Signalizer Lattices in Finite Groups

Michael Aschbacher

Dedicated to the memory of Donald G. Higman
Let G be a finite group and let H be a subgroup of G. We investigate constraints imposed upon the structure of G by restrictions on the lattice $\mathcal{O}_{G}(H)$ of overgroups of H in G. Call such a lattice a finite group interval lattice. In particular we would like to show that the following question has a positive answer.

Question I. Does there exist a nonempty finite lattice that is not isomorphic to a finite group interval lattice?

See [PPu] for the motivation behind Question I and for one consequence of proving that it has a positive answer. See [Sh] for some conjectures that would imply the Question has a positive answer.

Let Λ be finite lattice and $\mathcal{G}(\Lambda)$ the set of pairs (H, G) such that G is a finite group, $H \leq G$, and $\mathcal{O}_{G}(H)$ is isomorphic to Λ or its dual Λ^{*}. Write $\mathcal{G}^{*}(\Lambda)$ for the set of pairs (H, G) such that $|G|$ is minimal subject to $(H, G) \in \mathcal{G}(\Lambda)$.

In [A2] we defined the notion of a "signalizer lattice" determined by a suitable tower $I_{H} \leq N_{H} \leq H$ of finite groups. We also defined a class of lattices we called "CD-lattices" and proved that, if Λ is a $C D$-lattice and $(H, G) \in \mathcal{G}^{*}(\Lambda)$, then either G is almost simple (i.e., G has a unique minimal normal subgroup D and D is a nonabelian simple group) or Λ (or Λ^{*}) is isomorphic to a signalizer lattice in H. Thus, to show Question I has a positive answer, it suffices to show there is a CD-lattice Λ such that:
$(I \Lambda A)$ there exists no almost simple finite group G with a subgroup H such that $\mathcal{O}_{G}(H)$ is isomorphic to Λ or its dual; and
($S \Lambda$) there exists no signalizer lattice isomorphic to Λ or its dual.
In this paper we initiate the study of signalizer lattices, with the hope of establishing ($I \Lambda A$) and ($S \Lambda$) for lattices Λ in a suitable family of $C D$-lattices and thereby proving that Question I has a positive answer. See [BL] for another possible approach.

Let L be a nonabelian finite simple group. Define $\mathcal{T}(L)$ to be the set of triples $\tau=\left(H, N_{H}, I_{H}\right)$ such that:
(T1) H is a finite group and $N_{H} \leq H$;
(T2) $I_{H} \unlhd N_{H}$ and $F^{*}\left(N_{H} / I_{H}\right) \cong L$.
The tuple $\tau \in \mathcal{T}(L)$ is said to be faithful if $\operatorname{ker}_{N_{H}}(H)=1$.

[^0]Assume $\tau \in \mathcal{T}(L)$ and write N_{0} for the preimage in N_{H} of $\operatorname{Inn}(L)$ under the map of N_{H} into $\operatorname{Aut}(L)$ supplied by (T2). Define

$$
\mathcal{W}=\mathcal{W}(\tau)=\left\{W \in \mathcal{I}_{H}\left(N_{H}\right): W \cap N_{H}=I_{H}\right\}
$$

and

$$
\mathcal{P}=\mathcal{P}(\tau)=\left\{(V, K): V \in \mathcal{W}, K \in \mathcal{O}_{N_{H}(V)}\left(V N_{H}\right), \text { and } N_{0} V / V=F^{*}(K / V)\right\}
$$

Here $\mathcal{I}_{H}\left(N_{H}\right)$ is the set of N_{H}-invariant subgroups of H.
Partially order \mathcal{P} by $\left(V_{1}, K_{1}\right) \leq\left(V_{2}, K_{2}\right)$ if $V_{2} \leq V_{1}$ and $K_{2} \leq K_{1}$. Let $\Lambda(\tau)$ be the poset obtained by adjoining an element 0 to \mathcal{P} such that $0<p$ for all $p \in$ \mathcal{P}. The construction in [A2, 7.1] shows that, given a simple group L and $\tau=$ $\left(H, N_{H}, I_{H}\right) \in \mathcal{T}(L)$, there exists an overgroup G of H such that the poset $\mathcal{O}_{G}(H)$ is isomorphic to $\Lambda(\tau)$. In particular, $\Lambda(\tau)$ is a lattice isomorphic as a lattice to $\mathcal{O}_{G}(H)$. We call lattices of the form $\Lambda(\tau)$ signalizer lattices.

Next we remark that Λ has a greatest element ∞ and least element 0 . Set $\Lambda^{\prime}=$ $\Lambda-\{0, \infty\}$. Regard Λ as an undirected graph whose adjacency relation is the comparability relation on Λ. Define Λ to be connected if the subgraph Λ^{\prime} is connected as a graph.

The notions of D-lattice, C-lattice, and $C D$-lattice are defined in Section 1. For example, a D-lattice is a disconnected lattice satisfying a certain nondegeneracy condition. We prove that if H admits a $C D$-signalizer lattice then the structure of H is highly restricted, as indicated in our first theorem.

Theorem 1. Assume L is a nonabelian finite simple group and Λ is a CD-lattice. Assume $\tau=\left(H, N_{H}, I_{H}\right) \in \mathcal{T}(L), \Lambda$ is isomorphic to $\Lambda(\tau)$ or its dual, and $|H|$ is minimal subject to this constraint. Then $F^{*}(H)$ is the direct product of nonabelian simple subgroups permuted transitively by H.

Given $\tau=\left(H, N_{H}, I_{H}\right) \in \mathcal{T}(L)$, define

$$
\mathcal{W}_{1}=\mathcal{W}_{1}(\tau)=\left\{W \in \mathcal{W}: W \leq F^{*}(H) I_{H}\right\}
$$

and order \mathcal{W}_{1} by inclusion. Let $\Xi(\tau)$ be the poset obtained by adjoining a greatest member ∞ to \mathcal{W}_{1}. By 2.11 (to follow), $\Xi(\tau)$ is a lattice isomorphic to the dual of a sublattice of $\Lambda(\tau)$. Call $\Xi(\tau)$ a lower signalizer lattice. Set $\mathcal{K}(\tau)=\left\langle\mathcal{W}_{1}, N_{H}\right\rangle$.

Given a positive integer n, an n-set is a set of order n. Let $\Delta(n)$ be the lattice of all subsets of an n-set, partially ordered by inclusion. Given integers t and m_{1}, \ldots, m_{t} with $t>1$ and $m_{i}>2$ for each i, a $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattice is a finite lattice Λ such that Λ^{\prime} has t connected components $\mathcal{C}_{1}, \ldots, \mathcal{C}_{t}$ such that $\mathcal{C}_{i} \cong \Delta\left(m_{i}\right)^{\prime}$. As shown in Section 1, $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattices are $C D$-lattices. Shareshian's conjectures B and C in $[\mathrm{Sh}]$ suggest that the class of $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattices supplies a good collection of candidates for lattices Λ satisfying ($I \Lambda A$) and ($S \Lambda$). The following theorem reinforces that suggestion.

Theorem 2. Assume t and $m_{i}, 1 \leq i \leq t$, are integers with $t>1$ and $m_{i}>2$, and assume Λ is a $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattice that is a finite group interval lattice. Then there exists an almost simple finite group G such that either
(1) $\Lambda \cong \mathcal{O}_{G}(H)$ for some subgroup H of G or
(2) there exists a nonabelian finite simple group L and $a \gamma=\left(G, N_{G}, I_{G}\right) \in \mathcal{T}(L)$ such that $G=F^{*}(G) N_{G}, G=\mathcal{K}(\gamma)$, and $\Lambda \cong \Xi(\gamma)$.

In particular: by Theorem 2 , to show that a $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattice Λ supplies a positive answer to Question I, it suffices to verify $(I \Lambda A)$ and $(S \Lambda A)$.
$(S \wedge A)$ There exists no nonabelian simple group L and no $\gamma=\left(G, N_{G}, I_{G}\right) \in$ $\mathcal{T}(L)$ such that G is almost simple, $G=F^{*}(G) N_{G}=\mathcal{K}(\gamma)$, and $\Lambda \cong$ $\Xi(\gamma)$.
John Shareshian and the author are currently in the midst of a program to verify $(I \Lambda A)$ and $(S \Lambda A)$ for most $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattices Λ.

For notation and terminology involving finite groups, see [A1]. Theorem 1 is proved in Section 4, and Theorem 2 is proved in Section 6.

1. Lattices

In this section, Λ is a finite lattice.
For $x, y \in \Lambda$, we write $x \vee y$ for the least upper bound of x and y in Λ and write $x \wedge y$ for the greatest lower bound of x and y in Λ. Set $\Lambda^{\#}=\Lambda-\{0\}$. The atoms of Λ are the minimal members of Λ^{\prime}, and the co-atoms are the atoms of the dual of Λ. Define the depth of $x \in \Lambda$ in Λ to be the length d of the longest chain $x=$ $x_{0}<\cdots<x_{n}=\infty$ in Λ.

We say Λ is a D-lattice if there exists a partition $\Lambda^{\prime}=\Lambda_{1}^{\prime} \cup \Lambda_{2}^{\prime}$ of Λ^{\prime} such that, for $i=1$ and 2 :
(D1) Λ_{i}^{\prime} is a union of connected components of Λ^{\prime}, and
(D2) there exists a nontrivial chain $k_{i}<m_{i}$ in Λ_{i}^{\prime}.
Define Λ to be a C^{*}-lattice if,
$\left(C^{*}\right)$ for all $x \in \Lambda^{\prime}$, there exist maximal elements m_{1}, \ldots, m_{n} of Λ^{\prime} such that $x=m_{1} \wedge \cdots \wedge m_{n}$.
A C_{*}-lattice is a lattice dual to a C^{*}-lattice, and a C-lattice is a lattice that is both a C^{*}-lattice and a C_{*}-lattice. In the literature, C_{*}-lattices are often called atomic lattices.

Finally if X and Y are classes of lattices, then Λ is a $X Y$-lattice if Λ is both an X-lattice and a Y-lattice.
1.1. Assume Λ is a C_{*}-lattice such that Λ^{\prime} has no greatest element. Assume $\varphi: \Lambda^{\#} \rightarrow \Lambda^{\#}$ is a map of posets such that, for each $p \in \Lambda^{\#}, \varphi(p) \leq p$. Then φ is the identity.

Proof. Let $p \in \Lambda^{\#}$. If $p \neq \infty$ then, since Λ is a C_{*}-lattice, there exist atoms x_{1}, \ldots, x_{n} with $p=x_{1} \vee \cdots \vee x_{n}$. If $p=\infty$ then, since Λ^{\prime} has no greatest element, such atoms also exist.

Now $\varphi\left(x_{i}\right) \leq x_{i}$ and so, since x_{i} is an atom, φ fixes x_{i}. Then, since φ is a map of posets, $x_{i}=\varphi\left(x_{i}\right) \leq \varphi(p) \leq p$ and so $p=x_{1} \vee \cdots \vee x_{n} \leq \varphi(p) \leq p$. That is, φ fixes p.
1.2. Assume Λ is a $C^{*} D$-lattice and \mathcal{C} is a connected component of Λ^{\prime}. Then there exist a connected component \mathcal{B} of Λ^{\prime}, distinct from \mathcal{C}, and distinct co-atoms x_{1} and x_{2} of \mathcal{B} such that $x_{1} \wedge x_{2} \neq 0$.

Proof. Because Λ is a D-lattice, there exists a connected component \mathcal{B}, distinct from \mathcal{C}, containing an edge $x<x_{1}$ with x of depth 2 in Λ. Because Λ is a $C^{*}-$ lattice, there exist co-atoms x_{2}, \ldots, x_{n} in \mathcal{B} with $x=x_{1} \wedge \cdots \wedge x_{n}$. Then $x \leq$ $x_{1} \wedge x_{2}$ and so, since x is of depth $2, x=x_{1} \wedge x_{2}$.

2. Basic Properties of Signalizer Lattices

In this section we assume the following hypothesis.
Hypothesis 2.1. L is a nonabelian finite simple group, and $\tau=\left(H, N_{H}, I_{H}\right) \in$ $\mathcal{T}(L)$.

In addition, we adopt some notational conventions as follows.
Notation 2.2. Write N_{0} for the preimage in N_{H} of $\operatorname{Inn}(L)$ under the map of N_{H} into $\operatorname{Aut}(L)$ supplied by (T2). Set $\mathcal{W}=\mathcal{W}(\tau)$ and $\mathcal{P}=\mathcal{P}(\tau)$. Write \mathcal{W}_{*} for the set of minimal members of $\mathcal{W}-\left\{I_{H}\right\}$ under inclusion. Write ∞ for $\left(I_{H}, N_{H}\right)$ and set $\mathcal{P}^{\prime}=\mathcal{P}-\{\infty\}$. Write \mathcal{P}^{*} for the set of maximal members of \mathcal{P}^{\prime}. Thus, in the language of Section $1, \mathcal{P}^{*}$ is the set of co-atoms of the poset \mathcal{P}.

For $p=(V, K) \in \mathcal{P}$, set $\mathcal{P}(\geq p)=\{q \in \mathcal{P}: q \geq p\}, \mathbf{M}(p)=N_{H}(V) \cap$ $N_{H}\left(V N_{0}\right), \mathbf{Q}(p)=C_{\mathbf{M}(p)}\left(N_{0} V / V\right)$, and $l(p)=(\mathbf{Q}(p), \mathbf{M}(p))$. Set

$$
\mathcal{H}(\tau)=\langle K:(V, K) \in \mathcal{P}\rangle \quad \text { and } \quad \mathcal{H}_{*}(\tau)=\left\langle K:(V, K) \in \mathcal{P}^{*}\right\rangle
$$

For $N_{H} \leq M \leq H$, define $\tau_{M}=\left(M, N_{H}, I_{H}\right)$. Given $D \unlhd H$, define

$$
\begin{aligned}
\Delta^{\#}(\tau) & =\left\{(V, K) \in \mathcal{P}: K=V N_{H}\right\} \quad \text { and } \\
\Gamma^{\#}(\tau, D) & =\left\{(V, K) \in \mathcal{P}: V \leq D I_{H} \text { and } K \leq D N_{H}\right\} .
\end{aligned}
$$

Let $\Delta(\tau)$ and $\Gamma(\tau, D)$ be the subposets of $\Lambda(\tau)$ obtained by adjoining 0 to $\Delta^{\#}(\tau)$ and $\Gamma^{\#}(\tau, D)$, respectively, and set $\Delta(\tau, D)=\Delta(\tau) \cap \Gamma(\tau, D)$. Set

$$
\begin{aligned}
\mathcal{K}(\tau, D) & =\left\langle K:(V, K) \in \Delta(\tau, D)^{\#}\right\rangle, \\
\mathcal{K}_{*}(\tau, D) & =\left\langle K:(V, K) \in \mathcal{P}^{*} \cap \Delta(\tau, D)\right\rangle .
\end{aligned}
$$

The proof of the following observation is straightforward.
2.3. Let $N_{H} \leq M \leq H$. Then:
(1) $\tau_{M}=\left(M, N_{H}, I_{H}\right) \in \mathcal{T}(L)$;
(2) $\mathcal{P}\left(\tau_{M}\right)$ is a subposet of \mathcal{P};
(3) if $p \in \mathcal{P}\left(\tau_{M}\right)$, then $\mathcal{P}(\geq p) \subseteq \mathcal{P}\left(\tau_{M}\right)$;
(4) the inclusion map is an isomorphism of $\Lambda\left(\tau_{\mathcal{H}(\tau)}\right)$ with $\Lambda(\tau)$;
(5) if $D \unlhd H$ then the inclusion map is an isomorphism of $\Delta\left(\tau_{\mathcal{K}(\tau, D)}, D \cap \mathcal{K}(\tau, D)\right)$ with $\Delta(\tau, D)$.
2.4. Let $\hat{N}_{H} \leq \hat{H} \leq H$ such that $\hat{N}_{H} \leq N_{H} ; N_{0}=\hat{N}_{0} I_{H}$, where $\hat{N}_{0}=N_{0} \cap \hat{N}_{H}$; and $\hat{I}_{H}=I_{H} \cap \hat{H} \leq \hat{N}_{H}$. Set $\hat{\tau}=\left(\hat{H}, \hat{N}_{H}, \hat{I}_{H}\right)$. Then:
(1) $\hat{\tau} \in \mathcal{T}(L)$.
(2) For $p=(V, K) \in \mathcal{P}$ define $\varphi(p)=(\hat{V}, \hat{K})$, where $\hat{V}=V \cap \hat{H}$ and $\hat{K}=$ $K \cap \hat{H}$. Then $\varphi: \mathcal{P} \rightarrow \hat{\mathcal{P}}=\mathcal{P}(\hat{\tau})$ is a map of posets.

