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1. Introduction

We denote by PSH−(�) the class of negative plurisubharmonic functions defined
on the domain � in C

n. Here a domain is an open, bounded, and connected set. A
domain � in C

n is called hyperconvex if there exists a negative exhaustion func-
tion for �—that is, a function ψ ∈ PSH−(�) such that

{z ∈ � : ψ(z) < c} ⊂⊂ � ∀c < 0.

We say that a function v ∈ PSH−(�) is in the class F(�) if there is a decreas-
ing sequence of functions vj ∈ E0(�) such that lim vj = v and supj

∫
(dd cvj )

n <

+∞. Here E0(�) is the class of bounded plurisubharmonic functions u such that
limz→ξ u(z) = 0 for all ξ ∈ ∂� and

∫
�
(dd cu)n < +∞. The class E(�) contains

functions in PSH−(�) that are locally in F(�). See [C1; C2] for further proper-
ties of this and related classes.

The purpose of this paper is to study approximation of functions in F(�)

by functions in F(�j ), where � and �j are hyperconvex domains such that
� ⊂⊂ �j+1 ⊂⊂ �j for all j. We generalize Benelkourchi’s work [Be]. For this
we will use subextensions, which are discussed in Section 2. Let u ∈ F(�) and
let uj be the (largest) subextension of u to �j ; that is, uj = sup{ϕ ∈ PSH−(�j ) :
ϕ|� ≤ u}. Then {uj} is an increasing sequence and it follows from Theorem 2.2
that uj ∈ F(�j ). The problem is to show that (limj uj )

∗ = u, which is true for all
u ∈ F(�) if it is true for one single function u ∈ F(�), u �= 0. This is the main
result of the paper and will be discussed in Section 3. It is a great pleasure for us
to thank Anders Fällström for many useful discussions.

2. Subextension

The purpose of this section is to devise a method to approximate functions by func-
tions defined on strictly larger domains. Let � and �̂ be hyperconvex domains,
� ⊂⊂ �̂. If u ∈ F(�) then we define the (largest) subextension of u to �̂ as

û(z) = sup{ϕ(z) : ϕ ∈ PSH−(�̂), ϕ|� ≤ u}.
By a result of Cegrell and Zeriahi [CZ] we know that the set {ϕ(z) : ϕ ∈ PSH−(�̂),
ϕ|� ≤ u} is not empty when u ∈ F(�).
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Lemma 2.1. Let � and �̂ be hyperconvex domains such that � ⊂⊂ �̂. If u ∈
E0(�) ∩ C(�̄) then û ∈ E0(�̂), supp(dd cû)n ⊂⊂ �, and (dd cû)n ≤ χ�(dd cu)n

on �̂.

Proof. It is clear that û ∈ E0(�̂). By the definition of û, (dd cû)n = 0 near �̂\� and
so the support supp(dd cû)n ⊂⊂ �. The same argument gives us that (dd cû)n =
0 on the open set {z ∈ � : û(z) < u(z)}, so (dd cû)n ≤ (dd cu)n there. We now
need to show that the same is true on the set A = {z ∈ � : u(z) = û(z)}. Take a
compact set K ⊂⊂ A. Then, since K ⊂ {û > u − ε},∫

K

(dd cû)n =
∫

K

χ{û>u−ε}(dd cû)n

=
∫

K

χ{û>u−ε}(dd c max{û, u − ε})n

≤
∫

K

(dd c max{û, u − ε})n.

Because max{û, u − ε} ↗ u when ε → 0, it follows that the measure
(dd c max{û, u − ε})n converges to (dd cu)n in the weak∗ topology. The char-
acteristic function χK is upper semicontinuous, so we can approximate χK with
a decreasing sequence of continuous functions ϕj that are bounded from above.
Then Lebesgue’s dominated convergence theorem gives us that

lim sup
ε→0

∫
�

χK(dd c max{û, u − ε})n

= lim sup
ε→0

[
lim

j

∫
�

ϕj(dd c max{û, u − ε})n

]

≤ lim sup
ε→0

∫
�

ϕj(dd c max{û, u − ε})n =
∫

�

ϕj(dd cu)n

for every fixed j ∈ N. Since
∫

�
ϕj(dd cu)n ↘ ∫

�
χK(dd cu)n, the proof is complete.

This lemma was proved by Pham Hoang Hiep in [P], but here we give a more de-
tailed proof. In [P], Pham also proved the next theorem.

