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1. Introduction

Let (R, m) be a Noetherian local ring of dimension d > 0, and let I be an m-
primary ideal. One of our goals is to study the set of I -good filtrations of R. More
concretely, we will consider the set of multiplicative, decreasing filtrations of R

ideals, A = {In, I0 = R, In+1 = IIn, n � 0}, that is integral over the I -adic filtra-
tion and conveniently coded in the corresponding Rees algebra and its associated
graded ring:

R(A) =
∑
n≥0

Int
n, grA(R) =

∑
n≥0

In/In+1.

In this paper we study certain strata of these algebras. For that we will focus on
the role of the Hilbert polynomial of the Hilbert function λ(R/In+1), n � 0,

H1
A(n) = P 1

A(n) =
d∑

i=0

(−1)iei(A)

(
n + d − i

d − i

)
,

particularly of its coefficients e0(A) and e1(A). Two of our principal aims are to
establish relationships between the coefficients ei(A) for i = 0,1 and (marginally)
e2(A). If R is a Cohen–Macaulay ring then there are numerous related develop-
ments; see especially those given and discussed in [8] and [28]. The situation is
quite different in the non–Cohen–Macaulay case. Just to illustrate the issue, sup-
pose d > 2 and consider a comparison between e0(I ) and e1(I ), a subject that has
received considerable attention. It is often possible to pass to a reduction R → S,
with dim S = 2 or even dim S = 1, so that e0(I ) = e0(IS) and e1(I ) = e1(IS).

If R is Cohen–Macaulay, then this is straightforward. However, in general the re-
lationship between e0(IS) and e1(IS) may involve other invariants of S, some of
which may not be easily traceable all the way to R.

Our perspective is partly influenced by the interpretation of the coefficient e1 as
a tracking number (see [6] for the original terminology and also [26])—that is,
as a numerical positional tag of the algebra R(A) in the set of all such algebras
with the same multiplicity. The coefficient e1 under various circumstances is also
called the Chern number or Chern coefficient of the algebra.
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This paper is organized around the following list of questions and conjectural
statements about the values of e1 for very general filtrations associated to the m-
primary ideals of a local Noetherian ring (R, m).

1. Conjecture 1: the negativity conjecture. For every ideal J that is generated by
a system of parameters, e1(J ) < 0 if and only if R is not Cohen–Macaulay.

2. Conjecture 2: the positivity conjecture. For every m-primary ideal I, for its in-
tegral closure filtration A we have

e1(A) ≥ 0.

2. Conjecture 3: the uniformity conjecture. For each Noetherian local ring R, there
exist two functions f l(·), fu(·) defined with some extended multiplicity degree
over R and such that, for each m-primary ideal I and any I -good filtration A ,

f l(I ) ≤ e1(A) ≤ fu(I ).

4. For any two minimal reductions J1, J2 of an m-primary ideal I,

e1(J1) = e1(J2).

For general local rings the conjectures may fail for reasons that will be illus-
trated by examples. We will settle Conjecture 1 for domains that are essentially of
finite type over fields by making use of the existence of special maximal Cohen–
Macaulay modules (Theorem 3.2). The lower bound in Conjecture 3 is also settled
for general rings through the use of extended degree functions (Corollary 7.7). The
upper bound uses the technique of the Briançon–Skoda theorem on perfect fields
(Theorem 6.1). We bring no real understanding to the last question.

Acknowledgments. The author is grateful to Alberto Corso, Dan Katz, Clau-
dia Polini, Maria E. Rossi, Rodney Sharp, Bernd Ulrich, and Giuseppe Valla for
discussions related to topics in this paper.

2. e1 as a Tracking Number

Let (R, m) be a Noetherian local domain of dimension d that is a quotient of a
Gorenstein ring. For an m-primary ideal I, we shall consider the set of all graded
subalgebras A of the integral closure of R[It],

R[It] ⊂ A ⊂ Ā = R[It].

We will assume that Ā is a finite R[It]-algebra and denote the set of these algebras
by S(I ). If the algebra

A =
∑

Int
n

comes with a filtration that is decreasing (I1 ⊇ I2 ⊇ I3 ⊇ · · · ), then it has an
associated graded ring

gr(A) =
∞∑

n=0

In/In+1.
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Proposition 2.1. If A satisfies condition S2 of Serre, then {In, n ≥ 0} is a de-
creasing filtration.

Proof. See [34, Prop. 4.6].