Proof. Since $I_{H} \unlhd N_{H}$ and $\hat{I}_{H}=I_{H} \cap \hat{H} \leq \hat{N}_{H} \leq N_{H}$, it follows that also $\hat{I}_{H} \unlhd \hat{N}_{H}$. Furthermore,

$$
\frac{\hat{N}_{H}}{\hat{I}_{H}}=\frac{\hat{N}_{H}}{\hat{N}_{H} \cap I_{H}} \cong \frac{\hat{N}_{H} I_{H}}{I_{H}}
$$

Similarly, since $\hat{N}_{0}=N_{0} \cap \hat{N}_{H}$ and $N_{0}=\hat{N}_{0} I_{H}$, we have $\hat{N}_{0} \unlhd \hat{N}_{H}$ and $\hat{N}_{0} / \hat{I}_{H} \cong$ $N_{0} / I_{H} \cong L$. Then, since $N_{0}=\hat{N}_{0} I_{H}$ and $N_{0} / I_{H}=F^{*}\left(N_{H} / I_{H}\right)$, we have $\hat{N}_{0} / \hat{I}_{H}=$ $F^{*}\left(\hat{N}_{H} / \hat{I}_{H}\right)$. Thus (1) holds.

Let $p=(V, K) \in \mathcal{P}$. Then $V \in \mathcal{I}_{H}\left(N_{H}\right)$ and $\hat{N}_{H} \leq N_{H}$, so $\hat{V}=V \cap \hat{H} \in$ $\mathcal{I}_{\hat{H}}\left(\hat{N}_{H}\right)$. Also, $V \cap N_{H}=I_{H}$ and $\hat{N}_{H} \leq N_{H}$, so $V \cap \hat{N}_{H}=I_{H} \cap \hat{N}_{H}=\hat{I}_{H}$. Therefore, $\hat{V} \in \hat{\mathcal{W}}=\mathcal{W}_{\hat{H}}\left(\hat{N}_{H}, \hat{I}_{H}\right)$. Then $K \in \mathcal{O}_{N_{H}(V)}\left(V N_{H}\right)$, so

$$
\hat{K}=K \cap \hat{H} \in \mathcal{O}_{N_{\hat{H}}(\hat{V})}\left(V N_{H} \cap \hat{H}\right) \subseteq \mathcal{O}_{N_{\hat{H}}(\hat{V})}\left(\hat{V} \hat{N}_{H}\right) .
$$

Furthermore, $N_{0} V / V=F^{*}(K / V)$. Since $N_{0}=\hat{N}_{0} I_{H}$, we also have $N_{0} V=\hat{N}_{0} V$ and so $\hat{N}_{0} V / V=F^{*}(\hat{K} V / V)$. Now $\hat{K} V / V \cong \hat{K} /(\hat{K} \cap V)=\hat{K} / \hat{V}$ with $N_{0} V / V$ mapping to $\hat{N}_{0} \hat{V} / \hat{V}$, so $\hat{N}_{0} \hat{V} / \hat{V}=F^{*}(\hat{K} / \hat{V})$. Thus $\varphi(p) \in \hat{\mathcal{P}}$.

If $p \leq q=(U, J)$ then $U \leq V$ and $J \leq K$, so $\hat{U}=U \cap \hat{H} \leq V \cap \hat{H}=\hat{V}$ and similarly $\hat{J} \leq \hat{K}$. Therefore, φ is a map of posets, completing the proof of (2).
2.5. Assume $V \in \mathcal{W}$ and $I_{H} \leq U \in \mathcal{I}_{V}\left(N_{H}\right)$. Then:
(1) $U \in \mathcal{W}$;
(2) if $(U, K) \in \mathcal{P}$ then $V \cap K=U$.

Proof. The proof of (1) is trivial. Assume the hypothesis of (2) and let $K^{*}=K / U$ and $X=V \cap K$. Because $(U, K) \in \mathcal{P}, N_{0}^{*}=F^{*}\left(K^{*}\right) \cong L$ is simple and so, since X is N_{0}-invariant, either $X^{*}=1$ or $N_{0}^{*} \leq X^{*}$. In the former case (2) holds; in the latter case $N_{0} \leq V$, contradicting $V \in \mathcal{W}$.
2.6. For $W \in \mathcal{W},\left(W, W N_{H}\right) \in \mathcal{P}$.

Proof. If $W \in \mathcal{W}$ then $W \unlhd W N_{H}$ and $W N_{H} / W \cong N_{H} /\left(W \cap N_{H}\right)=N_{H} / I_{H}$. Thus, since $L \cong N_{0} / I_{H}=F^{*}\left(N_{H} / I_{H}\right)$, the lemma holds.
2.7. Let $D \unlhd H$ and $\Phi \in\{\Delta(\tau), \Gamma(\tau, D), \Delta(\tau, D)\}$. Then, for each $p \in \Phi$, $\mathcal{P}(\geq p) \subseteq \Phi$.

Proof. Let $p=(V, K) \in \Phi$ and $q=(U, J) \geq p$. Then $U \leq V$ and $J \leq K$. If $\Phi=\Delta(\tau)$ then $K=V N_{H}$, so $J=J \cap V N_{H}=(J \cap V) N_{H}=U N_{H}$ by 2.5(2)
and hence $q \in \Phi$. If $\Phi=\Gamma(\tau, D)$ then $V \leq D I_{H}$ and $K \leq D N_{H}$. Thus $U=$ $U \cap D I_{H}=(U \cap D) I_{H} \leq D I_{H}$ and similarly $J \leq D N_{H}$, so $q \in \Phi$. The lemma follows.
2.8. Let $p=(V, K) \in \mathcal{P}$ and set $\mathcal{Q}=\mathcal{P}(\geq p)$. Then:
(1) $\mathcal{Q}=\left\{(V \cap J, J): J \in \mathcal{O}_{K}\left(N_{H}\right)\right\}$;
(2) the map $\psi: J \mapsto(V \cap J, J)$ is an isomorphism of the dual of $\mathcal{O}_{K}\left(N_{H}\right)$ with \mathcal{Q};
(3) if $q_{i}=\left(V_{i}, K_{i}\right) \in \mathcal{Q}$ for $i=1,2$, then $q_{1} \vee q_{2}=\left(V_{1} \cap V_{2}, K_{1} \cap K_{2}\right)$ and $q_{1} \wedge q_{2}=\left(V_{1,2}, K_{1,2}\right)$, where $K_{1,2}=\left\langle K_{1}, K_{2}\right\rangle$ and $V_{1,2}=K_{1,2} \cap V$;
(4) if $K=V N_{H}$, then $K_{i}=V_{i} N_{H},\left\langle K_{1}, K_{2}\right\rangle=\left\langle V_{1}, V_{2}\right\rangle N_{H}$, and $V \cap\left\langle K_{1}, K_{2}\right\rangle=$ $\left\langle V_{1}, V_{2}\right\rangle$.

Proof. Let $J \in \mathcal{O}_{K}\left(N_{H}\right)$. Then $V \cap J \cap N_{H} \leq V \cap N_{H}=I_{H}$ and, since $J \in$ $\mathcal{O}_{K}\left(N_{H}\right), I_{H}=N_{H} \cap V \leq J \cap V$ so $V \cap J \cap N_{H}=I_{H}$. Thus $V \cap J \in \mathcal{W}$. Also, $N_{0} \leq$ J and $N_{0} V / V=F^{*}(K / V)$, so $C_{K / V}\left(N_{0} V / V\right)=1$. Thus $C_{J V / V}\left(N_{0} V / V\right)=1$ and so $N_{0} V / V=F^{*}(J V / V)$. Furthermore, the map $\pi: j V \mapsto j(J \cap V), j \in J$, is an isomorphism of $J V / V$ with $J /(J \cap V)$ such that $\left(N_{0} V / V\right) \pi=N_{0}(J \cap V) /(J \cap V)$, so $F^{*}(J /(J \cap V))=N_{0}(J \cap V) /(J \cap V)$. That is, $(V \cap J, J) \in \mathcal{Q}$.

Conversely, let $(U, X) \in \mathcal{Q}$. Then $U \leq V$ and $X \leq K$; moreover, $X \in \mathcal{O}_{H}\left(N_{H}\right)$ and so $X \in \mathcal{O}_{K}\left(N_{H}\right)$. By 2.5(2) we have $U=X \cap V$, completing the proof of (1) and showing the map ψ of (2) is surjective.

Clearly ψ is injective, so $\psi: \mathcal{O}_{K}\left(N_{H}\right) \rightarrow \mathcal{Q}$ is a bijection. Furthermore, for $q_{i}=\left(V_{i}, K_{i}\right) \in \mathcal{Q}$ we have $q_{1} \leq q_{2}$ if and only if $K_{2} \leq K_{1}$ and $V_{2} \leq V_{1}$ iff $K_{2} \leq$ K_{1} because $V_{i}=V \cap K_{i}$. This completes the proof of (2).

Next, in the lattice $\mathcal{O}_{K}\left(N_{H}\right)$ we have $K_{1} \wedge K_{2}=K_{1} \cap K_{2}$ and $K_{1} \vee K_{2}=$ $\left\langle K_{1}, K_{2}\right\rangle$. Then, applying the isomorphism ψ and recalling that ψ is applied to the dual of $\mathcal{O}_{K}\left(N_{H}\right)$ yields

$$
\begin{aligned}
q_{1} \vee q_{2} & =K_{1} \psi \vee K_{2} \psi=\left(K_{1} \wedge K_{2}\right) \psi=\left(K_{1} \cap K_{2}\right) \psi \\
& =\left(V \cap K_{1} \cap K_{2}, K_{1} \cap K_{2}\right)=\left(V_{1} \cap V_{2}, K_{1} \cap K_{2}\right),
\end{aligned}
$$

and

$$
q_{1} \wedge q_{2}=K_{1} \psi \wedge K_{2} \psi=\left(K_{1} \vee K_{2}\right) \psi=\left\langle K_{1}, K_{2}\right\rangle \psi=\left(V_{1,2}, K_{1,2}\right)
$$

this establishes (3).
Finally, suppose $K=V N_{H}$. By 2.7, $K_{i}=V_{i} N_{H}$. Also $\left\langle K_{1}, K_{2}\right\rangle=\left\langle N_{H}, V_{1}, V_{2}\right\rangle=$ $U N_{H}$, where $U=\left\langle V_{1}, V_{2}\right\rangle \in \mathcal{I}_{K}\left(N_{H}\right)$. Then

$$
V_{1,2}=K_{1,2} \cap V=U N_{H} \cap V=U\left(N_{H} \cap V\right)=U I_{H}=U
$$

establishing (4).
2.9. Let $q_{i}=\left(V_{i}, K_{i}\right) \in \mathcal{P}$ for $i=1,2$. Then:
(1) $q_{1} \vee q_{2}=(U, K)$, where $U=V_{1} \cap V_{2}$ and $K=N_{K_{1} \cap K_{2}}\left(N_{0}\left(V_{1} \cap V_{2}\right)\right)$;
(2) if $N_{V_{1}}\left(V_{2}\right) V_{2} \in \mathcal{W}$, then $K=K_{1} \cap K_{2}$;
(3) if $K_{i}=V_{i} N_{H}$, then $K=\left(V_{1} \cap V_{2}\right) N_{H}$.

Proof. Let $q=q_{1} \vee q_{2}=(U, K)$. Then $q_{i} \leq q$, so $U \leq V_{i}$ and $K \leq K_{i}$ and hence $U \leq W=V_{1} \cap V_{2}$ and $K \leq J=N_{K_{1} \cap K_{2}}(W)$. By $2.5(1), W \in \mathcal{W}$ and so, by $2.6, p=\left(W, W N_{H}\right) \in \mathcal{P}$. Then, since $q_{i} \leq p$ for $i=1,2$, it follows that $q \leq$ p and so $W \leq U$; hence $U=W$.

Let $J^{*}=J / U$ and $Y=C_{J}\left(N_{0}^{*}\right)$. Then $\left[Y, N_{0}\right] \leq U \leq V_{i}$ for $i=1,2$, so $Y \leq$ V_{i} since $F^{*}\left(K_{i} / V_{i}\right)=N_{0} V_{i} / V_{i}$. Thus $Y=U$ and $r=(U, J) \in \mathcal{P}$ with $q_{i} \leq r \leq$ q, so $r=q$. This completes the proof of (1).

Assume the hypothesis of (2), and let $X=K_{1} \cap K_{2}$. Then

$$
\left[N_{0}, X\right] \leq N_{0} V_{1} \cap N_{0} V_{2}=N_{0} Z,
$$

where $Z=V_{1} \cap N_{0} V_{2}$. But $Z \leq A=N_{V_{1}}\left(V_{2}\right) V_{2}$ and $A \in \mathcal{W}$ by hypothesis; hence, by $2.5(2), Z \leq A \cap N_{H} V_{2}=V_{2}$. Thus $Z=V_{1} \cap V_{2}=U$ and so $\left[N_{0}, X\right] \leq$ $N_{0} Z=N_{0} U$. That is, $X \leq J$, so $X=J=K$ and (2) holds.

Finally, (3) follows from (1) and 2.7.
2.10. Assume that $p_{i}=\left(V_{i}, K_{i}\right) \in \mathcal{P}$ for $1 \leq i \leq n$ and that $p_{1} \wedge \cdots \wedge p_{n}=$ $p=(V, K) \neq 0$. Then:
(1) $K=\left\langle K_{1}, \ldots, K_{n}\right\rangle$ and $V_{i}=K_{i} \cap V$ for $1 \leq i \leq n$;
(2) $p_{1} \vee \cdots \vee p_{n}=(U, J)$, where

$$
J=\bigcap_{i=1}^{n} K_{i} \quad \text { and } \quad U=J \cap V=\bigcap_{i=1}^{n} V_{i} ;
$$

(3) if $K_{i}=V_{i} N_{H}$ for each $i, 1 \leq i \leq n$, then $V=\left\langle V_{1}, \ldots, V_{n}\right\rangle, K=V N_{H}$, and $J=U N_{H}$.

Proof. Since $p_{i} \in \mathcal{P}(\geq p)$ for each i, (1) and (2) follow from 2.8(3) by induction on n.

Assume the hypothesis of (3). Then $K=\left\langle N_{H}, V_{1}, \ldots, V_{n}\right\rangle$ and N_{H} acts on $W=$ $\left\langle V_{1}, \ldots, V_{n}\right\rangle$, so $K=W N_{H}$. Also $V_{i}=V \cap K_{i}$, so $W \leq V$. Thus $K=V N_{H}$. Now $V=V \cap K=\left\langle V_{1}, \ldots, V_{n}\right\rangle$ by 2.8(4). Finally, $J=U N_{H}$ by 2.9(3) and induction on n.
2.11. (1) Let $D \unlhd H$. Then $\Delta(\tau)$ and $\Delta(\tau, D)$ are sublattices of $\Lambda(\tau)$.
(2) The poset $\Xi(\tau)$ is isomorphic as a poset to the dual of $\Delta\left(\tau, F^{*}(G)\right)$.
(3) $\Xi(\tau)$ is a lattice. Indeed, if $\infty \neq W_{i} \in \Xi(\tau)$ then $W_{1} \wedge W_{2}=W_{1} \cap W_{2}$, and if $W_{1} \vee W_{2} \neq \infty$ then $W_{1} \vee W_{2}=\left\langle W_{1}, W_{2}\right\rangle$.

