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On a Problem of Mahler and Szekeres on
Approximation by Roots of Integers

YANN BUGEAUD & ARTURAS DUBICKAS

1. Introduction

Let o be a real number greater than 1. We shall consider the set of limit points
A(a) of the sequence ||a”||'/”, n = 1,2,3,.... (Throughout, ||y| stands for the
distance between y € R and the nearest integer to y.) Clearly, A(w) is a closed set
contained in [0, 1].

In [7], Mahler and Szekeres studied the quantity

P(a) = liminf ™|/,
n— 00

which is the smallest element of the set A(x). Their paper, which motivates the
present work, does not seem to be very well known, although a number of results
concerning the distribution of the sequence ||«"||,n = 1,2,3,..., can be given in
terms of A(x).

For example, Mahler’s [6] result—asserting that, given any rational noninte-
ger number p/q > 1 and any positive number ¢, the inequality ||(p/q)"| >
(I — &)™ holds for all but finitely many positive integers n—can be written as
limn_,oo||(p/q)"||1/" = 1; that is, A(p/q) = {1}. This result was extended by
Corvaja and Zannier [3], who established that A(a) = {1} holds for every alge-
braic number @ > 1 such that ™ is not a Pisot number for every positive integer
m. Recall that « > 11is a Pisot number if it is an algebraic integer whose conju-
gates over Q (if any) all lie in the open unit disc |z| < 1.

Our first theorem gives a complete characterization of the set A(x) for every
algebraic number « > 1.

THEOREM 1. For every algebraic number oo > 1 such that a™ is not a Pisot
number for each positive integer m, we have A(a) = {1}. Alternatively, let m be
the least positive integer for which B = o™ is a Pisot number, say, of degree d.
Suppose that the conjugates of B over Q are labeled so that B = By > |B2| =
-+ = | Bal. Put |oz| = | 2|/, Then:

(@) Ala) ={0}ifm =1andd =1,

(b) Ale) ={0,1}ifm >2andd =1,
(©) Ala) ={laz|}ifm=1andd > 2;
(d) Ale) ={lazl, 1} ifm >2andd > 2.
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In fact, Mahler and Szekeres [7] proved that the situation when the sequence
™|/, n = 1,2,3,..., has a unique limit point 1 (i.e., when A(e) = {1}) is
“generic”: A(a) = {1} for almost every & > 1 in the sense of the Lebesgue mea-
sure. They also showed that there are some transcendental numbers o > 1 such
that A(«) contains both 0 and 1. This raises a natural question regarding whether
there exist « > 1 for which the set A(x) is large (e.g., contains a transcendental
number).

Our next theorem shows that there are o for which A(w) is the largest possible
set; namely, A(a) = [0, 1].

THEOREM 2. Suppose that I C (1,00) is an interval of positive length. Then
there are uncountably many o € I for which A(«) = [0, 1]. More generally, for
any function f: N — R. satisfying limsup,_. f(n) = oo, there are uncount-
ably many a € I for which the set of limit points of the sequence |a"||'// ™, n =
1,2, ..., is the entire interval [0,1].

However, the set of « for which A(«) = [0, 1] is very small from a metric point
of view.

THEOREM 3.  The set of real numbers o > 1 for which A(«) contains 0 has Haus-
dorff dimension 0.

Results from metrical number theory allow us to prove the existence of transcen-
dental real numbers o with 0 < P(«) < 1. Throughout this paper, “dim” stands
for the Hausdorff dimension (see Section 5).

THEOREM 4. Let a and b be real numbers with 1 < a < b. For any real number
T > 1, we have

. logh
dim{e € (a,b) : P(a) <1/t} = .
log(bt)
Note that Theorem 4 implies Theorem 3. Most probably we also have
) log b
dim{x € (a,b) : P(a) =1/7} = —,
log(bt)

but unfortunately it seems that current techniques are not powerful enough to prove
this. In particular, it is likely that the function P assumes every possible value in
the interval [0, 1]. In this direction, Theorem 4 implies that the set of values taken
by P is dense in [0, 1].

As in Theorem 2, instead of the sequence ||a”||'/", n > 1, we may as well study
sequences [la"||'/™, n > 1, for nondecreasing sequences f: N — R_ that sat-
isfy lim,, » f(n) = oco. This problem is discussed in the next section. Then, in
Sections 3 and 4, we shall prove Theorems 1 and 2. The remaining proofs will be
given in Section 5, and Section 6 contains some open questions. Finally, we re-
mark that the tools used in the proofs come from quite different sources, including
(among others) [1; 3; 5; 9].

