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Subextension and Approximation of
Negative Plurisubharmonic Functions

UrRBAN CEGRELL & LisAa HED

1. Introduction

We denote by PSH ™ (€2) the class of negative plurisubharmonic functions defined
on the domain 2 in C". Here a domain is an open, bounded, and connected set. A
domain € in C” is called hyperconvex if there exists a negative exhaustion func-
tion for 2—that is, a function ¢ € PSH ™ (£2) such that

{zeQ:Y(z) <c}CcC Ve<O.

We say that a function v € PSH™(2) is in the class F(£2) if there is a decreas-
ing sequence of functions v; € £y(£2) such that limv; = v and sup; [(dd“v;)" <
+o00. Here £((£2) is the class of bounded plurisubharmonic functions # such that
lim, ¢ u(z) = 0 for all § € 9€2 and fQ(dd”u)” < 400. The class £(£2) contains
functions in PSH ™ (€2) that are locally in F(€2). See [C1; C2] for further proper-
ties of this and related classes.

The purpose of this paper is to study approximation of functions in F(2)
by functions in F(£2;), where © and 2; are hyperconvex domains such that
Q CC Qj41 CC Q; for all j. We generalize Benelkourchi’s work [Be]. For this
we will use subextensions, which are discussed in Section 2. Let u € F(2) and
let u; be the (largest) subextension of u to €2;; thatis, u; = sup{p € PSH™(Q;) :
@lo < u}. Then {u;} is an increasing sequence and it follows from Theorem 2.2
that u; € 7(2;). The problem is to show that (lim; u;)* = u, which is true for all
u € F(Q) if it is true for one single function u € F(L2), u # 0. This is the main
result of the paper and will be discussed in Section 3. It is a great pleasure for us
to thank Anders Fallstrom for many useful discussions.

2. Subextension

The purpose of this section is to devise a method to approximate functions by func-

tions defined on strictly larger domains. Let 2 and €2 be hyperconvex domains,

Q cC Q. If u € F(2) then we define the (largest) subextension of u to 2 as
ii(2) = suple(2) : ¢ € PSH™ (), ¢la < u}.

By aresult of Cegrell and Zeriahi [CZ] we know that the set {¢(z) : ¢ € PSH™ (fZ),
¢|lq < u} is not empty when u € F(£2).
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LEMMA 2.1.  Let Q and Q be hyperconvex domains such that Q2 CC Q. Ifue
Eo(Q) N C(Q) then it € E¢(), supp(ddi)" CC Q, and (dd Q)" < xo(ddu)"
on Q.

Proof. tisclearthatii € £(Q). By the definition of iz, (dd )" = O near \Qand
so the support supp(dd‘a)" CC 2. The same argument gives us that (dd“i)" =
0 on the open set {z € Q : ©1(z) < u(z)}, so (ddn)" < (dd‘u)" there. We now
need to show that the same is true on the set A = {z € Q : u(z) = i(z)}. Take a
compact set K CC A. Then, since K C {#i > u — &},

/(dd”ﬁ)” =/ Xii=u—ey(ddit)"
K K

:/ X{ﬁ>u—s](ddcmax{12,u — 2’;‘})’Z
K

< /(dd" max{i,u —ep)".
K

Because max{i,u — ¢} , u when ¢ — 0, it follows that the measure
(dd max{u,u — e})" converges to (ddu)" in the weak* topology. The char-
acteristic function y g is upper semicontinuous, so we can approximate xx with
a decreasing sequence of continuous functions ¢; that are bounded from above.
Then Lebesgue’s dominated convergence theorem gives us that

lim sup/ xx(dd max{ii,u — &})"
Q

e—0

= lim sup[hm/ @;(dd‘ max{ii,u — 8})”]

e—0

< lim sup/ @;j(dd° max{ii,u — e})" = / @ (ddu)"
e—0 Q Q
forevery fixed j € N. Since [, ¢;(dd“u)" \{ [ xx(ddu)", the proof is complete.
O
This lemma was proved by Pham Hoang Hiep in [P], but here we give a more de-
tailed proof. In [P], Pham also proved the next theorem.

THEOREM 2.2. Let Q and 2 be hyperconvex domains such that 2 CC Q. Ifue
F(2), then it € F(2) and (dd“u)" < xq(dd‘u)" on Q.

Proof. Since u € F(£2), we know from Theorem 2.1 in Cegrell [C2] that there is
a decreasing sequence u; € £o(2) N C(2) with j e Nand u; — u. Let

iij = sup{v e PSH(Q) : v|q < ujlq}).