Proof. Let $\Phi=\Delta(\tau)$ or $\Delta(\tau, D)$. We first prove (1). By 2.7, Φ is closed under \vee, so it suffices to take $q_{i}=\left(V_{i}, K_{i}\right) \in \Phi$ with $q=q_{1} \wedge q_{2} \neq 0$ and to show $q \in$ Φ. By $2.10(3), q=\left(V, V N_{H}\right)$, where $V=\left\langle V_{1}, V_{2}\right\rangle$. In particular, $q \in \Delta(\tau)$, so we may take $\Phi=\Delta(\tau, D)$. Then $V_{i} \leq D I_{H}$, so $V \leq D I_{H}$ and $V N_{H} \leq D I_{H} N_{H}=$ $D N_{H}$; hence $q \in \Delta(\tau, D)$. Thus (1) is established.

Take $D=F^{*}(H)$. Then the map $V \mapsto\left(V, V N_{H}\right)$ is an isomorphism of posets from the dual of $\Xi(\tau)-\{\infty\}$ to $\Delta(\tau, D)^{\#}$. Thus (2) holds, and from (1) and (2) it follows that $\Xi(\tau)$ is a lattice. Then 2.9 and $2.10(3)$ complete the proof of (3).
2.12. Let $p=(V, K) \in \mathcal{P}$. Then:
(1) $p \in \mathcal{P}^{*}$ iff N_{H} is maximal in K;
(2) if $p \in \mathcal{P}^{*}$ then either $K=V N_{H}$ and $V \in \mathcal{W}_{*}$ or $V=I_{H}$.

Proof. Part (1) follows from 2.8(2).
Suppose $p \in \mathcal{P}^{*}$. By 2.6, $q=\left(V, V N_{H}\right) \in \mathcal{P}$ and then $q \geq p$, so $q \in\{\infty, p\}$ since $p \in \mathcal{P}^{*}$. If $q=\infty$ then $V=I_{H}$, whereas if $q=p$ then $K=V N_{H}$. In the latter case, since N_{H} is maximal in K we have $V \in \mathcal{W}_{*}$.
2.13. Assume $H=\mathcal{H}(\tau)$ and X is a normal subgroup of H contained in N_{H}. Set $H^{*}=H / X$. Then one of the following two statements holds.
(1) $X \leq I_{H}, \tau^{*}=\left(H^{*}, N_{H}^{*}, I_{H}^{*}\right) \in \mathcal{T}(L)$, and the map $(V, K) \mapsto\left(V^{*}, K^{*}\right)$ is an isomorphism of \mathcal{P} with $\mathcal{P}\left(\tau^{*}\right)$.
(2) $X \not \leq I_{H}$; then, setting $I_{1}=X \cap I_{H}, N_{1}=X \cap N_{0}$, and $Q_{1}=C_{H}\left(N_{1} / I_{1}\right)$, we have that I_{1} and Q_{1} are normal in $H,\left(Q_{1}, H\right)$ is the least element of \mathcal{P}, and \mathcal{P} is isomorphic to the dual of $\mathcal{O}_{H}\left(N_{H}\right)$.

Proof. If $X \leq I_{H}$ then it is an easy exercise to check that (1) holds. Thus we may assume that $X \not \leq I_{H}$ and adopt the notation in (2). Since $N_{0} / I_{H}=F^{*}\left(N_{H} / I_{H}\right) \cong$ L, we have $N_{0}=N_{1} I_{H}$.

Let $(V, K) \in \mathcal{P}$. Since $X \leq N_{H}$, it follows that $V \cap X=V \cap N_{H} \cap X=I_{H} \cap X=$ I_{1}. Then, since K acts on V and X, we have $K \leq N_{H}\left(I_{1}\right)$. Hence, since $H=$ $\mathcal{H}(\tau), I_{1} \unlhd H$. Set $H^{+}=H / I_{1}$.

Similarly, K acts on $N_{0} V$ and X and hence on $N_{0} V \cap X=N_{1} V \cap X=$ $N_{1}(V \cap X)=N_{1} I_{1}=N_{1}$. Thus [$\left.V, N_{1}\right] \leq N_{1} \cap V=I_{1}$, so $V \leq Q_{1}$. Now $Q_{1} \cap N_{H}$ centralizes N_{1}^{+}and so, since $N_{0}=N_{1} I_{H}, Q_{1} \cap N_{H}$ also centralizes N_{0} / I_{H}. Hence $Q_{1} \cap N_{H}=I_{H}$; that is, $Q_{1} \in \mathcal{W}$. Because $N_{1}^{+} \cong L$ is normal in H^{+}and $Q_{1}^{+}=C_{H^{+}}\left(N_{1}^{+}\right)$, it follows that $N_{0} Q_{1} / Q_{1}=N_{1} Q_{1} / Q_{1}=F^{*}\left(H / Q_{1}\right)$, so $q=\left(Q_{1}, H\right) \in \mathcal{P}$. Then, since each member of \mathcal{W} is contained in Q_{1}, we have q as the least element of \mathcal{P}. Finally, \mathcal{P} is isomorphic to the dual of $\mathcal{O}_{H}\left(N_{H}\right)$ by $2.8(2)$.
2.14. Assume that Λ is a finite lattice and that $\tau \in \mathcal{T}(L)$ with $|H|$ minimal, subject to $\Lambda(\tau)$ being isomorphic to Λ or Λ^{*}. Then:
(1) $H=\mathcal{H}(\tau)$.
(2) Assume Λ^{\prime} has neither a least element nor a greatest element. Then τ is faithful.

Proof. Part (1) follows from 2.3(4) and the minimality of $|H|$.
Suppose $X=\operatorname{ker}_{N_{H}}(H) \neq 1$. Then either conclusion (1) or (2) of 2.13 holds and, by minimality of $|H|$, it must be conclusion (2). In particular, \mathcal{P} has a least element; hence the hypothesis of (2) does not hold, since $\Lambda(\tau)$ is isomorphic to Λ or its dual. Thus (2) is established.
2.15. (1) If $\Lambda(\tau)$ is a C^{*}-lattice, then $\mathcal{H}(\tau)=\mathcal{H}_{*}(\tau)$.
(2) If $H=\mathcal{H}_{*}(\tau)$, then $H=\left\langle\mathcal{W}_{*}, \mathbf{M}(\infty)\right\rangle$.

Proof. Assume $\Lambda(\tau)$ is a C^{*}-lattice. Then, for each $p=(V, K) \in \mathcal{P}$, we have $p=$ $p_{1} \wedge \cdots \wedge p_{n}$ for some $p_{i}=\left(V_{i}, K_{i}\right) \in \mathcal{P}^{*}$. Hence, by $2.10(1), K=\left\langle K_{1}, \ldots, K_{n}\right\rangle$ and so (1) holds.

Next assume $H=\mathcal{H}_{*}(\tau)$ and $p \in \mathcal{P}^{*}$. Then 2.12(2) says that either $K=V N_{H}$ and $V \in \mathcal{W}_{*}$ or $V=I_{H}$. Moreover, if $V=I_{H}$ then $N_{0} / I_{H}=F^{*}\left(K / I_{H}\right)$, so $K \leq$ $\mathbf{M}(\infty)$. Thus (2) holds.
2.16. For each $p \in \mathcal{P}, l(p) \in \mathcal{P}$.

Proof. Let $p=(V, K)$ and $l(p)=(Q, M)$. By definition of $M, N_{0} V$ and V are normal in M. Let $M^{*}=M / V$. Again by definition, $Q^{*}=C_{M^{*}}\left(N_{0}^{*}\right)$; then, since $N_{0}^{*}=F^{*}\left(N_{H}^{*}\right)$ is nonabelian, $Q \cap N_{H} \leq V \cap N_{H}=I_{H}$ (i.e., $Q \in \mathcal{W}$). Also, N_{0}^{*} is a nonabelian simple normal subgroup of M^{*} and $Q^{*}=C_{M^{*}}\left(N_{0}^{*}\right)$, so $N_{0} Q / Q=$ $F^{*}(M / Q)$, completing the proof.
2.17. Let $X \leq H$ and $p=(V, K) \in \mathcal{P}$ such that $K \leq N_{H}(X), W=X I_{H} \in$ \mathcal{W}, and $W V \in \mathcal{W}$. Set $r=\left(W, W N_{H}\right)$ and $q=(W V, W K)$. Then $q, r \in \mathcal{P}$ and $q=p \wedge r$.

Proof. Since $V W$ and W are in \mathcal{W}, it follows from 2.6 that $s=\left(V W, V W N_{H}\right)$ and r are in \mathcal{P}. Because $K \leq N_{H}(X), K$ acts on $V X=V W$. Then, since K acts on $V N_{0}, K$ also acts on $V W N_{0}$. Hence $K \leq M=\mathbf{M}(s)$ and $V \leq V W \leq Q=$ $\mathbf{Q}(s)$. By $2.16, l=(Q, M) \in \mathcal{P}$, and we just showed that $p \geq l$.

Next, $W K \in \mathcal{O}_{M}\left(N_{H}\right)$, so $q^{\prime}=(W K \cap Q, W K) \in \mathcal{P}$ by an application of 2.8(1) to l in the role of " p ". Also, $W K \cap Q=W(K \cap Q)$ and, by $2.5(2), K \cap Q=V$, so that $W K \cap Q=V W$ and hence $q^{\prime}=q$. By 2.8(3),

$$
p \wedge r=(Q \cap W K, W K)=(V W, W K)=q
$$

completing the proof.

3. Normal Subgroups of \boldsymbol{H}

In this section we continue to assume Hypothesis 2.1 and adopt Notation 2.2.
Definition 3.1. Define \mathcal{W}_{-}to be the set of $W \in \mathcal{W}$ such that $W \leq N_{H}\left(I_{H}\right)$, $W \not \leq N_{H}\left(N_{0}\right)$, and $W / I_{H} \cong L$.
3.2. Assume $W \in \mathcal{W}_{-}$. Then:
(1) $W N_{0} / I_{H} \cong L \times L$ has two components, W / I_{H} and W^{\prime} / I_{H} (write $\theta(W)$ for W^{\prime});
(2) N_{0} / I_{H} is a full diagonal subgroup of $W / I_{H} \times \theta(W) / I_{H}$;
(3) $W \in \mathcal{W}_{*}$;
(4) $\theta(W) \in \mathcal{W}_{-}$.

Proof. Let $X=W N_{0}$ and $Y=W N_{H}$. Since $W \leq N_{H}\left(I_{H}\right)$, also $Y \leq N_{H}\left(I_{H}\right)$. Set $Y^{*}=Y / I_{H}$.

Since $W \in \mathcal{W}_{-}$, we have $L \cong W^{*} \unlhd Y^{*}$. Since $X=W N_{0}$ and $W \cap N_{0}=$ I_{H}, N_{0}^{*} is a complement to W^{*} in X^{*}. Then, since $W^{*} \cong L$, (1) follows from the Schreier conjecture. Let $T=\theta(W)$. Since $W \not \leq N_{H}\left(N_{0}\right), N_{0}^{*} \neq T^{*}$ and so (2) follows. By (2), N_{H}^{*} is maximal in Y^{*}, so (3) follows from 2.12. By (2), $N_{H} \cap T=$ I_{H} and $T \not \leq N_{H}\left(N_{0}\right)$, so (4) holds because $T^{*} \cong L$.

Notation 3.3. Given $W \in \mathcal{W}_{-}$, define $\theta(W)$ as in 3.2(1).
3.4. Assume $W \in \mathcal{W}_{-}$and let $T=\theta(W), p=\left(W, W N_{H}\right)$, and $q=\left(T, T N_{H}\right)$. Then:
(1) $\theta(\theta(W))=W$;
(2) $p \vee q=\infty$ and $p \wedge q=0$.

Proof. Let $Y=W N_{H}$ and $Y^{*}=Y / I_{H}$. From 3.2, $X=W N_{0}=T N_{0}$ and W^{*}, T^{*} are the components of X^{*}, so (1) holds.

Let $p \vee q=(U, J)$. By parts (1) and (3) of $2.9, U=T \cap W=I_{H}$ and $J=$ $U N_{H}=N_{H}$, so $p \vee q=\infty$. Suppose $p \wedge q=(V, K) \neq 0$. Then, by 2.10(3), $V=W T$, contradicting $N_{0} \leq W T$. Thus (2) holds.
3.5. Let $W \in \mathcal{I}_{H}\left(N_{H}\right)$. Then either
(1) $W I_{H} \in \mathcal{W}$ or
(2) $N_{0}=\left(W \cap N_{0}\right) I_{H}$.

Proof. Let $X=W \cap N_{H}$. Since $W \in \mathcal{I}_{H}\left(N_{H}\right)$, we have $X \unlhd N_{H}$. Therefore, because $F^{*}\left(N_{H} / I_{H}\right)=N_{0} / I_{H}$ is a nonabelian simple group, either $X \leq I_{H}$ or $N_{0} \leq$ $X I_{H}$. In the former case

$$
W I_{H} \cap N_{H}=\left(W \cap N_{H}\right) I_{H}=X I_{H}=I_{H}
$$

so that (1) holds. In the latter case,

$$
N_{0}=N_{0} \cap X I_{H}=\left(N_{0} \cap X\right) I_{H}=\left(N_{0} \cap W\right) I_{H},
$$

so (2) holds.
3.6. Assume $V \in \mathcal{W}$ and $W \in \mathcal{I}_{H}\left(N_{H}\right)$ with $\langle V, W\rangle=V W$ and $V W \notin \mathcal{W}$. Then:
(1) $N_{0} \leq V N_{W}(V) \cap W N_{V}(W)=N_{W}(V) N_{V}(W)$;
(2) $N_{W}(V)$ is N_{H}-invariant and $L \cong N_{W}(V) /(V \cap W)=\left[N_{0}, N_{W}(V) /(V \cap W)\right]$;
(3) if $Y \in \mathcal{I}_{C_{H}(W)}\left(N_{H}\right)$ with $\langle V, Y\rangle=V Y$, then $N_{0} \neq\left(V Y \cap N_{0}\right) I_{H}$ and so $V Y \in \mathcal{W}$.

Proof. Let $N_{1}=V W \cap N_{0}$. Since $V, W \in \mathcal{I}_{H}\left(N_{H}\right)$, also $\langle V, W\rangle \in \mathcal{I}_{H}\left(N_{H}\right)$. Then, since $V W=\langle V, W\rangle$ is not in \mathcal{W}, it follows from 3.5 that $N_{0}=N_{1} I_{H}$. Next, $N_{1} \leq N_{H}(V) \cap V W=V N_{W}(V)$, so $N_{0}=N_{1} I_{H} \leq V N_{W}(V)$. Similarly, $N_{0} \leq$ $W N_{V}(W)$, establishing (1). Then

$$
L \cong \frac{N_{0} V}{V} \leq \frac{V N_{W}(V)}{V} \cong \frac{N_{W}(V)}{V \cap W}
$$

so (2) holds.

Assume the hypothesis of (3). Let $N_{2}=V Y \cap N_{0}$. If $N_{0} \neq N_{2} I_{H}$, then $V Y \in$ \mathcal{W} by 3.5 , so that (3) holds. Thus we may assume $N_{0}=N_{2} I_{H}$. By the previous paragraph applied to Y in the role of " W ", we have $N_{2} \leq V N_{Y}(V)$. Let $M=$ $N_{H}(V), K=N_{0} V$, and $M^{*}=M / V$. Then $K^{*} \cong L$ and $K=N_{i} I_{H} V=N_{i} V$ for $i=1,2$, so $K^{*}=N_{1}^{*}=N_{2}^{*}$. But $N_{1} \leq V N_{W}(V)$ and $N_{2} \leq V N_{Y}(V)$, so $K^{*} \leq$ $N_{W}(V)^{*} \cap N_{Y}(V)^{*}$. Then, since $[W, Y]=1, K^{*}$ is abelian-contradicting $K^{*} \cong$ L. This completes the proof of (3).

