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Real Multiplication on K3 Surfaces
and Kuga–Satake Varieties

Bert van Geemen

A K3-type Hodge structure is a simple, rational, polarized weight-2 Hodge struc-
ture V with dimV 2,0 = 1. Zarhin [Z] proved that the endomorphism algebra of a
K3-type Hodge structure is either a totally real field or a CM field. Conversely, a
K3-type Hodge structure whose endomorphism algebra is a given such field exists
under fairly obvious conditions. For the totally real case, see Lemma 3.2.

In a manner similar to the case of abelian varieties and their polarized weight-1
Hodge structures, given a polarization and a totally positive endomorphism, one
can define a new polarization (see Lemma 4.2). For a polarized abelian variety,
this follows from the well-known relation between the Rosati invariant endomor-
phisms and the Néron–Severi group. In case the K3-type Hodge structure is a
Hodge substructure of the H 2 of a smooth surface, it comes with a natural polar-
ization induced by the cup product. It is then interesting to consider whether the
polarization obtained by means of a totally real element a is also realized as the
natural polarization for some other surface Sa. Thus H 2(Sa) has a Hodge sub-
structure isomorphic to the original one, but the isomorphism does not preserve
the natural polarizations.

It follows easily from general results on K3 surfaces that, under a condition on
the dimension of the Hodge structure, such K3 surfaces do exist (see Section 4.7).
The isomorphism of Hodge substructures, in combination with the Hodge con-
jecture, then leads one to wonder whether there is an algebraic cycle realizing the
isomorphism. We discuss some aspects of this question in Section 7. Mukai [Mu]
proved that Hodge isometries between rational Hodge structures of K3 surfaces
are realized by algebraic cycles, but this deep result does not apply to the gen-
eral case. It does imply that if the endomorphism algebra of the (transcendental)
Hodge structure of the K3 surface is a CM field, then any endomorphism is in-
duced by an algebraic cycle on the self-product of the surface [Ma].

We consider the Kuga–Satake variety of a K3-type Hodge structure with real
multiplication in Sections 5 and 6. The CM case was already studied in [vG2]. In
particular, we consider the endomorphism algebra of the Kuga–Satake variety in
the presence of real multiplications on the Hodge structure and we discuss some
examples. We show that the Kuga–Satake construction is related to the corestric-
tion of (Clifford) algebras. From this result we obtain a better understanding of
previous work of Mumford [Mum] and Galluzzi [Ga].
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1. Hodge Structures, Polarizations, and Endomorphisms

1.1. Hodge Structures. We recall the basic notions and refer to [Z, Sec. 0] and
[vG1, Sec. 1] for further details.

For a Q-vector space V and a Q-algebra R we write VR := V ⊗Q R. The
R-linear extension of a Q-linear map f : V → W is denoted by fR : VR → WR.

A rational Hodge structure of weight k is a Q-vector space V with a decompo-
sition of its complexification:

VC =
⊕

p+q=k
V p,q such that V p,q = V q,p

and p, q ∈Z≥0. Equivalently, a rational Hodge structure of weight k is a Q-vector
space V with a representation of algebraic groups over R:

h : U(1) = {z∈C : |z| = 1} → GL(VR)

such that h(z) ∼C diag(. . . , zpz̄q, . . .)

with p + q = k, p, q ≥ 0; that is, the set of eigenvalues of h(z) on VC is a subset
of {zk, . . . , zpz̄q, . . . , z̄ k}. The subspace of VC on which h(z) acts as zpz̄q is V p,q.

Note that h is defined over R if and only if (iff ) V p,q = V q,p. We write (V,h), or
simply V, for the Hodge structure on V defined by h.

1.2. Polarizations (see [Z, Secs. 0.3.1, 0.3.2; vG1, Sec. 1.7]). Let (V,h) be a
rational Hodge structure of weight k. A polarization ψ of (V,h) is first of all a
Q-bilinear map

ψ : V ×V → Q such that ψR(h(z)v,h(z)w) = ψ(v,w)

for all z∈U(1), v,w ∈VR. That is, ψR must be U(1)-invariant.
Let C := h(i) ∈ End(VR); C is called the Weil operator. Then ψ must also

satisfy
ψR(v,Cw) = ψR(w,Cv) ∀v,w ∈VR;

hence ψR(·,C·) is a symmetric R-bilinear form. Since C2 = h(−1) and h(−1)
has eigenvalues (−1)p+q = (−1)k, we have C2 = (−1)k on VR. Using also the
symmetry of ψR(·,C·), we get

ψ(v,w) = ψR(v,w) = ψR(Cv,Cw) = ψR(w,C2v)

= (−1)kψR(w, v) = (−1)kψ(w, v)

for v,w ∈V. Thus ψ is symmetric if the weight k of V is even and is alternating
if the weight is odd.

Finally one requires that ψR(·,C·) be positive definite:

ψR(v,Cv) > 0 ∀v ∈VR, v �= 0.

A polarized rational Hodge structure (V,h,ψ) is a rational Hodge structure (V,h)
with a polarization ψ.
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1.3. Endomorphisms. A homomorphism f of Hodge structures (V,hV ) and
(W,hW) is a Q-linear map whose R-linear extension intertwines the represen-
tations hV and hW of U(1):

f : V →W such that fR(hV (z)v) = hW(z)fR(v) ∀z∈U(1),∀v,w ∈VR.

Equivalently, there is an integer a such that the C-linear extension of f satisfies

fC(V
p,q) ⊂Wp+a,q+a

(so we work up to Tate twists; cf. [Z, Sec. 0.3.0; vG1, Sec. 1.6]). In particu-
lar, kernels and images of homomorphisms of Hodge structures are Hodge sub-
structures—that is, they are rational Hodge structures with the decomposition in-
duced by the one of V (resp.W).

We write HomHod(V,W) for the Q-vector space of homomorphisms of Hodge
structures, and EndHod(V ) = HomHod(V,V ). Note that EndHod(V ) is a Q-algebra
with product given by the composition.

A Hodge substructure of (V,h) is a subspace W ⊂ V such that h(z)WR ⊂WR

for all z ∈ U(1). Thus (W,h|W) is a rational Hodge structure and the inclusion
W ↪→ V is a homomorphism of Hodge structures.

A rational Hodge structure (V,h) is said to be simple if it does not contain
nontrivial rational Hodge structures. If (V,h) is simple, then any nonzero f ∈
EndHod(V ) must be an isomorphism; that is, EndHod(V ) is a division algebra.

1.4. Polarizations on Weight-2 Hodge Structures. Let (V,h) be a ratio-
nal Hodge structure of weight 2. Define a decomposition of VR (this is actually
the eigenspace decomposition for the Weil operator C) by

VR = V2 ⊕V0, V2 := VR ∩ (V 2,0 ⊕V 0,2), V0 := VR ∩V 1,1.

Then V2 is a real vector space that is h(U(1))-invariant, and the eigenvalues of
h(z) on V2 ⊗ C are z2 and z̄2. In particular, C = −1 on V2. The subspace V0 is a
complementary h(U(1))-invariant subspace of V2 on which h(U(1)) acts trivially.
In particular, C = 1 on V0.

Let ψ : V × V → Q be a morphism of Hodge structures. Then ψR is U(1)-
invariant and hence V0 and V2 are perpendicular with respect to (w.r.t.) ψR:

ψR(v,w) = ψR(Cv,Cw) = −ψR(v,w), v ∈V0, w ∈V2.

Now assume that ψ is a polarization. Then ψR(·,C·) is positive definite onVR

and, because C = −1 on V2 and +1 on V0, the symmetric form ψR is negative
definite on V2 and positive definite on V0. In particular, the signature of ψR is
((d − 2e)+, 2e−), where d = dimQV and e = dimCV

2,0.

1.5. K3-Type Hodge Structures. A Hodge structure of K3 type is a simple,
polarized, weight-2 Hodge structure (V,h,ψ) with

dimV 2,0 = 1.

1.6. Periods of K3-Type Hodge Structures. Let (V,ψ,h) be a K3-type
Hodge structure. Any nonzero elementω ∈V 2,0 will be called a period of (V,h,ψ).
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Note thatV 0,2 = Cω̄ and V 1,1 = (V 2,0⊕V 0,2)⊥, where the perpendicular is taken
w.r.t. the polarization ψ. Thus the polarized weight-2 Hodge structure (V,h,ψ) is
determined by the bilinear form ψ of signature ((d−2)+, 2−), where d = dimV,
and the period ω.

Since h(z)ω = z2ω for all z∈U(1), we get

ψC(ω,ω) = ψC(h(z)ω,h(z)ω) = z4ψC(ω,ω) ∀z∈U(1);
hence ψC(ω,ω) = 0. Since ω + ω̄ ∈ V2, we have 0 > ψR(ω + ω̄,ω + ω̄) =
2ψC(ω, ω̄). Thus the period satisfies:

ψC(ω,ω) = 0, ψC(ω, ω̄) < 0 (V 2,0 = Cω).