Theorem 2.2. Let � and �̂ be hyperconvex domains such that � ⊂⊂ �̂. If u ∈
F(�), then û ∈ F(�̂) and (dd cû)n ≤ χ�(dd cu)n on �̂.

Proof. Since u ∈ F(�), we know from Theorem 2.1 in Cegrell [C2] that there is
a decreasing sequence uj ∈ E0(�) ∩ C(�̄) with j ∈ N and uj → u. Let

ûj = sup{v ∈ PSH(�̂) : v|� ≤ uj |�}.
Then ûj ↘ û and ûj ∈ E0(�̂) so û ∈ F(�̂). From Lemma 2.1 we know that
(dd cûj )

n ≤ χ�(dd cuj )
n on �̂. To prove that (dd cû)n ≤ χ�(dd cu)n on �̂ it

remains to show that χ�(dd cuj )
n converges to χ�(dd cu)n on �̂ in the weak∗

topology. We want to show that (dd cu)n does not put any mass on ∂�—in
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other words, that
∫

�
(dd cu)n ≥ limj

∫
�
(dd cuj )

n. Take a constant A such that
limj

∫
�
(dd cuj )

n > A. Since (dd cuj )
n is increasing there exists a k ∈ N such

that
∫

�
(dd cuj )

n > A if j ≥ k. Choose h ∈ E0(�) with h ≥ −1 such that∫
�

−h(dd cuk)
n > A. Then

∫
�

−h(dd cuj )
n > A when j ≥ k and∫

�

(dd cu)n =
∫

�

(1 + h)(dd cu)n −
∫

�

h(dd cu)n

=
∫

�

(1 + h)(dd cu)n + lim
j

∫
�

−h(dd cuj )
n

>

∫
�

(1 + h)(dd cu)n + A > A.

This shows that
∫

�
(dd cu)n ≥ limj

∫
�
(dd cuj )

n, which finishes the proof.

3. Approximation

In this section we come to the main result of this paper. We will use subextensions
as already described to approximate functions in F(�) by functions in F(�j ). We
need the sufficient condition that one single function (�= 0) in the class N(�) can
be approximated by functions in N(�j ). We will start by defining the class N.

Let � be a hyperconvex domain and let �j be a fundamental sequence of strictly
pseudoconvex domains; that is, �j ⊂⊂ �j+1 ⊂⊂ � for every j and

⋃
�j = �.

Let u ∈ E and let

uj = sup{ϕ ∈ PSH(�) : ϕ|C�j ≤ u|C�j }.
Then u ≤ uj ≤ uj+1, so uj ∈ E and ũ = (lim uj )∗ ∈ E . Let the class N(�) be the
class of all functions u ∈ E(�) such that ũ = 0. Note that E0 ⊂ F ⊂ N.

In the proof of Theorem 3.5 we will need the class of functions F(ũ). A pluri-
subharmonic function u defined on � belongs to the class F(ũ) (= F(�, ũ)) if
there exists a function ϕ ∈ F(�) such that

ũ ≥ u ≥ ϕ + ũ.

Note that F(0) = F. For more details about the class F(ũ) see [C4].

Theorem 3.1. Assume that � ⊂⊂ �j+1 ⊂⊂ �j are hyperconvex domains and
that there exist a function 0 > v ∈ N(�) and a sequence vj ∈ N(�j ) such that
vj → v a.e. on �. Then, for every function u ∈ F(�) there is an increasing se-
quence of functions uj ∈ F(�j ) such that lim uj = u a.e. on �.

In the next corollary we must assume that the sequence {�j} is a Stein neighbor-
hood basis—in other words, that �̄ = ⋂

�j , where �j is pseudoconvex.

Corollary 3.2. Let � be a hyperconvex domain with C1-boundary and with
a Stein neighborhood basis {�j}. Then for every function u ∈ F(�) there is an
increasing sequence uj ∈ F(�j ) such that lim uj = u a.e. on �.
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Before proving Theorem 3.1 and Corollary 3.2 we need some other results. We
start by defining the relative Monge–Ampère capacity defined by Bedford and
Taylor [BT]. If K ⊂ � is a compact set then the Monge–Ampère capacity of K

relative � is defined as

cap(K, �) = sup

{∫
K

(dd cv)n : v ∈ PSH(�), −1 ≤ v ≤ 0

}
.

If uK,� is the relative extremal function defined by

uK,�(z) = sup{v(z) : v ∈ PSH(�), v|K ≤ −1, v|� < 0}
and if

u∗
K,�(z) = lim sup

ξ→z

uK,�(ξ)

is the upper semicontinuous regularization, then Bedford and Taylor proved that

cap(K, �) =
∫

�

(dd cu∗
K,�)n =

∫
K

(dd cu∗
K,�)n.