We shall describe the role of the Hilbert coefficient e1(·) in our study of the nor-
malization of R[It], following [26] and [25]. For each A = ∑

Ant
n ∈ S(I ), we

consider the Hilbert polynomial (for n � 0)

λ(R/An+1) =
d∑

i=0

(−1)iei(A)

(
n + d − i

d − i

)
.

The multiplicity e0(A) is constant across the whole set S(I ): e0(A) = e0(I ).

The next proposition shows the role of e1(A) in tracking A in the set S(I ).

Proposition 2.2. Let (R, m) be a normal, Noetherian local domain that is a
quotient of a Gorenstein ring, and let I be an m-primary ideal. For algebras A
and B of S(I ):

(i) If the algebras A and B satisfy A ⊂ B, then e1(A) ≤ e1(B).

(ii) If B is the S2-ification of A, then e1(A) = e1(B).

(iii) If the algebras A and B satisfy the condition S2 of Serre and A ⊂ B, then
e1(A) = e1(B) if and only if A = B.

Proof. Assertions (i) and (ii) follow directly from the relationship between Krull
dimension and the degree of Hilbert polynomials. The exact sequence of graded
R[It]-modules

0 −→ A −→ B −→ B/A −→ 0

gives that the dimension of B/A is at most d − 1. Moreover, dim B/A = d − 1 if
and only if its multiplicity is

deg(B/A) = e1(B) − e1(A) > 0.

Assertion (iii) follows because with A and B satisfying S2, the quotient B/A is
nonzero, will satisfy S1, and therefore has Krull dimension d − 1.

Corollary 2.3. Suppose there is a sequence of distinct algebras

A0 ⊂ A1 ⊂ · · · ⊂ An = R[It],

in S(I ) that satisfy the condition S2 of Serre. Then

n ≤ e1(R[It]) − e1(A0) ≤ e1(R[It]) − e1(I ).

This result highlights the importance of having lower bounds for e1(I ) and upper
bounds for e1(R[It]). For simplicity we denote the last coefficient as ē1(I ). In the
Cohen–Macaulay case, e1(J ) = 0 for any parameter ideal J. Upper bounds for
ē1(I ) were given in [26]. For instance, [26, Thm. 3.2(a),(b)] shows that if R is a
Cohen–Macaulay algebra of type t that is essentially of finite type over a perfect
field k and if δ is a nonzero divisor in the Jacobian ideal Jack(R), then
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ē1(I ) ≤ t

t + 1
[(d − 1)e0(I ) + e0(I + δR/δR)]

and
ē1(I ) ≤ (d − 1)[e0(I ) − λ(R/Ī )] + e0(I + δR/δR).

3. Cohen–Macaulayness and the Negativity of e1

Given the role of the Hilbert coefficient e1 as a tracking number in the normaliza-
tion of blowup algebras, it is of interest to know its signature.

Let (R, m) be a Noetherian local ring of dimension d. If R is Cohen–Macaulay,
then e1(J ) = 0 for an ideal J generated by a system of parameters x1, . . . , xd. As
a consequence, for any m-primary ideal I we have e1(I ) ≥ 0. If d = 1 then the
property e1(J ) = 0 is characteristic of Cohen–Macaulayness. For d ≥ 2, the sit-
uation is somewhat different. Given the ring R = k[x, y, z]/(z(x, y, z)), for T =
H 0

m(R) and S = k[x, y] = R/T it follows that e1(R) = e1(S) = 0.
We shall argue that the negativity of e1(J ) is an expression of the lack of Cohen–

Macaulayness of R in numerous classes of rings. To provide a framework, we state
the following.

Conjecture 3.1. Let R be a Noetherian local ring that admits an embedding
into a big Cohen–Macaulay module. Then, for a parameter ideal J, e1(J ) < 0 if
and only if R is not Cohen–Macaulay.

This places restrictions on R; in particular, R must be unmixed and equidimen-
sional. As a matter of fact, we will be concerned almost exclusively with integral
domains that are essentially of finite type over a field.

We next establish the small version of the conjecture.

Theorem 3.1. Let (R, m) be a Noetherian local ring of dimension d ≥ 2.
Suppose there is an embedding

0 −→ R −→ E −→ C −→ 0,

where E is a finitely generated maximal Cohen–Macaulay R-module. If R is not
Cohen–Macaulay, then e1(J ) < 0 for any parameter ideal J.

Proof. We may assume that the residue field of R is infinite. We argue by induc-
tion on d. For d = 2, let J be a parameter ideal. If R is not Cohen–Macaulay,
then depth C = 0.