Conversely, let V be a Q-vector space of dimension d with a bilinear form ψ of
signature ((d−2)+, 2−).Anyω ∈VC that satisfiesψC(ω,ω) = 0 andψC(ω, ω̄) <
0 determines a polarized weight-2 Hodge structure (V,h,ψ) by V 2,0 := Cω.

The following lemma gives a criterion for this Hodge structure to be simple—
equivalently, to be of K3 type.

1.7. Lemma. Let (V,h,ψ) be a weight-2 Hodge structure with dimV 2,0 = 1 and
let V 2,0 = Cω. The (V,h,ψ) is of K3 type iff ψC(ω, v) = 0, with v ∈V, implies
v = 0.

Proof. We will prove that V has a nontrivial Hodge substructure iff there is a
nonzero v ∈V perpendicular to ω.

Let W ⊂ V be a nontrivial Hodge substructure. Because WR must be invari-
ant under C = h(i), it is the direct sum of the perpendicular eigenspaces W2 :=
WR ∩ V2 and W0 = WR ∩ V0.

If W2 = 0, then W ⊂ V0 and thus ψC(ω,w) = 0 for all w ∈W. If W2 �= 0,
then W2 = V2 because V2 is an irreducible (over R) representation of U(1). In
particular, ω, ω̄ ∈WC. We consider the subspace

W⊥ := {v ∈V : ψC(v,w) = 0 ∀w ∈W }.
Then W⊥ is also a nontrivial Hodge substructure of V. (The h(U(1))-invariance
of W⊥

R follows from the h(U(1))-invariance of WR and ψR(h(z)v,h(z)w) =
ψR(v,w).) Since ψR is positive definite on V2, it follows that W⊥

R ∩ V2 = 0. As
before, we find ψC(ω,w) = 0 for all w ∈W⊥.

Conversely, given a nonzero v ∈ V with ψC(ω, v) = 0, the C-linearity of ψC

and the fact that (ψC)|VR = ψR imply that also ψC(ω̄, v) = 0. Thus v ∈ V ⊥2 =
V0. Since h(z)w = w for all z∈U(1) and w ∈V0, we conclude that W = 〈v〉 is a
nontrivial Hodge substructure.

1.8. The Transcendental Lattice of a K3 Surface. Let S be a K3 sur-
face. Then H 2(S, Z) ∼= Z22 and the natural Hodge structure on H 2(S, Q) has
dimH 2,0(S) = 1 (cf. [BPV]). The orientation of S gives a natural isomorphism
H 4(S, Z) ∼= Z, so we obtain a cup product H 2(S, Z)×H 2(S, Z)→ Z. This cup
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product is an even unimodular bilinear form of signature (3+,19−) on H 2(S, Z),
and (cf. [BPV, I.2.7 with U = H, VIII.3])

H 2(S, Z) ∼= �K3, �K3 = U 3 ⊕ E8(−1)2.

We will assume that S is algebraic. Thus S has an ample divisor with class h∈
H 2(S, Z)∩H1,1(S); in particular, h∪ h > 0. The primitive rational cohomology
of S (w.r.t. h) is

h⊥ = H 2(S, Q)prim = {v ∈H 2(S, Q) : v ∪ h = 0}.
The inclusion H 2(S, Q)prim ⊂ H 2(S, Q) defines a rational Hodge structure on the
primitive cohomology. The map ψS , defined by ψS(v,w) := −(v ∪ w), gives a
polarization on H 2(S, Q)prim.

The Néron–Severi group of S is NS(S) = H 2(S, Z)∩H1,1(S) [BPV, IV, 2.13];
note that NS(S)Q = H 2(S, Q)∩ V0 is the maximal Hodge structure of type (1,1)
contained in H 2(S, Q). The transcendental lattice of S is defined as

TS := NS(S)⊥ (⊂ H 2(S, Z)prim).

Since NS(S) ⊂ V0, we get H 2,0(S) ⊂ TS,C. The Hodge substructure TS,Q of
H 2(S, Q)prim, with the polarization induced by ψS , is of K3 type.

The “surjectivity of the period map” [BPV, VIII.14] implies that any ω ∈
�K3 ⊗Z C with ω · ω = 0 and ω · ω̄ > 0 and such that there is a h ∈ �K3

with h · h > 0 and h · ω = 0 defines an algebraic K3 surface S with an iso-
morphism H 2(S, Z) ∼= �K3 whose C-linear extension induces an isomorphism
H 2,0(S) ∼= Cω.

2. Real Multiplication for K3-Type Hodge Structures

2.1. Endomorphisms of K3-Type Hodge Structures. Zarhin showed that for
a Hodge structure of K3 type (V,h,ψ), the division algebra EndHod(V ) is a (com-
mutative) field that either is totally real, in which case we write EndHod(V ) = F,
or is a CM field E—that is, E is an imaginary quadratic extension of a totally real
field F [Z, Thm. 1.5.1]. Moreover, for any polarization ψ of (V,h), one has

ψ(av,w) = ψ(v, āw) ∀a ∈EndHod(V ), ∀v,w ∈V
[Z, Thm. 1.5.1], where ā is the complex conjugate of a; in particular, ā = a for
a ∈F.
2.2. Notation. From now on (V,h,ψ) will be a polarized Hodge structure of
K3 type with F = EndHod(V ) a totally real field and

d = dimQV, n = [F : Q], m = n/d = dimF V.

2.3. Totally Real Fields. Recall that a finite extension F of Q is said to be
totally real if for any embedding σ : F ↪→ C one has σ(F ) ⊂ R.



380 Bert van Geemen

It is well known that for any number field F there is an irreducible polynomial
p ∈Q[X] such that F ∼= Q[X]/(p). Then [F : Q] = n, where n is the degree of
p. Let α1, . . . ,αn ∈C be the roots of p in C. Then the maps

σj : F ∼= Q[X]/(p) ↪→ C, σj :
∑

aiX
i + (p) �→

∑
aiα

i
j ,

j = 1, . . . , n, are the embeddings of F into C. In particular, F is totally real iff all
roots of p are real.

LetF be a totally real field. An element a ∈F is called totally positive if σ(a) >
0 for all complex embeddings σ of F. For example, b2, for any nonzero b ∈ F, is
totally positive. For any b ∈ F, the element k + b ∈ F, with k ∈ Z>0, is totally
positive if k > −σ(b) for any embedding σ ∈ S.
2.4. Splitting over Extensions. To study the action of the fieldF =EndHod(V )

on the Q-vector space V with the bilinear form ψ, it is convenient to have a de-
composition into eigenspaces. So let F̃ be the Galois closure of F. Then F̃ is a
Galois extension of Q that contains F as a subfield. Let

H := Gal(F̃/F ) ↪→ G := Gal(F̃/Q), [G : H ] = [F : Q] = n.

Note that h(a) = a for any a ∈ F and h ∈ H ; thus any coset gH gives a well-
defined embedding F ↪→ F̃, a �→ g(a).

Let again F = Q(α) = Q[X]/(p) with α = X + (p) ∈ F a root of p. Then
p = ∏

g∈G/H (X − g(α)) ∈ F̃ [X]. The Chinese remainder theorem gives an iso-
morphism of rings

FF̃ := F ⊗Q F̃ ∼=
∏

g∈G/H
F̃g , a ⊗ t �→ (. . . , g(a)t, . . .)g∈G,

where the F-algebra F̃g is the field F̃ on which F acts via the automorphism g of
F̃ : a · t := (a ⊗ 1)t = g(a)t for t ∈ F̃g.

For h ∈ G, let πh ∈ F̃h ⊂ FF̃ be the idempotent corresponding to the projec-
tion on F̃h, so πh = (. . . , (πh)g , . . .)∈∏

F̃g with (πh)h = 1 and (πh)g = 0 if g �=
h. Note that a · πg = g(a)πg. Then VF̃ has the following decomposition, with
Vg := πgV :

VF̃ =
⊕

g∈G/H
Vg , v =

∑
g∈G/H

vg with vg := πgv.

This is also the decomposition of VF̃ into eigenspaces for the F-action because,
with a · v = (a ⊗ 1)v for a ∈F and v ∈VF̃ , we have

a · vg = a · πgvg = g(a)πgvg = g(a)vg.

Note that dimQV = dimF̃ VF̃ = d = nm and that dimF̃ Vg = m for any g ∈G/H.

2.5. The Galois Action onVF̃ . The Galois group G acts onVF̃ = V ⊗Q F̃ via
the second factor of the tensor product. This action commutes with the one of F
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on the first factor. Under the isomorphism VF̃
∼= ⊕

Vg , this action permutes the
eigenspaces Vg: if a · v = g(a)v then for h∈G one has

a · h(v) = h(a · v) = h(g(a)v) = (hg)(a)h(v)

and hence h(Vg) = Vhg.
(
Here we have used that, if v =∑

i vi⊗ ti, then g(a)v =
(1⊗ g(a))

(∑
i vi ⊗ ti

)
etc.

