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On a Problem of Mahler and Szekeres on
Approximation by Roots of Integers

Yann Bugeaud & Artūras Dubickas

1. Introduction

Let α be a real number greater than 1. We shall consider the set of limit points
�(α) of the sequence ‖αn‖1/n, n = 1, 2, 3, . . . . (Throughout, ‖y‖ stands for the
distance between y ∈ R and the nearest integer to y.) Clearly, �(α) is a closed set
contained in [0,1].

In [7], Mahler and Szekeres studied the quantity

P(α) = lim inf
n→∞ ‖αn‖1/n,

which is the smallest element of the set �(α). Their paper, which motivates the
present work, does not seem to be very well known, although a number of results
concerning the distribution of the sequence ‖αn‖, n = 1, 2, 3, . . . , can be given in
terms of �(α).

For example, Mahler’s [6] result—asserting that, given any rational noninte-
ger number p/q > 1 and any positive number ε, the inequality ‖(p/q)n‖ >

(1 − ε)n holds for all but finitely many positive integers n—can be written as
limn→∞‖(p/q)n‖1/n = 1; that is, �(p/q) = {1}. This result was extended by
Corvaja and Zannier [3], who established that �(α) = {1} holds for every alge-
braic number α > 1 such that αm is not a Pisot number for every positive integer
m. Recall that α > 1 is a Pisot number if it is an algebraic integer whose conju-
gates over Q (if any) all lie in the open unit disc |z| < 1.

Our first theorem gives a complete characterization of the set �(α) for every
algebraic number α > 1.

Theorem 1. For every algebraic number α > 1 such that αm is not a Pisot
number for each positive integer m, we have �(α) = {1}. Alternatively, let m be
the least positive integer for which β = αm is a Pisot number, say, of degree d.
Suppose that the conjugates of β over Q are labeled so that β = β1 > |β2| ≥
· · · ≥ |βd |. Put |α2| = |β2|1/m. Then:

(a) �(α) = {0} if m = 1 and d = 1;
(b) �(α) = {0,1} if m ≥ 2 and d = 1;
(c) �(α) = {|α2|} if m = 1 and d ≥ 2;
(d) �(α) = {|α2|, 1} if m ≥ 2 and d ≥ 2.
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In fact, Mahler and Szekeres [7] proved that the situation when the sequence
‖αn‖1/n, n = 1, 2, 3, . . . , has a unique limit point 1 (i.e., when �(α) = {1}) is
“generic”: �(α) = {1} for almost every α > 1 in the sense of the Lebesgue mea-
sure. They also showed that there are some transcendental numbers α > 1 such
that �(α) contains both 0 and 1. This raises a natural question regarding whether
there exist α > 1 for which the set �(α) is large (e.g., contains a transcendental
number).

Our next theorem shows that there are α for which �(α) is the largest possible
set; namely, �(α) = [0,1].

Theorem 2. Suppose that I ⊆ (1, ∞) is an interval of positive length. Then
there are uncountably many α ∈ I for which �(α) = [0,1]. More generally, for
any function f : N �→ R>0 satisfying lim supn→∞ f(n) = ∞, there are uncount-
ably many α ∈ I for which the set of limit points of the sequence ‖αn‖1/f(n), n =
1, 2, . . . , is the entire interval [0,1].

However, the set of α for which �(α) = [0,1] is very small from a metric point
of view.

Theorem 3. The set of real numbers α > 1 for which�(α) contains 0 has Haus-
dorff dimension 0.

Results from metrical number theory allow us to prove the existence of transcen-
dental real numbers α with 0 < P(α) < 1. Throughout this paper, “dim” stands
for the Hausdorff dimension (see Section 5).

Theorem 4. Let a and b be real numbers with 1 ≤ a < b. For any real number
τ ≥ 1, we have

dim{α ∈ (a, b) : P(α) ≤ 1/τ } = log b

log(bτ)
.

Note that Theorem 4 implies Theorem 3. Most probably we also have

dim{α ∈ (a, b) : P(α) = 1/τ } = log b

log(bτ)
,

but unfortunately it seems that current techniques are not powerful enough to prove
this. In particular, it is likely that the function P assumes every possible value in
the interval [0,1]. In this direction, Theorem 4 implies that the set of values taken
by P is dense in [0,1].