Then &; \ # and #; GSO(Q) SO u 6.7:(9) From Lemma 2.1 we know that
(dd°itj)" < xo(ddu;)" on Q. To prove that (dd“a)" < xg(dd‘u)” on Q it
remains to show that yqo(dd‘u;)" converges to xq(dd‘u)" on < in the weak*
topology. We want to show that (dd‘u)" does not put any mass on d2—in
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other words, that [,,(dd‘u)" > lim; [,,(dd‘u;)". Take a constant A such that
lim; fQ(ddcuj)” > A. Since (dd‘u;)" is increasing there exists a k € N such
that fg(dd”u_,-)” > Aif j > k. Choose h € £y(2) with i > —1 such that
Jo —h(dd“u;)" > A. Then [, —h(dd“u;)" > A when j > k and

/(dd"u)” :/(l—i—h)(dd"u)”—/h(dd"u)"
Q Q Q
=/(1+h)(ddcu)”+lim/ —h(dd‘u;)"
Q J Q

> /(1 +h)(ddu)" + A > A.
Q

This shows that fQ (dd‘u)" > lim; fQ (dd‘u;)", which finishes the proof. O

3. Approximation

In this section we come to the main result of this paper. We will use subextensions
as already described to approximate functions in F(£2) by functions in F(£2;). We
need the sufficient condition that one single function (# 0) in the class NV(2) can
be approximated by functions in A/(2;). We will start by defining the class M.

Let Q be a hyperconvex domain and let 2/ be a fundamental sequence of strictly
pseudoconvex domains; that is, QJ cc QI cc Q for every j and |_J QI =Q.
Letu € £ and let

u! = sup{p e PSH(RQ) : ¢lcqi < ulcqi}-

Thenu < u’/ < u/*!,sou’ € £ and it = (limu’)* € €. Let the class A(2) be the
class of all functions u € £(S2) such that i = 0. Note that £y C F C N.

In the proof of Theorem 3.5 we will need the class of functions F (it). A pluri-
subharmonic function u defined on 2 belongs to the class F (i) (= F(2,n)) if
there exists a function ¢ € F(£2) such that

u>u>¢@+u.

Note that F(0) = F. For more details about the class F (i) see [C4].

THEOREM 3.1.  Assume that Q@ CC Q1 CC 2; are hyperconvex domains and
that there exist a function 0 > v € N(Q) and a sequence v; € N(R;) such that
v; — v a.e. on Q. Then, for every function u € F(2) there is an increasing se-
quence of functions u; € F(2;) such that limu; = u a.e. on Q.

In the next corollary we must assume that the sequence {€2;} is a Stein neighbor-
hood basis—in other words, that Q = [ i, where Q; is pseudoconvex.

COROLLARY 3.2. Let Q be a hyperconvex domain with C'-boundary and with
a Stein neighborhood basis {Q2;}. Then for every function u € F(Q2) there is an
increasing sequence uj € F(£2;) such that limu; = u a.e. on 2.
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Before proving Theorem 3.1 and Corollary 3.2 we need some other results. We
start by defining the relative Monge—Ampere capacity defined by Bedford and
Taylor [BT]. If K C €2 is a compact set then the Monge—Ampere capacity of K
relative €2 is defined as

cap(K, Q) = sup{/(ddcv)” :vePSH(RQ), -1 <v < 0}.
K

If ug o is the relative extremal function defined by

ug,o(z) = sup{v(z) : ve PSH(Q), v|x < —1, v|g < 0}
and if
ug o(z) = limsupug o (§)

§—>z

is the upper semicontinuous regularization, then Bedford and Taylor proved that

cap(K, Q) = /(dd“u}k(yﬂ)” = /(dd"uzyg)”.
Q K

In [Be], Benelkourchi gave a new characterization of the class F(£2) in terms
of the relative Monge—Ampere capacity. For the reader’s convenience we include
the whole proof.

THEOREM 3.3. Let Q2 be a hyperconvex domain. A function ¢ € PSH™(Q2) is in
F(R2) if and only if

limsup s” cap({z€ Q: ¢ < —s},Q) < 4o00.

s—0

Proof. Let ¢ € F(£2); then there is a decreasing sequence of functions ¢; € £(2)
such that ¢; \ ¢. For a fixed j we have that A}, o = ¢j/s, where hiy <) o

{pj<—s},
is the relative extremal function. Since both functions are in £y (£2), integration by

parts yields
f(ddfh;;jg_s,,g)" < /(ddcﬁ)
Q Q S

s" cap({p; < —s},Q) < /(ddcfﬂj)n-
Q

and hence

Because sup; [, (ddp;)" < 400, we obtain

limsup s” cap({z € Q : ¢(2) < —s},Q) < +00.

s—0

Now assume that ¢ € PSH™(2) and that
limsup s” cap({z€ Q : ¢(2) < —s},Q) < +00.

