b \cdot \bar{w}_{1}, \quad \bar{w}_{1} \mapsto b d \cdot \bar{v}_{1}+a \cdot \bar{w}_{1}, \\
& \bar{v}_{2} \mapsto \bar{v}_{2}, \quad \bar{w}_{2} \mapsto \bar{w}_{2}, \quad \bar{v}_{3} \mapsto \bar{v}_{3}, \quad \bar{w}_{3} \mapsto \bar{w}_{3}
\end{aligned}
$$

determines an element of U_{f} for which the corresponding value of $\operatorname{det}\left(\mu_{1}\right)$ is equal to $a+b \delta$.

Lemma 3.16. Let $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{F}_{q}$ such that $\left(a_{1}, a_{2}\right) \neq(0,0) \neq\left(b_{1}, b_{2}\right)$. Then the 1 -spaces $\left\langle a_{1} p_{21}+a_{2} p_{20}\right\rangle$ and $\left\langle b_{1} p_{21}+b_{2} p_{20}\right\rangle$ belong to the same $\widehat{U_{f}}$-orbit if and only if $\left(a_{1}^{2}-\frac{a_{2}^{2}}{d}\right)\left(b_{1}^{2}-\frac{b_{2}^{2}}{d}\right)$ is a square.

Proof. By Lemma 3.12,

$$
\begin{aligned}
a_{1} p_{21}+a_{2} p_{20}= & \left(\frac{a_{1}}{2}+\frac{a_{2}}{2 d} \delta\right) \cdot\left(\bar{w}_{1}+\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}+\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}+\delta \bar{v}_{3}\right) \\
& +\left(\frac{a_{1}}{2}-\frac{a_{2}}{2 d} \delta\right) \cdot\left(\bar{w}_{1}-\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}-\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}-\delta \bar{v}_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
b_{1} p_{21}+b_{2} p_{20}= & \left(\frac{b_{1}}{2}+\frac{b_{2}}{2 d} \delta\right) \cdot\left(\bar{w}_{1}+\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}+\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}+\delta \bar{v}_{3}\right) \\
& +\left(\frac{b_{1}}{2}-\frac{b_{2}}{2 d} \delta\right) \cdot\left(\bar{w}_{1}-\delta \bar{v}_{1}\right) \wedge\left(\bar{w}_{2}-\delta \bar{v}_{2}\right) \wedge\left(\bar{w}_{3}-\delta \bar{v}_{3}\right)
\end{aligned}
$$

By Remark 3.15, the 1 -spaces $\left\langle a_{1} p_{21}+a_{2} p_{20}\right\rangle$ and $\left\langle b_{1} p_{21}+b_{2} p_{20}\right\rangle$ belong to the same $\widehat{U_{f}}$-orbit if and only if there exist a $\lambda \in \mathbb{F}_{q}^{*}$ and $c_{1}, c_{2} \in \mathbb{F}_{q}$ satisfying $c_{1}^{2}-c_{2}^{2} d=1$ such that $\left(\frac{a_{1}}{2}+\frac{a_{2}}{2 d} \delta\right) \cdot\left(c_{1}+c_{2} \delta\right) \cdot \lambda=\frac{b_{1}}{2}+\frac{b_{2}}{2 d} \delta$. If c_{1}^{\prime} and c_{2}^{\prime} are the unique elements of \mathbb{F}_{q} such that $\left(\frac{a_{1}}{2}+\frac{a_{2}}{2 d} \delta\right)\left(c_{1}^{\prime}+c_{2}^{\prime} \delta\right)=\frac{b_{1}}{2}+\frac{b_{2}}{2 d} \delta$, then one readily verifies that $b_{1}^{2}-\frac{b_{2}^{2}}{d}=\left(a_{1}^{2}-\frac{a_{2}^{2}}{d}\right)\left(\left(c_{1}^{\prime}\right)^{2}-\left(c_{2}^{\prime}\right)^{2} d\right)$. It now follows that
$\left\langle a_{1} p_{21}+a_{2} p_{20}\right\rangle$ and $\left\langle b_{1} p_{21}+b_{2} p_{20}\right\rangle$ belong to the same $\widehat{U_{f}}$-orbit if and only if $\left(a_{1}^{2}-\frac{a_{2}^{2}}{d}\right)\left(b_{1}^{2}-\frac{b_{2}^{2}}{d}\right)$ as a square.

Lemma 3.17. There are two $\widehat{U_{f}}$-orbits on the set of 1 -spaces of $\left\langle p_{20}, p_{21}\right\rangle$.
Proof. If $a_{1}=1$ and $a_{2}=0$, then $a_{1}^{2}-\frac{a_{2}^{2}}{d}=1$ is a square.
Now, choose $a_{1} \in \mathbb{F}_{q}^{*}$. Then there exist $a_{2}, a_{3} \in \mathbb{F}_{q}^{*}$ such that $d a_{1}^{2}=a_{2}^{2}+a_{3}^{2}$. Then $a_{1}^{2}-\frac{a_{2}^{2}}{d}=\frac{a_{3}^{2}}{d}$ is a nonsquare.