Notation 3.7. Set $\mathcal{W}^{\prime}=\mathcal{W}-\left\{I_{H}\right\}$. For $p \in \mathcal{P}$, write $\mathcal{C}(p)$ for the connected component of \mathcal{P}^{\prime} containing p. For $W \in \mathcal{W}^{\prime}$, set

$$
\mathcal{C}(W)=\left\{V \in \mathcal{W}^{\prime}: \mathcal{C}\left(W, W N_{H}\right)=\mathcal{C}\left(V, V N_{H}\right)\right\}
$$

3.8. Assume $p_{i}=\left(V_{i}, K_{i}\right) \in \mathcal{P}^{\prime}$ for $i=1,2$ such that $\mathcal{C}\left(p_{1}\right) \neq \mathcal{C}\left(p_{2}\right)$. Then $\left\langle V_{1}, V_{2}\right\rangle \notin \mathcal{W}$ and $V_{1} \cap V_{2}=I_{H}$.

Proof. Let $q_{i}=\left(V_{i}, V_{i} N_{H}\right)$. Then $p_{i} \leq q_{i}$ and so, replacing p_{i} by q_{i}, we may assume that $K_{i}=V_{i} N_{H}$. Since $\mathcal{C}\left(p_{1}\right) \neq \mathcal{C}\left(p_{2}\right)$, we have $p_{1} \vee p_{2}=\infty$ and $p_{1} \wedge p_{2}=0$. Hence $V_{1} \cap V_{2}=I_{H}$ by 2.9(1). Furthermore, $U=\left\langle V_{1}, V_{2}\right\rangle \notin \mathcal{W}$ or else $\left(U, U N_{H}\right) \leq p_{i}$ for $i=1,2$.
3.9. Assume $V_{i} \in \mathcal{W}$ for $i=1,2$ such that $\left\langle V_{1}, V_{2}\right\rangle=V_{1} V_{2}$. Then the following statements hold.
(1) $W_{i}=N_{V_{i}}\left(V_{3-i}\right)$ and $V_{1,2}=V_{1} \cap V_{2}$ are in \mathcal{W}.
(2) $\left\langle W_{1}, W_{2}\right\rangle=W_{1} W_{2}$.
(3) Assume $V_{1} V_{2} \notin \mathcal{W}$ and let $X=W_{1} W_{2}$ and $X^{*}=X / V_{1,2}$. Then:
(a) $N_{0} \leq W_{1} W_{2}$, so $W_{1} W_{2} \notin \mathcal{W}$;
(b) $X^{*}=W_{1}^{*} \times W_{2}^{*}$. Let U_{i} be the preimage in W_{i} of the projection of N_{0}^{*} on W_{i}^{*}. Then $N_{0}^{*} \cong L$ is a full diagonal subgroup of $U_{1}^{*} \times U_{2}^{*} \cong L \times L$.
(c) $U_{i} \in \mathcal{W}$ for $i=1,2$, but $\left\langle U_{1}, U_{2}\right\rangle=U_{1} U_{2} \notin \mathcal{W}$.
(d) If $\mathcal{C}\left(V_{1}\right) \neq \mathcal{C}\left(V_{2}\right)$, then $U_{i} \in \mathcal{W}_{-}$and $U_{3-i}=\theta\left(U_{i}\right)$.

Proof. First, W_{i} and $V_{1,2}$ are in \mathcal{W} by 2.5(1), so (1) holds. Since W_{1} acts on W_{2}, we have $\left\langle W_{1}, W_{2}\right\rangle=W_{1} W_{2}$ and so (2) holds.

Assume $V_{1} V_{2} \notin \mathcal{W}$. Then, by $3.6(1), N_{0} \leq X$ and so (3a) holds. Since $W_{i} \in \mathcal{W}$, $N_{0} \cap W_{i}=I_{H} \leq V_{1,2}$, so (3b) follows. Since N_{H} acts on W_{i} and N_{0}, also N_{H} acts on U_{i}, so that $U_{i} \in \mathcal{W}$ by $2.5(1)$. Since $X^{*}=W_{1}^{*} \times W_{2}^{*},\left\langle U_{1}, U_{2}\right\rangle=U_{1} U_{2}$, and since $N_{0} \leq U_{1} U_{2}, U_{1} U_{2} \notin \mathcal{W}$, establishing (3c).

Assume the hypothesis of (d). Then it follows from 3.8 that $U_{1} \cap U_{2}=I_{H}$. In particular, since U_{i} acts on U_{3-i}, we have $I_{H} \unlhd U_{i}$. Next, $L \cong U_{i}^{*}$ and, since N_{0}^{*} is a full diagonal subgroup of $U_{1}^{*} \times U_{2}^{*}$, we have $U_{i} \not \leq N_{H}\left(N_{0}\right)$. Therefore $U_{i} \in$ \mathcal{W}_{-}and, since $U_{j}^{*}(j=1,2)$ are the components of $X^{*}=U_{j} N_{0} / I_{H}$, it follows that $U_{3-i}=\theta\left(U_{i}\right)$, completing the proof of (3).
3.10. Assume that $X \unlhd H$ and $X \not \leq I_{H}$, and assume that X satisfies one of the following:
(a) X is solvable; or
(b) X has no L-section; or
(c) for each $V \in \mathcal{W}, X V \in \mathcal{W}$.

Then:
(1) $Y=X I_{H} \in \mathcal{W}^{\prime}$ and $x=\left(Y, X N_{H}\right) \in \mathcal{P}$;
(2) for each $p=(V, K) \in \mathcal{P}, x \wedge p \in \mathcal{P}^{\prime}$;
(3) $\Lambda(\tau)$ is connected.

Proof. Observe that (a) implies (b), so it suffices to assume that (b) or (c) holds. Let $V \in \mathcal{W}$. Since $X \unlhd H$, we have $\langle X, V\rangle=X V$. Thus, if (b) holds then it follows from (b) and 3.6(2) that $X V \in \mathcal{W}$. That is, (b) implies (c), so we may assume that (c) holds. In particular, by applying (c) when $V=I_{H}$, we conclude that $Y \in$ \mathcal{W}. Then, since $X \not \leq I_{H}$, also $Y \in \mathcal{W}^{\prime}$. Now (1) follows from 2.6.

Let $p=(V, K) \in \mathcal{P}$. Then $K \leq N_{H}(X)$ and, by (c), Y and $Y V$ are in \mathcal{W}. Therefore, by 2.17, $q=(X V, X K) \in \mathcal{P}$ and $q=x \wedge p$. Thus (2) holds, and (2) implies (3).
3.11. Assume $B \unlhd H$ such that $B I_{H} \notin \mathcal{W}$ and $X=C_{H}(B) \not \leq I_{H}$. Then X satisfies condition (c) of 3.10, and hence the conclusions of 3.10 are also satisfied.

Proof. Because B is normal in H, so is X. Since $B I_{H} \notin \mathcal{W}$, it follows from 3.5 that $N_{0} \leq B I_{H}$. Thus, for each $V \in \mathcal{W}$, we have $N_{0} \leq B V$ and so $B V \notin \mathcal{W}$. Hence $V X \in \mathcal{W}$ by 3.6(3); that is, X satisfies 3.10(c), so the lemma follows from 3.10.
3.12. Assume $\operatorname{ker}_{I_{H}}(H)=1$ and $\Lambda(\tau)$ is disconnected. Let $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}$ be the set of minimal normal subgroups of H. Then:
(1) $F(H)=1$;
(2) each component of H has an L-section;
(3) if $n>1$, then $B_{i} I_{H} \in \mathcal{W}$ for all i;
(4) $n \leq 2$.

Proof. Since $\operatorname{ker}_{I_{H}}(H)=1$, no member of \mathcal{B} is contained in I_{H}. In particular, if (1) fails then $F(H) \not \leq I_{H}$, so $F(H)$ satisfies 3.10(a). Then 3.10(3) contradicts the hypothesis that $\Lambda(\tau)$ is disconnected. This establishes (1).

Similarly, if A is a component of H that contains no L-section, then $B=$ $\left\langle A^{H}\right\rangle \in \mathcal{B}$ satisfies 3.10 (b), and we obtain a contradiction as in the previous paragraph. Thus (2) holds.

Assume $n>1$. Then, for each $i, 1 \neq D_{i}=\left\langle\mathcal{B}-\left\{B_{i}\right\}\right\rangle \leq C_{H}\left(B_{i}\right)$. Hence (3) follows from 3.11.

Finally, assume $n>2$ and let $B=B_{1} B_{2}$. Then $B_{3} \unlhd H$ with $B_{3} \leq C_{H}(B)$, so arguing as in the previous paragraph yields $B I_{H} \in \mathcal{W}$. Thus $\mathcal{C}=\mathcal{C}\left(B_{1} I_{H}\right)=$ $\mathcal{C}\left(B I_{H}\right)=\mathcal{C}\left(B_{2} I_{H}\right)$. Now let $V \in \mathcal{W}^{\prime}$. If $V B_{1} \notin \mathcal{W}$ then, by 3.6(3), VB$B_{2} \in \mathcal{W}$. Hence, for $i=1$ or $2, \mathcal{C}(V)=\mathcal{C}\left(V B_{i}\right)=\mathcal{C}$. Let $r=\left(B_{1} I_{H}, B_{1} N_{H}\right)$. Then $\mathcal{R}=$ $\mathcal{C}(r)=\mathcal{C}(p)$ for each $p=(V, K) \in \mathcal{P}^{\prime}$ with $V \neq I_{H}$. Therefore, since $\Lambda(\tau)$ is
disconnected, we conclude that there exists a $q=\left(I_{H}, J\right) \in \mathcal{P}^{*}$ with $\mathcal{C}(q) \neq \mathcal{R}$. But $B_{1} I_{H} \in \mathcal{W}$ and so, by $2.17, q \wedge r \neq 0$, contradicting $\mathcal{C}(q) \neq \mathcal{R}$.
3.13. Let $c: H \rightarrow G$ be a surjective homomorphism with kernel A. Set $N_{G}=$ $N_{H} c, I_{G}=I_{H} c$, and $\gamma=\left(G, N_{G}, I_{G}\right)$. Assume $A \cap N_{H} \leq I_{H}$ and set $B=A I_{H}$ and $r=\left(B, A N_{H}\right)$. Then:
(1) $\gamma \in \mathcal{T}(L)$.
(2) $r \in \mathcal{P}$.
(3) Let $\mathcal{R}=\mathcal{P}(\leq r)$ and $\mathcal{Q}=\{(V, K) \in \mathcal{P}: A V \in \mathcal{W}\}$; then $\mathcal{Q}=\{p \in \mathcal{P}$: $p \wedge r \neq 0\}$ and, for $p=(V, K) \in \mathcal{Q}$, we have $p \wedge r=(A V, A K) \in \mathcal{R}$.
(4) For $p=(V, K) \in \mathcal{Q}$, define $\psi(p)=(V c, K c)$; then $\psi: \mathcal{Q} \rightarrow \mathcal{P}(\gamma)$ is a map of posets that restricts to an isomorphism $\psi: \mathcal{R} \rightarrow \mathcal{P}(\gamma)$ with inverse $\nu:\left(V_{1}, K_{1}\right) \mapsto\left(V_{1} c^{-1}, K_{1} c^{-1}\right)$.

Proof. Since $A \cap N_{H} \leq I_{H}$, where $B \cap N_{H}=\left(A \cap N_{H}\right) I_{H}=I_{H}$ and so $B \in \mathcal{W}$. Then (2) follows from 2.6.

By 2.17, $\mathcal{Q} \subseteq \mathcal{Q}_{1}=\{p \in \mathcal{P}: p \wedge r \neq 0\}$. Conversely, if $p=(V, K) \in \mathcal{Q}_{1}$, then $p \wedge r=(A V, A K)$ by $2.10(1)$, so $A V \in \mathcal{W}$ and hence $\mathcal{Q}=\mathcal{Q}_{1}$. That is, (3) holds.

Since $\tau \in \mathcal{T}(L)$, also $\alpha=\left(N_{H}, N_{H}, I_{H}\right) \in \mathcal{T}(L)$ by 2.3(1). Let $D=A \cap I_{H}$. Then $\beta=\left(N_{H} / D, N_{H} / D, I_{H} / D\right) \in \mathcal{T}(L)$ by 2.13. Since $D=A \cap N_{H}$, also $\beta=$ $\left(N_{H} A / A, N_{H} A / A, I_{H} A / A\right)=\left(N_{G}, N_{G}, I_{G}\right)$, so (1) holds.

Let $p=(V, K) \in \mathcal{Q}$. Then $(A V, A K) \in \mathcal{P}$ by (3), so $A V \cap A N_{H}=A\left(A V \cap N_{H}\right)=$ $A I_{H}$ and hence $V c \cap N_{G}=\left(A I_{H}\right) c=I_{H} c=I_{G}$; therefore, $V c \in \mathcal{W}_{G}\left(N_{G}, I_{G}\right)$. Also, $K c \in \mathcal{O}_{N_{G}(V c)}\left(V c N_{G}\right)$ and, since $(A V, A K) \in \mathcal{P}$,

$$
\frac{N_{0} c V c}{V c}=\frac{N_{0} A V}{A V}=F^{*}\left(\frac{A K}{A V}\right)=F^{*}\left(\frac{K c}{V c}\right),
$$

so $\psi(p) \in \mathcal{S}=\mathcal{P}(\gamma)$. Furthermore, if $p \leq q=(U, J)$ then $U \leq V$ and $J \leq K$, so $U c \leq V c$ and $J c \leq K c$; hence $\psi(p) \leq \psi(q)$. That is, $\psi: \mathcal{Q} \rightarrow \mathcal{S}$ is a map of posets.

Let $p_{1}=\left(V_{1}, K_{1}\right) \in \mathcal{S}$ and set $V=V_{1} c^{-1}$ and $K=K_{1} c^{-1}$. Then $V_{1} \cap N_{G}=$ I_{G}, so $V \cap A N_{H}=A I_{H}=B$; hence $V \in \mathcal{W}$. Also, $B \leq V \unlhd K$ and, since $N_{G} \leq K_{1}$, we have $A N_{H}=N_{G} c^{-1} \leq K$. In addition, $F^{*}\left(K_{1} / V_{1}\right)=N_{0} c V_{1} / V_{1}$, so $F^{*}(K / V)=N_{0} V / V$ and hence $v\left(p_{1}\right)=(V, K) \in \mathcal{R}$. Moreover, $\psi(V, K)=$ $(V c, K c)=p_{1}$, so $\psi \circ v=1$. Also, for $p \in \mathcal{R}, v(\psi(p))=v(V c, K c)=p$, so $v=$ ψ^{-1} and hence $\psi: \mathcal{R} \rightarrow \mathcal{S}$ is a bijection. Clearly v is a map of posets, completing the proof of (4).

4. Disconnected Lattices

In this section we often assume the following hypothesis.
Hypothesis 4.1. Hypothesis 2.1 holds, $\operatorname{ker}_{I_{H}}(H)=1$, and $\Lambda=\Lambda(\tau)$ is disconnected.

We adopt Notations 2.2, 3.3, and 3.7 in addition to the following.

Notation 4.2. $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}$ is the set of minimal normal subgroups of H.
4.3. Assume Hypothesis 4.1. Then:
(1) $F(H)=1$;
(2) $n \leq 2$;
(3) if $n=2$, then $B_{i} I_{H} \in \mathcal{W}$ for $i=1,2$.