1/n
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2. Further Metrical Results

Let a and b be real numbers with1 < a < b. Letg: N+ R ( be a nonincreasing
function that tends to zero as n — oco. We shall study the set

Kap(p) ={ae(a,b): |la"|| < ¢(n) for i.m. positive integers n},

where we use “i.m.” to denote “infinitely many”.
We begin by quoting an old result of Koksma [5] that provides us with a
Khintchine-type theorem.

THEOREM 5 [5]. Lete,,n =1,2,..., be a sequence of real numbers with 0 <
&n < 1/2 foreveryn. If the sumy_,~ | &, is convergent then, for almost every real
number o > 1, there exists an integer no(o) such that

la"|| > €&, foreach n > ny(a).

If the sequence €,,n = 1,2, ..., is nonincreasing and if the sum Zf:] &p is diver-

gent, then for almost all real numbers o« > 1 there exist arbitrarily large integers
n such that
el < en.

We study the sets IC,, ,(¢) from a metric point of view, focusing our attention on
the special cases where

' for some real number v > 1,

@(n)=n"
¢(n) =t™" for some real number 7 > 1.

In all these cases, the corresponding sets C, ,(¢) have Lebesgue measure 0 by
Theorem 5. We are interested in their Hausdorff dimension. To simplify the nota-
tion, for any v > 1 we write IC,, ,(7) instead of ICp, (n — n~7).

THEOREM 6. For any real number Tt > 1, the set
Kap(®) ={ae€(ab): ||a"|| <n™" forim. positive integers n}
has Lebesgue measure 0 and its Hausdorff dimension is equal to 1.

The first assertion of Theorem 6 is contained in Theorem 5. The second assertion
is new and it is in a striking contrast with the following classical theorem, proved
independently by Jarnik [4] and Besicovitch [2].

THEOREM 7 [2; 4]. For any real number t > 1, the Hausdorff dimension of
the set
{a eR: |lna|| < n~7 fori.m. positive integers n}

is equal to 2 /(T + 1).

Theorems 5 and 6 suggest that we introduce the function A defined on the set of
real numbers greater than 1 by
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AMa) = max{t : o € K1, (1)},

where K}  stands for the union of the sets XC; ;, over the integers b > 1. The the-
orems imply that A(«) = 1 for almost all real numbers. Furthermore, Theorem 6
asserts that

dim{a € (1,400) : A(at) > 7} =1,
and its proof can easily be modified to yield that
dim{a € (1,400) : A(e) =t} = 1. 1

Consequently, the function A takes every value > 1.

Note that, for some o > 1, we may have A(x) = 0. For instance, Pisot [8]
proved that there are @ > 1 for which ||a”|| > ¢ > 0 for all n € N. For such o, we
clearly have A(a) = 0.

3. Auxiliary Results

We shall need the following simple lemma about Pisot numbers.

LEMMA 8. Leta > 1,n,meN,and g = ged(n,m). If a" and a™ are Pisot num-
bers, then o8 is a Pisot number.

Proof. After replacing n by n/g and m by m/g, we can assume that g = 1 and so
a8 = «. Suppose « is not a Pisot number. Since a” and o™ are Pisot numbers, this
can only happen if one of the conjugates of « over Q is of the form « exp (27ik/n),

where k € {1,...,n — 1}, and another one is of the form « exp(27if/m), where
£ e{l,...,m — 1}. But «" is a Pisot number, so all three nth powers must be
equal. In particular, o” exp(2rwiln/m) = o”. It follows that m|nf (i.e., m|{), a
contradiction. O

A key lemma for the proof of Theorem 2 can be stated as follows.

LEMMA 9. Let f: N +— R.q be a function satisfying limsup,_, f(n) = oo.
Suppose that 1 < u < v. Then there is a sequence of positive integers 1 < n; <
ny, < nz < --- depending only on u, v, and f and such that, for any sequence of
real numbers r|,r,13, ... € (0,1) satisfying 1/(3k) < r, < exp(—1/k) for every
k > 1, there is an o € [u, v] for which lmy o (fla™ || /700 — 5y = 0.

