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Mass Flow for Noncompact Manifolds

Ricardo Berlanga

1. Introduction

The group of homeomorphisms acts on the space of measures on a manifoldM in
such a way that, for each measureµ onM and each homeomorphism h : M →M,
the action h∗µ of h on µ is defined by h∗µ(E) = µ(h−1(E)) for each Borel set
E ⊆ M. The group of homeomorphisms preserving a given measure is just the
stabilizer of that measure under the action. In 1941, Oxtoby and Ulam [12] charac-
terized the orbit of standard Lebesgue measure on the unit cube under this action.
Since then, Oxtoby and Ulam’s result has been of enormous importance for the
study of groups of measure-preserving homeomorphisms.

The aim of our work is to generalize and reformulate previous research of
Fathi [9] on the definition and properties of the so-called mass flow homomor-
phism to the σ -compact case. Our “noncompact” methods allow us to replace
Fathi’s use of handles and tubular neighborhoods by neighborhoods alone. There-
fore, we do not depend on the existence of a combinatorial structure on the base
manifold to proceed with the argumentation. As a by-product, simplification of
Fathi’s arguments is gained.

Let M be a connected, second-countable manifold without boundary equipped
with a “good” measure µo (see Section 2). Let Hc(M,µo) be the group of µo-
measure-preserving homeomorphisms of M with compact support endowed with
the Whitney topology, and let Hc,o(M,µo) be the path component of the identity.
The mass flow homomorphism is a group homomorphism from the universal cov-
ering space of Hc,o(M,µo), thought of as a space of paths modulo homotopy (rel.
∂I ), to the first homology group H1(M, R).

Fathi’s approach to the mass flow, in which homology is viewed as a set of
homotopy classes of maps into the circle, is suitable only for compact mani-
folds. In order to extend Fathi’s theory to noncompact manifolds we define, in
Section 4, a new version of the mass flow homomorphism that relies on a real
homology theory based on measures due to W. Thurston. In Section 5, both ap-
proaches are compared (see Proposition 5.4 and the subsequent comment). Via a
quotient process, in Section 6 the mass flow homomorphism on Hc,o(M,µo) is ef-
fectively defined, giving rise to an important commutative diagram that is studied
in some detail.
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In Section 7 it is established that the mass flow is surjective and its kernel, Ker�,
is generated by its elements supported in topological n-balls. If the dimension n
of M is at least three, then Ker� is shown to be a simple group equal to the com-
mutator subgroup of Hc,o(M,µo). In [9], Fathi uses the condition n ≥ 3 in an
essential way in order to prove that Hc(Int I n, Lebesgue) is perfect. Since the per-
fectness of Hc(Int I n, Lebesgue) is needed to imply the simplicity of Ker�, our
final result is left unsolved for 2-manifolds.

The cases of a manifold with boundary and homeomorphisms fixing ∂M point-
wise are considered jointly. Also, the basic constructions that lead to the definition
of the mass flow homomorphism and its first properties are valid for a locally com-
pact, locally connected, second-countable Hausdorff spaceX. Hence, for simplic-
ity, these constructions are stated in this topological setting. Before proceeding to
our main topic, some preliminary concepts are discussed in Section 2 and a nec-
essary “extension of isotopies theorem” is proved afterward in Section 3.

2. Preliminaries

Let Y,Z be topological spaces and let C(Y,Z) denote the set of continuous func-
tions from Y to Z. The Whitney topology on C(Y,Z) is the topology having for
a basis intersections of the form

⋂
i∈�[Ki,Ui], where {Ki}i∈� is a locally finite

family of compact sets in Y, {Ui}i∈� is an open family in Z, and [Ki,Ui] is the
set of continuous functions f : Y → Z such that f(Ki) ⊂ Ui. If we further re-
quire the set of indices� to be finite then we get the compact-open topology. The
compactly generated space of a given Hausdorff space Sτ is the space kS with the
largest topology making the inclusions {K ↪→ S | K ⊂ Sτ compact} continuous.
In this manner, the injections k(C(Y,Z)m) ↪→ C(Y,Z)m ↪→ C(Y,Z)κ are continu-
ous, where the indicesm and κ denote the Whitney topology and the compact-open
topology, respectively.

Let X be a locally compact Hausdorff space. Denote by H(X) the group of
homeomorphisms ofX. For h in H(X), define its support as the closure of {x∈X |
h(x) �= x}. Define Hc(X) to be the group of all homeomorphisms ofX with com-
pact support.

A Radon measure µ on X is a locally finite positive measure defined on the
σ -algebra of all Borel subsets. The support of µ is the complement of the largest
open set in X that has µ-measure zero. We say that µ is a good measure if it has
no atoms (i.e., points of positive measure) and its support is the whole of X. Let
Mg(X) be the set of good Radon measures on X.

For µ ∈ Mg(X) and h ∈ H(X), h∗µ is the good measure in Mg(X) defined
by h∗µ(B) = µ(h−1(B)) for all B ⊂ X Borel. Define the group of µ-measure-
preserving homeomorphisms H(X,µ) as the set {h ∈ H(X) | h∗µ = µ}. Let
Hc(X,µ) = Hc(X) ∩ H(X,µ). Denote by H(X,µ-reg) the group of all homeo-
morphisms h in H(X) such that h∗µ and µ have the same sets of measure zero.
Let Hc(X,µ-reg) = Hc(X) ∩ H(X,µ-reg).

LetM be a manifold, possibly with nonempty boundary ∂M. Then it is straight-
forward to define the group H∂(M) of homeomorphisms fixing ∂M pointwise and
H∂
c (M) = Hc(M) ∩ H∂(M). Let M∂

g(M) be the set of good Radon measures
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on M having ∂M as a null set. For µ∈M∂
g(M) define, similarly, the groups

H∂(M,µ), H∂
c (M,µ), H∂(M,µ-reg), and H∂

c (M,µ-reg).
If A is a subset of a topological space X, denote its interior, closure, and fron-

tier by IntA, ClA, and FrA, respectively. Denote the unit interval by both I and
�1. Call any subset K ⊂ X a (closed ) n-cell if it is homeomorphic to the unit
n-cube I n = [0,1]n. Call K ⊂ X a relative n-cell if there is a continuous surjec-
tion φ : I n → K such that, when restricted to Int I n, φ is a homeomorphism on
its image and φ−1 � φ(∂I n) = ∂I n.

3. Extension of Isotopies

We apply here the Černavskii–Edwards-Kirby–Rogalski theorem and a parame-
terized version of the von Neumann–Oxtoby–Ulam theorem to show that, under
certain circumstances, measure-preserving perturbations and measure-preserving
isotopies of a compact subset in a manifold can be extended to measure-preserving
homeomorphisms and measure-preserving ambient isotopies, respectively.

LetM be a (second-countable) manifold and let µo ∈M∂
g(M). Let A be a sub-

set ofM. By a proper embedding ι ofA intoM we mean an injective (continuous)
map ι : A ↪→M such that ι is a homeomorphism of A onto ι(A) and ι−1(∂M) =
A ∩ ∂M. Denote by I(A,M) the space of proper embeddings of A into M. If
ι ∈ I(A,M) and A is a Borel subset of M, we can define a measure ι∗µo on A
such that ι∗µo(B) = µo(ι(B)) for each Borel subset B ⊂ A. Let I(A,M;µo) =
{ι∈ I(A,M) | ι∗µo = µo|A}.

We say that a proper embedding ι : A ↪→M is biregular (with respect to µo) if
ι∗µo andµo|A have the same sets of measure zero. Denote by I(A,M;µo-reg) the
set of all proper biregular embeddings of A into M. Suppose B is a subset of M.
We define I(A,B,M) = {ι∈ I(A,M) | ι|(B∩A) = Id} and I(A,B,M;µo-reg) =
I(A,B,M)∩I(A,M;µo-reg).All spaces of proper embeddings will be endowed
with the compact-open topology.