)
Let v ∈V = V ⊗ 1⊂ VF̃ ; then v = h(v). Writing v =∑

vg we get

v =
∑

vg =
∑

h(vg) and so h(vg) = vhg (v ∈V ).

Thus for v ∈V we have the decomposition v = ∑
g(ve). In particular, the com-

position of the inclusion V ↪→ VF̃ with the projection of VF̃ → Ve is an injective
F-linear map:

V ↪→ Ve, v �→ ve.

This inclusion induces an isomorphism of F̃-vector spaces V ⊗F F̃ ∼= Ve.

2.6. Lemma. The F̃-bilinear extension of the polarization ψ on V will be de-
noted by ψF̃ : VF̃ × VF̃ → F̃. Let ψe : Ve × Ve → F̃ be the restriction of ψF̃ to
Ve ×Ve. Let , be the restriction of ψe to V ×V ⊂ Ve ×Ve :

, : V ×V → F, ,(v,w) := ψe(ve,we).

Then , is an F-bilinear map and for v =∑
vg and w =∑

wg ∈V ⊂ VF̃ we have

ψ(v,w) =
∑

g∈G/H
g(,(ve,we)) = trF/Q(,(ve,we)),

where trF/Q : F → Q, t �→∑
g∈G/H g(t), is the trace map.

Proof. The polarization ψ on V satisfies ψ(av,w) = ψ(v, aw) for all a ∈ F and
all v,w ∈V. Using the idempotents πg we get

ψF̃ (vg , vh) = ψF̃ (πgvg , vh) = ψF̃ (vg ,πgvh)

and πgvh = 0 if g �= h. Thus the eigenspaces Vg are perpendicular w.r.t. ψF̃ and
we get

ψF̃ (v,w) =
∑

g∈G/H
ψg(vg ,wg) with ψg = (ψF̃ )|Vg×Vg : Vg ×Vg → F̃,

where v = ∑
vg , w = ∑

wg ∈ VF̃ . Note that aψg(vg ,wg) = ψg(g(a)vg ,wg) =
ψg(vg , g(a)wg) and so ψe is F̃-bilinear.

Since ψ is defined over Q, for h∈G and v,w ∈VF̃ we have

h(ψF̃ (v,w)) = ψF̃ (h(v),h(w))(
alternatively, use v = ∑

i vi ⊗ ti etc.
)
. In particular, for v,w ∈V ⊂ Ve and h ∈

H we get ψe(ve,we) ∈ F. For v = ∑
g(ve) and w = ∑

g(we) ∈ V ⊂ VF̃ we
then have
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g(ψe(ve,we)) = g(ψF̃ (ve,we)) = ψF̃ (g(ve), g(we)) = ψg(g(ve), g(we));
therefore, ψ(v,w) = ψF̃ (v,w) = ∑

ψg(g(ve), g(we)) = ∑
g(ψe(ve,we)). The

lemma now follows from the definition of ,.

2.7. The Mumford–Tate Group. The Mumford–Tate group of a K3-type Hodge
structure was determined by Zarhin. For the definition and properties of the
Mumford–Tate group MT(V ) and its subgroup, the special Mumford–Tate group
SMT(V ), of a Hodge structure V we refer to [Z, 0.3.1] (where SMT(V ) is called
the Hodge group of V ) and [Go]. Both are algebraic subgroups, defined over Q,
of GL(V ) and SL(V ), respectively.

Let SO(V,,) be the special orthogonal group of the bilinear form , on the
F-vector space V (defined in Lemma 2.6) viewed as an algebraic group over Q.

Then SO(V,,) ∼= SO(Ve,ψe). For a Q-algebra R, the group of R-valued points
of SO(V,,) is

SO(V,,)(R)

= {A∈ SL(VR) : aA = Aa, ,R(Av,Aw) = ,R(v,w) ∀a ∈F, ∀v,w ∈VR}.
2.8. Theorem [Z, Thm. 2.2.1]. Let (V,h,ψ) be a K3-type Hodge structure with
F = EndHod(V ) a totally real field. Then

SMT(V ) = SO(V,,), SO(V,,)(R) ∼= SO(2,m− 2)× SO(m, R)n−1,

and SO(V,,)(C) ∼= SO(m, C)n. The representations of these Lie groups on the
d = nm-dimensional vector spaces VR and VC (respectively) are the direct sum
of the standard representations of the factors.

Proof. With our definition of,, Lemma 2.6 shows thatψ(v,w) = trF/Q(,(v,w))
for all v,w ∈ V, and this is also Zarhin’s definition of , ([Z, 2.1] with e = 1).
Thus SMT(V ) = SO(V,,) by [Z, Thm. 2.2.1].

Similarly to the various decompositions in Section 2.4, one hasFR
∼=⊕

σ∈S Rσ

and

VR =
⊕
σ∈S

Vσ , v = (. . . , vσ , . . .), and a · v = (. . . , σ(a)vσ , . . .)σ∈S

for a ∈ F. Hence this is also the decomposition of VR into eigenspaces for the
F-action.

To obtain these from the decomposition of FF̃ , choose an embedding ε̃ : F̃ ↪→
R—for example, one that extends ε : F ↪→ R , where a · ω = ε(a)ω and V 2,0 =
Cω. (We are interested only in the action of F and R on FR, so the choice of the
extension of ε does not matter.) Then R becomes an F̃-module that we denote by
Rε and we get

FR := F ⊗Q R ∼= (F ⊗Q F̃ )⊗F̃ Rε
∼=

( ⊕
g∈G/H

F̃g

)
⊗F̃ Rε

∼=
⊕
σ∈S

Rσ ,
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where the bijection between the set of complex embeddings S of F and G/H is
given by σ(a) = ε̃(g(a)) for all a ∈F. The idempotent in FR that corresponds to
the projection on Rσ will be denoted by πσ , and Vσ = πσV.

The fact that , is F-bilinear implies that its R-bilinear extension ,R, with
values in FR

∼= ∏
Rσ , is FR-bilinear. Thus ,R = (. . . ,,σ , . . .)σ∈S with ,σ :

Vσ ×Vσ → Rσ .

Any F-linear endomorphism A of V extends R-linearly to an FR-linear endo-
morphism AR of VR. In particular, AR commutes with the idempotents πσ ∈FR;
hence, for vσ ∈Vσ we getARvσ = ARπσvσ = πσARvσ and soARvσ ∈πσV = Vσ .

Since the elements of SO(V,,) are F-linear, we get

SO(V,,)R ⊂
∏
σ∈S

GL(Vσ ).

Here SO(V,,)R = SO(V,,)×Q R is the algebraic group over R obtained by ex-
tension of scalars (i.e., by base change) from the algebraic group SO(V,,) over
Q. Because (V,,) ∼= (Ve,ψe) and the Galois group G permutes theVg , we obtain
the following isomorphism of algebraic groups:

SO(V,,)R
∼=

∏
σ∈S

SO(Vσ ,,σ),

and the representation is factorwise on VR =⊕
Vσ .

By definition of ε we have V 2,0 ⊂ Vε,C := Vε ⊗R C. Since h commutes with
F, each Vσ is a real Hodge structure and hence also V 0,2 ⊂ Vε,C:

V 2,0 ⊕ V 0,2 ⊂ Vε,C := Vε ⊗R C
and so V2 ⊂ Vε.

Recall from Section 1.4 that VR = V2 ⊕ V0 and that ψR is negative definite on
V2 and positive definite on V0. Since Vσ ⊂ V0 if σ �= ε, we get SO(Vσ ,,σ)R

∼=
SO(m)R if σ �= ε and SO(Vε,,ε)R

∼= SO(m − 2, 2)R. Extending scalars to C
and taking C-points, we get SO(V,,)(C) ∼= SO(m, C)n.

3. The Existence of Hodge Structures of K3 Type
with Real Multiplication

3.1. We prove an easy existence result for K3-type Hodge structures with real
multiplication. Then we apply results of Nikulin on embeddings of lattices and
the surjectivity of the period map to show the existence of K3 surfaces each of
whose transcendental lattice has real multiplication.

It would be interesting to have geometrical (and not just “Hodge theoretic”)
examples of such surfaces. A first step in this direction is taken in Example 3.4,
where real multiplication for a certain “geometric” 4-dimensional family of K3
surfaces is studied.

3.2. Lemma. Let F be a totally real field with [F : Q] = n. Then for any
m ∈ Z≥3 there exist K3-type Hodge structures (V,h,ψ) with EndHod(V ) = F
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and dimF V = m. However, there are no such K3-type Hodge structures with
dimF V ≤ 2.

Proof. We use the notation from the proof of Theorem 2.8. In case m = 1 we
would have 1 = dimVε, which contradicts the fact that the 2-dimensional sub-
space V2 is a subspace of Vε.