Proof. We shall consider the sequence of integers | < n; < ny < n3 < ---
satisfying
nilogu > max(4,log(2n;)), 2)

1)
1_[1—— >
n

k=1

) 3)

[SENIRN

and, foreach k > 1,
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Rgg1 > 20ng, 4

f(ny) > klog2, 5)

(Mgt — ni) logu > f(ny)log(3k), (6)
w1l — 1) > p, 7

It is clear that such a sequence exists and that it depends on u, v, and f only.
In order to construct o with required properties, we consider the sequence
X0 =",
Xk = ([xk 1] —14+r f(”k))l/nk
fork =1,2,.... Then

xp < (xf =1 +r,;f(nk))l/"k < (xE V™ = xpy,

SOU=1X0 > X] > X3 > -+ .
Next, we will show that x; > u for each k > 0. For this, we shall prove that
Xk > Xo [—[’;ZI(I — 1/n;)"/" and then apply (3). Consider the quotient

nk

Xp—1

Gt =24 gt ) <1_ 2 )l/"k ©
Xk—1 Xk—1 Xk—1 '

Inserting k = 1 into (8) yields x;/xo > (1 —2/xy")/". By (2) we have 2/x;' <
1/n1, 50 x; > xo(1 — 1/n)"/™. Suppose that x;_; > xq ]_[k (1= 1/n;)"/". Com-
bining this inequality with (8) and using 2/x;*, < l/nk (which is true by (2)
because x;_; > u), by induction on k we deduce that the inequality x; >
X0 ]_[1;:,(1 —1/n;)"/"i holds for every k > 1. Because xo = v, when combined
with (3) this yields that x; > v for each k£ > 0. Hence the limit ¢ = limy_, o0 X
exists and belongs to the interval [u, v].

Next, we need a lower bound for « in terms of x;. Consider the product
1524 xj+1/x; = a/xy. Using (8), we obtain

o o0 2 A\
— > 1-— .
X . x|t

j=

J

Note that Z/x"”rl < 1/2 by (2). On applying the inequality 1 — y > exp(—2y),
where 0 < y < 1/2, we thus obtain o/x; > exp(— Z, ‘ 4/(nj+1x"f+‘)) We
claim that the sum in the exponent is less than 5/(nx41x,*""). Indeed, using x; >
u, we derive that

o0 o0 o0
4 4 1 4 1 4
i < n Z wit = n ul nr2=1( _1)'
jket L 2 ket 2 i Mt "

This is less than 1/(ng1v™+) < 1/(ngx;*"") because of (4) and (7). It follows
that Z] k4/(nj+1x”f“) < 5/(ng41x,.*). Hence > xi exp(—5/(npg1x,“™)).

Now we will show that the nearest integer to o™ is a; = [xk_l] — 1. Indeed,
first we have
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o' <t =gt ) = Y = a . ©

Second,

(nr Sl’lk
ay + rf(n/‘) = x < g™ exp| ——— ).
k k ng x"k+1
+1A )

Using (4) and exp(y) < 14 2y where 0 < y < 1, we can bound the right-hand

side as
Sny 100 ny o't
o'k exp(—k1 <o — <™+
+

nk+1x1:1 nkﬂx,':k“ 2x]’(1k+1
e o MRk e u k1K
R

From 1/r, < 3k and (6), we have y"17"* > (1/r)7 0. Hence y"+1+m <
/" Tt follows that a; + r/ "™ /2. Combining with (9), we de-

<a™ +r
duce that
fng)
Ty

<a™ —ap <r

fne)
P

Since r; < exp(—1/k) it follows from (5) that rkf(”")

nearest integer to o"*.
Moreover, the preceding inequalities imply that

< 1/2, so ay is indeed the

rkz—l/f(nk) < ”a"k”l/f(nk) = (a" — ak)l/f("k) < rp.

By (5), we have 1 — 27/ < 1/k; hence

0> ”a”knl/f("k) — e > rk(zfl/f(nk) -1 > _%_

Therefore, lim_, o0 ([Jo"*|| ') — rp) = 0 as claimed. O

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. The first claim follows immediately from [3, Thm. 1] and is
given here for the sake of completeness.

Part (a) is trivial. In part (b), we have ¢ = D™ with some D € N. By taking
a subsequence n = m,2m,3m, ..., we see that ||o"|| = 0 infinitely often and so
0 € A(x). We claim that ||«”||'/" — 1asn — oo for n of the form n = £ + mk,
k=0,1,2,..., where £ isin the set {1, ..., m — 1}. Indeed, then *t"* = Dk+t/m,
The number D™ is algebraic irrational. By a theorem of Ridout [9], for any & >
0 there is a positive constant ¢ (that does not depend on k) such that || DY"D¥|| >

¢D~%_ Hence
”DZ/ka”l/((H—mk) > Mmoo p—e/@m).