Suppose M is a manifold with subsets Q and S. A deformation of Q into S is
a continuous map φ : Q × I → M such that φ|(Q×{0}) = IdQ and φ(Q × {1}) ⊂
S. If T ⊂ M and φ(Q× I ) ⊂ T, we say that φ takes place in T. Let P be a sub-
set of I(A,M) and W a subset of A. A deformation φ : P × I → I(A,M) of P
is modulo W if φ(ι, t)|W = ι|W for all ι∈P and t ∈ I.

The following theorem, where no measures intervene, is due to Černavskii [5].
A much more readable and elegant approach is due to Edwards and Kirby [7]. The
measure-theoretic version stated next is taken from Fathi [9]. Fathi gives the credit
for this result to M. Rogalski.

Theorem 3.1. LetU be a neighborhood of a compactC in a manifoldM. Let µo
be a measure in M∂

g(M). Given any neighborhood N of the inclusion ζ : U ↪→
M in I(U,M;µo-reg), there is a neighborhood P of ζ in I(U,M;µo-reg) and a
deformation φ : P × I → N into I(U,C,M;µo-reg) such that :

(1) φ is modulo the complement of a compact neighborhood of C in IntU;
(2) φ(ζ, t) = ζ for all t ∈ I ;
(3) φ|[P∩I(U,∂M,M;µo-reg)] × I takes place in I(U, ∂M,M;µo-reg).
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Furthermore, suppose in addition to these hypotheses that a closed set D in M
(respectively ∂M) and a neighborhood V ofD inM (respectively ∂M) are given.
Then φ can be chosen so that the deformation φ|[P∩I(U,V,M;µo-reg)] × I takes place
in I(U,D,M;µo-reg).

Proposition 3.2. LetM be a second-countable manifold and let µ0 ∈M∂
g(M).

LetC andU be subsets ofM such thatC is compact andU is a neighborhood ofC.
Then there is a neighborhood P of the inclusion ζ : U ↪→M in I(U,M;µo-reg)
and a continuous map P → Hc(M,µo-reg), ι �→ ῑ, such that :

(1) ῑ|C = ι|C;
(2) there is a compact neighborhood F of C in IntU, independent of ι, such that

the support of ῑ is contained in F ;
(3) ζ̄ = IdM;
(4) if ι fixes U ∩ ∂M pointwise, then ῑ fixes ∂M pointwise.

Furthermore, suppose in addition to these hypotheses that a closed set D in M
(respectively ∂M) and a neighborhood V ofD inM (respectively ∂M) are given.
Then the correspondence ι �→ ῑ can be chosen so that, for each ι fixing U ∩ V
pointwise, its extension ῑ fixes D pointwise.

Proof (cf. [9]). Let φ be the deformation given in Theorem 3.1. Then ι �φ(ι,1)−1:
φ(ι,1)(U)→ M is equal to ι on C and is the identity outside φ(ι,1)(F ); hence it
can be extended by the identity to a homeomorphism of M.

Proposition 3.3. LetM be a second-countable manifold and let µ0 ∈M∂
g(M).

Let C and U be subsets of M such that C is compact and U is a neighborhood
of C. If M \ C is connected, then there is a neighborhood Pµo of the inclusion
ζ : U ↪→M in I(U,M;µo) and a compact neighborhood F of C in M (not nec-
essarily in IntU) such that, for each ι ∈ Pµo , there is a measure-preserving ho-
meomorphism ι̃∈Hc(M,µo) with the following properties:

(1) ι̃ depends continuously on ι;
(2) ι̃|C = ι|C;
(3) supp ι̃ ⊂ F ;
(4) ζ̃ = IdM;
(5) if ι fixes U ∩ ∂M pointwise, then ι̃ fixes ∂M pointwise.

(6) Furthermore, suppose in addition to these hypotheses that a closed set D
in ∂M and a neighborhood V of D in ∂M are given. Then the correspondence
ι �→ ι̃ can be chosen so that, for each ι fixingU ∩V pointwise, its extension ι̃ fixes
D pointwise.

Proof. Let C+ be a compact neighborhood of C in M such that C+ ⊂ IntU.
By applying Proposition 3.2 to the pair (U,C+) we get a neighborhood P of µo-
biregular embeddings ι : U ↪→ M, a compact set F − ⊂ M, and a continuous
function ι �→ ῑ on P satisfying certain properties.

Lemma 7 in Berlanga and Epstein [4] implies that there is a relative n-cell L
contained in M such that L ∩ C = ∅, F − \ IntC+ ⊂ L, and µo(FrL) = 0.
It is not difficult to verify that b = µo(ῑ(L)) is independent of ι ∈ Pµo , where
Pµo = P ∩ I(U,M;µo).
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Define MB
g(L, (µo|L)-reg) to be the set of all measures ν ∈ Mg(L) with total

mass equal to b and having the same sets of measure zero as µo|L. In particular,
(∂M ∩ L) ∪ FrL is a set of zero ν-measure.

Define the continuous function Pµo → MB
g(L, (µo|L)-reg), ι �→ ( ῑ−1∗µo)|L,

where MB
g(L, (µo|L)-reg) is endowed with the weak topology that makes the

functionals ν �→ ∫
f dν continuous for each continuous f : L→ R.

Let H∂(L,M,µo-reg) be the set of homeomorphisms h in H∂(M,µo-reg) sup-
ported in L with the compact-open topology. The fact that L is a relative n-cell
implies that we can find a continuous map

σ : MB
g(L, (µo|L)-reg)→ H∂(L,M,µo-reg)

(see [1]) such that σ(ν)∗(µo|L) = ν. Let F = C+ ∪L. Then Pµo → Hc(M,µo),
ι �→ ῑ � σ(ῑ−1∗(µo|L)) is the required µo-measure-preserving extension function.

Now we want to generalize Proposition 3.3 to the case in which the set C(M \C)
of connected components of M \C is finite and µo(M) < ∞. Let S1 ⊂ S 2 be
the equator included in the 2-sphere. Then, the reflection of S 2 along S1 fixes S1

pointwise and sends one hemisphere onto the other. The next remark states that
such homeomorphisms are always far from the identity and that under some mild
hypotheses they do not exist at all.

Remark 3.4. Let M be a manifold and let C be a compact subset of M such
that C(M \ C) is finite. Then there exists a neighborhood N of the identity in
H(M), in the compact-open topology, such that if f ∈ N fixes C pointwise then
f(A) = A for each A∈ C(M \C). More precisely, the set S of homeomorphisms
f : M → M such that f |C = IdC and F(A) = A for each A ∈ C(M \C) is both
open and closed (in the compact-open topology) when considered as a subset of
the space of all homeomorphisms of M fixing C pointwise.

Furthermore, suppose that C is such that FrA1 �= FrA2 for each two distinct
components of M \C. Then the set S of homeomorphisms just defined is equal
to the full group of homeomorphisms of M fixing C pointwise. As an example
of this situation, let M be connected and let C be a locally flat codimension-zero
submanifold of M. Then the frontiers of any two distinct components of M \C
are disjoint and nonempty.

Remark 3.5. LetM be a connected manifold,C a compact subset with C(M \C)
finite, and µo ∈M∂

g(M) such that µo(M) < ∞. Let C+ ⊂ U ⊂ M be neighbor-
hoods of C with C+ compact. By applying Proposition 3.2 to the pair (U,C+)
we get a neighborhood P of µo-biregular embeddings ι : U ↪→ M and a contin-
uous function ι �→ ῑ on P satisfying certain properties. Observe that ῑ(A) (A ∈
C(M \C)) is independent of the particular extension of ι|C+ to M. We now gen-
eralize Proposition 3.3.

Proposition 3.6. Consider the situation of Remark 3.5 and let

Pµo = P ∩ I(U,M;µo).
Then there exists a compact neighborhood F ofC inM such that, for each ι∈Pµo
satisfying µo(ῑ(A)) = µo(A) (∀A ∈ C(M \ C)), there is a measure-preserving
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homeomorphism ι̃ ∈ Hc(M,µo) for which properties (1)–(6) of Proposition 3.3
hold.