If m = 2 and EndHod(V ) were equal to F, then by Zarhin’s theorem we
would have SMT(V )(C) ∼= SO(2, C)n. A basic property of SMT(V ) is that
EndSMT(V ) = EndHod(V ). Note that SO(2, C) ∼= C× and its standard repre-
sentation on C2 is equivalent to t �→ diag(t, t−1). With this action, EndC×(C2),
the endomorphisms commuting with C×, consists of the diagonal matrices in
End(C2). Hence

EndHod(V )C
∼= (EndC×(C2))n ∼= C2n

and thus dimQ EndHod(V ) = 2n, which contradicts that EndHod(V ) = F.

Fix an integer m ≥ 3. It remains to show that there exist K3-type Hodge struc-
tures with dimF V = m. Let V = F m and choose an embedding ε : F ↪→ R.

Using the isomorphismFR
∼=∏

Rσ , it is easy to see that there are ai ∈F such that

ε(a1) < 0, ε(a2) < 0, ε(aj ) > 0 and σ(ai) > 0 if σ �= ε,

with 3 ≤ j ≤ n and 1≤ i ≤ n. We define an F-bilinear form

, : V ×V → F, ,(x, y) =
m∑
k=1

akxkyk.

Then , induces the bilinear form defined by
∑m

k=1 σ(ak)xkyk on Vσ ∼= Rm. Note
that ,ε has signature ((m − 2)+, 2−) and that ,σ is positive definite if σ �= ε.

Thus the signature of the Q-bilinear form ψ := tr(,) on V is ((nm− 2)+, 2−).
To define a K3-type Hodge structure with polarization ψ on V, it suffices to

give a period ω ∈ VC (cf. Section 1.6) such that ψC(ω, v) �= 0 for all nonzero
v ∈V (Lemma 1.7). Since ψR < 0 on V2, we must choose ω ∈Vε,C := Vε ⊗R C.

Because ω and λω (λ∈C− {0}) define the same Hodge structure, we consider

D := {[ω]∈P(Vε,C) : ψC(ω,ω) = 0, ψC(ω, ω̄) < 0},
which is a nonempty open subset in a quadric in a complex projective space of
dimension m− 1≥ 2. Any nonzero v ∈V defines a hyperplane

Hv := {[w]∈P(Vε,C) : ψC(v,w) = 0} ⊂ P(Vε,C).

Since an open subset of a quadric is not contained in a hyperplane, Hv ∩ D is an
analytic subset of codimension ≥ 1 in D. Since V is a countable set, we get D �=⋃

v(Hv ∩D), where the union is over the nonzero v ∈V. Hence there is an ω ∈D
that defines a simple Hodge structure with V 2,0 = Cω. This construction shows
that such (integral) Hodge structures have m− 2 moduli.

Because ω ∈Vε,C and a ∈ F acts via scalar multiplication by ε(a) ∈R on Vε,C,
it follows that aV 2,0 ⊂ V 2,0 and, taking the complex conjugates, aV 0,2 ⊂ V 0,2.
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Since V 1,1 = (V 2,0 ⊕ V 0,2)⊥ and ψC(av,w) = ψC(v, aw) we get aH1,1 ⊂ H1,1,
so F ⊂ EndHod(V ).

In case F �= EndHod(V ), the K3-type Hodge structureV has EndHod(V ) = F ′,
with F ′ an extension of the field F. Multiplication by b ∈ F ′ defines an F-linear
mapV → V and so each eigenspaceVσ for the F-action is mapped into itself. The
splitting of VC into F ′ eigenspaces thus splits each

Vσ,C =
⊕
ρ

Vρ ,

where the ρ : F ′ → C are the embeddings of F ′ that restrict to σ on F ⊂ F ′. In
particular, each Vρ has dimension ≤ (dimCVσ,C)/2. Since F ′ = EndHod(V ) we
must have ω ∈Vρ for some ρ that extends ε. Since the Vρ are eigenspaces of ele-
ments b ∈F ′ ⊂ EndF (V ) and the set EndF (V ) is countable, we conclude that the
general ω ∈D defines a K3-type Hodge structure V with EndHod(V ) = F.

3.3. Proposition. Given a totally real number field F and an integer m ≥ 3
such that m[F : Q] ≤ 10, there exist (m−2)-dimensional families of K3 surfaces
such that F = End(TS) for the general surface S in the family.

Proof. Let (V,h,ψ) be a K3-type Hodge structure with EndHod(V ) = F and pe-
riodω. Choose a free Z-module T ⊂ V of rank d = dimQV such thatψ is integer
valued on T × T. Theorem 1.10.1 of [N] shows that there is a primitive embed-
ding of lattices T ↪→ �K3. The surjectivity of the period map implies that ω ∈
T ⊗Z C = VC ⊂ �K3,C defines a K3 surface S with TS ∼= T as integral polarized
Hodge structures. The proof of Lemma 3.2 shows that there arem−2 moduli.

3.4. Example. The minimal model of a double cover of P2 branched over six
lines is a K3 surface. The general surface S in this 4-dimensional family has tran-
scendental lattice (cf. [MSY, 0.3]):

T ∼= U(2)2 ⊕ 〈−2〉2;
hence

TQ
∼= 〈1〉2 ⊕ 〈−1〉4,

where U(2) is the lattice Z2 with quadratic form 4x1x2, which is isomorphic over
Q to y2

1 − y2
2 (put x1 = (y1 + y2)/2 and x2 = (y1 − y2)/2) and where 〈−2〉2

is Z2 with quadratic form −2x 2
1 − 2x 2

2 , which is isomorphic to 〈−1〉2 (put x1 =
(y1+ y2)/2 and x2 = (y1− y2)/2).

We will show that there are 1-parameter families of Hodge structures Tt such
that Tt ∼= T, as lattices, and EndHod(Tt ) is a real quadratic field for general t. Using
the surjectivity of the period map and the Torelli theorem, this easily implies that
for such a 1-parameter family Tt there is a 1-parameter family of K3 surfaces St ,
with transcendental lattice TSt

∼= Tt , an isomorphism of polarized Hodge struc-
tures whose general member is a double cover of P2 branched over six lines.

We consider the vector space V = Q6 = (Q2)3 with the following bilinear
form ψ :
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(V,ψ) = (Q2,Q1)⊕ (Q2,Q2)⊕ (Q2,Q3), Qi :=
(

1 0
0 ri

)
.

Hence we identify the bilinear form with the symmetric matrix that defines it,
where the ri ∈Q are to be chosen later. Next we want to consider the α ∈End(V )

such that ψ(αx, y) = ψ(x,αy) for all x, y ∈V. We will restrict ourselves to those
α that preserve the direct sum decomposition. Thus α = block(A1,A2,A3) with
Ai ∈End(Q2) and tAiQi = QiAi, so we have to consider the matrix equation(

a c

b d

)(
1 0
0 r

)
=

(
1 0
0 r

)(
a b

c d

)
.

Let Ae,c := (
e cr
c −e

); then the solutions to the matrix equation are A = Ae,c + λI

(note that Ae,c is just the “traceless part” of A). Since A2
e,c = (e2 + rc2)I, it fol-

lows that Q(Ae,c) ∼= Q
(√

e2 + rc2
)

is a quadratic extension Q if e2 + rc2 is not
a square in Q.

Now we consider the case r1 = r2 = −1 and r3 = +1, so (V,ψ) ∼= TS,Q for
a general S as before. Assume that d ∈ Z>0 is odd and square-free and that d =
e2 + c2 for some integers c, e. Write d = 2d ′ + 1; then d = (d ′ + 1)2 − (d ′)2.

Hence if we define

α = (A1,A2,A3)

with A1 = A2 = Ad ′+1,d ′ , A3 = Ae,c (c2 + e2 = d = 2d ′ + 1)

then α2 = d, so we have an action of the real field F = Q(α) ∼= Q
(√

d
)

on V
and the elements of F are self-adjoint for the bilinear form ψ.

It is easy to see that one eigenspace for the F-action on VR is positive defi-
nite for ψ and the other, call it Vσ , has signature (1+, 2−). Next we choose T0

∼=
Z6 ↪→ Q6 such that (T0,ψ) ∼= T = U(2)2 ⊕ 〈−2〉2, so the lattice (T0,ψ) is iso-
metric to the transcendental lattice of double cover of P2 branched over six lines.
Choosing a general ω ∈Vσ,C with ψT0,C(ω,ω) = 0 and ψT0,C(ω, ω̄) > 0 defines
a polarized integral Hodge structure on (T0,ψT ) with EndHod(T0,Q) = F (cf. the
proof of Lemma 3.2). Thus we obtain a 1-parameter family of Hodge structures
on (T0,ψ) with EndHod(T0,Q) = F for the general member of the family.