Proof. This is immediate from 3.12.
4.4. Assume Hypothesis 4.1, and let $V, W \in \mathcal{W}^{\prime}$ be such that $\langle V, W\rangle=V W$ and $\mathcal{C}(V) \neq \mathcal{C}(W)$. Then:
(1) $V \cap W=I_{H}$;
(2) there exists a $U \in \mathcal{W}_{-}$with $U \leq W$ and $\theta(U) \leq V$.

Proof. Part (1) follows from 3.8, while (2) follows from 3.9(3d).
Hypothesis 4.5. Hypothesis 4.1 holds, and $\mathcal{B}=\left\{B_{1}, B_{2}\right\}$ is of order 2. Let $r_{i}=$ $\left(B_{i}, B_{i} N_{H}\right)$ and $\mathcal{C}_{i}=\mathcal{C}\left(r_{i}\right)$ for $i=1,2$.
4.6. Assume Hypothesis 4.5. Then:
(1) for each $p=(V, K) \in \Lambda^{\prime}$ there exists a unique $i=i(p) \in\{1,2\}$ such that $\left(V B_{i}, K B_{i}\right) \in \mathcal{P}$
(2) $V B_{3-i} \notin \mathcal{W}$;
(3) $\mathcal{C}(p)=\mathcal{C}_{i}$;
(4) \mathcal{C}_{1} and \mathcal{C}_{2} are the connected components of Λ^{\prime}.

Proof. Let $j \in\{1,2\}$. If $V B_{j} \notin \mathcal{W}$ then, by $3.6(3), V B_{3-j} \in \mathcal{W}$; hence, by 2.17, $\left(V B_{3-j}, K B_{3-j}\right) \in \mathcal{P}$. So in this case (1) and (2) hold with $i=3-j$, and then (3) follows from (1). We conclude that $\Lambda^{\prime} \subseteq \mathcal{C}_{1} \cup \mathcal{C}_{2}$; therefore, since Λ is disconnected, the lemma holds.
4.7. Assume Hypothesis 4.5. Then:
(1) $\mathcal{W}_{*}=\mathcal{W}_{-}$.
(2) Let $V \in \mathcal{W}_{*}$ and set $i=i(V)=i\left(V, V N_{H}\right)$; then $V \leq B_{i} I_{H}$ and $\theta(V) \leq$ $B_{3-i} I_{H}$.
(3) $N_{0} \leq B_{1} B_{2} I_{H}$.

Proof. By 3.2(3), $\mathcal{W}_{-} \subseteq \mathcal{W}_{*}$. Let $V \in \mathcal{W}_{*}$ and $i=i\left(V, V N_{H}\right)$. Then $V B_{3-i} \notin \mathcal{W}$ by $4.6(2)$; so by $4.4(2)$ and the minimality of $V, V \in \mathcal{W}_{-}$and $\theta(V) \leq B_{3-i}$. By 3.4(1) and the symmetry between V and $\theta(V), V=\theta(\theta(V)) \leq B_{i} I_{H}$, completing the proof of (1) and (2). Then, since $N_{0} \leq U \theta(U)$ for $U \in \mathcal{W}_{-}$by 3.2, (3) follows.
4.8. Assume Hypothesis 4.5. Then, for $(V, K) \in \mathcal{P}^{*}, V \neq I_{H}$.

Proof. Suppose $(V, K) \in \mathcal{P}^{*}$ with $V=I_{H}$. Then $V B_{i}=I_{H} B_{i} \in \mathcal{W}$ for $i=1,2$ by $4.3(3)$, contrary to $4.6(2)$.
4.9. Assume Hypothesis 4.5 and $H=\mathcal{H}_{*}(\tau)$. Then:
(1) $I_{H}=1$ so $N_{0} \cong L$.
(2) Let U_{i} be the projection of N_{0} on B_{i}. Then $\mathcal{W}_{*}=\left\{U_{1}, U_{2}\right\}$ and $\mathcal{P}^{*}=\left\{p_{1}, p_{2}\right\}$, where $p_{i}=\left(U_{i}, U_{i} N_{H}\right)$.

Proof. For each $V \in \mathcal{W}_{-}, I_{H} \unlhd V$. Since $H=\mathcal{H}_{*}(\tau)$, we have $H=\left\langle\mathcal{W}_{*}, N_{H}\left(I_{H}\right)\right\rangle$ by $2.15(2)$. Thus $I_{H} \unlhd H$ by 4.7(1), so (1) follows because $\operatorname{ker}_{I_{H}}(H)=1$ by Hypothesis 4.1. Let $V \in \mathcal{W}_{-}$and $i=i\left(V, V N_{H}\right)$. Then $V \theta(V)=V N_{0}$, with $V \leq B_{i}$ and $\theta(V) \leq B_{3-i}$ by 4.7. It follows that $V=U_{i}$ and $\theta(V)=U_{3-i}$. Hence $\mathcal{W}_{*}=$ $\left\{U_{1}, U_{2}\right\}$ by 4.7(1), and then 4.8 completes the proof.

Theorem 4.10. Assume Hypothesis 2.1 and that $\Lambda=\Lambda(\tau)$ is a disconnected C^{*}-lattice. Let $H_{*}=\mathcal{H}_{*}(\tau)$ and set $K_{*}=\operatorname{ker}_{N_{H}}\left(H_{*}\right)$ and $H^{*}=H_{*} / K_{*}$. Then the following statements hold.
(1) $\tau^{*}=\left(H^{*}, N_{H}^{*}, I_{H}^{*}\right) \in \mathcal{T}(L)$.
(2) $\Lambda \cong \Lambda\left(\tau^{*}\right)$ and $K_{*} \leq I_{H}$.
(3) $F\left(H^{*}\right)=1$.
(4) Either
(a) there exists a unique minimal normal subgroup of H^{*} or
(b) there are exactly two minimal normal subgroups B_{1}^{*} and B_{2}^{*} of H^{*}. Furthermore, $K_{*}=I_{H}, B_{i}^{*} \cong L$, and N_{0}^{*} is a full diagonal subgroup of $B_{1}^{*} \times B_{2}^{*}$. Moreover, $\Lambda^{\prime}=\left\{r_{1}, r_{2}\right\}$, where $r_{i}=\left(B_{i}, B_{i} N_{H}\right)$ and $H_{*}=$ $B_{1} B_{2} N_{H}$.

Proof. Let $\mu=\tau_{H_{*}}$. Since Λ is a C^{*}-lattice, we conclude from 2.3(4) and 2.15(1) that $\Lambda \cong \Lambda(\mu)$. Observe that $H_{*}=\mathcal{H}_{*}(\mu)$ because $\mathcal{P}^{*}(\mu) \subseteq \mathcal{P}^{*}(\tau)$. Therefore, since Λ is disconnected, $K_{*} \leq I_{H}$ by 2.13, which also means that (1) holds and $\Lambda(\mu) \cong \Lambda\left(\tau^{*}\right)$. Thus (1) and (2) are established.

By construction, $\operatorname{ker}_{I_{H}^{*}}\left(H^{*}\right)=1$, so τ^{*} satisfies Hypothesis 4.1. Then (3) follows from 4.3(1). Assume that (4a) does not hold. Then τ^{*} satisfies Hypothesis 4.5 by $4.3(2)$, with minimal normal subgroups B_{1}^{*} and B_{2}^{*}. By construction, $H^{*}=$ $\mathcal{H}_{*}\left(\tau^{*}\right)$, so $I_{H}^{*}=1$ by $4.9(1)$. Hence $K_{*}=I_{H}$. Let U_{i}^{*} be the projection of N_{0}^{*} on B_{i}^{*} and let $p_{i}^{*}=\left(U_{i}^{*}, U_{i}^{*} N_{H}^{*}\right)$. By $4.9(2), \mathcal{P}^{*}\left(\tau^{*}\right)=\left\{p_{1}^{*}, p_{2}^{*}\right\}$. Since Λ is a C^{*}-lattice and since $B_{i}^{*} \in \mathcal{W}_{H^{*}}\left(N_{H}^{*}, I_{H}^{*}\right)$ by 4.3(3), it follows that $B_{i}^{*}=U_{i}^{*}$, so $\Lambda^{\prime}=\left\{r_{1}, r_{2}\right\}$. Thus (4b) holds, completing the proof.

Corollary 4.11. Assume Hypothesis 2.1 and that $H=\mathcal{H}(\tau)$. Assume in addition that $\Lambda=\Lambda(\tau)$ is a $C^{*} D$-lattice and $\operatorname{ker}_{I_{H}}(H)=1$. Then $F^{*}(H)$ is the direct product of the set \mathcal{L} of components of H, each component is simple, and H is transitive on \mathcal{L}.

Proof. As $H=\mathcal{H}(\tau)$ and $\Lambda=\Lambda(\tau)$ is a C^{*}-lattice, 2.15(1) says that $H=\mathcal{H}_{*}(\tau)$. Thus the hypotheses of Theorem 4.10 are satisfied and $H=H_{*}$. Since $\operatorname{ker}_{I_{H}}(H)=$ $1, K_{*}=\operatorname{ker}_{N_{H}}(H)=1$ by $4.10(2)$, so H is the group H^{*} of 4.10 . Since Λ is a D-lattice, $\left|\Lambda^{\prime}\right|>2$ and so, by $4.10(4)$, there is a unique minimal normal subgroup E of H. By $4.10(3), F(H)=1$, so $E=F^{*}(H)$ and the corollary holds.

We are now in a position to prove Theorem 1. Assume the hypotheses of that theorem. By 2.14(1), $H=H(\tau)$. Because Λ is disconnected, Λ^{\prime} has neither a least nor a greatest element, so $\operatorname{ker}_{N_{H}}(H)=1$ by 2.14(2). Thus the hypotheses of Corollary 4.11 are satisfied, and that result implies Theorem 1.
4.12. Assume Hypothesis 2.1 and that $H=\mathcal{H}(\tau)$. Assume in addition that $\Lambda=$ $\Lambda(\tau)$ is a $C^{*} D$-lattice and $\operatorname{ker}_{I_{H}}(H)=1$. Then $F^{*}(H) I_{H} \notin \mathcal{W}$.

Proof. Let $E=F^{*}(H)$ and assume $A=E I_{H} \in \mathcal{W}$. Set $a=\left(A, A N_{H}\right)$, so that $a \in \Lambda^{\prime}$ by 2.6. Let $\mathcal{C}=\mathcal{C}(a)$ and let $\mathcal{E}=\left\{p \in \mathcal{P}^{*}: \mathcal{C}(p) \neq \mathcal{C}\right\}$.

Since Λ is disconnected, $\mathcal{E} \neq \emptyset$. Pick $p=(V, K) \in \mathcal{E}$. If $V=I_{H}$ then $A=$ $E V \in \mathcal{W}$, so $p \in \mathcal{C}$ by 2.17 -a contradiction. Thus $V \in \mathcal{W}_{*}$ and $K=V N_{H}$ by 2.12 (2).

Let

$$
\mathcal{V}=\left\{V \in \mathcal{W}_{*}:\left(V, V N_{H}\right) \in \mathcal{E}\right\}
$$

Applying 4.4 to V and A, we conclude that $V \in \mathcal{W}_{-}$and $\theta(V) \leq A$.
By 1.2 , there exists a connected component \mathcal{C}_{1} of Λ^{\prime} distinct from \mathcal{C} such that \mathcal{C}_{1} contains distinct co-atoms x_{1} and x_{1} with $x=x_{1} \wedge x_{2} \neq 0$. Set

$$
\mathcal{V}_{1}=\left\{V \in \mathcal{V}: p(v)=\left(V, V N_{H}\right) \in \mathcal{C}_{1}\right\}
$$

By paragraph two, the set \mathcal{C}_{1}^{*} of maximal members of \mathcal{C}_{1} is $\left\{p(V): V \in \mathcal{V}_{1}\right\}$. Thus $p\left(x_{i}\right)=\left(V_{i}, V_{i} N_{H}\right)$ for some $V_{i} \in \mathcal{V}_{1}$. Then, by $2.10, p(x)=\left(V, V N_{H}\right)$, where $V=\left\langle V_{1}, V_{2}\right\rangle$. Set $X=N_{G}\left(I_{H}\right)$ and $X^{*}=X / I_{H}$.

Next, $V \cap A=I_{H}(V \cap E) \in \mathcal{W}$, so $p=\left(V \cap A,(V \cap A) N_{H}\right) \in \Lambda$. Thus, if $p \neq \infty$ then $a \leq p \geq x$, contradicting $x \in \mathcal{C}_{1}$. Hence $p=\infty$, so $V \cap A=I_{H}$.

By 3.8 and 3.9, for $i=1,2$ we have $V_{i} \leq X \geq \theta\left(V_{i}\right)$ and $V_{i}\left(\theta\left(V_{i}\right) \cap E\right)=$ $V_{i} \theta\left(V_{i}\right)=V_{i} N_{0} \leq N_{X}(V)$. Thus $F_{0}=\left\langle\theta\left(V_{i}\right) \cap E: i=1,2\right\rangle \leq F=N_{X \cap E}(V)$ and $N_{0} \leq V F_{0}$. Then F and V are normal in $\langle F, V\rangle$ with $F \cap V \leq A \cap V=I_{H}$, so $\left\langle F^{*}, V^{*}\right\rangle=F^{*} \times V^{*} \geq N_{0}^{*}$. Now $N_{0} \cap V=I_{H}$ and $N_{0} \cap F I_{H} \leq N_{0} \cap A=I_{H}$, so $N_{0}^{*} \cap F^{*}=N_{0}^{*} \cap V^{*}=1$. Therefore, N_{0}^{*} is a diagonal subgroup of $F^{*} \times V^{*}$. Let N_{V}^{*} be the projection of N_{0}^{*} on V^{*}. Since N_{0}^{*} is a full diagonal subgroup of $V_{i}^{*} \times \theta\left(V_{i}\right)^{*}=V_{i}^{*} \times E_{i}^{*}$, where $E_{i}=E \cap \theta\left(V_{i}\right)$, it follows that $V_{i}^{*}=N_{V}^{*}$. But then $V_{1}=V_{2}$, so $x_{1}=x_{2}$, a contradiction. This contradiction completes the proof of 4.12.

5. CD-lattices

In this section we assume the following hypothesis.
Hypothesis 5.1. Hypothesis 2.1 holds, $\operatorname{ker}_{I_{H}}(H)=1, \Lambda(\tau)$ is disconnected, $H=\mathcal{H}_{*}(\tau)$, and D is a minimal normal subgroup of H such that $D I_{H} \notin \mathcal{W}$.

We adopt Notations 2.2, 3.3, and 3.7. Observe that Hypothesis 4.1 is satisfied.
5.2. $\quad D=F^{*}(H)$ is the direct product of the set \mathcal{L} of components of H, the components of H are simple, and H is transitive on \mathcal{L}.

Proof. By 4.3(1), $F(H)=1$; thus, since D is a minimal normal subgroup of H, it follows that D is the direct product of its set \mathcal{L} of components, which are simple and transitively permutated by H. If $D \neq F^{*}(G)$ then $1 \neq X=C_{H}(D) \unlhd H$. Since $\operatorname{ker}_{I_{H}}(H)=1, X \not \leq I_{H}$. Therefore, since $D I_{H} \notin \mathcal{W}, \Lambda(\tau)$ is connected by 3.11 and $3.10(3)$, contrary to Hypothesis 4.1.