Proof. The proof is the same as that of Proposition 3.3.

We conclude this section with an extension of the isotopies theorem.

Theorem 3.7. Let M be a connected second-countable manifold, and let µ0 ∈
M∂

g(M) with µo(M) <∞. Let C ⊂ M be a compact subset such that C(M \C)
is finite. Let U ⊂ M be a neighborhood of C and let ι : I → I(U,M;µo),
τ �→ ιτ , be an isotopy of embeddings preserving µo such that ι0 is the inclusion
ζ : U ↪→M. Then the following conditions are equivalent.

(1) τ �→ ιτ |C extends to a compactly supported isotopy ι̃ : I → Hc(M,µo) of
measure-preserving homeomorphisms such that ι̃0 = IdM.

(2) If ι̃ : I → Hc(M,µo-reg) is any extension of τ �→ ιτ |C to a biregular
homeomorphism such that ι̃0 = IdM , then µo(ι̃τ(A)) = µo(A) for each
A∈ C(M \C).

Proof. Observe that if condition (2) is satisfied by some extension of τ �→ ιτ |C
then, by Remark 3.4, it is satisfied by all extensions. Therefore, (1) implies (2).

Let C+ ⊂ IntU be a compact neighborhood of C. Then, from Theorem 3.1, it
follows that a compactly supported extension of τ �→ ιτ |C+ to biregular homeo-
morphisms does exist (see [7, proof of Cor. 1.2, p. 79]). Then we can modify this
biregular extension to a measure-preserving extension of τ �→ ιτ |C as in Proposi-
tion 3.3.

Remark 3.8. Suppose τ �→ ιτ can be extended to a measure-preserving isotopy
of homeomorphisms. Furthermore, suppose that D ⊂ ∂M is closed and a neigh-
borhood V of D in ∂M is given in such a way that ιτ fixes U ∩ V pointwise; then
ι̃τ can be chosen to fix D pointwise for each τ ∈ I.

4. The Mass Flow

Through the rest of this work X will denote a locally compact, locally connected,
second-countable Hausdorff space. These properties imply that X is metrizable
and locally path connected (see [10]). Also, µ0 will represent a fixed good mea-
sure on X.

Call S(�1,X) = C(I,X) the space of singular 1-simplices and endow it with
the compact-open topology (since I is compact, this topology coincides with the
Whitney topology). Note that S(�1,X) is second countable if X is second count-
able (see [6]). Endow C(X, S(�1,X)), Hc(X), and Hc(X,µo) with the Whitney
topology.

It is not difficult to verify that, given a compact subset K in Hc(X), there is a
compact K ⊂ X such that every element in K has support in K [2, Lemma 2.1].
This remark is certainly false if Hc(X) is endowed with the compact-open topol-
ogy instead.
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Let P(Hc(X)) = {h ∈ C(I, Hc(X)) | h0 = IdX} be the space of paths (i.e.,
compactly supported isotopies) in Hc(X) based at the identity. Endow P(Hc(X))

with the compact-open topology. Observe that the (exponential ) map

E : P(Hc(X))→ C(X, S(�1,X)),

h = {ht }t∈I �→ (x �→ (t �→ ht(x)))

is a topological embedding.
Let η ∈ P(Hc(X)) be the constant path such that ηt = Id : X → X for each

t ∈ I. In what follows we shall reserve the letter E for the exponential map and
the letter η for the constant path just defined.

If f : X → S(�1,X) is continuous and a Borel measure ν on X is given then
f∗ν, defined by f∗ν(B) = ν(f −1(B)) for each Borel subset B in S(�1,X), is a
Borel measure on S(�1,X). Note that supp f∗ν ⊂ f(supp ν), where supp ν de-
notes the support of ν.

Assertion 4.1. If h∈P(Hc(X,µo)) andK is a compact subset ofX containing
supph = Cl

(⋃
t∈I suppht

)
, then

E(h)∗(µ0|K)− E(η)∗(µ0|K) = E(h)∗(µ0)− E(η)∗(µ0).

Proof. We give an informal proof. The map E(η) : X → S(�1,X) is an embed-
ding ofX as a set of trivial simplices in S(�1,X), which assigns to each x ∈X the
constant singular 1-simplex t �→ x. Call the image of E(η) the trivial copy of X
in S(�1,X).

The mapE(h) : X → S(�1,X) is another embedding ofX, whose image agrees
with the trivial copy of X in S(�1,X) except for a “bubble” lying over the trivial
copy of supph in S(�1,X).

It follows that the measures E(h)∗(µ0) and E(η)∗(µ0) agree in the comple-
ment of the union of the trivial copy of supph and the “bubble”.

Let C1X denote the real vector space of finite signed Borel measures on S(�1,X)
with compact support ; that is, ϑ ∈C1X if and only if ϑ is a σ -additive, real-valued
function defined on all Borel subsets of S(�1,X) such that there exists a K ⊂
S(�1,X) compact with the property that the complement of K in S(�1,X) has
zero ϑ-measure.

The linear space C1X becomes a locally convex Hausdorff topological vec-
tor space if it is given the weakest topology such that, for each continuous λ:
S(�1,X)→ R, the functional C1X → R, given by ϑ �→ ∫

λ dϑ, is continuous.
Denote by Hc,o(X,µo) the group of measure-preserving homeomorphisms of

X, with compact support, compactly isotopic to the identity in Hc(X,µo). That
is, Hc,o(X,µo) is the path component of the identity in Hc(X,µo).

Define the function

4 = 4(X,µo) : P(Hc,o(X,µo))→ C1X

such that
4(h) = E(h)∗(µ0|K)− E(η)∗(µ0|K),

where K is any compact subset of X containing the support of the path h.
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Assertion 4.2. The map 4 is continuous.

Proof. Given a continuous λ : S(�1,X)→ R we have to check that the functional

P(Hc,o(X,µo))→ R,

h �→
∫
λ d4(h) =

∫
[λ � E(h)− λ � E(η)] dµo

(4.2.1)

is continuous.
Recall that E(h) : X → S(�1,X) is an embedding of X in S(�1,X). The map

S(�1,X) → X, such that σ �→ σ(0), shows that X is actually embedded as a re-
tract of S(�1,X). Hence E(h) is a closed embedding, so it is proper.

Let Cc(X, R) be the space of real-valued functions on X with compact support
endowed with the Whitney topology. Then the fact that E(h) is proper for each
path h implies that the map

P(Hc,o(X,µo))→ Cc(X, R),

h �→ λ � E(h)− λ � E(η) (4.2.2)

is continuous. Clearly, the functional

Cc(X, R)→ R,

f �→
∫
X

f dµo
(4.2.3)

is continuous.
Since the composite of the maps given in (4.2.2) and (4.2.3) is the map given in

(4.2.1), the assertion follows.

In [3] a homology theory based on measures, due to W. Thurston, is discussed in
some detail. For topological manifolds this theory is isomorphic to the standard
singular homology theory with real coefficients. Let us now briefly recall the def-
inition of Thurston’s measure-theoretic first homology group.

Let �2 = {(x, y) ∈ R
2 | 0 ≤ x, y and x + y ≤ 1} and let its vertices be de-

noted by e0 = (0, 0), e1 = (1, 0), and e2 = (0,1). Let S(�2,X) = C(�2,X) be
the space of singular 2-simplices with the compact-open topology. Let C2X and
C0X be, respectively, the real vector space of finite signed Borel measures with
compact support on S(�2,X) and X.