4. Twisting the Polarization

4.1. Real Multiplication and Polarizations. Let (V,h,ψ) be a K3-type
Hodge structure. Let B1(V ) ⊂ V ∗ ⊗ V ∗ be the subspace of Q-bilinear maps
φ : V ×V → Q such that φR is h(U(1))-invariant.

The isomorphism End(V ) = V ∗ ⊗ V ∼= V ∗ ⊗ V ∗, given by the isomorphism
V → V ∗ defined by ψ, defines an isomorphism

EndHod(V )→ B1, a �→ ψa , with ψa(v,w) = ψ(av,w).

The bilinear form ψa is symmetric iff Q(a) is a totally real field (use ψ(av,w) =
ψ(v, āw)).

We now consider when the bilinear form ψa gives a polarization on V.
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4.2. Lemma. Let (V,h,ψ) be a Hodge structure of K3 type such that F =
EndHod(V ) is a totally real field. Then ψa is a polarization of the Hodge structure
(V,h) if and only if a ∈F is totally positive.

Proof. Because ψR is U(1)-invariant and a commutes with h(U(1)), it follows
that ψa,R is also U(1)-invariant. Since C = h(i) we get aC = Ca and since
ψ(av,w) = ψ(v, aw) it follows that ψa,R(·,C·) is symmetric. Thus ψa is a po-
larization iff ψa,R(v,Cv) > 0 for all nonzero v ∈VR.

Using the decomposition VR = ⊕
Vσ (cf. the proofs of Lemma 2.6 and Theo-

rem 2.8), for v = (. . . , vσ , . . .)∈VR we have

ψa,R(v,Cv) =
∑
σ∈S

ψσ(a · vσ ,Cvσ ) =
∑
σ∈S

σ(a)ψσ(vσ ,Cvσ ).

Since ψ is a polarization, ψσ(·,C·) is positive definite for any σ ∈ S. Thus ψa is
a polarization iff σ(a) > 0 for all σ ∈ S iff a is totally positive.

4.3. Example. Let (V,h,ψ) and F be as in the lemma (or, equivalently, as in
Notation 2.2). In case a = b2 for some b ∈ F we have ψ(av,w) = ψ(bv, bw).
Thus the map B : V → V given by multiplication by b, Bv := bv, is an isometry
between (V,ψa) and (V,ψ). Since b is a map of Hodge structures, B is a Hodge
isometry from (V,h,ψa) to (V,h,ψ).

To find examples where there is no Hodge isometry between the K3-type Hodge
structure and its twist, the determinant of a bilinear form is useful.

4.4. Determinants and Discriminants. Let ψ,ψa be two bilinear forms on a
Q vector spaceV. Choose a basis of V. If Q,Qa are the symmetric matrices defin-
ing the symmetric bilinear forms ψ,ψa , respectively, and if B is (the matrix of ) an
isometry between (V,ψa) and (V,ψ), then we must have tBQB = Qa; in particu-
lar, det(Qa) = det(B)2 det(Q). We will write det(ψ) for (the class of ) det(Q) in
Q× (modulo the subgroup of squares). This gives a well-known invariant (often
called discriminant) of a quadratic space.

If F is a finite extension of Q then the discriminant of F is the rational num-
ber DF , well-defined up to squares in Q, defined as DF := det(tr(eiej )) where the
ei ∈F are a Q-basis of F.

4.5. Lemma.

(1) Let ψ = tr(,) as in Lemma 2.6 and let m = dimF V. Then

det(ψ) = Dm
F N(det(,)),

where m = dimF V.

(2) For a ∈F, let ψa(·, ·) := ψ(a·, ·). Then

det(ψa) = N(a)m det(ψ),

where N(a) :=∏
σ∈S σ(a) is the norm of a.

Proof. Choose an F-basis of V for which , is diagonal: ,(x, y) = ∑
akxkyk.

Then
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det(ψ) =
∏

det(ψ(k)) with ψ(k) : F × F → Q, ψ(k)(x, y) = tr(ak xy).

Let e1, . . . , en be a Q-basis of F and let S = {σ1, . . . , σn}. Since DF = det(σi(ej ))2

(cf. [Sam, Prop. II.3]), one finds

det(tr(aeiej )) = det

(∑
k

σk(a)σk(ei)σk(ej )

)

= det(σk(a)σk(ei)) det(σk(ej ))

=
(∏

k

σk(a)

)
det(σk(ei)) det(σk(ej ))

= N(a)DF .

Thus det(ψ) = Dm
F

∏
k N(ak) = Dm

F N(det(,)). To compute det(ψ(a)), use that

ψa(v,w) = ψ(av,w) = ψR(av,w) =
⊕
σ∈S

σ(a),σ(vσ ,wσ ).

Hence, with m = dimF V = dimRVσ we get

det(ψa) =
∏
σ∈S

σ(a)m det(,σ ) = N(a)m det(ψ).

4.6. Examples. In case F ∼= Q
(√

d
)
, where d is square-free and m = dimF V

is odd, it is easy to produce examples of totally positive a ∈F such that (V,ψ) and
(V,ψa) are not isometric. In fact, d ±√d > 0, so a = d +√d is totally positive.
Because N(a) = d 2 − d = d(d − 1) and d is square-free, N(a) is not a square in
Z; hence det(ψa)/det(ψ) is not a square in Q.

4.7. Twisting K3 Surfaces with Real Multiplication. Let (V,h,ψ) be a
Hodge structure of K3 type with dimV ≤ 11. Then for any totally positive a ∈
F = EndHod(V ) we obtain the polarized Hodge structure of K3 type (V,h,ψa).

Results of Nikulin and the surjectivity of the period map (cf. the proof of
Proposition 3.3) imply that there exist K3 surfaces S and Sa such that

(V,h,ψ) ∼= TS,Q, (V,h,ψa) ∼= TSa,Q,

where the polarizations on the right-hand sides are induced by (minus) the cup
product in the corresponding surface. We will call Sa a real twist of S. Note that
there are isomorphisms of rational Hodge structures (V,h) ∼= TS,Q

∼= TSa,Q, but
in general there is no isomorphism of polarized Hodge structures between TS,Q

and TSa,Q.

5. The Kuga–Satake Variety

5.1. The Kuga–Satake Construction. We briefly recall the construction of
“the” Kuga–Satake variety, which is actually an isogeny class of abelian varieties
of a rational, polarized, Hodge structure (V,h,ψ) of weight 2 with dimV 2,0 = 1
(cf. [vG1, Sec. 5]).
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The Clifford algebraC(ψ) is the quotient of the tensor algebra T(V ) =⊕
nV

⊗n

by the two-sided ideal generated by v ⊗ v − ψ(v, v), where v runs over V. The
dimension of C(ψ) is 2d, where d = dimV. The Clifford algebra has a subalge-
bra C+(ψ) of dimension 2d−1, the quotient of

⊕
mV

⊗2m, called the even Clifford
algebra.

The Hodge decomposition of V defines the subspace V2 ⊂ VR. Choose a ba-
sis f1, f2 of V2 such that 〈f1 + if2〉 = V 2,0 and ψR(f1, f1) = −1; then f1f2 ∈
C+(ψ)R. Multiplication by f1f2 defines a map J : c �→ f1f2c that is a complex
structure on C+(ψ)R, J 2 = −I (cf. [vG1, Lemma 5.5]). This defines a weight-1
Hodge structure hs on C+(ψ) by

hs : U(1)→ GL(C+(ψ)R), a + bi �→ a + bJ,

for a, b ∈ R. The choice of e1, e2 ∈ V with ψ(e1, e1) < 0, ψ(e2, e2) < 0, and
ψ(e1, e2) = 0 determines a Riemann form—that is, an alternating form

E : C+(ψ)× C+(ψ)→ Q such that E(Jx, Jy) = E(x, y), E(x, Jx) > 0

for all x, y ∈C+(ψ)R (cf. [vG1, Prop. 5.9]). The complex structure J is uniquely
determined by (V,h,ψ), but the polarization (as constructed in [vG1, 5.7]) de-
pends on the choice of a negative 2-plane in V and is not unique in general.

As a consequence, (V,h,ψ) defines a polarized rational weight-1 Hodge struc-
ture (C+(ψ),hs ,E). Each abelian variety A in the isogeny class of abelian vari-
eties of dimension 2d−2 defined by (C+(ψ),hs ,E) will be called a Kuga–Satake
variety for (V,h,ψ), so A is characterized by an isomorphism of Hodge structures
H1(A, Q) ∼= (C+(ψ),hs).

5.2. The Endomorphism Algebra of the Kuga–Satake Variety. Suppose
that (V,h,ψ) is a general polarized Hodge structure of K3 type. More precisely,
assume that MT(V ) = GO(ψ), where GO(ψ) = {g ∈ GL(V ) : ψ(gv, gw) =
λgψ(v,w)}. Then

MT(A) = C Spin(ψ), End(A)Q
∼= C+(ψ)

[vG1, Prop. 6.3.1, Lemma 6.5], where C Spin(ψ) is the Spin group of (V,ψ).
There is an isomorphism of complex Lie algebras Lie(SMT(A))C

∼= so(d )C, d =
dimV, and H1(A, C) is a direct sum of copies of the Spin representation S(d ) of
so(d )C. These results are useful for decomposing the Kuga–Satake variety into
simple abelian subvarieties.