Let J = (x, y); we may assume that x is a superficial element for the purpose
of computing e1(J ) and that x is also superficial relative to C. In other words, x
is not contained in any associated prime of C distinct from m.

Tensoring the theorem’s exact sequence by R/(x) yields the exact complex

0 −→ T = TorR
1 (R/(x), C) −→ R/(x) −→ E/xE −→ C/xC −→ 0,

where T is a nonzero module of finite support. Denote by S the image of R ′ =
R/(x) in E/xE, and note that S is a Cohen–Macaulay ring of dimension 1. By the
Artin–Rees theorem, T ∩ (y n)R ′ = 0 for n � 0 and thus, from the diagram
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0 �� T ∩ (y n)R ′ ��

��

(y n)R ′ ��

��

(y n)S ��

��

0

0 �� T �� R ′ �� S �� 0,

it follows that the Hilbert polynomial of the ideal yR ′ is

e0n − e1 = e0(yS)n + λ(T ).

Thus
e1(J ) = −λ(T ) < 0, (1)

as claimed.
Assume now that d ≥ 3, and let x be a superficial element for J and for the

modules E and C. In the exact sequence

0 −→ T = TorR
1 (R/(x), C) −→ R ′ = R/(x) −→ E/xE −→ C/xC −→ 0, (2)

T is either zero—in which case we continue with the induction procedure—or T

is a nonzero module of finite support.
First we recall an elementary rule for the calculation of Hilbert coefficients. Let

(R, m) be a Noetherian local ring, and let A = {In, n ≥ 0} be a filtration as before.
Given a finitely generated R-module M, denote by ei(M) the Hilbert coefficients
of M for the filtration AM = {InM, n ≥ 0}.
Proposition 3.2. Let

0 −→ A −→ B −→ C −→ 0

be an exact sequence of finitely generated R-modules. If r = dim A < s = dim B,
then ei(B) = ei(C) for i < s − r.

To continue with the proof of Theorem 3.1, if T �= 0 in the exact sequence (2)
then, by Proposition 3.2, e1(JR

′) = e1(J(R ′/T )) and we thus have the embed-
ding R ′/T ↪→ E/xE. By the induction hypothesis, it suffices to prove that if R ′/T
is Cohen–Macaulay then R ′, and hence R, will be Cohen–Macaulay. This is the
content of [18, Prop. 2.1]. For convenience, we give the details.

We may assume that R is a complete local ring. Because R is embedded in a
maximal Cohen–Macaulay module, any associated prime of R is an associated
prime of E and so is equidimensional. Consider the following exact sequences:

0 −→ T −→ R ′ −→ S = R ′/T −→ 0;
0 −→ R

x−→ R −→ R ′ −→ 0.

From the first sequence, taking local cohomology yields

0 −→ H 0
m(T ) = T −→ H 0

m(R ′) −→ H 0
m(S) = 0,

since H i
m(T ) = 0 for i > 0 and S is Cohen–Macaulay of dimension ≥ 2; one

also has H1
m(S) = H1

m(R ′) = 0. From the second sequence, since the associated
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primes of R have dimension d, it follows that H1
m(R) is a finitely generated R-

module. Finally, H1
m(R) = 0 by Nakayama’s lemma and so T = H 0

m(R ′) = 0.

We now analyze what is required to extend the proof to big Cohen–Macaulay
cases. We will assume that R is an integral domain and that E is a big balanced
Cohen–Macaulay module (see [Chap. 8; 30]). Embed R into E,

0 −→ R −→ E −→ C −→ 0.

The preceding argument for d ≥ 3 will work if in the induction argument we can
pick x ∈ J to be superficial for the Hilbert polynomial of J, avoiding the finite set
of associated primes of E and all associated primes of C that are different from
m. It is this last condition that is the most troublesome.

There is one case where this can be overcome—namely, when R is a complete
local ring and E is countably generated. Indeed, C will be countably generated
and Ass(C) will be a countable set. The prime avoidance result of [4, Lemma 3]
allows for the choice of x. Let us apply these ideas in an important case.

Theorem 3.2. Let (R, m) be a Noetherian local integral domain essentially of
finite type over a field. If R is not Cohen–Macaulay, then e1(J ) < 0 for any pa-
rameter ideal J.

Proof. Let A be the integral closure of R and let R̂ be its completion. Tensor the
embedding R ⊂ A to obtain

0 −→ R̂ −→ R̂ ⊗R A = Â.