In [Be], Benelkourchi gave a new characterization of the class F(�) in terms
of the relative Monge–Ampère capacity. For the reader’s convenience we include
the whole proof.

Theorem 3.3. Let � be a hyperconvex domain. A function ϕ ∈ PSH−(�) is in
F(�) if and only if

lim sup
s→0

s n cap({z ∈ � : ϕ ≤ −s}, �) < +∞.

Proof. Let ϕ ∈ F(�); then there is a decreasing sequence of functions ϕj ∈ E0(�)

such that ϕj ↘ ϕ. For a fixed j we have that h∗
{ϕj ≤−s},� ≥ ϕj/s, where h{ϕj ≤−s},�

is the relative extremal function. Since both functions are in E0(�), integration by
parts yields ∫

�

(dd ch∗
{ϕj ≤−s},�)n ≤

∫
�

(
dd c ϕj

s

)n

and hence

s n cap({ϕj ≤ −s}, �) ≤
∫

�

(dd cϕj )
n.

Because supj

∫
�
(dd cϕj )

n < +∞, we obtain

lim sup
s→0

s n cap({z ∈ � : ϕ(z) ≤ −s}, �) < +∞.

Now assume that ϕ ∈ PSH−(�) and that

lim sup
s→0

s n cap({z ∈ � : ϕ(z) ≤ −s}, �) < +∞.

By [C2] there is a decreasing sequence of functions ϕj ∈ E0 ∩C(�̄) such that ϕj ↘
ϕ when j → ∞. It remains to show that supj

∫
�
(dd cϕj )

n < +∞. Take s > 0
fixed. Then
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1

s n

∫
{ϕj ≤−s}

(dd cϕj )
n

=
∫

{ϕj/s≤−1}

(
dd c ϕj

s

)n

=
∫

�

(
dd c ϕj

s

)n

−
∫

{ϕj/s>−1}

(
dd c ϕj

s

)n

=
∫

�

(
dd c max

{
ϕj

s
, −1

})n

−
∫

{ϕj/s>−1}

(
dd c max

{
ϕj

s
, −1

})n

=
∫

{ϕj/s≤−1}

(
dd c max

{
ϕj

s
, −1

})n

≤ cap({ϕj ≤ −s}, �).

Hence ∫
{ϕj ≤−s}

(dd cϕj )
n ≤ s n cap({ϕj ≤ −s}, �) ∀s > 0

and then ∫
�

(dd cϕj )
n ≤ lim sup

s→0
s n cap({ϕ ≤ −s}, �) < +∞

for all j, and ϕ ∈ F(�) by the definition.

Theorem 3.4. Let � be a hyperconvex domain. If u, v ∈ F(�) then (dd cu)n =
(dd cv)n, and if u ≤ v then u = v.

Proof. By [C3] there is a strictly plurisubharmonic exhaustion function ψ ∈
E0 ∩ C∞(�) for �. We would like to show that∫

d(u − v) ∧ d c(u − v) ∧ (dd cψ)n−1 = 0

since then (u − v) is constant. Since both u and v belong to F(�) it would
then follow that u would be equal to v. We will use induction to show this.
Using (dd cu)n = (dd cv)n and u ≤ v, it is easy to see that 0 = ∫

d(u − v) ∧
d c(u − v) ∧ (dd cu)a ∧ (dd cv)b ∧ dd cψ when a + b = n − 2. Assume that 0 =∫

d(u− v)∧d c(u− v)∧ (dd cu)a ∧ (dd cv)b ∧ (dd cψ)p when a +b = n−1−p.

Then, since ψ ∈ E0 ∩ C∞(�), via Stokes’s theorem and Hölder’s inequality we
have for a + b = n − 2 − p that