Here lim;_, o, ¢//*"0) = 1, 50 the right-hand side can be arbitrarily close to 1 if
we choose ¢ small enough. It follows that [o k|| /¢4 5 1 as k — oo. This
competes the proof of part (b).
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Consider now part (c). Then « is a Pisot number of degree d > 2 whose conju-
gates over QQ are labeled so that = o) > |az| > - -+ > |ay|. We shall prove that
there is a constant A > O such that

n Mool < o]l < (d — D]aal” (10)

for each sufficiently large n. Evidently, this implies that lim,,_, oo[la"||/" = |a|

(i.e., that A(x) = {|oe2]}).

Since S, = o" + aj + --- + «y is an integer and since oy + - - - + o]
(d — D]az|", we immediately obtain the upper bound in (10)—namely, ||a"||
la" — Sy| = (d — Dloa|"

Evidently, S, is the nearest integer to «” for each sufficiently large n. By aresult
of Smyth [11], there are at most two conjugates of « of equal moduli. So either a,
is areal number and so |ay| > |a3| or else a; is complex, say, oy = |@2| exp (i),
in which case a3 is a complex conjugate of «y, a3 = |aa| exp(—i¢), and |a| >
|a4]. In the first case,

=
=

lad + -+ alj| > |aa]" — (d — 2)|as]" > |aa|"/n

for each sufficiently large n. (So the lower bound in (10) holds, e.g., with A = 1.)
In the second case, aj + a5 = 2cos(n¢)|as|"; hence

lof + -+ afj| = 2|cos(ng)||az|" — (d — 3)|oa]”.

In order to prove the lower bound in (10) it suffices to show that |cos(n¢)| > n~*.

Take the nearest number to n¢ of the form w(m + 1/2), m € Z. Using [sin y| >
2|y|/m = |y|/2 where |y| < /2, we deduce that

lcos(n)| = [sin(n¢ — 7w (m +1/2))]

- Ing —w(m+1/2)|  12n¢/m — 2m +1)|

- 2 B 4 '
But ¢/7 is a quotient of two logarithms of algebraic numbers and is an irrational
number. So, by Gelfond’s result on approximation of such numbers by rational
fractions (see e.g. [12]), we obtain that |2n¢/m — 2m + 1)| > (2n)~¢, where ¢
is positive constant depending only on «. Since (2n)~%/4 > n~%¢ for each suffi-
ciently large n, the lower bound in (10) holds with A = 2¢. This completes the
proof of part (c).

Finally, for the proof of part (d), suppose that B = o™ is a Pisot number of de-

gree d > 2. Here, m > 2. As in part (b), we shall consider n running through

every arithmetic progressionn = ¢ +mk, k = 0,1,2,..., where ¢ is a fixed num-
ber of the set {0, 1,...,m — 1}. If £ = 0, then " = o”* = ,3". By part (c),

kil k k1 k 1
floe™ V0 = || gV — BV = |y

as k — oo. Suppose that £ € {I,...,m — 1}. We then claim that the number
a“*k has one more conjugate of modulus ‘. Indeed, otherwise o‘*"* is a
Pisot number because it is an algebraic integer all of whose conjugates lie in |z| <
|z |“H < 1. But if «” and a*" (for some k > 0) are Pisot numbers, then by
Lemma 8 it follows that «¢ is a Pisot number, which contradicts the choice of m.
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Since a“*"* has one more conjugate of modulus o *"% (different from o+
itself), «“*"* is not a pseudo-Pisot number in the sense of the definition given
in [3]. (Pseudo-Pisot numbers are the usual Pisot numbers and those algebraic
numbers with integral trace that have a unique conjugate in |z| > 1 and all other
conjugates in |z| < 1.) Thus, by the Main Theorem of [3] we obtain that, for any
& > 0, the inequality |a**"| < (1 — &)**™* holds for finitely many k € N only.
Hence ||o k|| /(&+mk) 5 1 as k — oo. This completes the proof of part (d). [J

Proof of Theorem 2. Fix any closed subinterval [u, v] of I, where 1 < u < v. Take
any sequence ry,r,rs,... € (0,1) satisfying 1/(3k) < r;, < exp(—1/k) for each
k > 1 that is everywhere dense in [0, 1]. For every 7 from the interval (1/3,1/e),
the sequence

ry,T,r2,T,r3,7,...