As in Theorem 2, instead of the sequence ‖αn‖1/n, n ≥ 1, we may as well study
sequences ‖αn‖1/f(n), n ≥ 1, for nondecreasing sequences f : N �→ R>0 that sat-
isfy limn→∞ f(n) = ∞. This problem is discussed in the next section. Then, in
Sections 3 and 4, we shall prove Theorems 1 and 2. The remaining proofs will be
given in Section 5, and Section 6 contains some open questions. Finally, we re-
mark that the tools used in the proofs come from quite different sources, including
(among others) [1; 3; 5; 9].
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2. Further Metrical Results

Let a and b be real numbers with 1 ≤ a < b. Let ϕ : N �→ R>0 be a nonincreasing
function that tends to zero as n → ∞. We shall study the set

Ka,b(ϕ) = {α ∈ (a, b) : ‖αn‖ ≤ ϕ(n) for i.m. positive integers n},
where we use “i.m.” to denote “infinitely many”.

We begin by quoting an old result of Koksma [5] that provides us with a
Khintchine-type theorem.

Theorem 5 [5]. Let εn, n = 1, 2, . . . , be a sequence of real numbers with 0 ≤
εn ≤ 1/2 for every n. If the sum

∑∞
n=1 εn is convergent then, for almost every real

number α > 1, there exists an integer n0(α) such that

‖αn‖ ≥ εn for each n ≥ n0(α).

If the sequence εn, n = 1, 2, . . . , is nonincreasing and if the sum
∑∞

n=1 εn is diver-
gent, then for almost all real numbers α > 1 there exist arbitrarily large integers
n such that

‖αn‖ ≤ εn.

We study the sets Ka,b(ϕ) from a metric point of view, focusing our attention on
the special cases where

ϕ(n) = n−τ for some real number τ > 1,

ϕ(n) = τ−n for some real number τ > 1.

In all these cases, the corresponding sets Ka,b(ϕ) have Lebesgue measure 0 by
Theorem 5. We are interested in their Hausdorff dimension. To simplify the nota-
tion, for any τ > 1 we write Ka,b(τ ) instead of Ka,b(n �→ n−τ ).

Theorem 6. For any real number τ > 1, the set

Ka,b(τ ) = {α ∈ (a, b) : ‖αn‖ ≤ n−τ for i.m. positive integers n}
has Lebesgue measure 0 and its Hausdorff dimension is equal to 1.

The first assertion of Theorem 6 is contained in Theorem 5. The second assertion
is new and it is in a striking contrast with the following classical theorem, proved
independently by Jarník [4] and Besicovitch [2].

Theorem 7 [2; 4]. For any real number τ ≥ 1, the Hausdorff dimension of
the set

{α ∈ R : ‖nα‖ ≤ n−τ for i.m. positive integers n}
is equal to 2/(τ + 1).

Theorems 5 and 6 suggest that we introduce the function λ defined on the set of
real numbers greater than 1 by
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λ(α) = max{τ : α ∈ K1,∞(τ )},
where K1,∞ stands for the union of the sets K1,b over the integers b > 1. The the-
orems imply that λ(α) = 1 for almost all real numbers. Furthermore, Theorem 6
asserts that

dim{α ∈ (1, +∞) : λ(α) ≥ τ } = 1,

and its proof can easily be modified to yield that

dim{α ∈ (1, +∞) : λ(α) = τ } = 1. (1)

Consequently, the function λ takes every value ≥ 1.
Note that, for some α > 1, we may have λ(α) = 0. For instance, Pisot [8]

proved that there are α > 1 for which ‖αn‖ ≥ c > 0 for all n∈ N. For such α, we
clearly have λ(α) = 0.

3. Auxiliary Results

We shall need the following simple lemma about Pisot numbers.

Lemma 8. Let α > 1, n,m∈ N, and g = gcd(n,m). If αn and αm are Pisot num-
bers, then αg is a Pisot number.

Proof. After replacing n by n/g and m by m/g, we can assume that g = 1 and so
αg = α. Suppose α is not a Pisot number. Since αn and αm are Pisot numbers, this
can only happen if one of the conjugates of α over Q is of the form α exp(2πik/n),
where k ∈ {1, . . . , n − 1}, and another one is of the form α exp(2πi�/m), where
� ∈ {1, . . . ,m − 1}. But αn is a Pisot number, so all three nth powers must be
equal. In particular, αn exp(2πi�n/m) = αn. It follows that m|n� (i.e., m|�), a
contradiction.