Notation 5.3. Let \mathcal{L} be the set of components of D. For $E \in \mathcal{L}$ and $X \leq H$, set $X_{E}=X \cap E$ and $X_{D}=X \cap D$, and write \bar{X}_{E} for the projection of X_{D} on E with respect to the direct product decomposition of 5.2. Write N_{D} for $N_{0} \cap D$ and I_{D} for $I_{H} \cap D$, and write \bar{N}_{E} and \bar{I}_{E} for the corresponding projections on E. Set

$$
\bar{X}=\prod_{E \in \mathcal{L}} \bar{X}_{E}, \quad \bar{N}_{D}=\prod_{E \in \mathcal{L}} \bar{N}_{E}, \quad \bar{I}=\prod_{E \in \mathcal{L}} \bar{I}_{E} .
$$

For $\gamma \subseteq \mathcal{L}$, set $D_{\gamma}=\langle\gamma\rangle$. Set $M=N_{H}\left(I_{D}\right) \cap N_{H}\left(N_{D}\right), Q=C_{M}\left(N_{D} / I_{D}\right)$, and $d=(Q, M)$. Let

$$
\mathcal{P}_{D}=\Gamma(\tau, D)^{\prime} \quad \text { and } \quad \mathcal{P}_{\infty}^{*}=\mathcal{P}^{*}-\Delta(\tau, D)
$$

5.4. (1) $N_{0}=N_{D} I_{H}$ and $N_{D} / I_{D} \cong L$.
(2) $d \in \mathcal{P}$.
(3) $\mathbf{M}(\infty) \leq M$ and $\mathbf{Q}(\infty) \leq Q$, so $l(\infty) \geq d$.
(4) $\mathcal{P}\left(\tau_{M}\right)=\mathcal{P}(\geq d)$, and the map $X \mapsto(X \cap Q, X)$ is an isomorphism of the dual of $\mathcal{O}_{M}\left(N_{H}\right)$ with $\mathcal{P}\left(\tau_{M}\right)$.

Proof. Since $D I_{H} \notin \mathcal{W}$, (1) follows from 3.5.
Let $M^{*}=M / I_{D}$. Now $\left[I_{H}, N_{D}\right] \leq I_{H} \cap N_{D}=I_{D}$, so $I_{H} \leq Q$ and $N_{D} Q=$ $N_{0} Q$. Next, by construction $\left[Q, N_{D}\right] \leq I_{D}$, so $\left[Q \cap N_{H}, N_{0}\right] \leq I_{H}$ by (1). Therefore, since $F^{*}\left(N_{H} / I_{H}\right)=N_{0} / I_{H} \cong L$, we have $Q \cap N_{H}=I_{H}$ and so $Q \in \mathcal{W}$. By definition we have $Q^{*}=C_{M^{*}}\left(N_{D}^{*}\right)$ and N_{D}^{*} is a nonabelian simple normal subgroup of M^{*}, so $N_{D} Q / Q=F^{*}(M / Q)$, establishing (2). The proof of (3) is straightforward.

For part (4), let $p=(V, K) \in \mathcal{P}\left(\tau_{M}\right)$. Then $K \leq M$ and

$$
\left[V, N_{D}\right] \leq V \cap N_{D}=V \cap N_{H} \cap N_{D}=I_{H} \cap N_{D}=I_{D},
$$

so $V \leq Q$. Thus $p \geq d$, so $\mathcal{P}\left(\tau_{M}\right) \subseteq \mathcal{P}(\geq d)$. The opposite inclusion is trivial, so now (4) follows from 2.8(2).
5.5. Let $p=(V, K) \in \mathcal{P}_{\infty}^{*}$. Then:
(1) either $V=I_{H}$ or $K=V N_{H}$ and $V \in \mathcal{W}_{*}$;
(2) $V \cap D I_{H}=I_{H}$;
(3) $p \geq d$;
(4) $H=D Q \mathbf{M}(\infty)=D M$.

Proof. Part (1) follows from 2.12. Next $I_{H} \leq V \cap D I_{H} \in \mathcal{I}_{V}\left(N_{H}\right)$, so $V \cap D I_{H} \in$ \mathcal{W} by 2.5. Hence, because $V=I_{H}$ or $V \in \mathcal{W}_{*}$ (and in the latter case $V \not \leq D I_{H}$ as $p \in \mathcal{P}_{\infty}^{*}$), it follows that (2) holds. By (2),

$$
\left[N_{D}, V\right] \leq V \cap D=I_{H} \cap D=I_{D}
$$

so $V \leq Q$. Then $K \leq M$ if $K=V N_{H}$; if $V=I_{H}$ then $N_{0} \unlhd K$, so also $N_{D}=$ $N_{0} \cap D \unlhd K$ and again $K \leq M$. Hence (3) holds.

By 5.1, $H=\mathcal{H}_{*}(\tau)$ and so, by $2.15(2), H=\left\langle\mathcal{W}_{*}, \mathbf{M}(\infty)\right\rangle$. Let $U \in \mathcal{W}_{*}$. If $U \leq D I_{H}$ then $U \leq D Q$. On the other hand, if $U \not \leq D I_{H}$ then $U \leq Q$ by (3). Thus $H \leq D Q \mathbf{M}(\infty)$, so (4) holds because $\mathbf{M}_{\infty} \leq M$ by 5.4(3).
5.6. (1) For each proper subset γ of $\mathcal{L}, N_{D} \neq\left(N_{D} \cap D_{\gamma}\right) I_{D}$.
(2) Assume that N_{H} is transitive on \mathcal{L} and let $V \in \mathcal{W}$. Then, for each proper subset γ of $\mathcal{L}, N_{D} V_{D} \neq\left(N_{D} V_{D} \cap D_{\gamma}\right) V_{D}$.

Proof. Write N_{γ} for $N_{D} V_{D} \cap D_{\gamma}$, and let $*: N_{D} V_{D} \rightarrow N_{D} V_{D} / V_{D}$ be the natural surjection. Let

$$
S_{V}=\left\{\gamma \subseteq \mathcal{L}: N_{D} V_{D}=N_{\gamma} V_{D}\right\}
$$

and write S_{V}^{*} for the set of minimal members of S_{V} under inclusion. Now $V_{\gamma}=$ $V \cap D_{\gamma}$, the N_{γ} are $N_{D} V_{D}$-invariant, and for $\gamma \in S_{V}$ we have

$$
L \cong N_{D}^{*}=\frac{N_{D} V_{D}}{V_{D}}=\frac{N_{\gamma} V_{D}}{V_{D}}=N_{\gamma}^{*}
$$

Let $\alpha, \beta \in S_{V}^{*}$. Then

$$
\left[N_{\alpha}, N_{\beta}\right] \leq N_{\alpha} \cap N_{\beta}=N_{D} V_{D} \cap D_{\alpha} \cap D_{\beta}=N_{D} V_{D} \cap D_{\alpha \cap \beta}=N_{\alpha \cap \beta}
$$

Since also $N_{\alpha}^{*}=N_{D}^{*}=N_{\beta}^{*} \cong L$,

$$
N_{\alpha \cap \beta}^{*} \geq\left[N_{\alpha}, N_{\beta}\right]^{*}=\left[N_{\alpha}^{*}, N_{\beta}^{*}\right]=N_{D}^{*}
$$

and hence $\alpha \cap \beta \in S_{V}$, so $\alpha=\alpha \cap \beta=\beta$ because $\alpha, \beta \in S_{V}^{*}$. However, $Q \mathbf{M}(\infty)$ acts on N_{D} and I_{D} by 5.4(3), and it is transitive on \mathcal{L} by 5.5(4). Furthermore, N_{H} acts on N_{D} and V_{D} and, under the hypothesis of (2), N_{H} is transitive on \mathcal{L}. Thus, if either $V=I_{H}$ or the hypothesis of (2) holds, then if $\alpha \neq \mathcal{L}$ is in S_{V}^{*} we can pick $h \in N_{H}\left(V_{D}\right) \cap N_{H}\left(N_{D}\right)$ with $\alpha \neq \alpha^{h}=\beta$ and, since $\alpha \in S_{V}^{*}$, also $\beta \in S_{V}^{*}$, a contradiction.

We conclude that if either $V=I_{H}$ or the hypothesis of (2) is satisfied, then $S_{V}^{*}=\{\mathcal{L}\}$ and hence $S_{V}=\{\mathcal{L}\}$. This completes the proof of the lemma.
5.7. Assume $|\mathcal{L}|>1$. Then the following statements hold.
(1) For each $E \in \mathcal{L}, \bar{N}_{E} / \bar{I}_{E} \cong L$.
(2) $\bar{I} I_{H} \in \mathcal{W}$.
(3) $N_{D} \bar{I} / \bar{I}$ is a full diagonal subgroup of $\bar{N}_{D} / \bar{I}=\prod_{E \in \mathcal{L}} \bar{N}_{E} \bar{I} / \bar{I}$.
(4) Assume that $V \in \mathcal{W}$ and that N_{H} is transitive on \mathcal{L}. Then:
(a) for each $E \in \mathcal{L}, \bar{N}_{E} \bar{V}_{E} / \bar{V}_{E} \cong L$;
(b) $\bar{V} I_{H} \in \mathcal{W}$;
(c) $N_{D} \bar{V} / \bar{V}$ is a full diagonal subgroup of \bar{N}_{D} / \bar{V}.

Proof. Let $E \in \mathcal{L}$ and let $\pi_{E}: D \rightarrow E$ be the projection map. Let $V \in \mathcal{W}$ and assume that either $V=I_{H}$ or N_{H} is transitive on \mathcal{L}. If $\bar{N}_{E} \bar{V}_{E}=\bar{V}_{E}$ then $N_{D} V_{D}=$ $V_{D}\left(N_{D} V_{D} \cap \operatorname{ker}\left(\pi_{E}\right)\right)$, so $\mathcal{L}-\{E\}$ is in the set S_{V} defined in the proof of 5.6,
contrary to 5.6. Therefore, \bar{V}_{E} is a proper normal subgroup of $\bar{N}_{E} \bar{V}_{E}$ and so, since $N_{D} V_{D} / V_{D} \cong L$, (1) and (4a) follow by applying π_{E}.

Let $P=N_{D} V_{D} \cap \bar{V}$. Then $P \pi_{E} \leq \bar{V} \pi_{E}=V_{D} \pi_{E}=\bar{V}_{E}$ and, if $P \not \leq V_{D}$, then (since $N_{D} V_{D} / V_{D} \cong L$) we have $N_{D} V_{D}=P V_{D}$. But now

$$
\bar{N}_{E} \bar{V}_{E}=\left(N_{D} V_{D}\right) \pi_{E}=P \pi_{E} V_{D} \pi_{E}=P \pi_{E} \bar{V}_{E}=\bar{V}_{E},
$$

contrary to (1) and (4a). Therefore $P \leq V_{D}$, so

$$
\begin{aligned}
N_{0} \cap \bar{V} I_{H} & =N_{D} I_{H} \cap \bar{V} I_{H}=\left(N_{D} I_{H} \cap \bar{V}\right) I_{H}=\left(N_{D} I_{H} \cap D \cap \bar{V}\right) I_{H} \\
& =\left(N_{D} \cap \bar{V}\right) I_{H}=\left(N_{D} \cap N_{D} V_{D} \cap \bar{V}\right) I_{H}=\left(N_{D} \cap P\right) I_{H} \\
& \leq\left(N_{D} \cap V_{D}\right) I_{H}=I_{H},
\end{aligned}
$$

establishing (2) and (4b).
Now, by (2) and (4b), $N_{D} \bar{V} / \bar{V} \cong N_{D} /\left(N_{D} \cap \bar{V}\right)=N_{D} / I_{D} \cong L$ and

$$
\frac{N_{D} \bar{V}}{\bar{V}} \leq \frac{\bar{N}_{D} \bar{V}}{\bar{V}}=\frac{\left(\prod_{E \in \mathcal{L}} \bar{N}_{E}\right) \bar{V}}{\bar{V}} \cong \prod_{E \in \mathcal{L}} \frac{\bar{N}_{E} \bar{V}}{\bar{V}}
$$

with $\left(N_{D} \bar{V}\right) \pi_{E}=\bar{N}_{E} \bar{V}_{E}$ for each $E \in \mathcal{L}$. Therefore (3) and (4c) follow from (1) and (4a) together with [AS, 1.4].
5.8. Assume $\Lambda(\tau)$ is a C^{*}-lattice in which no connected component has a least element. Then N_{H} is transitive on \mathcal{L}.

Proof. We may assume $\mathcal{L}=\mathcal{L}_{1} \cup \mathcal{L}_{2}$ is an N_{H}-invariant partition of \mathcal{L} with $\mathcal{L}_{i} \neq$ \mathcal{L} for $i=1,2$. Let $D_{i}=\left\langle\mathcal{L}_{i}\right\rangle, G=N_{H}\left(D_{1}\right)$, and $\mu=\tau_{G}$. By 2.3, $\mu \in \mathcal{T}(L)$. Because $\Lambda=\Lambda(\tau)$ is a C^{*}-lattice, so is $\Sigma=\Lambda(\mu)$. Furthermore, D_{1} and D_{2} contain distinct minimal normal subgroups of G. Hence, applying Theorem 4.10 to μ, we conclude that either:
(i) Σ is connected; or
(ii) $I_{H} \unlhd G_{*}=\mathcal{H}_{*}(\mu), D_{i} \cong L$, and $\mathcal{P}^{\prime}(\mu)=\left\{r_{1}, r_{2}\right\}$, where $r_{i}=\left(D_{i} I_{H}, D_{i} N_{H}\right)$.

By 5.5(4), M is transitive on \mathcal{L}; thus, since N_{H} is not transitive, we have $N_{H}<$ M. Therefore, using $5.4(2), d \in \mathcal{Q}=\mathcal{P}^{\prime}\left(\tau_{M}\right)$ and so \mathcal{Q} is nonempty. Next, by 5.4(4), \mathcal{Q} is connected with least element d. Hence \mathcal{Q} is contained in a connected component \mathcal{C}_{1} of \mathcal{P}^{\prime}. Furthermore, $\mathcal{P}^{*}=\mathcal{P}_{D}^{*} \cup \mathcal{P}_{\infty}^{*}$, where $\mathcal{P}_{D}^{*} \subseteq \mathcal{P}(\mu)$ and, by $5.5(3), \mathcal{P}_{\infty}^{*} \subseteq \mathcal{Q}$. On the other hand, \mathcal{P}^{\prime} is disconnected, so it contains a second component \mathcal{C}_{2}. It follows in case (i) that $\mathcal{C}_{1}=\mathcal{Q}$ and $\mathcal{C}_{2}=\mathcal{P}^{\prime}(\mu)$; and in case (ii), $\mathcal{C}_{2}=\left\{r_{i}\right\}$ for $i=1$ or 2 . But by hypothesis, neither \mathcal{C}_{1} or \mathcal{C}_{2} has a least element, whereas \mathcal{C}_{1} has least element d in case (i) and \mathcal{C}_{2} has least element r_{i} in case (ii).

Hypothesis 5.9. Hypothesis 5.1 holds, $\Lambda(\tau)$ is a C_{*}-lattice, and N_{H} is transitive on \mathcal{L}.
5.10. Assume Hypothesis 5.9. Then, for each $V \in \mathcal{W}, V_{D}$ is the direct product of the subgroups V_{E} as E varies over \mathcal{L}.

Proof. We may assume $|\mathcal{L}|>1$. Let $p=(V, K) \in \mathcal{P}$ and define $\varphi(p)=$ $(\bar{V} V, \bar{V} K)$. By Hypothesis $5.9, N_{H}$ is transitive on \mathcal{L} and so, by $5.7(4 \mathrm{~b}), \bar{V} I_{H} \in \mathcal{W}$.

Observe that $N_{H}(V)$ acts on V_{D} and hence permutes the groups $\bar{V}_{E}, E \in \mathcal{L}$, so $N_{H}(V)$ acts on \bar{V}. If $N_{0} \leq \bar{V} V$ then $N_{D} \leq \bar{V} V \cap D=\bar{V}(V \cap D)=\bar{V}$, contrary to $\bar{V} I_{H} \in \mathcal{W}$. Thus $N_{0} \not \leq \bar{V} V$, so $\bar{V} V \in \mathcal{W}$ by 3.6(1). Therefore $\varphi(p) \in \mathcal{P}$ by 2.17. By construction, $\varphi(p) \leq p$.