Define the faces of �2, F 0
2 = 〈e1, e2〉, F 1

2 = 〈e0, e2〉, and F 2
2 = 〈e0, e1〉, as the

affine maps from �1 to �2 given in vertices by F 0
2 (0) = e1, F 0

2 (1) = e2; F 1
2(0) =

e0, F 1
2(1) = e2; and F 2

2 (0) = e0, F 2
2 (1) = e1. For i = 0,1, 2, there is a continuous

ith face map on singular 2-simplices, say (F i
2)

∗ : S(�2,X) → S(�1,X), defined
by σ �→ σ � F i

2 , which induces a linear transformation ∂i2 : C2X → C1X such
that ∂i2(ϑ) = [(F i

2)
∗ ]∗ϑ for each ϑ ∈ C2X, where ∂i2(ϑ)(B) = ϑ([(F i

2)
∗ ]−1(B))

for each Borel subset B contained in S(�1,X). Let ∂2 = ∂0
2 − ∂1

2 + ∂ 2
2 .

For α = 0,1, let evα : S(�1,X) → X be such that σ �→ σ(α). Define ∂ α1 =
(evα)∗ : C1X → C0X and let ∂1 = ∂0

1 − ∂1
1. It is readily verified that ∂1 � ∂2 = 0.

Hence the quotient A = kernel(∂1) \ Image(∂2) is well-defined.
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The vector space A is then isomorphic to the first singular homology group
with real coefficients when X is an absolute neighborhood retract (ANR). We
shall write simply A = H1(X, R). As a quotient of a subspace of the locally con-
vex Hausdorff space C1X, H1(X, R) is Hausdorff as well (see [3]). In particular,
finite-dimensional subspaces of H1(X, R) inherit the natural Euclidean topology.

Assertion 4.3. If h∈P(Hc,o(X,µo)), then 4(h) is a 1-cycle; that is,

∂1(4(h)) = 0.

Proof. Let K ⊂ X be a compact set such that supph ⊂ K. It is enough to prove
that ∂1(E(h)∗(µo|K)) = 0. But then,

∂1(E(h)∗(µo|K)) = ∂0
1(E(h)∗(µo|K))− ∂1

1(E(h)∗(µo|K))
= (ev1)∗(E(h)∗(µo|K))− (ev0)∗(E(h)∗(µo|K))
= (ev1 � E(h))∗(µo|K)− (ev0 � E(h))∗(µo|K)
= (h1)∗(µo|K)− (h0)∗(µo|K)
= µo|h1(K) − µo|K
= µo|K − µo|K
= 0,

because supph1 ⊂ K and h1 preserves measure.

Assertion 4.4. Let h, g ∈ P(Hc,o(X,µo)) be homotopic paths relative to ∂I.
Then 4(h) is homologous to 4(g).

Proof. Let F : I × I → Hc,o(X,µo) be a homotopy from h to g(rel. ∂I ). Dia-
grammatically, we have

✲

✻

✲

✻

h

g

η : t �→ Id t �→ h1 = g1

Since F restricted to the edge {0} × I is constant, we can collapse {0} × I into
a point and get a map from the standard 2-simplex �2 into Hc,o(X,µo) given by
the following diagram on the edges:

✲

✻

❅
❅

❅
❅❅�

❅❅

h

g t �→ h1 = g1

This map induces a continuous function from X into the space of 2-singular
simplices on X, say E2 : X → S(�2,X). Let K be a compact subset of X con-
taining suppF. A calculation shows that
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∂2(E2(F )∗(µo|K)) = (E(η) � h1)∗(µo|K)− E(g)∗(µo|K)+ E(h)∗(µo|K)
= 4(h)−4(g)+ E(η)∗(h1∗(µo|K))
= 4(h)−4(g)+ E(η)∗(µo|K).

By performing the same calculation using the constant map �2 → {Id} ⊂
Hc,o(X,µo), defined also by the diagram

✲

✻

❅
❅

❅
❅❅�

❅❅

η

η η

we see that E(η)∗(µo|K) is a boundary itself.

Let H̃c,o(X,µo) be the quotient space of P(Hc,o(X,µo)) under the equivalence re-
lation of “homotopy relative to ∂I”. The continuous map ev : P(Hc,o(X,µo))→
Hc,o(X,µo) defined by ev(h) = h1 for each h ∈ P(Hc,o(X,µo)) naturally in-
duces a continuous projection ρ : H̃c,o(X,µo) → Hc,o(X,µo) on equivalence
classes. Observe that ρ−1({Id}) is the (underlying set of the) fundamental group of
Hc,o(X,µo).WhenX is a manifold, the compactly generated space of Hc,o(X,µo)
is locally path connected and locally contractible, so Hc,o(X,µo) is semilocally
simply connected (and of course connected and locally path connected) in the
Whitney topology. Hence, H̃c,o(X,µo) is (a model of ) the universal covering
space of Hc,o(X,µo) in both the compactly generated topology and the Whitney
topology [2, Thm. 4.3; 13, Chap. 2].

With these preliminaries we make the following definition.

Definition 4.5. Define the mass flow

�̃ = �̃X = �̃(X,µ0) : H̃c,o(X,µo)→ H1(X, R)

by the formula
�̃([h]) = [E(h)∗(µo|supph)],

where [h] ∈ H̃c,o(X,µo) is the homotopy class (relative to ∂I ) of the path h ∈
P(Hc,o(X,µo)) and [E(h)∗(µo|supph)] is the homology class of4(h) inH1(X, R).

Remark 4.6. Since4 is continuous (Assertion 4.2), it follows that the mass flow
�̃ is continuous in the corresponding quotient topologies.

5. First Consequences

Proposition 5.1. The mass flow is a group homomorphism.

Proof. Let �2
1 be the geometric 2-simplex in I 2 having P0 = (0, 0), P1 = (1,1),

and P2 = (0,1) as vertices. LetH : �2
1 → Hc,o(X,µo) be defined by the formula

H(s, t) = gs � ht for each (s, t)∈�2
1. Diagrammatically,
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✛

✻

�
�

�
��✒

��

t �→ g(1−t) � h1

t �→ ht t �→ gt � ht

Certainly H induces a continuous function E2(H ) : X → S(�2
1,X).

Identifying �2
1 with �2 and computing ∂2(E2(H )∗(µo|K)), where K is any

compact set in X containing supph ∪ supp g, we get that

∂2(E2(H )∗(µo|K)) = (δ∗ �E(g)�h1)∗(µo|K)−E(h)∗(µo|K)+E(g�h)∗(µo|K),
where δ∗ : S(�1,X) → S(�1,X) is the map induced by the reflection t �→
(1− t) in �1. Hence

∂2(E2(H )∗(µo|K)) = (δ∗)∗(E(g)∗(µo|K))− E(h)∗(µo|K)+ E(g � h)∗(µo|K).
Since (δ∗)∗ induces multiplication by −1 in homology, the proposition follows.

The proof of the following assertion is immediate.

Assertion 5.2. Let f be an arbitrary homeomorphism of X. Then there is a
commutative diagram

H̃c,o(X,µo)
�̃(X,µo) ��

[f(·)f −1]˜
��

H1(X, R)

H1(f )

��

H̃c,o(X, f∗µo)
�̃(X,f∗µo) �� H1(X, R)

where
[f(·)f −1]˜([t �→ ht ]) = [t �→ f � ht � f −1]

for each t �→ ht in P(Hc,o(X,µo)).
Both [f(·)f −1]˜ and H1(f ) are isomorphisms of topological groups and lin-

ear spaces, respectively. In particular, if f is isotopic to the identity, then H1(f )

is the identity on H1(X, R).

Assertion 5.3. Let T 1 denote the topological group R/Z isomorphic to the unit
circle S1 = {z ∈ C | |z| = 1}. Let λ : S(�1, T 1) → R be the continuous map
defined by λ(σ) = [σ − σ(0)](1), where σ − σ(0) : �1 → R is the lifting of
σ − σ(0) such that [σ − σ(0)](0) = 0. Define D : C1T

1 → R such that D(ϑ) =∫
λ dϑ for all ϑ ∈C1T

1. Then D induces an isomorphism D of H1(T
1, R) onto R

(see [3]).