A key lemma for the proof of Theorem 2 can be stated as follows.

Lemma 9. Let f : N �→ R>0 be a function satisfying lim supn→∞ f(n) = ∞.

Suppose that 1 < u < v. Then there is a sequence of positive integers 1 ≤ n1 <

n2 < n3 < · · · depending only on u, v, and f and such that, for any sequence of
real numbers r1, r2, r3, . . . ∈ (0,1) satisfying 1/(3k) < rk < exp(−1/k) for every
k ≥ 1, there is an α ∈ [u, v] for which limk→∞(‖αnk‖1/f(nk) − rk) = 0.

Proof. We shall consider the sequence of integers 1 ≤ n1 < n2 < n3 < · · ·
satisfying

n1 log u > max(4, log(2n1)), (2)
∞∏
k=1

(
1 − 1

nk

)1/nk

>
u

v
, (3)

and, for each k ≥ 1,
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nk+1 > 20nk , (4)

f(nk) > k log 2, (5)

(nk+1 − nk) log u > f(nk) log(3k), (6)

unk+1−1(u − 1) > vnk. (7)

It is clear that such a sequence exists and that it depends on u, v, and f only.
In order to construct α with required properties, we consider the sequence

x0 = v,
xk = ([xnkk−1] − 1 + r

f(nk)

k )1/nk

for k = 1, 2, . . . . Then

xk ≤ (x
nk
k−1 − 1 + r

f(nk)

k )1/nk < (x
nk
k−1)

1/nk = xk−1,

so v = x0 > x1 > x2 > · · · .
Next, we will show that xk > u for each k ≥ 0. For this, we shall prove that

xk > x0
∏k

j=1(1 − 1/nj )1/nj and then apply (3). Consider the quotient

xk

xk−1
>

(x
nk
k−1 − 2 + r

f(nk)

k )1/nk

xk−1
>

(x
nk
k−1 − 2)1/nk

xk−1
=

(
1 − 2

x
nk
k−1

)1/nk

. (8)

Inserting k = 1 into (8) yields x1/x0 > (1 − 2/xn1
0 )1/n1. By (2) we have 2/xn1

0 <

1/n1, so x1 > x0(1 − 1/n1)
1/n1. Suppose that xk−1 > x0

∏k−1
j=1(1 − 1/nj )1/nj. Com-

bining this inequality with (8) and using 2/xnkk−1 < 1/nk (which is true by (2)
because xk−1 > u), by induction on k we deduce that the inequality xk >

x0
∏k

j=1(1 − 1/nj )1/nj holds for every k ≥ 1. Because x0 = v, when combined
with (3) this yields that xk > v for each k ≥ 0. Hence the limit α = limk→∞ xk
exists and belongs to the interval [u, v].

Next, we need a lower bound for α in terms of xk. Consider the product∏∞
j=k xj+1/xj = α/xk. Using (8), we obtain

α

xk
>

∞∏
j=k

(
1 − 2

x
nj+1
j

)1/nj+1

.

Note that 2/xnj+1
j < 1/2 by (2). On applying the inequality 1 − y > exp(−2y),

where 0 < y < 1/2, we thus obtain α/xk > exp
(−∑∞

j=k 4/(nj+1x
nj+1
j )

)
. We

claim that the sum in the exponent is less than 5/(nk+1x
nk+1
k ). Indeed, using xj >

u, we derive that
∞∑

j=k+1

4

nj+1x
nj+1
j

<
4

nk+2

∞∑
j=k+1

1

unj+1
<

4

nk+2

∞∑
j=nk+2

1

uj
= 4

nk+2unk+2−1(u − 1)
.

This is less than 1/(nk+1v
nk+1) ≤ 1/(nk+1x

nk+1
k ) because of (4) and (7). It follows

that
∑∞

j=k 4/(nj+1x
nj+1
j ) < 5/(nk+1x

nk+1
k ). Hence α > xk exp(−5/(nk+1x

nk+1
k )).

Now we will show that the nearest integer to αnk is ak = [xnkk−1] − 1. Indeed,
first we have
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αnk < x
nk
k = [xnkk−1] − 1 + r

f(nk)

k = ak + r
f(nk)

k . (9)

Second,

ak + r
f(nk)

k = x
nk
k < αnk exp

(
5nk

nk+1x
nk+1
k

)
.