Let $q=(U, J)$ and suppose $p \leq q$. Then $U \leq V$ and $J \leq K$. Hence $U_{D} \leq$ V_{D}, so for each $E \in \mathcal{L}$ we have $\bar{U}_{E} \leq \bar{V}_{E}$ and hence $\bar{U} \leq \bar{V}$. Therefore $\varphi(p) \leq$ $\varphi(q)$, so $\varphi: \mathcal{P} \rightarrow \mathcal{P}$ is a map of posets. Thus, since $\Lambda(\tau)$ is a C_{*}-lattice by Hypothesis 5.9 , it follows from 1.1 that φ is the identity map on \mathcal{P}. Hence $V=\bar{V} V$, so $\bar{V} \leq V$, establishing the lemma.

Notation 5.11. Pick $E \in \mathcal{L}$ and let $\pi: D \rightarrow E$ be the projection of D on E. For $X \leq H$, set $\hat{X}=N_{X}(E)$. Set $\hat{\tau}=\left(\hat{H}, \hat{N}_{H}, \hat{I}_{H}\right)$. Set $G=\operatorname{Aut}_{H}(E)$ and let $c: \hat{\hat{H}} \rightarrow G$ be the conjugation map. Set $N_{G}=\hat{N}_{H} c, I_{G}=\hat{I}_{H} c$, and $\gamma=$ $\left(G, N_{G}, I_{G}\right)$. Let $A=C_{H}(E), B=A \hat{I}_{H}$, and $r=\left(B, A \hat{N}_{H}\right)$. Identify E with $\operatorname{Inn}(E) \leq G$ via c. Define $\mathcal{P}(\gamma)_{E}=\Gamma(\gamma, E)^{\prime}$.
5.12. (1) $\hat{\tau} \in \mathcal{T}(L)$.
(2) $\varphi: \mathcal{P} \rightarrow \hat{\mathcal{P}}=\mathcal{P}(\hat{\tau})$ is a map of posets, where $\varphi(p)=(\hat{V}, \hat{K})$ for $p=(V, K) \in \mathcal{P}$.
(3) $\gamma \in \mathcal{T}(L)$ and $r \in \hat{\mathcal{P}}$.
(4) Let $\hat{\mathcal{R}}=\hat{\mathcal{P}}(\leq r)$,

$$
\hat{\mathcal{V}}=\left\{V_{1} \in \mathcal{W}(\hat{\tau}): A V_{1} \cap \hat{N}_{H}=\hat{I}_{H}\right\}
$$

and $\hat{\mathcal{Q}}=\left\{\left(V_{1}, K_{1}\right) \in \hat{\mathcal{P}}: V_{1} \in \hat{\mathcal{V}}\right\}$. For $p_{1}=\left(V_{1}, K_{1}\right) \in \hat{\mathcal{Q}}$, define $\psi\left(p_{1}\right)=$ $\left(V_{1} c, K_{1} c\right)$. Then $\psi: \hat{\mathcal{Q}} \rightarrow \mathcal{P}(\gamma)$ is a map of posets that restricts to an isomorphism $\psi: \hat{\mathcal{R}} \rightarrow \mathcal{P}(\gamma)$.
(5) Assume Hypothesis 5.9.
(a) For each $p \in \mathcal{P}, \varphi(p) \in \hat{\mathcal{Q}}$.
(b) For $p \in \mathcal{P}$, define $\phi(p)=\psi(\varphi(p))$; then $\phi: \mathcal{P} \rightarrow \mathcal{P}(\gamma)$ is a map of posets.

Proof. Parts (1) and (2) follow from the corresponding parts of 2.4.
Let $\sigma: N_{D} \rightarrow \bar{N}_{E}$ be the restriction of π to N_{D}. Because π is \hat{H}-equivariant, σ is \hat{N}_{H} equivariant. Since $N_{D} \sigma=\bar{N}_{E}$ with $\bar{N}_{E} / \bar{I}_{E} \cong L \cong N_{D} / I_{D}$ by 5.7(1), σ induces an isomorphism of N_{D} / I_{D} with $\bar{N}_{E} / \bar{I}_{E}$. In particular, $C_{N_{H}}(E)$ centralizes N_{D} / I_{D}, so $C_{N_{H}}(E) \leq Q$. Thus, by $5.4(2), C_{N_{H}}(E) \leq \hat{I}_{H}$ and so, since $C_{N_{H}}(E)=$ $A \cap \hat{N}_{H}$, we have $A \cap \hat{N}_{H} \leq \hat{I}_{H}$. Therefore, (3) follows from parts (1) and (2) of 3.13 while (4) follows from 3.13(4).

Finally, assume Hypothesis 5.9 and let $p=(V, K) \in \mathcal{P}$. By 5.10, $V_{D} \pi=V_{E}$. Since π is \hat{H}-equivariant and $\left[V, N_{D}\right] \leq V_{D}$, it follows that $\left[A \hat{V}, \bar{N}_{E}\right]=\left[\hat{V}, \bar{N}_{E}\right]=$ $\left[\hat{V}, N_{D} \pi\right] \leq V_{D} \pi=V_{E}$. Suppose $\varphi(p) \notin \hat{\mathcal{Q}}$. Then, by 3.6(1), $N_{D} \leq A \hat{V}$. But $X=$ $\left\langle\bar{N}_{F}: F \in \mathcal{L}-\{E\}\right\rangle \leq A$, so $\bar{N}_{E} X=N_{D} X \leq A \hat{V}$. Thus $\left[\bar{N}_{E}, \bar{N}_{E}\right] \leq\left[A \hat{V}, \bar{N}_{E}\right] \leq$ V_{E} whereas, by 5.7(4) and 5.10, $\bar{N}_{E} / V_{E}=\bar{N}_{E} / \bar{V}_{E} \cong L$-a contradiction.

Thus (5a) holds. Then (5b) follows from (5a), (2), and (4).
5.13. Assume Hypothesis 5.9 and let I_{+}be the kernel of the action of I_{H} on \mathcal{L}. Then $I_{+}=C_{N_{H}}\left(\bar{N}_{D} / I_{D}\right)$.

Proof. By 5.10, $I_{D} \unlhd \bar{N}_{D}$. Let $\bar{N}_{D}^{*}=\bar{N}_{D} / I_{D}$. Since \bar{N}_{D}^{*} is the direct product of the groups $\bar{N}_{F}^{*}, F \in \mathcal{L}$, it follows that $I=C_{N_{H}}\left(\bar{N}_{D}^{*}\right)$ is contained in the kernel of the action of N_{H} on \mathcal{L}. Since $F^{*}\left(N_{H} / I_{H}\right)=N_{D} I_{H} / I_{H}$, we have $I_{H}=C_{N_{H}}\left(N_{D}^{*}\right)$, so $I \leq I_{H}$ and hence $I \leq I_{+}$. Finally, 5.7(4c) says that, for each $F \in \mathcal{L}, \pi_{F}$ induces an I_{+}-equivariant isomorphism of N_{D}^{*} with \bar{N}_{F}^{*}. Therefore, $I_{+} \leq I$.
5.14. Assume Hypothesis 5.9. For $q=(U, J) \in \mathcal{P}(\gamma)_{E}$, define

$$
U \eta=\left\langle(U \cap E)^{N_{H}}\right\rangle, \quad J \eta=\left\langle(J \cap E)^{N_{H}}\right\rangle, \quad J \mu=N_{J \eta}\left(N_{D} U \eta\right),
$$

and $\eta(q)=\left(U \eta I_{H}, J \mu N_{H}\right)$. Then:
(1) the image of \mathcal{P}_{D} under the map ϕ of 5.12(5) is contained in $\mathcal{P}(\gamma)_{E}$;
(2) $\eta: \mathcal{P}(\gamma)_{E} \rightarrow \mathcal{P}_{D}$ is a map of posets;
(3) $\eta \circ \phi=1$ on \mathcal{P}_{D}, so ϕ is injective on \mathcal{P}_{D} and induces an isomorphism of \mathcal{P}_{D} with $\phi\left(\mathcal{P}_{D}\right) \leq \mathcal{P}(\gamma)$;
(4) $\phi(\eta(q))=\left(U, J_{+}\right), J_{+} \leq J$, so $\phi(\eta(q)) \geq q$;
(5) ϕ induces an isomorphism of $\Delta(\tau, D)$ with $\Delta(\gamma, E)$ that has inverse η.

Proof. Let $p=(V, K) \in \mathcal{P}_{D}$. Then $V \leq D I_{H}$, so $V=V \cap D I_{H}=(V \cap D) I_{H}=$ $V_{D} I_{H}$. Then, since $V_{D} \leq \hat{H}$, we have $\hat{V}=V_{D} I_{H} \cap \hat{H}=V_{D}\left(I_{H} \cap \hat{H}\right)=V_{D} \hat{I}_{H}$. Similarly, $K=K_{D} N_{H}$ and $\hat{K}=K_{D} \hat{N}_{H}$. Thus $\phi(p)=\psi\left(V_{D} \hat{I}_{H}, K_{D} \hat{N}_{H}\right)=$ $\left(V_{E} I_{G}, K_{D} \pi N_{G}\right) \in \mathcal{P}(\gamma)_{E}$ by 5.12(5). This establishes (1).

On the other hand, let $q=(U, J) \in \mathcal{P}(\gamma)_{E}$. Then U_{E} is N_{G}-invariant, so $U \eta$ is the direct product of the group $U_{E}^{n}, n \in N_{H}$, with $U_{E}^{n}=(U \eta) \pi_{E^{n}}$. Since U_{E} is N_{G}-invariant, $U \eta$ is N_{H}-invariant, and since $U \cap \bar{N}_{E}=I_{E}$, we have $U \eta \cap \bar{N}_{D}=$ I_{D}. Thus $N_{D} \not \leq U \eta=U \eta I_{H} \cap D$, so $N_{D} \not \leq U \eta I_{H}$. Hence $W=U \eta I_{H} \in \mathcal{W}$ by 3.5. Furthermore, $W_{D}=W \cap D=U \eta I_{D}=U \eta$ and $W \leq D I_{H}$.

Similarly, $J \eta$ is the direct product of the groups $J_{E}^{n}, n \in N_{H}$, with $J_{E}^{n}=(J \eta) \pi_{E^{n}}$. Write $J_{E^{n}}$ for J_{E}^{n}. Define I_{+}as in 5.13. Since $I_{+} \leq \hat{I}_{H} \leq C_{H}\left(J_{E} / U_{E}\right)$ and $I_{+} \unlhd$ N_{H}, it follows that $\left[I_{+}, J \eta\right] \leq W_{D}$. Therefore, $W_{D} I_{+} \unlhd X=J \eta N_{H}$. Set $X^{*}=$ $X / W_{D} I_{+}$. Then $(J \eta)^{*} \unlhd X^{*}$ is the direct product of the groups $J_{F}^{*} \cong J_{E} / U_{E}$ and, by $5.13, I_{+}=C_{N_{H}}\left(\bar{N}_{D}^{*}\right)$. Thus $F^{*}\left(X^{*}\right)=\bar{N}_{D}^{*}$ is the direct product of the groups $F^{*}\left(J_{F}^{*}\right)=\bar{N}_{F}^{*} \cong L$. By $5.7(4 \mathrm{c}), N_{D}^{*}$ is a full diagonal subgroup of \bar{N}_{D}^{*}.

Let $Y=J \mu \hat{N}_{H}$. Now π induces a Y-equivariant isomorphism of N_{D}^{*} with \bar{N}_{E} / U_{E}, so $W_{D} \hat{I}_{H}=C_{Y}\left(\bar{N}_{E} / U_{E}\right)=C_{Y}\left(N_{D}^{*}\right)$ and hence $U \eta I_{H}=W_{D} I_{H}=$ $C_{J \mu N_{H}}\left(N_{D}^{*}\right)$; thus $N_{D} U \eta I_{H} / U \eta I_{H}=F^{*}\left(J \mu N_{H} / U \eta I_{H}\right)$ and therefore $\eta(q) \in \mathcal{P}_{D}$. Clearly η is map of posets, so (2) holds.

Let $U=I_{G} \cap E$. Then $\left[U, \bar{N}_{E}\right] \leq \bar{N}_{E} \cap U=\bar{I}_{E}$, so $W=\left\langle U^{N_{H}}\right\rangle I_{H}$ centralizes N_{D} / \bar{I}. By 5.10, $\bar{I}=I_{D}$, so $r=\left(W, W N_{H}\right) \in \Delta(\tau, D)$ and $r \geq d$. Claim $U \leq I_{E}$. Suppose not. Then $r \neq \infty$. But for each $v=\left(V, N_{H}\right) \in \Delta(\tau, D), U$ acts on V_{E}, so W acts on \bar{V}. By $5.10, V_{D}=\bar{V}$; then, since W centralizes N_{D} / I_{D}, we have $r \leq$ $\left(W V, W V N_{H}\right) \geq v$ by 3.5 and so $\mathcal{C}(d)=\mathcal{C}(r)=\mathcal{C}(s)$. Then, by $5.5(3), \Lambda(\tau)$ is connected, contrary to 5.1. Therefore, $I_{G} \cap E \leq I_{E}$.

Recall that $\phi(p)=\left(V_{E} I_{G}, K_{D} \pi N_{G}\right)$. Since $I_{G} \cap E \leq I_{E}$, we have $V_{E} I_{G} \cap E=$ V_{E} and so, by 5.10, $V_{E} \eta=V_{D}$. Next, $K_{D} \pi N_{G} \cap E=K_{D} \pi\left(N_{G} \cap E\right)$. Let P be
the preimage in \hat{N}_{H} under c of $N_{G} \cap E$. Then $K_{D} \leq\left(K_{D} \pi N_{G}\right) \mu$ and, since π induces a $K_{D} \hat{N}_{H}$-equivariant isomorphism of $N_{D} V_{D} / V_{D}$ with N_{E} / V_{E}, it follows that $\left(K_{D} \pi N_{G}\right) \mu \leq K_{D} P$. Therefore $\left(K_{D} \pi N_{G}\right) \mu N_{H}=K_{D} N_{H}$. That is, $\eta(\phi(p))=p$, establishing (3).

Now $J \mu N_{H} \cap D=J \mu\left(N_{H} \cap D\right)=J \mu N_{D}=J \mu$ because $N_{D} \leq J \mu$. By construction, $J \mu c \leq J$. Similarly, $U \eta I_{H} \cap J \eta=U \eta$ and $U=(U \eta) c$. Thus $\phi(\eta(q))=$ $\left(U, J_{+}\right)$, where $J_{+}=J \mu c N_{G} \leq J$. Hence (4) holds. In particular, if $J=U N_{G}$ then $J=J_{+}$, so (5) follows from (2) and (3).
5.15. Assume Γ is a sublattice of $\Lambda(\tau)$ that is isomorphic to $\Delta(m)$ for some $m>$ 2 and contains $0, \infty$. Assume that $\mathcal{P}(\geq x) \subseteq \Gamma$ for each $x \in \Gamma^{\#}$ and that $d \in \Gamma$. Then:
(1) $\mathcal{P}(\geq d) \subseteq \Delta(\tau, D)$;
(2) $Q=Q_{D} I_{H}$ and $M=Q N_{H}$, so $M=Q_{D} N_{H}$;
(3) $H=D N_{H}$ and $G=E N_{G}$;
(4) if Hypothesis 5.9 is satisfied and $\Lambda(\tau)$ is a C-lattice then $\Lambda(\tau)=\Delta(\tau, D)$, $H=\mathcal{K}_{*}(\tau, D), G=\mathcal{K}_{*}(\gamma, E)$, and $\phi: \Lambda(\tau) \rightarrow \Delta(\gamma, E)$ is an isomorphism.