s—0
By [C2] there is a decreasing sequence of functions ¢; € £gNC () such that ©;i "\
@ when j — oo. It remains to show that sup; [, (dd“p;)" < +oo. Take s > 0
fixed. Then
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] c n
— (dd‘p;)
S {pj<—s}
n
- / (ddc ﬁ)
lpi/s=—1) $
n n
() =] ()
Q N {go,-/s>—l} N
9 ! 9 !
=/<dd"max{—’,—1}) —/ (dd"max{—’,—l})
Q S {gj/s>—1} s

. n
=/ (ddcmax{&,—ID <cap({p; < —s}, ).
{pj/s<—1) S

Hence
/ (ddp)" < 5" cap({p; < —s}.Q) Vs >0
{pj<—s}
and then
/Q(dd”wj)” < lim s(;lp s"cap({p < —s}, Q) < +00
for all j, and ¢ € F(R2) by the definition. O

THEOREM 3.4. Let Q2 be a hyperconvex domain. If u,v € F(2) then (dd‘u)" =
(ddv)", and ifu < v thenu = v.

Proof. By [C3] there is a strictly plurisubharmonic exhaustion function ¥ €
Eo N C>®(2) for 2. We would like to show that

/d(u — V) AdU—v) Add YY) =0

since then (¢ — v) is constant. Since both # and v belong to F(£2) it would
then follow that u would be equal to v. We will use induction to show this.
Using (dd‘u)" = (ddv)" and u < v, it is easy to see that 0 = fd(u — V) A
d(u — v) A (ddu)® A (dd°v)? Addy whena +b =n — 2. Assume that 0 =
fd(u —V)Ad (U —v) Addu)® A(ddv)° A(dd )P whena+b=n—1— p.
Then, since ¢ € £g N C*> (), via Stokes’s theorem and Holder’s inequality we
have fora + b =n — 2 — p that

0< /d(u — V) Ad(u — v) A (ddu)® A (dd V)P A (dd )P T
= / —(u—v)dd°(u — v) A (ddu)® A (dd V)’ A (ddCy)PH!

= / —Y(dd (u — v))> A (ddu)* A (ddv)° A (ddy)P =
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= /dw AdCu—v) Add(u — v) A (ddu)® A (ddv)° A (ddyP)P

=

/dl// Ad(u —v) Addu A (ddu)® A (dd o) A (ddy)P

+ ‘/dw Ad(u —v) Addv A (ddu)® A (ddv)° A (dd )P

< [fdw AdY A (ddu) A (ddv)° A (ddy)P
1/2
x /d(u — V) Ad(u — v) A (ddu)* A (ddv)b A (ddEW)I’]
+ [/dw AdY A (ddu)® A (ddv)PTVA (ddEy)?

172
X /d(u —v) Ad(u — v) A (ddu)® A (dd V)P A (dd"lﬁ)"} =0.

O
REMARK 1. Theorem 3.4 follows from [NP, Prop. 3.4] but here we give a more
detailed version of the proof in [C4].

THEOREM 3.5.  Assume that Q@ CC Qj1 CC ; are hyperconvex domains and
that there exist a function 0 > v € N(2) and a sequence of functions v; € N (2;)
such that limv; = v a.e. on Q. Then cap(K, Q) = lim;_, o, cap(K, ;) for every
compact subset K of Q.

Before proving this theorem we observe that, if we have a sequence v; € N (2;)
that converges to some v € N(2) (v # 0) a.e. in €2, then we can assume that our
sequence {v;} is increasing. We can create functions vl = (supj<x vg)* that will
be in N(R2) (since v/ > v) and v/ \ v a.e. on 2. Observe that (Supg=; ve)* =
(Ssupi=; vi) a.e. on . Choose jo € N such that v; # 0 forall j > j,. Now let
U; = Supjy<p<s Up; then vy € N(Q;) since v] > v,;. We see that v; v/ =
(Ssupj,<k vx)* a.e. on © and that v/° < 0.

We will also need the following result, which was proved in [C4].
THEOREM 3.6. Suppose u € £ with fQ (ddu)" < 400. Then u € F(i1).

Proof of Theorem 3.5. Assume that there exist a function 0 > v € N () and an
increasing sequence of functions v; € N(€2;) such that limv; = v a.e. on Q. Let
K CC € and let hg o be the relative extremal function for K in €2. Then h;‘(Q €

£0(2) N C(Q) with —1 < hf o < 0and supp(dd“h )" C K. Put
hj(z) = sup{p(z) : ¢ € PSH™ (), ¢la < hg o}