Using (4) and exp(y) < 1 + 2y where 0 < y < 1, we can bound the right-hand
side as

αnk exp

(
5nk

nk+1x
nk+1
k

)
< αnk + 10αnknk

nk+1x
nk+1
k

< αnk + αnk

2xnk+1
k

< αnk + α−nk+1+nk

2
≤ αnk + u−nk+1+nk

2
.

From 1/rk < 3k and (6), we have unk+1−nk > (1/rk)f(nk). Hence u−nk+1+nk <

r
f(nk)

k . It follows that ak + r
f(nk)

k < αnk + r
f(nk)

k /2. Combining with (9), we de-
duce that

r
f(nk)

k

2
< αnk − ak < r

f(nk)

k .

Since rk < exp(−1/k) it follows from (5) that rf(nk)k < 1/2, so ak is indeed the
nearest integer to αnk.

Moreover, the preceding inequalities imply that

rk2
−1/f(nk) < ‖αnk‖1/f(nk) = (αnk − ak)

1/f(nk) < rk.

By (5), we have 1 − 2−1/f(nk) < 1/k; hence

0 > ‖αnk‖1/f(nk) − rk > rk(2
−1/f(nk) − 1) > −1

k
.

Therefore, limk→∞(‖αnk‖1/f(nk) − rk) = 0 as claimed.

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. The first claim follows immediately from [3, Thm. 1] and is
given here for the sake of completeness.

Part (a) is trivial. In part (b), we have α = D1/m with some D ∈ N. By taking
a subsequence n = m, 2m, 3m, . . . , we see that ‖αn‖ = 0 infinitely often and so
0 ∈�(α). We claim that ‖αn‖1/n → 1 as n → ∞ for n of the form n = � + mk,
k = 0,1, 2, . . . , where � is in the set {1, . . . ,m−1}. Indeed, then α�+mk = Dk+�/m.

The number D�/m is algebraic irrational. By a theorem of Ridout [9], for any ε >
0 there is a positive constant c (that does not depend on k) such that ‖D�/mDk‖ >

cD−εk. Hence
‖D�/mDk‖1/(�+mk) > c1/(�+mk)D−ε/(2m).

Here limk→∞ c1/(�+mk) = 1, so the right-hand side can be arbitrarily close to 1 if
we choose ε small enough. It follows that ‖α�+mk‖1/(�+mk) → 1 as k → ∞. This
competes the proof of part (b).
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Consider now part (c). Then α is a Pisot number of degree d ≥ 2 whose conju-
gates over Q are labeled so that α = α1 > |α2| ≥ · · · ≥ |αd |. We shall prove that
there is a constant λ > 0 such that

n−λ|α2|n ≤ ‖αn‖ ≤ (d − 1)|α2|n (10)

for each sufficiently large n. Evidently, this implies that limn→∞‖αn‖1/n = |α2|
(i.e., that �(α) = {|α2|}).

Since Sn = αn + αn
2 + · · · + αn

d is an integer and since |αn
2 + · · · + αn

d | ≤
(d − 1)|α2|n, we immediately obtain the upper bound in (10)—namely, ‖αn‖ ≤
|αn − Sn| ≤ (d − 1)|α2|n.

Evidently, Sn is the nearest integer to αn for each sufficiently large n. By a result
of Smyth [11], there are at most two conjugates of α of equal moduli. So either α2

is a real number and so |α2| > |α3| or else α2 is complex, say, α2 = |α2| exp(iφ),
in which case α3 is a complex conjugate of α2, α3 = |α2| exp(−iφ), and |α2| >
|α4|. In the first case,

|αn
2 + · · · + αn

d | ≥ |α2|n − (d − 2)|α3|n > |α2|n/n
for each sufficiently large n. (So the lower bound in (10) holds, e.g., with λ = 1.)
In the second case, αn

2 + αn
3 = 2 cos(nφ)|α2|n; hence

|αn
2 + · · · + αn

d | ≥ 2|cos(nφ)||α2|n − (d − 3)|α4|n.
In order to prove the lower bound in (10) it suffices to show that |cos(nφ)| > n−λ.

Take the nearest number to nφ of the form π(m + 1/2), m ∈ Z. Using |sin y| ≥
2|y|/π ≥ |y|/2 where |y| ≤ π/2, we deduce that

|cos(nφ)| = |sin(nφ − π(m + 1/2))|
≥ |nφ − π(m + 1/2)|

2
= |2nφ/π − (2m + 1)|

4
.