Proposition 5.4. Let f : X → T 1 be a continuous map andh∈P(Hc,o(X,µo)).
Define f � h − f : X × I → T 1 such that (x, t) �→ f(ht(x)) − f(x). Since
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f(h0(x)) − f(x) = 0, there is a unique lifting f � h− f : X × I → R iden-
tically zero on X × {0} ∪ (X × I \ supph × I ). Now, the induced functional
H1(f ) : H1(X, R)→ H1(T

1, R) is such that

D �H1(f ) � �̃([h]) =
∫
X

f � h1 − f dµo. (F)

Proof. Let S(f ) : S(�1,X) → S(�1, T 1) be such that σ �→ f � σ and let S(f )∗
be the map induced in measures. Then,

D(H1(f )(�̃([h]))) =
∫
X

λ d(S(f )∗ � E(h)∗µo)

=
∫
X

(λ � S(f ) � E(h)) dµo =
∫
X

f � h1 − f dµo.

Comment 5.5. Formula (F) is exactly the expression Fathi uses in [9] to define
the mass flow, in the case where X is compact, as a group homomorphism from
H̃o(X,µo) into HomZ([X, T 1], R).

6. Properties

Let Ker �̃ be the kernel of the mass flow homomorphism, and let ? denote the
fundamental group of Hc,o(X,µo). Then, the diagram

?

��

Ker �̃ ↪ �� H̃c,o(X,µo)
�̃ ��

ρ

��

H1(X, R)

Hc,o(X,µo)

induces a commutative diagram with exact columns

? ∩ Ker �̃ ↪ ��

��

?
�̃|? ��

��

@X

��

Ker �̃ ↪ ��

ρ|Ker �̃

��

H̃c,o(X,µo)
�̃ ��

ρ

��

H1(X, R)

��

Ker� ↪ �� Hc,o(X,µo)
� �� H1(X, R)/@X

(♠)

where @X is defined to be the image of ? under �̃ and � is the homomorphism
induced by �̃ in the quotient. It is easy to see that the equalities Ker(ρ|Ker �̃) =
Ker(�̃|?) = ?∩Ker �̃ hold. Also, the fact that �̃|? is a surjection implies that ρ
maps Ker �̃ onto Ker�. This shows that the first column in diagram (♠) is exact.
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If Hc,o(X,µo) is locally connected and semilocally simply connected, then the
map � is continuous. This follows immediately from the continuity of �̃ and the
fact that in this case ρ is a covering map.

Let us consider the general group H(X) of homeomorphisms of X with the
compact-open topology and let A(H(X)) = {h ∈ C(I, H(X)) | h(0) = h(1) =
IdX} be the space of loops of homeomorphisms based on the identity. If xo is a
point inX, then evo : H(X)→ X given by h �→ h(xo) induces a group homomor-
phism ?(evo) : ?(H(X)) → ?(X, xo) that assigns to each class [h] of a loop h
the class [E(h)xo] of the loop t �→ ht(xo) inX. Observe that?(H(X)) is abelian
(consider the homotopy (s, t) �→ γ1(s) � γ2(t)).

Assertion 6.1. If h ∈ A(H(X)) then ?(evo)([h]) lies in the group-theoretic
center Z(?(X, xo)) of the fundamental group of X; that is, ?(evo)([h]) com-
mutes with every element in ?(X, xo).

Proof. Let γ be a loop inX based at xo. ThenG : I × I → X given byG(s, t) =
hs(γ (t)), for (s, t) ∈ I × I, is such that G(s, 0) = E(h)xo, G(s,1) = E(h)xo,
G(0, t) = γ (t), andG(1, t) = γ (t). This proves that?(evo)([h]) commutes with
[γ ] in ?(X, xo).

Remark 6.2. Z(?(X, xo)) is an invariant of X that does not depend on the
base point xo. For if x1 ∈ X, then any two curves from xo to x1, say γo and
γ1, define the same isomorphism from Z(?(X, xo)) onto Z(?(X, x1)); that is,
[γ−1
o ζγo] = [γ−1

1 ζγ1] for each loop ζ in X with [ζ ] ∈ Z(?(X, xo)). Hence
Z(?(X)) is well-defined. If h ∈A(H(X)) then these comments and the homo-
topy (s, t) �→ hs(γo(t)) show that [E(h)xo] and [E(h)x1] define the same element
in Z(?(X)).

Remark 6.3. If (Y, yo) is a topological pointed space and if f : (Y, yo) →
(H(X), Id) is continuous, then the composite evo � f induces an homomorphism
?(Y, yo)→ Z(?(X)) such that [γ ] �→ [E(f �γ )xo]. In particular, we can apply
this to the inclusion Hc,o(X,µo) ↪→ H(X).

If X is not compact, then ?(Hc,o(X,µo)) → Z(?(X)) is trivial; for if h ∈
A(Hc,o(X,µo)) then some point x ∈X is fixed, so E(h)x is the constant loop at
x. The same is true for the case where X is a manifold with nonempty boundary
and we apply the preceding remark to the inclusion H∂

c,o(X,µo) ↪→ H(X), where
H∂
c,o(X,µo) denotes the group of measure-preserving homeomorphisms ofX fix-

ing ∂X pointwise, with compact support and compactly isotopic to the identity in
H∂
c (X,µo).

Proposition 6.4. Let X be a connected n-dimensional manifold, possibly with
a nonempty boundary, such that µo(∂X) = 0. Let xo ∈X be given. If X is com-
pact, then the following diagram commutes:

?(Hc,o(X,µo))
?(evo) ��

��

Z(?(X))

Hwz

��

H̃c,o(X,µo)
�̃ �� H1(X, R)
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where Hwz: ?(X, xo) → H1(X, R) is the map that sends the homotopy class of
a loop γ on X at xo into the homology class of the atomic measure on S(�1,X)
concentrated at {γ } with mass µo(X).

If X is noncompact or ∂X �= ∅ then, for any loop h on Hc,o(X,µo) based at
the identity, �̃([h]) is zero.

Proof. Let h be a loop on Hc,o(X,µo) based at the identity. Now there is a con-
tinuous function on the unit n-cube, say ϕ : I n → X and a measure νo on I n such
that supph ⊂ ϕ(I n) and ϕ∗νo = µo|ϕ(I n) (see [4, Prop. 1 and Lemma 7]). Assume
that ϕ maps the origin 0̄ ∈R

n to xo.
Let c : I n×I → I n be the contraction of I n defined by c(x, t) = (1− t)x for all

(x, t)∈ I n× I. LetH : I × I × I n → X be defined byH(s, t)x = hs(ϕ(c(x, t)))
for all (s, t) ∈ I × I and x ∈ I n. Then H(s, 0)x = hs(ϕ(x)) = E(h)ϕ(x),
H(s,1)x = hs(xo) = E(h)xo, and H(0, t)x = H(1, t)x = ϕ(c(x, t)) = γx(t) for
all (s, t)∈ I × I and x ∈ I n.

Define the affine simplices αj : �2 → I × I (j = 1, 2), where α1 = 〈e0, e1, e2〉,
α2 = 〈e1, e3, e2〉, and e0, e1, e2, e3 are the vertices of the unit square.