is also everywhere dense in [0, 1]. Moreover, the kth element of this sequence is
also greater than 1/(3k) and smaller than exp(—1/k). Hence, by Lemma 9, there is
an a = a(t) € [u, v] for which the sequence |a”||'/™, n =1,2,3, ..., is every-
where dense in [0, 1]. Furthermore, all these «(7) are distinct because the limits
lim_ ool (7) "2 || 1/ ("26) = ¢ are distinct. There are uncountably many such o (7)
because there are uncountably many t € (1/3,1/e). This proves the second claim
of the theorem. The first part is a particular case of the second part with the func-
tion f(n) = n foreachn e N. O

5. Proofs of the Metrical Results

We begin with an easy consequence of the Cantelli lemma. A dimension function
f:R.p = R,y is a continuous increasing function such that f(r) — 0 when
r — 0. (Actually, it is enough to assume that f is defined on some open interval
(0, ¢) with ¢ positive.) For any positive real number § and any real set E, define

HYE) =inf Y F(U;D,
JjeTJ
where the infimum is taken over all the countable coverings {U;} jc 7 of E by inter-
vals U; of length |U; | at most §. Clearly, the function § — Hf; (E) isnonincreasing.

Consequently,
H/(E) = lim H(E) = sup H](E)
- §—0

is well-defined and lies in [0, +00]; this is the 7/-measure of E.

When f is a power function x + x* with s a positive real number, we write
H*(E) instead of 7/(E). The Hausdorff dimension of E is then the critical value
of s at which H*(E) “jumps” from +oo0 to 0. In other words, we have

dim E = inf{s : H*(E) = 0} = sup{s : H*(E) = +o0}.

LEmMMA 10. Let a and b be real numbers with 1 < a < b. Let f be a dimension
function. If the sum
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3p(n)
>, aew) i

n>1 a"<g<b"

converges, then H'/(K 4 ,(¢)) = 0.

Proof. Let B(p,a,b) denote the set of real numbers « in (a, b) such that there are
infinitely many positive integers n with

ol = la" — gl < @(n) 12)

for some integer g witha” < g < b". Proceeding as in [7], we infer from (12) that
if both n and g are given then, for n sufficiently large, « is restricted to an interval

Ji(8) =[(g — (N, (g + o(m)/"1N (a, b)

whose length does not exceed 3¢(n)/(ng™~"/") provided that n is sufficiently
large. Consequently, the total H/-measure of all the intervals J,(g) correspond-
ing to possible values of g is not greater than

Z f 3p(n)
, ng(n—l)/n :
a”SgS n

Since the sum (11) is convergent, the H/-measure of the set of points contained in
infinitely many intervals J,(g) is zero, as asserted. 0

The proofs of our metrical theorems rest on Theorem 5 and on the mass transfer-
ence principle from [1]. In what follows, u denotes the Lebesgue measure. For a
positive real number r and for x € R, let I(x, r) denote the closed interval [x — 7,
x + r]. Furthermore, for a function f, we denote by =1 (x,r) the closed in-
terval [x — f(r), x + f(r)].

THEOREM 11 [1]. Let J be a closed interval in [1,+00). Let f be a dimension
Junction. Let (I;);>1 be a sequence of closed intervals in J such that the length of
I; tends to zero as i tends to infinity. Suppose that, for any interval I in J,

/L([ A lim sup Iif) — (). 13)

i—00

Then, for any interval I in J,

' (1 A lim sup 1,-) — H/(I). (14)
1—>00
We begin with some preliminaries for the proofs of Theorems 6 and 4.

Let a and b be real numbers with 1 < a < b. Let ¢: R,y — R( be a nonin-
creasing function that tends to zero. We are concerned with the set 1C,, ;, (¢) defined
in Section 2.

Suppose that ¥ : N +— R.( is a nonincreasing function such that the sum
>, ¥(n) diverges and ¥(n) tends to zero as n tends to infinity. Arguing as in
the proof of Lemma 10, Theorem 5 implies that
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(@.byntimsup | J 1(g""n7'g™ ")) (15)

-
M0 ng<pn

has full Lebesgue measure in (a, b).
Assume that we have found a suitable function f such that

1ﬂ()

—1_—(n—1/n
f(n"g ¢(n)) = gm0

for all sufficiently large integers n and for all integers g with a” < g < b". Then,
by (15), the set

(@b)nlimsup () 1(g"", f(n7'g™" P p(n)))
n—00 an<g<bn
has full Lebesgue measure in (a,b); that is, assumption (13) is satisfied. Theo-

rem 11 then yields, by (14), that the H/-measure of

(a,b) N lim sup U 1(g"",n7'g= "=V (n)),

n—o00 ., <g<b”
which is contained in C,, 5, (¢), is equal to the H/-measure of (a, b). Consequently,

the H/-measure of KCa,»(¢) is greater than or equal to the H-measure of (a, b).