But φ/π is a quotient of two logarithms of algebraic numbers and is an irrational
number. So, by Gelfond’s result on approximation of such numbers by rational
fractions (see e.g. [12]), we obtain that |2nφ/π − (2m + 1)| > (2n)−c, where c
is positive constant depending only on α. Since (2n)−c/4 > n−2c for each suffi-
ciently large n, the lower bound in (10) holds with λ = 2c. This completes the
proof of part (c).

Finally, for the proof of part (d), suppose that β = αm is a Pisot number of de-
gree d ≥ 2. Here, m ≥ 2. As in part (b), we shall consider n running through
every arithmetic progression n = �+mk, k = 0,1, 2, . . . , where � is a fixed num-
ber of the set {0,1, . . . ,m − 1}. If � = 0, then αn = αmk = βk. By part (c),

‖αmk‖1/(mk) = ‖βk‖1/(mk) → |β2|1/m = |α2|
as k → ∞. Suppose that � ∈ {1, . . . ,m − 1}. We then claim that the number
α�+mk has one more conjugate of modulus α�+mk. Indeed, otherwise α�+mk is a
Pisot number because it is an algebraic integer all of whose conjugates lie in |z| ≤
|α2|�+mk < 1. But if αm and α�+mk (for some k ≥ 0) are Pisot numbers, then by
Lemma 8 it follows that α� is a Pisot number, which contradicts the choice of m.
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Since α�+mk has one more conjugate of modulus α�+mk (different from α�+mk

itself ), α�+mk is not a pseudo-Pisot number in the sense of the definition given
in [3]. (Pseudo-Pisot numbers are the usual Pisot numbers and those algebraic
numbers with integral trace that have a unique conjugate in |z| > 1 and all other
conjugates in |z| < 1.) Thus, by the Main Theorem of [3] we obtain that, for any
ε > 0, the inequality ‖α�+mk‖ < (1 − ε)�+mk holds for finitely many k ∈ N only.
Hence ‖α�+mk‖1/(�+mk) → 1 as k → ∞. This completes the proof of part (d).

Proof of Theorem 2. Fix any closed subinterval [u, v] of I, where 1 < u < v. Take
any sequence r1, r2, r3, . . . ∈ (0,1) satisfying 1/(3k) < rk < exp(−1/k) for each
k ≥ 1 that is everywhere dense in [0,1]. For every τ from the interval (1/3,1/e),
the sequence

r1, τ, r2, τ, r3, τ, . . .

is also everywhere dense in [0,1]. Moreover, the kth element of this sequence is
also greater than 1/(3k) and smaller than exp(−1/k). Hence, by Lemma 9, there is
an α = α(τ) ∈ [u, v] for which the sequence ‖αn‖1/f(n), n = 1, 2, 3, . . . , is every-
where dense in [0,1]. Furthermore, all these α(τ) are distinct because the limits
limk→∞‖α(τ)n2k‖1/f(n2k) = τ are distinct. There are uncountably many such α(τ)
because there are uncountably many τ ∈ (1/3,1/e). This proves the second claim
of the theorem. The first part is a particular case of the second part with the func-
tion f(n) = n for each n∈ N.

5. Proofs of the Metrical Results

We begin with an easy consequence of the Cantelli lemma. A dimension function
f : R>0 �→ R>0 is a continuous increasing function such that f(r) → 0 when
r → 0. (Actually, it is enough to assume that f is defined on some open interval
(0, t) with t positive.) For any positive real number δ and any real set E, define

Hf

δ(E) = inf
J

∑
j∈J

f(|Uj |),

where the infimum is taken over all the countable coverings {Uj}j∈J of E by inter-
valsUj of length |Uj | at most δ. Clearly, the function δ �→ Hf

δ(E) is nonincreasing.
Consequently,

Hf(E) = lim
δ→0

Hf

δ(E) = sup
δ→0

Hf

δ(E)

is well-defined and lies in [0, +∞]; this is the Hf -measure of E.
When f is a power function x �→ x s with s a positive real number, we write

Hs(E) instead of Hf(E). The Hausdorff dimension of E is then the critical value
of s at which Hs(E) “jumps” from +∞ to 0. In other words, we have

dimE = inf{s : Hs(E) = 0} = sup{s : Hs(E) = +∞}.
Lemma 10. Let a and b be real numbers with 1 ≤ a < b. Let f be a dimension
function. If the sum



Approximation by Roots of Integers 711

∑
n≥1

∑
an≤g≤bn

f

(
3ϕ(n)

ng(n−1)/n

)
(11)

converges, then Hf(Ka,b(ϕ)) = 0.