From the properties of pseudo-geometric local rings (see [21, Sec. 37]), Â is a re-
duced semilocal ring with a decomposition

Â = A1 × · · · × Ar ,

where each Ai is a complete local domain of dimension dim R that is finite over R̂.

For each Ai, we make use of [11,Thm. 3.1] and [12, Prop.1.4] to pick a countably
generated big balanced Cohen–Macaulay Ai-module and thereby an R̂-module.
Collecting the Ei yields the embedding

R̂ −→ A1 × · · · × Ar −→ E = E1 ⊕ · · · ⊕ Er.

Since E is a countably generated big balanced Cohen–Macaulay R̂-module, the
foregoing argument shows that if R̂ is not Cohen–Macaulay then e1(JR̂) < 0. This
suffices to prove the assertion about R.

Remark 3.3. There are other classes of local rings that admit big balanced
Cohen–Macaulay modules. A crude way to handle this would be as follows. Let
E be such a module and assume it has a set of generators of cardinality s. Let X be
a set of indeterminates of cardinality > s. The local ring S = R[X]m[X] is R-flat
and has the same depth as R. If E ′ = S ⊗R E is a big balanced Cohen–Macaulay
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S-module whose residue field of cardinality is greater than that of the correspond-
ing module C, then prime avoidance would again work. Experts have cautioned
that E ′ may not be balanced.

Example 3.4. We will consider some classes of examples.
1. Let (R, m) be a regular local ring, let F be a nonzero (finitely generated) free

R-module, and let N be a nonfree submodule of F. Then the idealization (trivial
extension) of R by N, S = R ⊕ N, is a non–Cohen–Macaulay local ring. If we
pick E = R ⊕F then Theorem 3.2 implies that e1(J ) < 0 for any parameter ideal
J ⊂ S. It is not difficult to give an explicit formula for e1(J ) in this case.

2. Let R = R + (x, y)C[x, y] ⊂ C[x, y] for x, y distinct indeterminates. Al-
though R is not Cohen–Macaulay, its localization S at the maximal irrelevant ideal
is a Buchsbaum ring. It is easy to verify that e1(x, y) = −1 and that e1(S) = 0 for
the m-adic filtration of S.

Observe that R has an isolated singularity. For these rings, [25, Thm. 5] can be
extended (it does not require the Cohen–Macaulay condition) and therefore de-
scribes bounds for e1(Ā) of integral closures. Thus, if A is the Rees algebra of the
parameter ideal J then

e1(Ā) − e1(J ) ≤ (d − 1 + λ(R/L))e0(J ),

where L is the Jacobian of R. In this example, d = 2, λ(R/L) = 1, and

e1(Ā) − e1(J ) ≤ 2e0(J ).

3. Let k be a field of characteristic 0 and let f = x3 + y3 + z3 be a polynomial
of k[x, y, z]. Set A = k[x, y, z]/(f ) and let R be the Rees algebra of the maxi-
mal irrelevant ideal m of A. By the Jacobian criterion, R is normal. Because the
reduction number of m is 2, R is not Cohen–Macaulay. Furthermore, it is easy to
verify that R is not contained in any Cohen–Macaulay domain that is finite over R.

Let S = RM, where M is the irrelevant maximal ideal of R. The first superfi-
cial element (in the reduction to dimension 2) can be chosen to be prime. Now one
takes the integral closure of S, which will be a maximal Cohen–Macaulay module.

The argument extends to geometric domains in any characteristic if depth R =
d − 1.

Remark 3.5. Uniform lower bounds for e1 are rare but still exist in special cases.
For example, if R is a generalized Cohen–Macaulay ring then, according to [10,
Thm. 5.4],

e1(J ) ≥ −
d−1∑
i=1

(
d − 2
i − 1

)
λ(H i

m(R)),

with equality if R is Buchsbaum.
It should be observed that uniform lower bounds may not always exist. For in-

stance, if A = k[x, y, z] and if R is the idealization of (x, y), then e1(J ) = −n for
the ideal J = (x, y, zn).

The Koszul homology modules Hi(J ) of J are the first place to look for bounds
for e1(J ). We recall [3, Thm. 4.6.10] that the multiplicity of J is given by the
formula
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e0(J ) = λ(R/J ) −
d∑

i=1

(−1)i−1hi(J ),

where hi(J ) is the length of Hi(J ). The summation term is nonnegative and van-
ishes only if R is Cohen–Macaulay. Unfortunately, it does not give us bounds for
e1(J ). There is a formula involving these terms in the special case when J is gener-
ated by a d-sequence. Then the corresponding approximation complex is acyclic,
and the Hilbert–Poincaré series of J is∑d

i=0(−1)ihi(J )t i

(1 − t)d

[14, Cor. 4.6]; hence

e1(J ) =
d∑

i=1

(−1)i ihi(J ).