Proof of Theorem 6. In view of Theorem 5, we need only prove the second asser-
tion. Without any restriction, we assume that a > 1. Let us consider the family of
dimension functions

fu:x = x(logl/x)" for u > 0.
Observe that

n—r—l n—r(log(nr+lg(n—l)/11))r—l
fe 1<g(n—l)/n> = ng(n=Din :

Since g > a”", we get
n"(log(n™ g V/m)T=l > y=*(rlogn + (n — 1) loga)™ !
> (1= 1/m)"(loga)™(n ="
Because the sum Y 2 ,(1 —1/n)"(n — 1)~! diverges, we may argue as in the pre-
liminaries with ¥(n) = (1 — 1/n)*(loga)*~'(n — 1)~ to infer from Theorem 11

that
HI (Ka,p(7)) = +o0.

This proves that the Hausdorff dimension of the set C,, , () isequal to 1, as asserted.
Furthermore, it easily follows from Lemma 10 that

H (Kot +1/k) =0 if k> 1.

Consequently, we get
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HI (ica,b(w \ JKap(r + 1/k>) = +o0,

k>1
and (1) is established. O

Proof of Theorem 4. Put S, ,(t) = {a € (a,b) : P(x) < 1/t}. Note that, for any
e > 0,8,,(t) € Kunlp) with o(n) = (r — e)™". It follows straightforwardly
from Lemma 10 that the Hausdorff dimension of the set S, ;(7) is bounded from
above by log b/log(bt).

For a lower bound, we shall work with the family of dimension functions
gs: x — x* where 0 < s < 1. According to the preliminaries, we must find
a nonincreasing function ¥ such that Z;’il ¥(n) diverges, {(n) tends to zero as

n tends to infinity, and
" Y (n)
gs( (n—l)/n) Y
ng ng

in other words, such that

w(n) < nlfsrfnsg(lfs)(nfl)/n

for every integer g in the interval [a", b"]. If s does not exceed log a/log(at), then
T 5gU=9(=D/n > g5=1 for every integer g in the interval [a", b"] and a suitable
choice for the function v is given by y/(n) = 1/n.

Consequently, we get the lower bound

loga

dim S, > .
imSe,p(7) = log(at)

However, S, ,(t) contains S,/ »(7) for any a’ witha < a’ < b. Hence
logb
log(bt)’
giving dim S, ,(7) = log b/log(bt), as claimed. O

dim S, ,(7) >

6. Open Questions

We showed at the end of Section 2 that the function A takes every value in
{0} U [1, +00). In view of this, we address the following question.
PROBLEM 12. Do there exist real numbers o > 1 such that

0<Aa) <1?

The distribution of the integer powers of a fixed rational number > 1 is far from
being understood. Mahler’s result [6] motivates the following question.

PROBLEM 13. Let « = p/q > 1 be a noninteger rational number. Is there
a nondecreasing sequence t,, n = 1,2,..., of positive real numbers such that
lim, o t, = 00 and
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lim inf | (p/q)" """ = 12
n—oo

It is most likely that, in order to answer Problem 13 in the affirmative, one must
first improve upon the key tool in the proof of Mahler’s result [6]—namely, the
Ridout theorem [9], which is the non-Archimedean analogue of Roth’s theorem.
Recall that Roth [10] established that, for any irrational algebraic number £ and
any positive real number &, there are only finitely many rational numbers p/g such
that g > l and |£€ — p/q| < ¢~>¢. A standard conjecture in Diophantine approx-
imation (often referred to as the Lang conjecture) claims that, for any irrational
algebraic number £ and any positive real number &, there are only finitely many
rational numbers p/q such that ¢ > 2 and |€ — p/q| < ¢ %(logq)~'~%. If we
believe in this conjecture and in its non-Archimedean extension (as Ridout’s the-
orem extends Roth’s theorem) then the latter would imply that, for any relatively
prime integers p,q with p > g > 2 and any positive real number ¢, the inequality

” (p/q)n” 1/n > gf(lJrs)(logn)/n

holds for every sufficiently large integer .
In another direction, currently known results cannot even rule out the existence
of a positive constant ¢ such that the inequality

ICp/)"ll = ¢

holds for every sufficiently large integer n. Consequently, we do not have a single
result on the function A evaluated at rational nonintegers p/q > 1.
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