5.3. K3-Type Hodge Structures with Real Multiplication. Assume now
that V is of K3 type with F = EndHod(V ) a real field. Then

SMT(V )(C) ∼= SO(m, C)n

([Z, Thm. 2.2.1]; cf. Theorem 2.8). One would again like to know End(A)Q =
EndSMT(A)(H

1(A, Q)), but this seems rather hard. As a first step, we consider the
decomposition of the Spin representation of the Lie algebra so(d ) upon restriction
to so(m)n, where d = mn.
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LetVi, 1≤ i ≤ n, be representations of so(m). Then we writeV1�V2 �· · ·�Vn
for the representation of so(m)n, where the ith component of so(m)n acts on Vi.

5.4. The Spin Representation. Let S(m) be the Spin representation of the
complex Lie algebra so(m) := so(m)C (cf. [FH, Chap. 20]). In case m = 2m′+1
is odd, the Spin representation is an irreducible representation of so(m)C of di-
mension 2m′. In case m = 2m′ is even, the Spin representation is the direct sum
of two irreducible components S±(2m′):

S(2m′) = S+(2m′)⊕ S−(2m′),

dim S(2m′) = 2m′, dim S±(2m′) = 2m′−1.

5.5. Lemma. The restriction of the Spin representation S(nm) of so(nm) to
so(m)n is given as

S(nm)|so(m)n = S(m) � · · ·� S(m) if m ≡ 0 modulo 2.

In case m is odd, write n = 2n′ if n is even and n = 2n′ + 1 if n is odd. Then

S(nm)|so(m)n = (S(m) � · · ·� S(m))2n
′

if m ≡ 1 modulo 2.

Proof. We use the conventions from [FH, Chap. 20]. In case m is even, so is nm
and the Lie algebras so(nm) and so(m)n both have rank nm/2 = n(m/2). Thus we
can assume that they have the same Cartan algebra h ∼= Cnm/2 and the same dual
h∗ generated by L1, . . . ,Lnm/2. The weights of S(nm) are then [FH, Prop. 20.5]
the (±L1,±L2, . . . ,±Lnm/2)/2, each with multiplicity 1. Any such weight is the
sum, in a unique way, of the nweights (±Lam/2+1, . . . ,±L(a+1)m/2)/2, where a =
0,1, . . . , n−1. Because these are the weights of S(m)� · · ·�S(m) with the same
multiplicity of 1, we get the result.

In case m is odd, the Lie algebra so(m) has rank (m − 1)/2. If n is odd, then
one has

rk(so(nm)) = (nm− 1)/2 = n(m− 1)/2+ (n− 1)/2 = rk(so(m)n)+ n′.

We can now assume that Ln(m−1)/2+1, . . . ,Ln(m−1)/2+n′ are zero on the Cartan al-
gebra of so(m)n. The weights of S(nm) are as in the previous case [FH, proof of
Prop. 20.20], but in the restriction to so(m)n there are 2n′ weights that map to the
same sum of weights. The case of n even is similar.

5.6. In the remainder of this section we discuss two examples of Kuga–Satake
varieties of K3-type Hodge structures with real multiplication. In the first exam-
ple we have n = [F : Q] = 2 and m = dimF V = 3, and we assume moreover
that C+(ψ) ∼= M4(E), the algebra of 4× 4 matrices with coefficients in an imag-
inary quadratic field E (cf. [L; vG1, 9.2]). In the other case we take n = [F :
Q] = 3 and m = dimF V = 3.

5.7. Proposition. Let (V,h,ψ) be a K3-type Hodge structure with d = dimV =
6 and with EndHod(V ) ∼= F, a real quadratic field. Assume that C+(ψ) ∼= M4(E)

for an imaginary quadratic field E.
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Then the Kuga–Satake variety A of V is an abelian variety of dimension 16,

A ≈ B 4, D := End(B)Q, NS(B) ∼= Z,

where B is a simple abelian 4-fold and D is a definite quaternion algebra over Q
that contains E. There are three copies of the Hodge structure V in H 2(B, Q):

H 2(B, Q) ∼= V 3 ⊕W, HomHod(V,W) = 0.

Proof. We have MT(A) ⊂ C Spin(ψ) and H1(A, Q) = C+(ψ) as a C Spin(ψ)-
representation. First we decompose H1(A, Q) as a C Spin(ψ)-representation.
Note that

EndC Spin(ψ)(H
1(A, Q)) = C+(ψ) ∼= M4(E),

where E is a field. Hence the C Spin(ψ)-representation C+(ψ) is the direct sum
of four copies of an irreducible representationH whose complexificationHC splits
into two nonisomorphic irreducible representations:

H1(A, Q) ∼= H 4, EndC Spin(ψ)(H ) = E, HC
∼= S(6) ∼= S+(6)⊕ S−(6).

The last equality follows from Section 5.2; thus, Lie(C Spin(ψ))C
∼= so(6) and

H1(A, C) ∼= S(6)4 as an so(6)-representation.
Now we consider the decomposition ofH1(A, Q) as an SMT(A)-representation.

Because V does have real multiplication by the real quadratic field F, the Lie al-
gebra of SMT(V )C is the subalgebra so(3)2 of so(6). Proposition 5.5 shows that
the restriction of the Spin representation S(6) of so(6) to so(3)2 is (S(3)� S(3))2.

The Spin representation S(3) of so(3) ∼= sl(2) is well known to be the standard
2-dimensional representation V1 of sl(2). We write Vn for the irreducible repre-
sentation of highest weight n of sl(2). Note that dimVn = n + 1. Thus we have
an isomorphism of sl(2)2-representations:

HC
∼= (V1 � V1)

2.

Let B be an abelian variety with H1(B, Q) ∼= H, so A ≈ B 4. We compute
NS(B)C = (∧2H1(B, C))SMT(B), using that sl(2)2 is the Lie algebra of SMT(B)C.

Note the following isomorphisms of (sl(2)× sl(2))-representations:

∧2H1(B, C) ∼= ∧2((V1 � V1)
2)

∼= (∧2(V1 � V1))
2 ⊕ (V1 � V1)⊗ (V1 � V1)

∼= (∧2(V1 � V1))
3 ⊕ Sym2(V1 � V1).

It is not hard to check (using weights, for example) that

Sym2(V1 � V1) ∼= V0 � V0 ⊕ V2 � V2, ∧2 (V1 � V1) ∼= V2 � V0 ⊕ V0 � V2;
note that V0 is the trivial representation of sl(2). In particular, there is a unique
invariant in H 2(B), so NS(B) ∼= Z and hence B is simple.

Since H1(B, C) is the direct sum of two copies of an irreducible SMT(B)C -
representation, it follows that

End(B)C = EndSMT(B)(H
1(B, C)) ∼= M2(C).
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Thus D = End(B)Q is a (noncommutative) division algebra of degree 4 over
Q, which contains the imaginary quadratic field E. To see that D is definite,
we must show that DR is not isomorphic to M2(R). Because elements of DR

are endomorphisms of H1(B, R) that commute with SMT(B)(R), it suffices to
show that H1(B, R) is an irreducible representation of SMT(B)(R). From Theo-
rem 2.8 we know that SMT(V )(R) ∼= SO(2,1)×SO(3, R). The Spin group is then
SL(2, R)× SU(2), and H1(B, R) is the �-product of the standard 2-dimensional
representation of SL(2, R) and the standard 2-dimensional complex representa-
tion of SU(2), which is an 8-dimensional representation that is irreducible over R.

The Hodge structure V corresponds to the SMT(B)-representation with com-
plexification:

VC = V2 � V0 ⊕ V0 � V2;
thus V 3 is a Hodge substructure of H 2(B, Q).

5.8. The Case m = n = [F : Q] = 3. For a general h (so EndHod(V ) = Q)

we have the following decomposition, up to isogeny, of the Kuga–Satake variety
A of V :

A ≈ B8, dimB = 16, End(B)Q
∼= D, H1(B, C) ∼= S(9)2,

where D is a quaternion algebra (cf. [vG1, Prop. 7.7]) and we have used the iso-
morphism of so(9)-representations C+(ψ)C

∼= S(9)16. In case D ∼= M2(Q), B is
isogenous to B2

1 for an abelian 8-fold B1.

Assume now that EndHod(V ) = F, a totally real cubic extension of Q, so
SMT(V )(C) ∼= SO(3, C)3. Then the Lie algebra of the complex special Mumford–
Tate group of the Kuga–Satake variety reduces from so(9) to so(3)3 ∼= sl(2)3, and
the Spin representation S(9) of so(9) restricts to two copies of an 8-dimensional
irreducible representation (cf. [Ga, Prop. 4.9] and Lemma 5.5; notation as in the
proof of Proposition 5.7):

S(9)|sl(2)3 ∼= W 2, W := V1 � V1 � V1.