The claim now follows from Lemma 3.16.
Next we will construct a particular element $\widehat{\theta^{*}}$ of $\widehat{W_{f}} \backslash \widehat{U_{f}}$. Let $A, B \in \mathbb{F}_{q}^{*}$ such that $\left(\frac{A}{B}\right)^{2}+\left(\frac{1}{B}\right)^{2}=d$ (hence $A^{2}-B^{2} d=-1$), and consider the following map θ^{*} of S_{f} :

$$
\left\{\begin{aligned}
\bar{v}_{1} & \mapsto A \cdot \bar{v}_{1}+B \cdot \bar{w}_{1} \\
\bar{w}_{1} & \mapsto-B d \cdot \bar{v}_{1}-A \cdot \bar{w}_{1} \\
\bar{v}_{2} & \mapsto A \cdot \bar{v}_{2}-B \cdot \bar{w}_{2} \\
\bar{w}_{2} & \mapsto B d \cdot \bar{v}_{2}-A \cdot \bar{w}_{2} \\
\bar{v}_{3} & \mapsto A \cdot \bar{v}_{3}+B \cdot \bar{w}_{3} \\
\bar{w}_{3} & \mapsto-B d \cdot \bar{v}_{3}-A \cdot \bar{w}_{3} .
\end{aligned}\right.
$$

Then one readily verifies that $\theta^{*} \in W_{f} \backslash U_{f}$. Moreover, $\widehat{\theta^{*}}\left(p_{21}\right)=A p_{21}+B d p_{20}$.
Proposition 3.18. (i) If -1 is a nonsquare, then $\widehat{W_{f}}$ has one orbit on the set of 1 -spaces of $\left\langle p_{20}, p_{21}\right\rangle$.
(ii) If -1 is a square, then $\widehat{W_{f}}$ has two orbits on the set of 1 -spaces of $\left\langle p_{20}, p_{21}\right\rangle$.

Proof. Since $\widehat{U_{f}}$ is a normal index-2 subgroup of $\widehat{W_{f}}$, we can conclude as follows.

- If $\left\langle p_{21}\right\rangle$ and $\left\langle\widehat{\theta^{*}}\left(p_{21}\right)\right\rangle$ belong to the same $\widehat{U_{f}}$-orbit, then $\widehat{\theta^{*}}$ stabilizes the two $\widehat{U_{f}}$-orbits; in this case, $\widehat{W_{f}}$ has two orbits on the set of 1-spaces of $\left\langle p_{20}, p_{21}\right\rangle$.
- If $\left\langle p_{21}\right\rangle$ and $\left\langle\widehat{\theta^{*}}\left(p_{21}\right)\right\rangle$ belong to different $\widehat{U_{f}}$-orbits, then $\widehat{\theta^{*}}$ interchanges the two $\widehat{U_{f}}$-orbits; in this case, $\widehat{W_{f}}$ has one orbit on the set of 1-spaces of $\left\langle p_{20}, p_{21}\right\rangle$. Now $\left\langle p_{21}\right\rangle$ and $\left\langle\widehat{\theta^{*}}\left(p_{21}\right)\right\rangle$ belong to the same $\widehat{U_{f}}$-orbit if and only if

$$
\left(1^{2}-\frac{0}{d^{2}}\right)\left(A^{2}-\frac{(B d)^{2}}{d}\right)=A^{2}-B^{2} d=-1
$$

is a square. The proposition follows.

4. Proof of the Fusion Theorem

Since $\widehat{S_{f}}$ is normal in $\widehat{\overline{G_{f}}}$, it follows that if two $\widehat{S_{f}}$-orbits were to fuse via $\widehat{\sigma^{*}}$ or $\widehat{T_{\gamma}}$, $\gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$, then they must have the same size. When -1 is a nonsquare there are no such possibilities. When -1 is a square it could be that the orbits with representatives P_{18} and P_{19} fuse and that the orbits with representatives P_{20} and P_{21} also fuse. We show that this is indeed the case.

Suppose then that -1 is a square. Now $\widehat{\sigma^{*}}\left(p_{1}+p_{8}\right)=p_{1}+d^{3} p_{8}$ and d^{3} is a nonsquare. The points $P_{19}=\left\langle p_{1}+d p_{8}\right\rangle$ and $\left\langle p_{1}+d^{3} p_{8}\right\rangle$ are in the same \widehat{S}_{f}-orbit. So, in this case we get the fusion of the \hat{S}_{f}-orbits with representatives P_{18} and P_{19}. We also show that the orbits with representatives P_{20} and P_{21} fuse. Before doing so, observe that the points $P_{21}=\left\langle p_{8}+d p_{2}+d p_{3}+d p_{5}\right\rangle$ and $\left\langle p_{1}+d p_{4}+d p_{6}+d p_{7}\right\rangle$ are in the same $\widehat{S_{f}}$-orbit. Let $\sigma\left(\bar{v}_{i}\right)=\bar{w}_{i}$ and $\sigma\left(\bar{w}_{i}\right)=-\bar{v}_{i}$ for $i=1,2,3$; then $\hat{\sigma}\left(p_{1}+d p_{4}+d p_{6}+d p_{7}\right)=p_{8}+d p_{2}+d p_{3}+d p_{5}$, from which the claim follows. Now $\widehat{\sigma^{*}}\left(p_{20}\right)=\widehat{\sigma^{*}}\left(d p_{1}+p_{4}+p_{6}+p_{7}\right)=d p_{1}+d^{2} p_{4}+d^{2} p_{6}+d^{2} p_{7}=$ $d\left(p_{1}+d p_{4}+d p_{6}+d p_{7}\right)$ and therefore $\widehat{\sigma^{*}}\left(P_{20}\right)=\left\langle p_{1}+d p_{4}+d p_{6}+d p_{7}\right\rangle$ is in the $\widehat{S_{f}}$-orbit of P_{21}. This completes the proof of the Fusion Theorem.