0 ≤
∫

d(u − v) ∧ d c(u − v) ∧ (dd cu)a ∧ (dd cv)b ∧ (dd cψ)p+1

=
∫

−(u − v) dd c(u − v) ∧ (dd cu)a ∧ (dd cv)b ∧ (dd cψ)p+1

=
∫

−ψ(dd c(u − v))2 ∧ (dd cu)a ∧ (dd cv)b ∧ (dd cψ)p =
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=
∫

dψ ∧ d c(u − v) ∧ dd c(u − v) ∧ (dd cu)a ∧ (dd cv)b ∧ (dd cψ)p

≤
∣∣∣∣
∫

dψ ∧ d c(u − v) ∧ dd cu ∧ (dd cu)a ∧ (dd cv)b ∧ (dd cψ)p

∣∣∣∣
+

∣∣∣∣
∫

dψ ∧ d c(u − v) ∧ dd cv ∧ (dd cu)a ∧ (dd cv)b ∧ (dd cψ)p

∣∣∣∣
≤

[ ∫
dψ ∧ d cψ ∧ (dd cu)a+1 ∧ (dd cv)b ∧ (dd cψ)p

×
∫

d(u − v) ∧ d c(u − v) ∧ (dd cu)a+1 ∧ (dd cv)b ∧ (dd cψ)p

]1/2

+
[ ∫

dψ ∧ d cψ ∧ (dd cu)a ∧ (dd cv)b+1 ∧ (dd cψ)p

×
∫

d(u − v) ∧ d c(u − v) ∧ (dd cu)a ∧ (dd cv)b+1 ∧ (dd cψ)p

]1/2

= 0.

Remark 1. Theorem 3.4 follows from [NP, Prop. 3.4] but here we give a more
detailed version of the proof in [C4].

Theorem 3.5. Assume that � ⊂⊂ �j+1 ⊂⊂ �j are hyperconvex domains and
that there exist a function 0 > v ∈ N(�) and a sequence of functions vj ∈ N(�j )

such that lim vj = v a.e. on �. Then cap(K, �) = limj→+∞ cap(K, �j) for every
compact subset K of �.

Before proving this theorem we observe that, if we have a sequence vj ∈ N(�j )

that converges to some v ∈ N(�) (v �= 0) a.e. in �, then we can assume that our
sequence {vj} is increasing. We can create functions vj = (supj≤k vk)

∗ that will
be in N(�) (since vj ≥ v) and vj ↘ v a.e. on �. Observe that (supk≥j vk)

∗ =
(supk≥j vk) a.e. on �. Choose j0 ∈ N such that vj �= 0 for all j > j0. Now let
v ′

s = supj0≤p≤s vp; then v ′
s ∈ N(�s) since v ′

s ≥ vs. We see that v ′
s ↗ vj0 =

(supj0≤k vk)
∗ a.e. on � and that vj0 < 0.

We will also need the following result, which was proved in [C4].

Theorem 3.6. Suppose u ∈ E with
∫

�
(dd cu)n < +∞. Then u ∈ F(ũ).

Proof of Theorem 3.5. Assume that there exist a function 0 > v ∈ N(�) and an
increasing sequence of functions vj ∈ N(�j ) such that lim vj = v a.e. on �. Let
K ⊂⊂ � and let hK,� be the relative extremal function for K in �. Then h∗

K,� ∈
E0(�) ∩ C(�̄) with −1 ≤ h∗

K,� ≤ 0 and supp(dd ch∗
K,�)n ⊂ K. Put

hj(z) = sup{ϕ(z) : ϕ ∈ PSH−(�j ), ϕ|� ≤ h∗
K,�}.

By Lemma 2.1, hj ∈ E0(�j ) and (dd chj )
n ≤ χ�(dd ch∗

K,�)n on �j . Multiplying
v and the vj by a positive constant, we can assume that v < −1 near K so
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that vj ≤ h∗
K,� on �. Then vj ≤ hj and so, if we define f = (lim hj )

∗, then
v ≤ f and f ∈ N(�). Because of the construction, f ≤ h∗

K,� and (dd cf )n ≤
(dd ch∗

K,�)n. It follows that
∫
(dd cf )n ≤ ∫

(dd ch∗
K,�)n < +∞ and, by Theo-

rem 3.6, f ∈ F. But since f ≤ h∗
K,� it follows from integration by parts (see [C2])

that
∫
(dd cf )n ≥ ∫

(dd ch∗
K,�)n, so we get

∫
(dd cf )n = ∫

(dd ch∗
K,�)n. Therefore,

(dd cf )n = (dd ch∗
K,�)n and so, by Theorem 3.4, f = h∗

K,�. Then, since hj is an
increasing sequence, we know that the measure (dd chj )

n converges to (dd ch∗
K,�)n

in the weak∗ topology. But supp(dd chj )
n ⊂ K and supp(dd ch∗

K,�)n ⊂ K, so∫
K

(dd chj )
n →

∫
K

(dd ch∗
K,�)n.