✲

✻

✛

✻
❅

❅
❅

❅
❅

❅
Imα1

Imα2

e0 e1

e2 e3

For j = 1, 2, define E2(H � αj ) : I n → S(�2,X) such that x �→ ((s, t) �→
H(αj(s, t))x). Let δ : �1 → �1 be such that δ(t) = 1− t for each t ∈�1. Then

∂2(E2(H � α1)∗νo + E2(H � α2)∗νo)
= (E(h) � ϕ)∗νo + (δ∗ � (x �→ E(h)xo))∗νo
= E(h)∗(ϕ∗νo)+ (δ∗)∗(νo(I n) E(h)xo!)
= E(h)∗(µo|ϕ(I n))+ (δ∗)∗(νo(I n) E(h)xo!),

where  E(h)xo! represents the atomic probability supported at {E(h)xo}. Hence
�̃([h]) = µo(ϕ(I

n))[ E(h)xo!].
In particular, if supph �= X then E(h)x : s �→ hs(x) (0 ≤ j ≤ 1) is a con-

stant loop for some x ∈ X. Therefore E(h)xo is homologically trivial because it
is homotopic to E(h)x. This is always the case when X is noncompact or we are
in the case when homeomorphisms are to fix ∂X pointwise. If X is compact and
supph = X = ϕ(I n) then �̃([h]) = µo(X))[ E(h)xo!].

Assertion 6.5. Let X be a connected manifold. The map ρ|Ker �̃ : Ker �̃ →
Ker�, defined on diagram (♠), is a covering projection.

Proof. We consider two cases.

Case 1: X is noncompact. In this case @X is trivial, so Ker �̃ is the full inverse
image of Ker� under ρ.
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Case 2: X is compact. Assume, without loss of generality, that µo(X) = 1.
Therefore @X is contained in the integral part of the finite-dimensional space
H1(X, R) (a compact metric ANR is of the same homotopy type of a compact
polyhedron and hence it has a finitely generated integral homology; see [11]).
Hence @X is discrete in the Euclidean topology of H1(X, R).

Since the mass flow homomorphism is continuous, choose a neighborhood A of
the identity in H̃c,o(X,µo)with �̃(A)∩@X = {0}. It follows that ρ(Ker �̃∩A)=
Ker�∩ρ(A), proving that ρ|Ker �̃ : Ker �̃→ Ker� is an open map. Hence Ker�
is the quotient space obtained from Ker �̃ under the action of the discrete group
?(Hc,o(X,µo)) ∩ Ker �̃. Thus ρ|Ker �̃ is a covering projection.

7. The Kernel of the Mass Flow

Discussion 7.1. The following discussion is taken from Fathi [9, pp. 73–74].
Let A and B be locally connected, second-countable, Hausdorff spaces. Assume
further that A is compact and that B is locally compact (Fathi needs B compact
only).

Now let φ : (A× {0} ∪ A× {1}) → B be some embedding. Define W = A×
I "φ B = (A × I ∪ B)/{φ(a, 0) ∼ (a, 0), φ(a,1) ∼ (a,1)} by glueing A × I to
B using φ. Define f : W → T 1 by f(x) = t mod 1 if x = (a, t) ∈A× I and by
f(x) = 0 if x ∈B. Consider the pull-back of the natural covering R → T 1 by f
to obtain a covering projection W̃ → W.

Suppose that µ is a measure on W such that µ|A×I = ν × dt, where ν is a
good measure onA and dt is Lebesgue measure on I. Lift µ to a measure µ̃ in W̃.

Let h be a measure-preserving, compactly supported isotopy in P(Hc,o(W,µo)).
Then we can lift h in a unique way to h̃ ∈ P(H)c,o(W̃,µo). Observe that supp h̃
is not compact if ht �= Id for some t ∈ I. Moreover, h̃ commutes with the cover-
ing transformations of W̃ → W. Suppose that h is close enough to the identity;
then we can define a region R(h) ⊂ W̃ that consists of the points “to the right”
of A× {0} and h̃1(A× {1/2}).

Now, if H1(T
1, R) is identified with R via the isomorphism found in Asser-

tion 5.3, then

H1(f )(�̃([h])) = µ̃(R(h))− µ̃(A× [0,1/2]).

We omit the proof of this fact, which certainly explains the name of the mass
flow homomorphism. The figures in Fathi [9, pp. 73–74] illustrate the preceding
formula.

Remark 7.2. Let a, b, c, d be real numbers such that 0 < c < a < b < d < 1.
Suppose further that A is a connected manifold. If we define C0(h) as the con-
nected component of A × [0,1] \ (h1(A × [a, b]) that contains A × {0}, then the
foregoing discussion shows that H1(f )(�̃([h])) = µ(C0(h))− µ(A× [0, a]).

In particular, if the space W = (A × I ) "φ B is such that φ(A × {0}) and
φ(A× {1}) lie on different connected components of B, then f : W → T 1 is ho-
motopically trivial. Hence we are just asserting that µ(C0(h)) = µ(A× [0, a]).
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Example 7.3. Suppose that σ is an embedded circle in X representing a non-
trivial element of H1(X, R) and suppose that N ⊂ X is a compact tubular neigh-
borhood of σ. Using the previous discussion, Fathi shows how to circulate mass
inside N in order to produce homeomorphisms with nonzero mass flow along σ.
An important consequence of this construction is the surjectivity of the mass flow
homomorphism whenH1(X, R) has a basis represented by embedded curves hav-
ing tubular neighborhoods. In Proposition 7.5 we prove that the mass flow is onto
without the aid of tubular neighborhoods. The present example illustrates that, in
a particular setting, �̃ is not trivial.

Let A = I n−1 and let B be an n-dimensional connected manifold with bound-
ary. Let φ : A×{0,1} → ∂B be an embedding that extends to an open embedding
of R

n−1 × {0,1} into ∂B. Then W = A × I "φ B is a manifold with boundary
∂W = ∂A×I ∪(∂B \φ((IntA)×{0,1})). By definition, W is the result of adding
an n-handle of index 1 to B.

Suppose that µ is a measure in M∂
g(W ) such that µ|A×I = (αom)× dt, where

m is Lebesgue measure on A and αo > 0. Let f : W → T 1 be given by f(x) =
umod 1 if x = (a, u) ∈A× I and by f(x) = 0 if x ∈ B. It is not difficult to see
that H1(W, R) ∼= H1(B, R) ⊕ R by the Mayer–Vietoris theorem and that the lin-
ear map H1(f ) : H1(W, R) → H1(T

1, R) may be interpreted as the projection of
H1(B, R)⊕ R onto its second factor. Choose some continuous function δ : A →
[0,1/3] such that αo

∫
A
δ dm = αo/4 and δ|∂A = 0. Define, for each t ∈ I, the

embedding A× [1/4,1/2] ↪→ W, (a, u) �→ (a, u+ tδ(a)). Then Theorem 3.7 on
the extension of isotopies says that we can find a path h : I → H∂

c,o(W,µ) such
that ht(a, u) = (a, u+ tδ(a)) for each (a, u)∈A× [1/4,1/2]. By Remark 7.2, it
follows that �̃W([h]) = (β,αo/4) in H1(B, R)⊕ R. Furthermore, by adding an
extra parameter s ∈ [0,αo/4], we can construct a continuous map γ : [0,αo/4] →
H̃∂
c,o(W,µ) (e.g., γ (s)t = [h4st/αo ] for each s ∈ [0,αo/4] and each t ∈ I ) with

the property that, for each s ∈ [0,αo/4], �̃W(γ (s)) = (βs , s) in H1(B, R) ⊕ R.

Finally, extend γ to γ̂ : R → H̃∂
c,o(W,µ) satisfying �̃W(γ̂ (s)) = (βs , s) for

each s ∈R.

Definition 7.4. Let W be a real vector space. Then, the L-topology on W is
the topology that makes the inclusions ι : E ↪→ W continuous for each finite-
dimensional linear subspace E ⊂W that is endowed with its standard Euclidean
topology.

If the dimension of W is at most countable, then WL is a locally convex vector
space. Otherwise the (affine) space WL is not a topological vector space (see [6]).

Recall that �̃ : H̃c,o(X,µo)→ H1(X, R) is a continuous group homomorphism
and that H1(X, R) is Hausdorff [3]. Consequently, finite-dimensional subspaces
in H1(X, R) inherit their natural topology making the inclusion H1(X, R)L ↪→
H1(X, R) continuous.