Later we shall prove the existence of lower bounds more generally by making
use of extended degree functions.

4. Bounds on ē1(I ) via the Briançon–Skoda Number

In this section we discuss the role of Briançon–Skoda type theorems (see [1; 20])
in determining some relationships between the coefficients e0(I ) and ē1(I ). We
follow the treatment given in [26, Thm. 3.1] and [25, Thm. 5] but formulated for
the non–Cohen–Macaulay case. We will provide a short proof along the lines of
[20] for the special case we need: m-primary ideals in a local ring. The general
case is treated by Hochster and Huneke in [16, 1.5.5 and 4.1.5]. Let k be a per-
fect field, let R be a reduced and equidimensional k-algebra essentially of finite
type, and assume either that R is affine with d = dim R or that (R, m) is local with
d = dim R+ trdegk(R/m). Recall that the Jacobian ideal Jack(R) of R is defined
as the dth Fitting ideal of the module of differentials )k(R); it can be computed
explicitly from a presentation of the algebra. By varying Noether normalizations
one deduces from [20, Thm. 2] that the Jacobian ideal Jack(R) is contained in the
conductor R : R̄ of R (see also [23], [2, 3.1], and [15, 2.1]). Here R̄ denotes the
integral closure of R in its total ring of fractions.

Theorem 4.1. Let k be a perfect field, let R be a reduced local k-algebra es-
sentially of finite type with the property S2 of Serre, and let I be an ideal with
a minimal reduction generated by g elements. Denote by D = ∑

n≥0 Dnt
n the

S2-ification of R[It]. Then, for every integer n,

Jack(R)I n+g−1 ⊂ Dn.

Proof. The proof is lifted from [26, 3.1] with the modification required by the use
of D at the end.

We may assume that k is infinite. Then, passing to a minimal reduction, we
may suppose that I is generated by g generators. Let S be a finitely gener-
ated k-subalgebra of R so that R = Sp for some p ∈ Spec(S), and write S =
k[x1, . . . , xe] = k[X1, . . . , Xe]/a with a = (h1, . . . , ht ) an ideal of height c. Notice
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that S is reduced and equidimensional. Let K = (f1, . . . , fg) be an S-ideal with
Kp = I, and consider the extended Rees ring B = S [Kt, t−1]. Now B is a reduced
and equidimensional affine k-algebra of dimension e − c + 1.

Let ϕ : k[X1, . . . , Xe, T1, . . . , Tg , U ] � B be the k-epimorphism mapping Xi to
xi, Ti to fit, and U to t−1. Its kernel has height c + g and contains the ideal b gen-
erated by {hi, TjU − fj | 1 ≤ i ≤ t, 1 ≤ j ≤ g}. Consider the Jacobian matrix of
these generators,

1 =




∂hi

∂Xj
0

U T1

∗ . . .
...

U Tg




.

Notice that Ic+g(1) ⊃ Ic
(( ∂hi

∂Xj

))
Ug−1(T1, . . . , Tg). Applying ϕ, we obtain

Jack(B) ⊃ Ic+g(1)B ⊃ Jack(S)Kt−g+2.

Thus Jack(S)Kt−g+2 is contained in the conductor of B. Localizing at p, we see
that Jack(R)It−g+2 is in the conductor of the extended Rees ring R[It, t−1]. Hence
Jack(R)II n+g−1 ⊂ I n+1 for every n, which yields

Jack(R)I n+g−1 ⊂ I n+1 : I ⊂ Dn+1 : I = Dn

because gr(D)+ has positive grade.

This result, together with an application of [25, Thm. 5], gives the following
estimation.

Corollary 4.1. Let k be a perfect field, let (R, m) be a normal and reduced
local k-algebra essentially of finite type of dimension d, and let I be an m-primary
ideal. If the Jacobian ideal L of R is m-primary then, for any minimal reduction
J of I,

ē1(I ) − e1(J ) ≤ (d + λ(R/L) − 1)e0(I ).

Moreover, if L �= R and Ī �= m, then one can replace −1 by −2.