By Lemma?2.1, hj € £o(£2;) and (dd“h;)" < xo(dd“hy o)" on ;. Multiplying
v and the v; by a positive constant, we can assume that v < —1 near K so
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that v; < hg o on Q. Then v; < h; and so, if we define f = (lim#;)*, then
v < f and f € N(2). Because of the construction, f < hf o and (dd‘f)" <
(dd°hy o)". Tt follows that [(dd°f)" < [(dd‘hy o))" < +oo and, by Theo-
rem3.6, f € F. Butsince f < hy q itfollows from integration by parts (see [C2])
that [(dd°f)" = [(dd°hy g)", so we get [(dd°f)" = [(dd‘hy o)". Therefore,
(dd‘f)" = (dd“h¥ )" and so, by Theorem 3.4, f = hy . Then, since &; is an
increasing sequence, we know that the measure (dd “h;)" converges to (dd“hy )"
in the weak™ topology. But supp(dd“h;)" C K and supp(dd“hy )" C K, 50

/(dd%,-)" — f(dd“h;g)".
K K

By the definition of the capacity cap(K, 2;) > f «(dd°h;)", the result now follows.
O

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Letu € F(2) and letu; = sup{p € PSH™(R2j) : ¢|q < u};
that is, u; is the subextension of u to £2; considered in Section 2. Then {u;} will be
an increasing sequence and u; € F(€2;) by Theorem 2.2. It remains to show that
v = (limu;)* € F(2) and that v = u. Suppose that s > 0 and that K is a com-
pact subset of {z € Q2 : v(z) < —s}. Theorem 3.5 and the proof of Theorem 3.3
give us that

s" cap(K,2) = s" lim cap(K, ;) <s" lim cap({z € Q : v(z) < —s},Q))
Jj—>00 Jj—>00

<s" lim cap({z € Q; : u;j(z) < —s}, ;)
]

j—o0

< lim (dd”u])” / (dd“u)".
Q

Hence s” cap({v < —s},Q) < fQ(ddCu)” for all s > 0 and so, by Theorem 3.3,
v = (limu;)* € F(2). We know by the construction that v < u, so integration
by parts yields [, (dd“u)" < [,(dd“v)". But Theorem 2.2 gives that (dd“v)" <
(dd‘u)" and hence (dd°v)" = (ddu)”. It follows now from Theorem 3.4 that
v = u, which finishes the proof. O

Using Theorem 3.1 we now prove Corollary 3.2.

Proof of Corollary 3.2. Because {£2;} is a Stein neighborhood basis, we can as-
sume that the 2; are hyperconvex. Take a closed ball B C 2. Then the rela-
tive extremal funct10n hpoe&()NC (). Fornass and Wiegerinck showed in
[FW] that &5 o can be approximated by functions u; € PSH(Q2) N C*°(Q) uni-
formly on Q. Take & > 0; then there exists an N > 0 such that supg| iz o — u;| <
¢if i > N. Since Q; is a Stein neighborhood basis for €2, we can take a large j
such that u; € PSH(Q ) N C™(L2;). Let

hi(z) = sup{p(z) : ¢ e PSH™ (), ¢la < hp a}.
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Then {h;} is an increasing sequence and h; € £9(2;) by Theorem 2.1. We know
thatu; —e < hpqon2,sohy > u; —efork > j. Thuslimh; = hp o and, given
Theorem 3.1, we can approximate every function in F(£2) by functions in F(£2;).

O
REMARK 2. In the assumptions for Theorem 3.1 we assume that 2 CC Q41 CC
Q; and that there exist a function 0 > v € N(£2) and a sequence v; € N'(£2;) such
that v; — v a.e. in Q. A natural question is whether these two assumptions imply
that @ = ({1 €;). Clearly it cannot be the case that @ CC ({1 ;)", since then
{v;} would be a uniformly upper bounded family of plurisubharmonic functions on
(N2)°. Then we could take a compact set K such that @ C K C ([ 2;)° and
we could find a subsequence of {v;} that converges to a plurisubharmonic func-
tion vg on K. Since v; — v a.e. on 2, we know that v = vg|q. But since 0 >
vo € PSH(K) we have vy < ¢ < 0 on 92, and from v € NV() it follows that
limsup,_,¢ v(z) = O for all § € 9$2. This gives us a contradiction.

REMARK 3. Note that a strictly pseudoconvex domain  with C2-boundary has
a Stein neighborhood basis. Then, by Corollary 3.2, every function u € F(2),
where 2 is such a domain, can be approximated by an increasing sequence of
functions u; € F(£2;).

REMARK 4. Polydiscs are examples of nonsmooth domains satisfying the condi-
tions of Theorem 3.1.

REMARK 5. Note that the existence of a Stein neighborhood basis does not imply
that Q2 is hyperconvex; see [ V] for a counterexample. Starting with the unit disc
in C and then removing the origin and a sequence of closed discs with decreasing
radius and centers tending to the origin, V4jaitu [V] constructed a “swiss cheese”
domain that is fat (i.e., 2° = Q) and has a Stein neighborhood basis but that is
not hyperconvex.
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