Proof. Let B(ϕ, a, b) denote the set of real numbers α in (a, b) such that there are
infinitely many positive integers n with

‖αn‖ = |αn − g| ≤ ϕ(n) (12)

for some integer g with an ≤ g ≤ bn. Proceeding as in [7], we infer from (12) that
if both n and g are given then, for n sufficiently large, α is restricted to an interval

Jn(g) = [(g − ϕ(n))1/n, (g + ϕ(n))1/n] ∩ (a, b)

whose length does not exceed 3ϕ(n)/(ng(n−1)/n) provided that n is sufficiently
large. Consequently, the total Hf -measure of all the intervals Jn(g) correspond-
ing to possible values of g is not greater than

∑
an≤g≤bn

f

(
3ϕ(n)

ng(n−1)/n

)
.

Since the sum (11) is convergent, the Hf -measure of the set of points contained in
infinitely many intervals Jn(g) is zero, as asserted.

The proofs of our metrical theorems rest on Theorem 5 and on the mass transfer-
ence principle from [1]. In what follows, µ denotes the Lebesgue measure. For a
positive real number r and for x ∈ R, let I(x, r) denote the closed interval [x − r,
x + r]. Furthermore, for a function f , we denote by If = If(x, r) the closed in-
terval [x − f(r), x + f(r)].

Theorem 11 [1]. Let J be a closed interval in [1, +∞). Let f be a dimension
function. Let (Ii)i≥1 be a sequence of closed intervals in J such that the length of
Ii tends to zero as i tends to infinity. Suppose that, for any interval I in J,

µ
(
I ∩ lim sup

i→∞
I
f

i

)
= µ(I ). (13)

Then, for any interval I in J,

Hf
(
I ∩ lim sup

i→∞
Ii

)
= Hf(I ). (14)

We begin with some preliminaries for the proofs of Theorems 6 and 4.
Let a and b be real numbers with 1 ≤ a < b. Let ϕ : R>0 �→ R≥0 be a nonin-

creasing function that tends to zero. We are concerned with the set Ka,b(ϕ) defined
in Section 2.

Suppose that ψ : N �→ R>0 is a nonincreasing function such that the sum∑∞
n=1ψ(n) diverges and ψ(n) tends to zero as n tends to infinity. Arguing as in

the proof of Lemma 10, Theorem 5 implies that
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(a, b) ∩ lim sup
n→∞

⋃
an≤g≤bn

I(g1/n, n−1g−(n−1)/nψ(n)) (15)

has full Lebesgue measure in (a, b).
Assume that we have found a suitable function f such that

f(n−1g−(n−1)/nϕ(n)) ≥ ψ(n)

ng(n−1)/n

for all sufficiently large integers n and for all integers g with an ≤ g ≤ bn. Then,
by (15), the set

(a, b) ∩ lim sup
n→∞

⋃
an≤g≤bn

I(g1/n, f(n−1g−(n−1)/nϕ(n)))

has full Lebesgue measure in (a, b); that is, assumption (13) is satisfied. Theo-
rem 11 then yields, by (14), that the Hf -measure of

(a, b) ∩ lim sup
n→∞

⋃
an≤g≤bn

I(g1/n, n−1g−(n−1)/nϕ(n)),

which is contained in Ka,b(ϕ), is equal to the Hf -measure of (a, b). Consequently,
the Hf -measure of Ka,b(ϕ) is greater than or equal to the Hf -measure of (a, b).

Proof of Theorem 6. In view of Theorem 5, we need only prove the second asser-
tion. Without any restriction, we assume that a > 1. Let us consider the family of
dimension functions

fu : x �→ x(log1/x)u for u > 0.

Observe that

fτ−1

(
n−τ−1

g(n−1)/n

)
= n−τ(log(nτ+1g(n−1)/n))τ−1

ng(n−1)/n
.

Since g ≥ an, we get

n−τ(log(nτ+1g(n−1)/n))τ−1 ≥ n−τ(τ log n + (n − 1) log a)τ−1

≥ (1 − 1/n)τ(log a)τ−1(n − 1)−1.