5. Lower Bounds for ē1

Let (R, m) be a Noetherian local ring of dimension d ≥ 1, and let I be an m-
primary ideal. If R is Cohen–Macaulay, then the original lower bound for e1(I )

was provided by Narita [22] and Northcott [24]:

e1(I ) ≥ e0(I ) − λ(R/I ).

This bound has been improved in several ways (see [29] for a detailed discussion).
For non–Cohen–Macaulay rings, estimates for e1(I ) are in a state of flux.

In this section we experiment with a special class of non–Cohen–Macaulay
rings and methods in seeking lower bounds for ē1(I ). We assume that R is a nor-
mal domain and that the minimal reduction J of I is generated by a d-sequence.
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This is the case of normal Buchsbaum rings, examples of which can be constructed
by a machinery developed in [9] (see also [31]).

Let A = R[Jt] and B = R[Jt]. The corresponding Sally module SB/A is de-
fined by the exact sequence

0 −→ B1tA −→ B+ −→ SA(B) =
⊕
n≥2

Bn/B1J
n−1 −→ 0. (3)

Lemma 5.1. Let (R, m) be an analytically unramified local ring, and let J be an
ideal generated by a system of parameters x1, . . . , xd. Then

R/J̄ ⊗R grJ(R) � R/J̄ [T1, . . . , Td ].

Proof. Let R[T1, . . . , Td ] → A be a minimal presentation of A = R[Jt]. Accord-
ing to [27, Thms. 3.1 and 3.6], the presentation ideal L has all coefficients in J̄ ;
that is, L ⊂ J̄R[T1, . . . , Td ].

Proposition 5.2. Let (R, m) be a normal, analytically unramified local domain,
and let J be an ideal generated by a system of parameters J = (x1, . . . , xd) of lin-
ear type. The Sally module SJ(B) defined previously is either 0 or a module of
dimension d and multiplicity

e0(SJ(B)) = deg(SJ(B)) = ē1(I ) − e0(I ) − e1(J ) + λ(R/Ī ).

Proof. By [14, Cor. 4.6], since R is normal of dimension d ≥ 2 it follows that
depth grJ(R) ≥ 2. Now we make use of [17, Lemma 1.1] (see also [34, Prop. 3.11])
to establish that depth R[Jt] ≥ 2 as well. Then, using [34, Thm. 3.53], we have
that R[Jt] satisfies condition S2 of Serre.

Consider the exact sequence

0 −→ B1R[Jt] −→ R[Jt] −→ R/J̄ ⊗R grJ(R) −→ 0.

By Lemma 5.1, the last algebra is a polynomial ring in d variables. Therefore,
B1R[Jt] satisfies condition S2 of Serre. Thus, in the defining sequence (3) of
SJ(B), either S vanishes (and Bn = B1J

n for n ≥ 2) or dim SJ(B) = d. In the
latter case, the calculation of the Hilbert function (see [34, Rem. 2.17]) of SJ(B)

yields the asserted expression for its multiplicity.

6. Existence of General Bounds

We shall now treat bounds for ē1(I ) for several classes of geometric local rings.
Suppose dim R = d > 0. Let I be an m-primary ideal, and let A = {An, n ≥ 0}
be a filtration integral over the I -adic filtration. We may assume that I = J =
(x1, . . . , xd) is a parameter ideal. We will consider some reductions on R → R ′
such that ei(A) = ei(A′), i = 0,1, for A′ = {AnR

′, n ≥ 0}.
Using superficial sequences x = {x1, . . . , xd−1} of length d − 1 is the tech-

nique of choice for Cohen–Macaulay rings. In general, as in equation (1), one
needs more control over H 0

m(R/(x)). Let us first examine the case of generalized
Cohen–Macaulay local rings by examining the effect of certain reductions.
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1. If d ≥ 2 and R ′ = R/H 0
m(R), then ei(A) = ei(A′) for i = 0,1 by Proposi-

tion 3.2. In addition, H i
m(R) = H i

m(R ′) for i ≥ 1.
2. Another property is that if d ≥ 2 and x1 is a superficial element for A (i.e.,

R-regular if d = 2), then preservation will hold when passing to R1 = R/(x1).

As for the lengths of the local cohomology modules, if x1 is R-regular then, by

0 −→ R
x−→ R −→ R1 −→ 0,

we have the exact sequence

0 −→ H 0
m(R1) −→ H1

m(R) −→ H1
m(R) −→ H1

m(R1) −→ H 2
m(R) −→ · · · ,

which gives

λ(H 0
m(R1)) ≤ λ(H1

m(R)),

λ(H1
m(R1)) ≤ λ(H1

m(R)) + λ(H 2
m(R)),

...