Since ρ : H̃c,o(X,µo) → Hc,o(X,µo) is a covering map it follows that, for
K ⊂ H̃c,o(X,µo) compact, there is a compactK ⊂ X such that �̃(K) is contained
in the (finite-dimensional) image of the canonical map H1(K, R) → H1(X, R).
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Therefore, �̃ : k(H̃c,o(X,µo)) → H1(X, R)L is continuous (kS is the compactly
generated space associated with S).

Proposition 7.5. LetX be ann-manifold. Then �̃: k(H̃c,o(X,µo))→H1(X, R)L
is surjective. Moreover, �̃ has a continuous section.

Proof. Let z be a nontrivial element in H1(X, R) represented by an embedding
σ : T 1 ↪→ X \ ∂X. By covering the image of σ with n-cells, we can construct
a neighborhood Z of σ(T 1) in the interior of X such that Z can be expressed as
the result of adding an n-handle of index 1 to a submanifold of dimension n in the
interior of X. Let ψ be a homeomorphism from Z onto some W = A× I "φ B.

By the von Neumann–Oxtoby–Ulam theorem on manifolds (see [4]), assume
that ψ∗(µo|Z) = µ where µ is the measure in M∂

g(W ) considered in Exam-
ple 7.3. Since T 1 is an ANR, we can take Z small enough so that the canonical
map H1(B, R) → H1(X, R) is trivial. Using Example 7.3 and the commutative
diagram

H̃∂
c,o(Z ,µo|Z) �̃Z ��

��

H1(Z , R)

��

H1(B, R)⊕ Rz

π2

��

H̃∂
c,o(X,µo)

�̃X �� H1(X, R) Rz↩��

where π2 is the projection on Rz, we can find a continuous mapping γσ : Rz →
k(H̃∂

c,o(X,µo)) such that �̃X � γσ is the identity on Rz. Now choose an at most
countable family {σ : T 1 ↪→ X} of embeddings representing a base forH1(X, R).

Note that any element in H1(X, R) is a finite linear combination of basic vec-
tors. Hence, we can multiply the corresponding family of sections {γσ : Rz →
k(H̃∂

c,o(X,µo))} in some fixed order, for γσ1 � γσ2 �= γσ2 � γσ1 in general, to obtain
a continuous section γ : H1(X, R)L → k(H̃∂

c,o(X,µo)).

Remark 7.6. If the dimension of X is greater than two, then there is a locally fi-
nite family {σ : T 1 ↪→ X} of continuous disjoint embeddings representing a base
for H1(X, R). Suppose now that each σ : T 1 ↪→ X has a tubular neighborhood.
Then, in this situation, a section that at the same time is a group homomorphism
can be constructed.

Corollary 7.7. There is a homeomorphism

k(H̃c,o(X,µo)) ∼= k(Ker �̃)×H1(X, R)L.

Furthermore, k(Ker �̃) → k(Ker�) is a universal covering projection of a con-
nected, locally contractible space.

Proof. First note that the subspace topology of (the underlying set of ) Ker �̃ in
k(H̃c,o(X,µo)) is the topology of the k-space k(Ker �̃) [2]. Now, the existence
of the stated homeomorphism is a consequence of the existence of a continuous



260 Ricardo Berlanga

section. The fact that k(Hc,o(X,µo)) is connected and locally contractible (see
[2]) implies that its universal covering has these same properties. From Asser-
tion 6.5 and the fact that H1(X, R)L is contractible, the second statement of the
corollary follows.

Remark 7.8. Proposition 7.5 and its corollary hold for the group of homeomor-
phisms fixing ∂X pointwise.

Lemma 7.9. Let νo be a ∂-good measure in I n. Then H∂(I n, νo) is contractible.

Proof. The lemma is a consequence of “Alexander’s trick” and the von Neumann–
Oxtoby–Ulam theorem (see [9]).

Lemma 7.10. Let X be an n-manifold. Let K be a closed n-cell in X. Suppose
h ∈ H(X,µo) is isotopic to the identity by a µo-preserving isotopy supported in
K. Then �(h) = 0. If h∈H(X,µo) has its support in IntK, then h is isotopic to
the identity in IntK and �(h) = 0.

Proof. Any homeomorphism in H(K,µo|K) that fixes FrK pointwise can be ex-
tended to a homeomorphism in H(X,µo) by defining such an extension to be the
identity out of K (note that FrK may be different from ∂K). Let HFr(K,µo|K)
denote the group of homeomorphisms ofK preservingµo|K and fixing FrK point-
wise endowed with the compact-open topology. Let HFr

o (K,µo|K) be the path-
connected component of the identity. There is a commutative diagram

HFr
o (K,µo|K) � ��

��

H1(K, R) ≡ 0

��

Hc,o(X,µo)
� �� H1(X, R)/@X

This implies the first part of the lemma. The rest is a consequence of Lemma 7.9.

Proposition 7.11. LetX be an n-manifold. If h∈ Ker�X, then h can be written
as a composition h = h1 � h2 � · · · � hq such that, for each i, hi is in Hc,o(X,µo)
with supphi contained in an n-cell.

We first prove a lemma.

Lemma 7.12. Let N be an n-dimensional manifold and let S be a compact, con-
nected, bicollared (n − 1)-submanifold of N. Let µ be a ∂-good measure on N
such that

(1) µ|(S×〈−1,2〉) = ν × dt, where S × 〈−1, 2〉 is a bicollar of S = S × {1/2}, ν ∈
M∂

g(S), and dt is Lebesgue measure on 〈−1, 2〉.
Let h∈P(Hc,o(N,µ)) satisfy

(2) �N(ht ) = 0 for each t ∈ I and
(3) ht(S × [1/4, 3/4]) ⊂ S × 〈0,1〉 for each t ∈ I.
Then there is a b in P(Hc,o(N,µ)) such that
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(4) supp b ⊂ S × 〈0,1〉 and
(5) bt |(S×[1/4,3/4]) = ht |(S×[1/4,3/4]) for each t ∈ I.

Furthermore, if D is a closed set in ∂N and W is a neighborhood of D in ∂N
such that ht |W = IdW for each t ∈ I, then b can be chosen in such a way that
bt |D = IdD for each t ∈ I.
Proof. Define, for each t ∈ I, C0,t (respectively C1,t ) as the connected compo-
nent of S × [0,1] \ ht(S × [1/4, 3/4]) that contains S × {0} (respectively S × {1}).
By Theorem 3.7 and Remark 3.8, it is enough to prove that, for each i = 1, 2,
µ(C i,t ) = µ(C i,0) if t ∈ I. But now this follows from Remark 7.2 and the assump-
tion that h is a path in Ker�.

Proof of Proposition 7.11. Let E
n denote either R

n or the upper half-space H
n =

R
n−1× [0,∞〉, and let B0(r) denote the standard Euclidean closed ball of radius r

centered at the origin.
LetU be an open subset ofXwith compact closure satisfying h∈Hc,o(U,µo|U)

and�U(h) = 0. Since ClU is compact, we can find a finite number of coordinate
charts, say φj : E

n ↪→X (1 ≤ j ≤ l ), such that
⋃{φj(B0(1/2)∩ E

n) | 1 ≤ j ≤ l}
is an open set containing ClU. By induction on the covering number l of charts it
is enough to prove that, for a given chart φ : E

n ↪→ X, any sufficiently small h ∈
Ker�U can be written as a product g � f such that, for rA = φ(B0(r) ∩ E

n):

(1) g ∈Hc,o(Int 2A,µo|Int 2A);
(2) f ∈Hc,o(U \ (1/2)A,µo|U\(1/2)A);
(3) f ∈ Ker�U\(1/2)A.