Because the sum
∑∞

n=2(1 − 1/n)τ(n− 1)−1 diverges, we may argue as in the pre-
liminaries with ψ(n) = (1 − 1/n)τ(log a)τ−1(n − 1)−1 to infer from Theorem 11
that

Hfτ−1(Ka,b(τ )) = +∞.

This proves that the Hausdorff dimension of the set Ka,b(τ ) is equal to1, as asserted.
Furthermore, it easily follows from Lemma 10 that

Hfτ−1(Ka,b(τ + 1/k)) = 0 if k ≥ 1.

Consequently, we get
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Hfτ−1

(
Ka,b(τ )

∖ ⋃
k≥1

(Ka,b(τ + 1/k)

)
= +∞,

and (1) is established.

Proof of Theorem 4. Put Sa,b(τ ) = {α ∈ (a, b) : P(α) ≤ 1/τ }. Note that, for any
ε > 0, Sa,b(τ ) ⊆ Ka,b(ϕ) with ϕ(n) = (τ − ε)−n. It follows straightforwardly
from Lemma 10 that the Hausdorff dimension of the set Sa,b(τ ) is bounded from
above by log b/log(bτ).

For a lower bound, we shall work with the family of dimension functions
gs : x �→ x s, where 0 < s < 1. According to the preliminaries, we must find
a nonincreasing function ψ such that

∑∞
n=1ψ(n) diverges, ψ(n) tends to zero as

n tends to infinity, and

gs

(
τ−n

ng(n−1)/n

)
≥ ψ(n)

ng(n−1)/n
;

in other words, such that

ψ(n) ≤ n1−sτ−nsg(1−s)(n−1)/n

for every integer g in the interval [an, bn]. If s does not exceed log a/log(aτ), then
τ−nsg(1−s)(n−1)/n ≥ as−1 for every integer g in the interval [an, bn] and a suitable
choice for the function ψ is given by ψ(n) = 1/n.

Consequently, we get the lower bound

dim Sa,b(τ ) ≥ log a

log(aτ)
.

However, Sa,b(τ ) contains Sa ′,b(τ ) for any a ′ with a < a ′ < b. Hence

dim Sa,b(τ ) ≥ log b

log(bτ)
,

giving dim Sa,b(τ ) = log b/log(bτ), as claimed.

6. Open Questions

We showed at the end of Section 2 that the function λ takes every value in
{0} ∪ [1, +∞). In view of this, we address the following question.

Problem 12. Do there exist real numbers α > 1 such that

0 < λ(α) < 1?

The distribution of the integer powers of a fixed rational number > 1 is far from
being understood. Mahler’s result [6] motivates the following question.

Problem 13. Let α = p/q > 1 be a noninteger rational number. Is there
a nondecreasing sequence tn, n = 1, 2, . . . , of positive real numbers such that
limn→∞ tn = ∞ and
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lim inf
n→∞ ‖(p/q)n‖tn/n = 1?

It is most likely that, in order to answer Problem 13 in the affirmative, one must
first improve upon the key tool in the proof of Mahler’s result [6]—namely, the
Ridout theorem [9], which is the non-Archimedean analogue of Roth’s theorem.
Recall that Roth [10] established that, for any irrational algebraic number ξ and
any positive real number ε, there are only finitely many rational numbers p/q such
that q ≥ 1 and |ξ − p/q| < q−2−ε. A standard conjecture in Diophantine approx-
imation (often referred to as the Lang conjecture) claims that, for any irrational
algebraic number ξ and any positive real number ε, there are only finitely many
rational numbers p/q such that q ≥ 2 and |ξ − p/q| < q−2(log q)−1−ε. If we
believe in this conjecture and in its non-Archimedean extension (as Ridout’s the-
orem extends Roth’s theorem) then the latter would imply that, for any relatively
prime integers p, q with p > q ≥ 2 and any positive real number ε, the inequality

‖(p/q)n‖1/n ≥ e−(1+ε)( log n)/n

holds for every sufficiently large integer n.
In another direction, currently known results cannot even rule out the existence

of a positive constant c such that the inequality

‖(p/q)n‖ ≥ c

holds for every sufficiently large integer n. Consequently, we do not have a single
result on the function λ evaluated at rational nonintegers p/q > 1.
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