λ(H d−2
m (R1)) ≤ λ(H d−2

m (R)) + λ(H d−1
m (R)).

3. Now we combine the two transformations. Let T = H 0
m(R), set R ′ = R/T,

let x ∈ I be a superficial element for AR ′, and set R1 = R ′/(x). Because x is
regular on R ′, we have the exact sequence

0 −→ T/xT −→ R/(x) −→ R ′/xR ′ −→ 0

and the associated exact sequence

0 −→ T/xT −→ H 0
m(R/(x)) −→ H 0

m(R ′/xR ′) −→ 0,

since H1(T/xT ) = 0. Observe that this gives

R/(x)

H 0
m(R/(x))

� R ′/xR ′

H 0
m(R ′/xR ′)

.

There are two consequences to this calculation:

λ(H 0
m(R/(x))) ≤ λ(H 0

m(R)) + λ(H 0
m(R ′/xR ′))

≤ λ(H 0
m(R)) + λ(H1

m(R));
λ(H i

m(R/(x))) ≤ λ(H i
m(R)) + λ(H i+1

m (R)), 1 ≤ i ≤ d − 2.

Proposition 6.1. Let (R, m) be a generalized Cohen–Macaulay local ring of
positive depth, with I and A as before. If d ≥ 2, consider a sequence of d −1 re-
ductions of the type R → R/(x) and denote by S the ring R/(x1, . . . , xd−1). Then
dim S = 1 and

λ(H 0
m(S)) ≤ T(R) =

d−1∑
i=1

(
d − 2
i − 1

)
λ(H i

m(R)).

Moreover, if R is a Buchsbaum ring then equality holds.
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Next we illustrate another elementary but useful kind of reduction. Let (R, m) be
a Noetherian local domain of dimension d ≥ 2 and let I be an m-primary ideal.
Suppose R has a finite extension S that satisfies the condition S2 of Serre,

0 −→ R −→ S −→ C −→ 0.

Consider the polynomial ring R[x, y] and tensor the sequence by

R ′ = R[x, y]m[x,y].

Then there are a, b ∈ I such that the ideal generated by polynomial f = ax + by

has the following type of primary decomposition:

(f ) = P ∩ Q,

where P is a minimal prime of f and Q is mR ′-primary. In the sequence

0 −→ R ′ −→ S ′ = R ′ ⊗R S −→ C ′ = R ′ ⊗R C −→ 0,

we can find an a ∈ I that is superficial for C and also pick a b ∈ I such that
(a, b) has codimension 2. Now reduce the second sequence modulo f = ax + by.

Noting that f will be superficial for C ′, we will have an exact sequence

0 −→ T −→ R ′/(f ) −→ S ′/fS ′ −→ C ′/fC ′ −→ 0

in which T has finite length and S ′/fS ′ is an integral domain, since a, b is a regular
sequence in S. This suffices to establish the assertion.

Finally, we consider generic reductions on R. Let X be a d × (d − 1) matrix
X = (xij ) in d(d − 1) indeterminates, and let C be the local ring R[X]m[X]. The
filtration AC has the same Hilbert polynomial as A. If I = (x1, . . . , xd) then we
can define the ideal

(f1, . . . , fd−1) = (x1, . . . , xd) · X.

Proposition 6.2. Let R be an analytically unramified and generalized Cohen–
Macaulay integral domain, and let I and A be defined as before. Then S =
C/(f1, . . . , fd−1) is a local ring of dimension 1 such that λ(H 0

m(S)) ≤ T(R) and
S/H 0

m(S) is an integral domain.

The next result shows the existence of bounds for ē1(I ) as in [26].
We outline the strategy to find bounds for e1(A). Suppose that (R, m) is a local

domain essentially of finite type over a field and that I is an m-primary ideal, and
denote by A a filtration as before. We first achieve a reduction to a one-dimensional
ring R → R ′, where e0(I ) = e0(IR

′), e1(A) = e1(AR ′), and T is a prime ideal
in the sequence

0 −→ T = H 0
m(R ′) −→ R ′ −→ S −→ 0.

Since S is a one-dimensional integral domain, we have the following result.

Proposition 6.3. In these conditions,

e1(A) = e1(AR ′) = e1(AS) − λ(T )
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and
e1(AS) ≤ ē1(I ) = λ(S̄/S),

where S̄ is the integral closure of S.