References

[1] P. J. Cameron, Dual polar spaces, Geom. Dedicata 12 (1982), 75-85.
[2] I. Cardinali, B. De Bruyn, and A. Pasini, Locally singular hyperplanes in thick dual polar spaces of rank 4, J. Combin. Theory Ser. A 113 (2006), 636-646.
[3] A. M. Cohen and E. E. Shult, Affine polar spaces, Geom. Dedicata 35 (1990), 43-76.
[4] B. N. Cooperstein, Some geometries associated with parabolic representations of groups of Lie type, Canad. J. Math. 28 (1976), 1021-1031.
[5] - On the generation of dual polar spaces of symplectic type over finite fields, J. Combin. Theory Ser. A 83 (1998), 221-232.
[6] B. N. Cooperstein and B. De Bruyn, The combinatorial properties of the hyperplanes of $D W(5, q)$ arising from embedding, Des. Codes Cryptogr. 47 (2008), 35-51.
[7] B. N. Cooperstein and A. Pasini, The non-existence of ovoids in the dual polar space $D W(5, q)$, J. Combin. Theory Ser. A 104 (2003), 351-364.
[8] H. Cuypers, Extended near hexagons and line system, Adv. Geom. 4 (2004), 181-214.
[9] B. De Bruyn, The hyperplanes of $D Q(2 n, \mathbb{K})$ and $D Q^{-}(2 n+1, q)$ which arise from their spin-embeddings, J. Combin. Theory Ser. A 114 (2007), 681-691.
[10] , The hyperplanes of $D W\left(5,2^{h}\right)$ which arise from an embedding, Discrete Math. 309 (2009), 304-321.
[11] B. De Bruyn and H. Pralle, The exceptional hyperplanes of DH(5, 4), European J. Combin. 28 (2007), 1412-1418.
[12] ——, The hyperplanes of $\operatorname{DH}\left(5, q^{2}\right)$, Forum Math. 20 (2008), 239-264.
[13] D. G. Higman, Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.
[14] A. Kasikova and E. E. Shult, Absolute embeddings of point-line geometries, J. Algebra 238 (2001), 265-291.
[15] A. Pasini and S. Shpectorov, Uniform hyperplanes of finite dual polar spaces of rank 3, J. Combin. Theory Ser. A 94 (2001), 276-288.
[16] S. E. Payne and J. A. Thas, Finite generalized quadrangles, Res. Notes Math., 110, Pitman, Boston, 1984.
[17] H. Pralle, The hyperplanes of $D W(5,2)$, Experiment. Math. 14 (2005), 373-384.
[18] M. A. Ronan, Embeddings and hyperplanes of discrete geometries, European J. Combin. 8 (1987), 179-185.
[19] E. E. Shult, Generalized hexagons as geometric hyperplanes of near hexagons, Groups, combinatorics and geometry (M. Liebeck, J. Saxl, eds.), pp. 229-239, Cambridge Univ. Press, Cambridge, 1992.
[20] E. E. Shult and J. A. Thas, Hyperplanes of dual polar spaces and the spin module, Arch. Math. (Basel) 59 (1992), 610-623.
[21] E. E. Shult and A. Yanushka, Near n-gons and line systems, Geom. Dedicata 9 (1980), 1-72.
[22] R. Steinberg, Lectures on Chevalley groups, Lecture notes, Yale Univ., New Haven, CT, 1967.
[23] F. D. Veldkamp, Polar geometry. I, II, III, IV, Indag. Math. (N.S.) 21 (1959), 512-551.
[24] -, Polar geometry. V, Indag. Math. (N.S.) 22 (1959), 207-212.

B. Cooperstein
Mathematics Department
University of California at Santa Cruz Santa Cruz, CA 95064
coop@ucsc.edu
B. De Bruyn
Department of Pure Mathematics and Computer Algebra
Ghent University
B-9000 Ghent
Belgium
bdb@cage.ugent.be

[^0]: Received April 17, 2007. Revision received June 13, 2008.
 The research of the second author is supported by a grant of the Fund for Scientific Research - Flanders (Belgium).