By the definition of the capacity cap(K, �j) ≥ ∫
K
(dd chj )

n, the result now follows.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let u ∈ F(�) and let uj = sup{ϕ ∈ PSH−(�j ) : ϕ|� ≤ u};
that is, uj is the subextension of u to �j considered in Section 2. Then {uj} will be
an increasing sequence and uj ∈ F(�j ) by Theorem 2.2. It remains to show that
v = (lim uj )

∗ ∈ F(�) and that v = u. Suppose that s > 0 and that K is a com-
pact subset of {z ∈ � : v(z) ≤ −s}. Theorem 3.5 and the proof of Theorem 3.3
give us that

s n cap(K, �) = s n lim
j→∞ cap(K, �j) ≤ s n lim

j→∞ cap({z ∈ � : v(z) ≤ −s}, �j)

≤ s n lim
j→∞ cap({z ∈ �j : uj(z) ≤ −s}, �j)

≤ lim
j→∞

∫
�j

(dd cuj )
n ≤

∫
�

(dd cu)n.

Hence s n cap({v ≤ −s}, �) ≤ ∫
�
(dd cu)n for all s > 0 and so, by Theorem 3.3,

v = (lim uj )
∗ ∈ F(�). We know by the construction that v ≤ u, so integration

by parts yields
∫

�
(dd cu)n ≤ ∫

�
(dd cv)n. But Theorem 2.2 gives that (dd cv)n ≤

(dd cu)n and hence (dd cv)n = (dd cu)n. It follows now from Theorem 3.4 that
v = u, which finishes the proof.

Using Theorem 3.1 we now prove Corollary 3.2.

Proof of Corollary 3.2. Because {�j} is a Stein neighborhood basis, we can as-
sume that the �j are hyperconvex. Take a closed ball B ⊂ �. Then the rela-
tive extremal function hB,� ∈ E0(�) ∩ C(�̄). Fornæss and Wiegerinck showed in
[FW] that hB,� can be approximated by functions ui ∈ PSH(�̄) ∩ C∞(�̄) uni-
formly on �̄. Take ε > 0; then there exists an N > 0 such that sup�̄|hB,� −ui | <

ε if i > N. Since �j is a Stein neighborhood basis for �, we can take a large j

such that ui ∈ PSH(�j ) ∩ C∞(�j ). Let

hk(z) = sup{ϕ(z) : ϕ ∈ PSH−(�k), ϕ|� ≤ hB,�}.
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Then {hk} is an increasing sequence and hk ∈ E0(�k) by Theorem 2.1. We know
that ui − ε < hB,� on �, so hk ≥ ui − ε for k > j. Thus lim hk = hB,� and, given
Theorem 3.1, we can approximate every function in F(�) by functions in F(�j ).

Remark 2. In the assumptions for Theorem 3.1 we assume that � ⊂⊂ �j+1 ⊂⊂
�j and that there exist a function 0 > v ∈ N(�) and a sequence vj ∈ N(�j ) such
that vj → v a.e. in �. A natural question is whether these two assumptions imply
that �̄ = (⋂

�j

)
. Clearly it cannot be the case that � ⊂⊂ (⋂

�j

)◦
, since then

{vj} would be a uniformly upper bounded family of plurisubharmonic functions on(⋂
�j

)◦
. Then we could take a compact set K such that � ⊂ K ⊂ (⋂

�j

)◦
and

we could find a subsequence of {vj} that converges to a plurisubharmonic func-
tion v0 on K. Since vj → v a.e. on �, we know that v = v0|�. But since 0 >

v0 ∈ PSH(K) we have v0 < c < 0 on ∂�, and from v ∈ N(�) it follows that
lim supz→ξ v(z) = 0 for all ξ ∈ ∂�. This gives us a contradiction.

Remark 3. Note that a strictly pseudoconvex domain � with C2-boundary has
a Stein neighborhood basis. Then, by Corollary 3.2, every function u ∈ F(�),
where � is such a domain, can be approximated by an increasing sequence of
functions uj ∈ F(�j ).

Remark 4. Polydiscs are examples of nonsmooth domains satisfying the condi-
tions of Theorem 3.1.

Remark 5. Note that the existence of a Stein neighborhood basis does not imply
that � is hyperconvex; see [V] for a counterexample. Starting with the unit disc
in C and then removing the origin and a sequence of closed discs with decreasing
radius and centers tending to the origin, Vâjâitu [V] constructed a “swiss cheese”
domain that is fat (i.e., �̄◦ = �) and has a Stein neighborhood basis but that is
not hyperconvex.
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