In particular, EndHod(H
1(B, Q)) is a Q-algebra of rank 4 · 4 = 16.

Assume that EndHod(H
1(B, Q)) ∼= M4(Q). Then we have an isogeny

B ≈ B 4
2 , dimB2 = 4, End(B2)Q = Q,

and H1(B2, C) ∼= W. This case is discussed in Example 6.4. The K3-type Hodge
structure V is not a Hodge substructure of H 2(B2, Q), but H 2(B2

2, Q) ∼= V ⊕ V ′
with HomHod(V,V ′) = 0 [Ga, proof of Thm. 3.4].

6. The Kuga–Satake Variety and
Corestriction of Algebras

6.1. In this section we use the corestriction of algebras to describe the first coho-
mology group of the Kuga–Satake variety as an SMT(V )-representation, where V
is a K3-type Hodge structure with real multiplication. In contrast to the previous
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section, where we restricted the complex Spin representation to SMT(V ), we now
obtain a direct construction over the rational numbers. This construction general-
izes the results of Galluzzi ([Ga]; cf. Section 5.8 and Example 6.4), which show
that certain abelian varieties constructed by Mumford are Kuga–Satake varieties.

6.2. The Corestriction. We use the notation from Section 2.4: F̃ is the Galois
closure of a finite extension F of Q, H = Gal(F̃/F ) ⊂ G = Gal(F̃/Q), and n =
[F : Q] = [G : H ]. A coset gH ∈G/H gives a well-defined embedding F ↪→ F̃,
a �→ g(a), and thus defines an F-algebra structure on F̃ ; this F-algebra is denoted
by F̃g.

For an F-algebra R and a coset gH ∈ G/H, the twisted algebra Rg = RgH is
defined (cf. [Mum; R, 4.4; Sc, 8.8]) to be

Rg := R ⊗F F̃g ,

so ar ⊗ 1 = r ⊗ g(a) where a ∈ F and r ∈R. For g ∈G we have the natural Q-
linear maps

g : Rg ′ → Rgg ′ , r ⊗ a �→ r ⊗ g(a).

To see that the map is well-defined, write a = g ′(b); then

r ⊗ a = br ⊗ 1 �→ r ⊗ g(a) = r ⊗ (gg ′)(b) = br ⊗ 1.

Thus we get an action of G on

ZR := Rg1 ⊗F̃ · · · ⊗F̃ Rgn with G/H = {g1H, . . . , gnH }.
The corestriction of the F-algebra R is the Q-algebra ([Mum], cf. [R, Thm. 11,
5.5; Sc, 8.9]) of G-invariants in ZR:

coresF/Q(R) = ZG
R .

One has coresF/Q(R)⊗Q F̃ ∼= ZR and dimQ coresF/Q(R) = (dimF R)
n.

Let R× be the multiplicative group of invertible elements of R. Then there is a
natural diagonal homomorphism

R× → (coresF/Q(R))
×, u �→ u⊗ · · · ⊗ u,

where (coresF/Q(R))
× is the multiplicative group of units in the Q-algebra

coresF/Q(R).

6.3. Proposition. Let (V, h, ψ = tr(,)) be a K3-type Hodge structure with
F = EndHod(V ) a totally real field. Let C+(ψ) be the Kuga–Satake Hodge struc-
ture associated to V and let C+F (,) be the even Clifford algebra, over F, of the
F-bilinear form , : V ×V → F.

Then SMT(C+(ψ)) is a subgroup of (coresF/Q C+F (,))× and there is an injec-
tive map of SMT(C+(ψ)) (⊂ C SpinF (,)) representations:

coresF/Q C+F (,) ↪→ C+(ψ).

Proof. We first extend scalars from Q to F̃. The Clifford algebra C(ψ) of ψ is
the quotient of the tensor algebra of V by the two-sided ideal generated by the
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v ⊗ v − ψ(v, v) for v ∈ V. Extending scalars, we get an isomorphism C(ψ)F̃
∼=

CF̃ (ψF̃ ), where ψF̃ is the F̃-bilinear extension of ψ to VF̃ ×VF̃ .

There is a direct sum decomposition of spaces with bilinear forms over F̃ (cf.
the proof of Lemma 2.6):

(VF̃ ,ψF̃ ) =
⊕

g∈G/H
(Vg ,ψg).

This direct sum decomposition gives an isomorphism (cf. [Sc, 9.2.5]):

CF̃ (ψF̃ ) = CF̃ (ψg1) ⊗̂F̃ · · · ⊗̂F̃ CF̃ (ψgn) (G/H = {H = g1H, . . . , gnH }),
where ⊗̂ is a graded tensor product. It is easy to see that C+

F̃
(ψg) ∼= C+

F̃
(ψe)g as

F-algebras. The weighted tensor product ⊗̂ is the usual tensor product on the “all
even” part. So we have

C+
F̃
(ψg1)⊗F̃ · · · ⊗F̃ C+

F̃
(ψgn)

∼= C+
F̃
(ψe)⊗F̃ · · · ⊗F̃ C+

F̃
(ψe)gn ↪→ C+

F̃
(ψF̃ ).

Since Ve = V ⊗F F̃e and ψe is the F̃-linear extension of , to Ve, we get

C+
F̃
(ψe) ∼= C+F (,)⊗F F̃e; hence ZC+

F
(,) ↪→ C+

F̃
(ψF̃ ) = C+(ψ)F̃ .

Taking G-invariants, one finds that coresF/Q(C
+
F (,)) ↪→ C+(ψ).

The special Mumford–Tate group of the weight-1 Hodge structure C+(ψ) is
an algebraic subgroup of C Spin(ψ) ⊂ C+(ψ)× and acts, by multiplication, on
C+(ψ) and C+(ψ)F̃ : u · c := uc for u∈C+(ψ)×, c ∈C+(ψ), or C+(ψ)F̃ . Under
the natural homomorphism C Spin(ψ) → GL(V ), SMT(C+(ψ)) maps onto
SMT(V ) = SO(V,,) ⊂ SO(V ). In particular, SMT(C+(ψ)) ↪→ C SpinF (,).
The group C SpinF (,) is a subgroup of C+F (,)× that again acts by multiplica-
tion on C+F (,). Upon extending scalars to F̃, this subgroup acts on C+

F̃
(Qe) ∼=

C+F (,)⊗F F̃e. In particular, SMT(C+(ψ)) acts diagonally on ZR with R =
C+F (,), and this gives the inclusion SMT(C+(ψ)) ⊂ (coresF/Q C+F (,))×. This
action is the restriction of the action of SMT(C+(ψ)) on C+(ψ)F̃ .

6.4. Example. Let (V,h,ψ) be a K3-type Hodge structure with EndHod(V ) =
F a totally real field and [F : Q] = 3, and assume that dimF V = 3. Then
ψ = tr(,) and, since , is defined on a 3-dimensional F-vector space, C+F (,) is
a quaternion algebra D over F (cf. [vG1, 7.5]).

Because ,σ is indefinite for one embedding and positive definite for the other
two embeddings σ : F ↪→ R (cf. the proof of Theorem 2.8), the algebra D splits
for one embedding of F ↪→ R and is isomorphic to the quaternions for the other
two embeddings; hence DR

∼= M2(R)×H×H.

Conversely, a quaternion algebra defines a quadratic space (D0,N) overF, with
D0 the subspace of D of elements with trace 0 and N : D0 → F the restriction
of the norm on D to D0. If DR is as before, then one can define K3-type Hodge
structures onV = D0 with endomorphism algebraF (cf. the proof of Lemma 3.2).

Assume that coresF/Q(D) ∼= M8(Q). Then, by Proposition 6.3, it follows that
SMT(C+(ψ)) is a subgroup of GL(8, Q). Thus the Kuga–Satake variety of V has
a 4-dimensional abelian subvariety. Actually (cf. [Ga; Mum]),
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SMT(A) = ker(N : D× → F×), A ≈ B32
2 ,

with B2 a 4-dimensional abelian variety.
Mumford [Mum] discovered these abelian varieties and showed that

End(B2)Q
∼= Q

even though SMT(B2) �= Sp(8, Q). The relation with Kuga–Satake varieties was
established in [Ga].

7. Predictions from the Hodge Conjecture

7.1. The Hodge Conjecture. The rational cohomology groups H k(X, Q) of
a smooth projective variety X have a (polarized) rational Hodge structure of
weight k. The Hodge conjecture asserts that the space of codimension-p Hodge
classes

Bp(X) := H 2p(X, Q) ∩Hp,p(X)

is spanned by classes of algebraic cycles. The conjecture is still very much open
for p �= 0,1, dimX − 1, dimX.