Proof. Let $J=\{1, \ldots, m\}$ and let $\left(x_{j}=\left(V_{j}, K_{j}\right): j \in J\right)$ be the set of co-atoms of Γ. For $\alpha \subseteq J$, set $x_{\alpha}=\bigwedge_{a \in \alpha} x_{a}=\left(V_{\alpha}, K_{\alpha}\right)$. Set $J_{1}=\left\{j \in J: V_{j}=I_{H}\right\}$ and $J_{2}=J-J_{1}$. We first observe that, by 2.10(3),
(5) if $J \neq \alpha \subseteq J_{2}$ then $V_{\alpha}=\left\langle V_{a}: a \in \alpha\right\rangle$ and $K_{\alpha}=V_{\alpha} N_{H}$.

Suppose $\alpha \subseteq J_{1}$. Then, by 5.5(3), $d \leq x_{a}$ for $a \in \alpha$ and so $d \leq x_{\alpha}$. Then we can apply 2.10(1) to conclude that:
(6) if $\alpha \subseteq J_{1}$ then $d \leq x_{\alpha}, K_{\alpha}=\left\langle K_{a}: a \in \alpha\right\rangle$, and $V_{\alpha}=K \cap Q$;
(7) if $j \in J_{1}$ and $i \in J_{2}$, then $V_{i, j}=V_{i}$ is K_{j}-invariant and $K_{i}=V_{i} N_{H}$.

For as $j \in J_{1}$, we have $V_{j}=I_{H}$ and so $K_{j} \neq N_{H}$ since $x_{j} \neq \infty$. Then, since $K_{j} \leq K_{i, j}$ and since $V_{i, j} \cap K_{j}=V_{j}$ by $2.10(1)$, we also have $K_{i, j} \neq V_{i, j} N_{H}$. But by hypothesis $\mathcal{P}\left(\geq x_{i, j}\right) \subseteq \Gamma$, so $\mathcal{P}\left(\geq x_{i, j}\right) \cong \Delta(2)$. Therefore, since $x_{i, j}<$ $\left(V_{i, j}, V_{i, j} N_{H}\right)=x$, it follows that $x=x_{i}$; hence $V_{i}=V_{i, j}$ is $K_{i, j}$-invariant and $K_{i}=V_{i} N_{H}$. Then, since $K_{j} \leq K_{i, j}$, (7) follows.
(8) For $\alpha \subseteq J_{1}$ and $\beta \subseteq J_{2}, V_{\beta}$ is K_{α}-invariant.

By (5), $V_{\beta}=\left\langle V_{b}: b \in \beta\right\rangle$, and by (6), $K_{\alpha}=\left\langle K_{a}: a \in \alpha\right\rangle$. Then (8) follows from (7).
(9) For $\beta \subseteq J_{1}, V_{\beta}=I_{H}$.

Choose a counterexample with $|\beta|$ minimal. Then $|\beta|>1$, so $\beta=\alpha \cup\{j\}$ for some $j \in J_{1}$ and $\alpha \subseteq J_{1}$ with $V_{\alpha}=I_{H}$. Set $x=\left(V_{\beta}, V_{\beta} N_{H}\right)$. By (6), $d \leq x_{\beta}$. Thus $V_{\beta} \leq Q$, so $d \leq x$ and hence $0 \neq x \in \Gamma$. Also $x_{\beta} \leq x$, so $x=x_{\gamma}$ or $x_{\gamma} \wedge x_{j}$ for some $\gamma \subseteq \alpha$. But for $\gamma \subseteq \alpha$ we have $V_{\gamma}=I_{H}$, so $x=x_{\gamma} \wedge x_{j}$. Therefore $x \leq$ x_{j}, so $K_{j} \leq V_{\beta} N_{H}$, a contradiction.
(10) For all $j \in J$ we have $V_{j} \neq I_{H}$, so $x_{j}=\left(V_{j}, V_{j} N_{H}\right)$ and $J=J_{2}$.

Assume otherwise, so that $J_{1} \neq \emptyset$. Now $0=x_{J_{1}} \wedge x_{J_{2}}$, where $x_{J_{1}}=\left(I_{H}, K_{J_{1}}\right)$ by (9) and $x_{J_{2}}=\left(V_{J_{2}}, V_{J_{2}} N_{H}\right)$ by (5). By (8), $K_{J_{1}}$ acts on $V_{J_{2}}$. Thus, by 2.17, $x_{J_{1}} \wedge x_{J_{2}}=\left(V_{J_{2}}, K_{J_{2}}\right) \neq 0$, a contradiction.

Set $J_{3}=\left\{j \in J: V_{j} \not \leq D I_{H}\right\}$ and $J_{4}=J-J_{3}$. Set $\Delta=\Delta(\tau, D)$.
(11) $V_{J_{4}}=X I_{H}$, where $X=\left\langle V_{j} \cap D: j \in J_{4}\right\rangle \leq D$; in particular, $x_{J_{4}} \in \Delta$.

By (10), $J=J_{2}$, so by (5), $V_{J_{4}}=\left\langle V_{j} \cap D: j \in j_{4}\right\rangle I_{H}=X I_{H}$.
(12) Let $j \in J_{4}$ and $\alpha=J_{3} \cup\{j\}$; then $V_{\alpha} \cap D=V_{j} \cap D \unlhd K_{\alpha}$.

Set $U=V_{\alpha} \cap D$. Since $j \in J_{4}$ we have $V_{j}=\left(V_{j} \cap D\right) I_{H}$ and so, since $V_{j} \leq$ V_{α}, it follows that $V_{j} \leq U I_{H}$. Let $x=\left(U I_{H}, U N_{H}\right)$. Then $x_{\alpha} \leq x \leq x_{j}$ and $x \in$ Δ as $U \leq D$. Because $x_{\alpha} \leq x, x=x_{\beta}$ for some $\beta \subseteq \alpha$. If $\beta \neq\{j\}$ then $x \leq x_{i}$ for some $i \in J_{3}$; thus, since $x \in \Delta$, also $x_{i} \in \Delta$ by 2.7, a contradiction. Then $\beta=$ $\{j\}$ and so $x=x_{j}$. Therefore $\left(V_{\alpha} \cap D\right) I_{H}=V_{j}$, so

$$
V_{j} \cap D=\left(V_{\alpha} \cap D\right) I_{H} \cap D=\left(V_{\alpha} \cap D\right)\left(I_{H} \cap D\right)=V_{\alpha} \cap D \unlhd K_{\alpha},
$$

completing the proof of (12).
(13) Let $\alpha \subseteq J_{3}$ and $\emptyset \neq \beta \subseteq J_{4}$. Then:
(a) $V_{\beta} \cap D$ is K_{α}-invariant; and
(b) $N_{D} \not \leq\left(V_{\beta} \cap D\right) V_{\alpha}$.

By (5) and (10), $V_{\beta}=\left\langle V_{j}: j \in \beta\right\rangle$. For $j \in J_{4}$, we have $V_{j}=\left(V_{j} \cap D\right) I_{H}$ and so $V_{\beta} \cap D=\left\langle V_{j} \cap D: j \in \beta\right\rangle$. Now (13a) follows from (12).

Next, $\left(V_{\beta} \cap D\right) V_{\alpha} \cap D=\left(V_{\beta} \cap D\right)\left(V_{\alpha} \cap D\right)$ and, by (12), for $j \in \beta$ we have $V_{\alpha} \cap D \leq V_{\alpha \cup\{j\}} \cap D=V_{j} \cap D \leq V_{\beta}$, so $\left(V_{\beta} \cap D\right)\left(V_{\alpha} \cap D\right) \leq V_{\beta} \cap D$. Thus, if $N_{D} \leq\left(V_{\beta} \cap D\right) V_{\alpha}$ then $N_{D} \leq V_{\beta}$, a contradiction. This establishes (13b).

We now establish (1). Assume (1) fails. Then $d \neq \infty$ and so, since $d \in \Gamma$, we have $d=x_{\gamma}$ for some $\gamma \subseteq J$. By 2.7, $d \notin \Delta$; then, since Δ is a sublattice, $\gamma \nsubseteq$ J_{4}. Thus $J_{3} \neq \emptyset$. If $J_{4}=\emptyset$ then $d \leq x_{i}$ for each $i \in J$ by 5.5(3), contradicting $\Gamma \cong \Delta(m)$. Thus $J_{4} \neq \emptyset$.

Let $\alpha=J_{3}$ and $\beta=J_{4}$. Then $0=x_{\alpha} \wedge x_{\beta}$. But K_{α} acts on $X=V_{\beta} \cap D$ by (13), and $N_{D} \not \leq X V_{\alpha}$. Thus, by 2.17, $x_{\alpha} \wedge x_{\beta}=\left(X, X N_{H}\right) \neq 0$-a contradiction. This completes the proof of (1).

By (1), $(Q, M)=d \in \Delta$ and hence $Q=Q_{D} I_{H}$ and $M=Q N_{H}$. Thus (2) holds. Then (2) and 5.5(4) imply $H=D N_{H}$. Now, since $D \leq \hat{H}$, it follows that $\hat{H}=\hat{H} \cap D N_{H}=D \hat{N}_{H}$ and so $G=\hat{H} c=D c \hat{N}_{H} c=E N_{G}$, establishing (3).

Assume the hypothesis of (4). Then $\phi: \Delta(\tau, D) \rightarrow \Delta(\gamma, E)$ is an isomorphism with inverse η by $5.14(5)$. We claim that $\Delta=\Delta(\tau, D)=\Lambda(\tau)$. Suppose the contrary; then, since $\Lambda(\tau)$ is a C-lattice, there exists a $p=(V, K) \in \mathcal{P}^{*}$ with $p \notin \Delta$. By 5.5(3), $p \geq d$. But now (1) supplies a contradiction, establishing the claim.

Since $\Delta=\Lambda(\tau)$, we have $\mathcal{H}_{*}(\tau)=\mathcal{K}_{*}(\tau, D)$ and so $H=\mathcal{K}_{*}(\tau, D)$ by 5.1. Let $G_{1}=\mathcal{K}_{*}(\gamma, E)$ and suppose $G \neq G_{1}$. Then, since $G=E N_{G}$, we have $X_{E}=$ $G_{1} \cap E \neq E$ and so

$$
X=\left\langle X_{E}^{N_{H}}\right\rangle=\prod_{F \in \mathcal{L}} X_{F} \neq D
$$

where $X_{E^{n}}=X_{E}^{n}$ for $n \in N_{H}$. Let $p=(V, K) \in \mathcal{P}^{*}$ and $p_{1}=\left(V_{1}, K_{1}\right)=\phi(p)$. Then $V_{1} \cap E \leq X_{E}$, so $V_{D}=V_{1} \eta \leq X$ and hence, since $\eta=\phi^{-1}, K=V_{D} N_{H} \leq$ $X N_{H}$. Therefore $H=\mathcal{K}_{*}(\tau, D)=X N_{H}$. Then, since $X \unlhd X N_{H}$, the unique minimal normal subgroup D of H is contained in X, contradicting X proper in D. This completes the proof of (4).

6. Proof of Theorem 2

In this section we assume the following hypothesis.
Hypothesis 6.1. For some integers $t>1$ and $m_{i}>2, \Lambda$ is a $D \Delta\left(m_{1}, \ldots, m_{t}\right)$ lattice, L is a nonabelian finite simple group, and $\tau=\left(H, N_{H}, I_{H}\right) \in \mathcal{T}(L)$ with $\Lambda \cong \Lambda(\tau)$ and $|H|$ minimal subject to this constraint.

6.2. Hypothesis 5.1 is satisfied.

Proof. We begin by remarking that Hypothesis 6.1 implies Hypothesis 2.1. Because Λ is a $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattice, Λ is a $C D$-lattice. By $2.14, H=\mathcal{H}(\tau)$ and $\operatorname{ker}_{N_{H}}(H)=1$. Then, by 4.11, $D=F^{*}(H)$ is a minimal normal subgroup of H; and, by $4.12, D I_{H} \notin \mathcal{W}$. By $2.15, H=\mathcal{H}_{*}(\tau)$, completing the proof.

Set $D=F^{*}(H)$ and let \mathcal{L} be the set of components of H.
6.3. Hypothesis 5.9 is satisfied.

Proof. By 5.8, N_{H} is transitive on \mathcal{L}. Therefore, since Λ is a C-lattice, the lemma follows from 6.2.
6.4. Adopt Notation 5.11. Then:
(1) $\Lambda(\tau)=\Delta(\tau, D)$;
(2) $H=D N_{H}$;
(3) $G=E N_{G}$;
(4) $\phi: \Lambda(\tau) \rightarrow \Delta(\gamma, E)$ is an isomorphism;
(5) $G=\mathcal{K}_{*}(\gamma, E)$.

Proof. Let \mathcal{C} be a connected component of $\Lambda(\tau)^{\prime}$ with $d \in \mathcal{C}$ if $d \neq \infty$, and set $\Gamma=\mathcal{C} \cup\{0, \infty\}$. Since Λ is a $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattice, $\Gamma \cong \Delta\left(m_{i}\right)$ for some i. Furthermore, $\mathcal{P}(\geq x) \subseteq \Gamma$ for all $x \in \Gamma^{\#}$, so the lemma follows from 6.3 and 5.15.

Observe that Theorem 2 follows from [A2, Thm. 3] and 6.4. To see this, assume the hypotheses of Theorem 2 and let $(H, \tilde{G}) \in \mathcal{G}^{*}(\Lambda)$. We may assume that \tilde{G} is not almost simple. Then [A2, Thm. 3] shows that $\tau=\left(H, N_{H}, I_{H}\right) \in \mathcal{T}(L)$, where L is a component of $\tilde{G}, N_{H}=N_{H}(L)$, and $I_{H}=C_{H}(L)$. Replace τ by a tuple in $\mathcal{T}(L)$ with $|H|$ minimal. Then Hypothesis 6.1 is satisfied. We adopt Notation 5.11 and appeal to 6.4: by construction, $E \leq G \leq \operatorname{Aut}(E)$, so G is almost simple with $F^{*}(G)=E$. By 5.12(3), $\gamma=\left(G, N_{G}, I_{G}\right) \in \mathcal{T}(L)$; by 6.4(3),
$G=E N_{G}$. Moreover, $\Lambda \cong \Lambda(\tau) \cong \Delta(\gamma, E)$ by 6.4(4), and $G=\mathcal{K}_{*}(\gamma, E)$ by 6.4(5). Finally, by $2.11(2), \boldsymbol{\Xi}(\gamma)$ is isomorphic to the dual of $\Delta(\gamma, E)$ and so, since $\Delta(\gamma, E) \cong \Lambda$ and since the $D \Delta\left(m_{1}, \ldots, m_{t}\right)$-lattice Λ is self-dual, it follows that $\Lambda \cong \Xi(\gamma)$. Similarly, $\mathcal{K}(\gamma)=\mathcal{K}_{*}(\gamma, E)$, so $G=\mathcal{K}(\gamma)$. Hence γ satisfies conclusion (2) of Theorem 2, so the proof of Theorem 2 is complete.

References

[A1] M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math., 10, Cambridge Univ. Press, Cambridge, 1986.
[A2] -, On intervals in subgroup lattices of finite groups, J. Amer. Math. Soc. 21 (2008), 809-830.
[AS] M. Aschbacher and L. Scott, Maximal subgroups of finite groups, J. Algebra 92 (1985), 44-80.
[BL] R. Baddeley and A. Lucchini, On representing finite lattices as intervals in subgroup lattices of finite groups, J. Algebra 196 (1997), 1-100.
[PPu] P. Pálfy and P. Pudlak, Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups, Algebra Universalis 11 (1980), 22-27.
[Sh] J. Shareshian, Topology of order complexes of intervals in subgroup lattices, J. Algebra 268 (2003), 677-685.

Department of Physics, Mathematics, and Astronomy
California Institute of Technology
Pasadena, CA 91125
asch@its.caltech.edu

[^0]: Received February 12, 2007. Revision received January 31, 2008.
 This work was partially supported by NSF-0504852.