Using the differentiable structure that φ : E
n ↪→ X imposes on φ(En), we can

construct an open subset N of X such that

(4) ClN ⊂ U,
(5) h∈Hc,o(N,µo|N),
(6) h∈ Ker�N , and
(7) Cl(N ∩ FrA) is an (n − 1)-dimensional manifold such that there is an em-

bedding
Cl(N ∩ FrA)× [−1, 2] ↪→ Cl(N ∩ 2A) \ (1/2)A

that satisfies the following property: (N∩FrA)× [−1, 2] is mapped intoN in
such a way that (N∩ FrA)×〈−1, 2〉 ↪→N is a bicollar of (N∩ FrA)×{1/2} =
N ∩ FrA in N, and (N ∩ FrA)× {0} ⊂ A (so the bicollar goes from A to the
outside).

In other words, we have engineered U into N in order to canalize the flow of
mass in and out of FrA through channels with reasonable embankments. Assume,
without loss of generality, that µo|Cl(N∩FrA)×[−1,2] = ν × dt, where ν is a good
measure in Cl(N ∩ FrA) and dt is Lebesgue measure on [−1, 2].

By Corollary 7.7, Ker�N is connected and hence is generated, as a group, by
any neighborhood of the identity. Expressing h as a product of small homeo-
morphisms and replacing it by one of its factors, we can suppose further that
h((N ∩ FrA)× [1/4, 3/4]) ⊂ (N ∩ FrA)× 〈0,1〉. Now define the sets
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Y1 = (N ∩ A) ∪ (N ∩ FrA)× [1/2,1〉,
Y2 = (N \ A) ∪ (N ∩ FrA)× 〈0,1/2];
L = Y1 ∩ Y2 = (N ∩ FrA)× 〈0,1〉.

Applying Lemma 7.12 to each component of Cl(N ∩ FrA) and using a small
isotopy of h in Ker�N , we can find an homeomorphism b of X in Hc,o(L,µo|L)
such that b agrees with h on (N ∩ FrA)× [1/4, 3/4]. Since the composite b−1 � h
is the identity on (N ∩ FrA)× [1/4, 3/4], we can find two homeomorphisms, say
g ′′ and f ′, such that

(8) b−1 � h = g ′′ � f ′,
(9) g ′′ ∈Hc,o(Y1,µo|Y1), and

(10) f ′ ∈Hc,o(Y2,µo|Y2 ).

Let g ′ = b � g ′′ and observe that, although h is equal to the product g ′ � f ′ and
conditions (1) and (2) are satisfied, it may well happen that �Y2(f

′) is not zero.
To remedy this situation, we want to perturb f ′ and g ′. For this purpose consider
the commutative diagram

H̃∂
c,o(L,µo|L) S1 ��

�̃L

��

H̃c,o(Y1,µo|Y1)× H̃c,o(Y2,µo|Y2 )
41 ��

�̃Y1×�̃Y2

��

H̃c,o(N,µo|N)
�̃N

��

H1(L, R)
S2 �� H1(Y1, R)⊕H1(Y2, R)

42 �� H1(N, R)

where S1(P ) = (P,P−1), 41(G,F ) = G � F, S2(z) = (z,−z), and 42(v,w) =
v + w. The Mayer–Vietoris theorem implies that ImageS2 = Ker42.

Suppose now that G ∈ H̃c,o(Y1,µo|Y1) and F ∈ H̃c,o(Y2,µo|Y2 ) are given such
that �̃N(G �F ) = 0. Then, by the exactness of the Mayer–Vietoris sequence and
the fact that �̃L is surjective, we can find a P ∈ H̃∂

c,o(L,µo|L)withS2(�̃L(P )) =
(�̃Y1(G), �̃Y2(F )). Therefore P �F ∈ Ker �̃Y2 and (G �P−1) � (P �F ) = G �F.

Definition 7.13. Let A be an open covering of the manifold X. A homeomor-
phism of X is said to be A-small if its support is contained in some element of A.

Remark 7.14. Let A be an open covering of X. By using balls of small diame-
ter in the proof of Proposition 7.11, we can add in its statement that each hi in the
decomposition of h is A-small. Collecting the results in Propositions 7.5 and 7.11,
we can state the following theorem.

Theorem 7.15. Let X be a second-countable connected n-manifold, let µo be
a ∂-good measure in X, and let A be an open cover of X. Then the map �:
Hc,o(X,µo) → H1(X, R)/@X is surjective. Moreover, the kernel of � is gener-
ated as a group by its A-small µo-preserving elements supported in n-cells.

Remark 7.16. The same result holds for � : H∂
c,o(X,µo)→ H1(X, R).

Theorem 7.17. Let X be an n-dimensional connected manifold without bound-
ary such that n ≥ 3. Then the kernel of the mass flow homomorphism is a simple



Mass Flow for Noncompact Manifolds 263

group. Furthermore, it is the smallest nontrivial normal subgroup of Hc,o(X,µo)
and it is equal to the commutator subgroup Hc,o(X,µo).

Theorem 7.17 is a consequence of the following three results.

Assertion 7.18. Let Y be a k-dimensional connected manifold with k ≥ 2, let
νo ∈ M∂

g(Y ), and let x, y be two points in Y \ ∂Y. Then there exists a homeomor-
phism in H∂

c,o(Y,µo) supported in a topological ball and sending x into y.

Proof (cf. [12, p. 895]). LetB be a ball inY such that {x, y} ∈ IntB.Assume, with-
out loss of generality, thatB = I k and νo|B is a multiple of Lebesgue measure. By
sliding a small cube centered at x onto a small cube centered at y and then apply-
ing Theorem 3.7 (extension of isotopies) we get the desired homeomorphism.

In particular, Ker� acts transitively on X.

Assertion 7.19. Let m be Lebesgue measure on Int I n (n ≥ 3). Then the group
Hc(Int I n,m) is perfect.

Remark 7.20. This nontrivial result is [9, Thm. 7.4]. Assertion 7.19, the von Neu-
mann–Oxtoby–Ulam theorem (see [12]), and Theorem 7.15 imply that Ker� is
perfect. Note that it is only here where the restriction n ≥ 3 is needed.

Assertion 7.21. Let K, N be two subgroups of the full group of homeomor-
phisms H(X) of X satisfying the following properties.

(1) N is not trivial.
(2) K acts on N by conjugation (i.e., K is contained in the normalizer of N in

H(X)).
(3) K acts transitively on X.
(4) For any open covering A of X, K is generated by its A-small elements.

Then, the commutator subgroup of K is contained in N. In particular, if K is per-
fect, then it is simple.

Remark 7.22. This is just a restatement of a well-known argument due to Ep-
stein [8].

Proof of Assertion 7.2.1 (cf. [9, p. 90]). Let f0 be a nontrivial element in N. Then
we can find a nonempty open subset V0 ⊂ X such that

(5) V0 ∩ f0(V0) = ∅.
Let V = {b(V0) | b ∈K}. By (3), V is a covering of X. Let A be an open bari-

centric refinement of V. Hence, if U1,U2 ∈ A and U1 ∩ U2 �= ∅, then U1 ∪ U2 ⊂
V for some V ∈ V. By (4) it is enough to show that, if h, g ∈K are A-small, then
the commutator [h, g] = hgh−1g−1 belongs to N. Let U1,U2 ∈ A be such that
supph ⊂ U1 and supp g ⊂ U2. If U1 ∩U2 = ∅, then [h, g] = Id and we are done.
Otherwise let b ∈ K with U1 ∪ U2 ⊂ b(V0) = V. By (2) and (5), we have that
by putting f = bf0b

−1 then f ∈ N and V ∩ f(V ) = ∅. Using (2) we see that



264 Ricardo Berlanga

[h, f ] ∈ N because [h, f ] = hfh−1f −1 = (hfh−1)f −1. By (2) again, the com-
mutator [[h, f ], g] lies also in N. Since supp(fh−1f −1) ⊂ f(V ), it follows that
fh−1f −1 commutes with g. Finally,

[[h, f ], g] = h(fh−1f −1)g(fhf −1)h−1g−1

= hg(fh−1f −1)(fhf −1)h−1g−1 = hgh−1g−1 = [h, g],

proving that [h, g] ∈K.
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