7.2. Hodge Classes on a Product. Let X and Y be smooth projective vari-
eties. The Künneth formula and Poincaré duality H k(X, Q) ∼= H 2dX−k(X, Q)∗
imply that

H k(X × Y, Q) ∼=
⊕

l+m=k
H l(X, Q)⊗Hm(Y, Q)

∼=
⊕

l+m=k
Hom(H 2dX−l(X, Q),Hm(Y, Q)).

The summands H l(X, Q)⊗Hm(Y, Q) are Hodge substructures of H k(X×Y, Q).

The Hodge cycles in this summand are exactly the homomorphisms of Hodge
structures:

Bp(X × Y ) ∩ Hom(H 2dX−l(X, Q),Hm(Y, Q))

= HomHod(H
2dX−l(X, Q),Hm(Y, Q)),

where 2p = l +m.

7.3. Products of K3 Surfaces. Let X = S1 and Y = S2 be (algebraic) K3
surfaces. We consider the Hodge classes in H 4(S1 × S2). Note that H1(S) =
H 3(S) = 0 for a K3 surface S. The summands HomHod(H

0(S1),H 0(S2)) and
HomHod(H

4(S1),H 4(S2)) are obviously spanned by the classes of {pt}× S2 and
S1× {pt}, respectively.

Recall that the Hodge structure on H 2 splits,

H 2(Si, Q) = NS(Si)Q ⊕ TSi,Q
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(cf. Section 1.8), and, since NS(Si)
2,0
Q = 0 and TSi,Q is simple,

HomHod(NS(S1)Q, TS2,Q) = 0, HomHod(TS1,Q, NS(S2)Q) = 0.

The vector space HomHod(NS(S1)Q, NS(S2)Q) is spanned by classes of products
of curves C1× C2 ⊂ S1× S2. Thus there remains the summand

HomHod(TS1,Q, TS2,Q).

7.4. Hodge Isometries. Let S be a K3 surface. Then the Hodge structure TS,Q

comes with a polarization ψS induced by the cup product on H 2(S). A homomor-
phism of Hodge structures

f ∈HomHod(TS1,Q, TS2,Q) such that ψS2(f(v), f(w)) = ψS1(v,w)

for all v,w ∈ TS1,Q is called a Hodge isometry.
Mukai has announced that if f ∈ HomHod(TS1,Q, TS2,Q) is a Hodge isometry,

then f is the class of an algebraic cycle on S1 × S2 [Mu, Thm. 2]. Under cer-
tain conditions on the dimension of TS1,Q, proofs were given earlier by Mukai and
Nikulin (cf. [Mu, Sec. 4]). This solves the Hodge conjecture for Hodge isome-
tries, but next we indicate that there is still a lot to do.

7.5. Complex Multiplication. In case S1 = S2 and EndHod(TS1,Q) is a CM
field, the vector space EndHod(TS1,Q) is spanned by Hodge isometries [B; Ma].
Thus, by Mukai’s results, any f ∈EndHod(TS1,Q) is the class of an algebraic cycle.

7.6. Real Multiplication. In case S1 = S2, the rational multiples of the iden-
tity can be obtained from the projection to EndHod(TS1,Q) of rational multiples of
the class of the diagonal in S1× S1.

However, if EndHod(TS1,Q) is a totally real field distinct from Q, I do not know
of any example where a nontrivial endomorphism is represented by an algebraic
cycle.

7.7. Scaling the Polarization. Let (TS,Q,ψS) be the polarized Hodge struc-
ture defined by a K3-surface S. For any positive integer n, there is the polarized
Hodge structure of K3 type (TS,Q, nψS).

In general, these Hodge structures are not Hodge isometric. For example, if
d = dim TS,Q is odd and if n is not a square then, since det(nψS) = nd det(ψS),
we get an obstruction to the existence of isometries (cf. Section 4.4).

This construction is a special case of the real twist of Section 4.7, nψ = ψn for
a = n ∈ Z. Thus for n ≤ 11 there exists a K3 surface Sn such that its transcen-
dental lattice (TSn ,ψSn) is isometric to (TS , nψS). In particular, the identity on TS
gives a nontrivial element in HomHod(TS,Q, TSn,Q).

In case n = 2, some of these homomorphisms of Hodge structures can be shown
to be the classes of algebraic cycles by using Nikulin involutions of K3 surfaces
(cf. [GaL; vGSa]). In general, it seems to be an interesting open problem to find
such algebraic cycles.
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7.8. Twisting the Polarization. Let S be a K3 surface with EndHod(TS,Q) =
F a totally real field. Any totally positive a ∈ F defines a polarization (ψS)a on
TS,Q (cf. Lemma 4.2). In case F = Q we recover the scaling operation described
previously. In general, the polarized Hodge structures (TS,Q,ψS) and (TS,Q, (ψS)a)

are not isometric.
If d = dim TS,Q ≤ 11, then there exists a K3 surface Sa such that (TSa ,ψSa ) is

Hodge isometric to (TS , (ψS)a) (cf. Section 4.7). The identity map TS,Q → TS,Q =
TSa,Q is a homomorphism of Hodge structures and, again, it seems to be an inter-
esting open problem to show that it can be induced by an algebraic cycle.

7.9. Remark. Let S1 and S2 be K3 surfaces. LetZ be a smooth surface with maps

S1
π1←− Z

π1−→ S2.

Let f = π2∗π∗1 ∈ HomHod(TS1,Q, TS2,Q) be the homomorphism of Hodge struc-
tures defined by the class of (π1 × π2)(Z) ⊂ S1 × S2. Assume that f �= 0. Let
Vi := TSi,Q; then, because the Vi are simple and f �= 0, we get an isomorphism
of rational Hodge structures f : V1

∼=−→V2.

The map f is not necessarily an isometry (V1,ψ1) → (V2,ψ2) where ψi :=
ψSi , the polarization induced by cup product on the surface Si. In fact, f = π2∗π∗1
and π∗1 : V1 ↪→ H 2(Z, Q) is compatible with the cup product

ψZ(π
∗
1x1,π∗1y1) := π∗1x1 ∪ π∗1y1 = π∗1(x1 ∪ y1) = d1(x1 ∪ y1) = d1ψ1(x1, y1),

where d1 is the degree of π1 (i.e., the cardinality of a general fiber). So we have
Hodge isometries

(V1,ψ1)→ (V1, d1ψ1) ↪→ (H 2(Z, Q),ψZ).

The map π2∗ is not compatible with cup products, but the projection formula gives

ψ2(x2,π2∗yz) = ψZ(π
∗
2 x2, yz) (x2 ∈H 2(S2, Q), yz ∈H 2(Z, Q)).

Assume now that H 2(Z, Q) = π∗1(V1) ⊕ W with HomHod(V1,W) = 0, so
there is a unique copy of the Hodge structure V1

∼= V2 in H 2(Z, Q). The com-
position π2∗π∗2 is multiplication by d2, the degree of the map π2, on H 2(S2, Q).

Thus the map π∗2 : V2
∼=−→π∗1(V1) is an isomorphism and, given xz, yz ∈ f(V1) ⊂

H 2(Z, Q), there are x2, y2 ∈V2 with xz = π∗2 x2 and yz = π∗2 y2. Therefore,

ψ2(π2∗xz,π2∗yz) = ψ2(π2∗π∗2 x2,π2∗π∗2 y2)

= d 2
2ψ2(x2, y2) = d2ψZ(π

∗
2 x2,π∗2 y2) = d2ψZ(xz, yz).

In particular, the isomorphism f : V1 → V2 induces a scaling on the polarizations:

ψ2(fx1, fx2) = d1d2ψ1(x1, x2).

In general, given a codimension-2 cycle
∑

niZi on S1×S2, after replacing each
surface Zi by its desingularization (which maps to S1×S2 with image Zi), the ho-
momorphism of Hodge structures induced by

∑
niZi is a linear combination of

maps as just described. Thus to get an “interesting” map f : V1 → V2 induced by
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an algebraic cycle, one needs surfaces Zi whose H 2 contains more than one copy
of V.

7.10. The Kuga–Satake Hodge Conjecture. The Kuga–Satake variety A of
a K3-type Hodge structure (V,h,ψ) has the property that there is a homomor-
phism of Hodge structures V ↪→ H 2(A2, Q) (cf. [vG1, 6.3.3]). In particular, if
V ∼= TS,Q ⊂ H 2(S, Q) for a K3 surface S, then the Hodge conjecture predicts the
existence of a cycle Z on S × A× A that induces an isomorphism from the copy
of V in H 2(S) to the one in H 2(A2). There are few examples of Kuga–Satake
correspondences; see [Pa] for one related to Example 3.4.

If there is such a cycle Z and if EndHod(TS,Q) is also generated by algebraic
cycles, then any homomorphism of Hodge structures TS,Q → V ⊂ H 2(A2, Q) is
represented by an algebraic cycle on S × A2.
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