This shows that, in order to find bounds for e1(A), one needs to trace back to the
original ring R the properties of T and S. As for T, this is realized if R is a gener-
alized Cohen–Macaulay ring for the reductions described in Proposition 6.1.

Theorem 6.1 (Existence of bounds). Let (R, m) be a local integral domain of
dimension d that is essentially of finite type over a perfect field, and let I be an
m-primary ideal. If R is a generalized Cohen–Macaulay ring and if δ is a nonzero
element of the Jacobian ideal of R then, for any I -good filtration A as before,

e1(A) < (d − 1)e0(I ) + e0((I, δ)/(δ)) − T.

Proof. This is a consequence of the proof of [26,Thm. 3.2(a)]. The assertion there
is that

ē1(I ) ≤ t

t + 1
[(d − 1)e0(I ) + e0((I + δR)/δR)],

where t is the Cohen–Macaulay type of R. Here we apply it to the reduction in
Proposition 6.3,

ē1(IS) < (d − 1)e0(I ) + e0((I + δR)/δR),

while dropping the term involving t (over which we lose control in the reduction
process). Key to the conclusion is that the element δ survives the reduction.

7. Extended Degrees and Lower Bounds for e1

The derivation of upper bounds for e1(A) above required that R be a general-
ized Cohen–Macaulay ring. Let us eliminate this requirement by working with
the variation of the extended degree function hdeg [7; 33] labeled hdegI (see [19;
34; p. 142]). The same method will provide lower bounds for e1(I ).

Cohomological Degrees. Let (R, m) be a Noetherian local ring (or a standard
graded algebra over an Artinian local ring) of infinite residue field. We denote by
M(R) the category of finitely generated R-modules (or the corresponding cate-
gory of graded R-modules).

A general class of these functions was introduced in [7], and a prototype was
defined earlier in [33]. In [13], Gunston carried out a more formal examination of
such functions in order to introduce his own construction of a new cohomologi-
cal degree. One of the points that must be taken care of is that of an appropriate
generic hyperplane section. Let us recall the setting.

Definition 7.1. For (R, m) a local ring, a notion of genericity on M(R) is a
function
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U : {isomorphism classes of M(R)} −→ {nonempty subsets of m \ m2}
that is subject to the following conditions for each A∈ M(R):

(i) if f − g ∈ m2, then f ∈U(A) if and only if g ∈U(A);
(ii) the set U(A) ⊂ m/m2 contains a nonempty Zariski-open subset;

(iii) if depth A > 0 and f ∈U(A), then f is regular on A.

There is a similar definition for graded modules. We shall usually switch notation,
denoting the algebra by S.

Another extension is that associated to an m-primary ideal I [19]: A notion of
genericity on R with respect to I is a function

U : {isomorphism classes of M(R)} −→ {nonempty subsets of I \ mI }
that is subject to the following conditions for each A∈ M(R):

(i) if f − g ∈ mI, then f ∈U(A) if and only if g ∈U(A);
(ii) the set U(A) ⊂ I/mI contains a nonempty Zariski-open subset;

(iii) if depth A > 0 and f ∈U(A), then f is regular on A.

Fixing a notion of genericity U(·), one has the following extension of the clas-
sical multiplicity.

Definition 7.2. A cohomological degree or extended multiplicity function is a
function

Deg(·) : M(R) �→ N

that satisfies the following conditions.

(i) If L = 6m(M) is the submodule of elements of M that are annihilated by a
power of the maximal ideal and if M̄ = M/L, then

Deg(M) = Deg(M̄ ) + λ(L), (4)

where λ(·) is the ordinary length function.
(ii) Bertini’s rule. If M has positive depth, then there exists an h ∈ m \ m2

such that
Deg(M) ≥ Deg(M/hM). (5)

(iii) Calibration rule. If M is a Cohen–Macaulay module, then

Deg(M) = deg(M), (6)

where deg(M) is the ordinary multiplicity of M.

For the case of a notion of genericity relative to an m-primary ideal I, we have
deg(M) = e(I ;M), the Samuel multiplicity of M relative to I.

The existence of cohomological degrees in arbitrary dimensions was established
in [33], which allows us to state the following definition.

Definition 7.3. Let M be a finitely generated graded module over the graded
algebra A, and let S be a Gorenstein graded algebra mapping onto A with maxi-
mal graded ideal m. Set dim S = r and dim M = d. The homological degree of
M is the integer
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hdeg(M) = deg(M) +
r∑

i=r−d+1

(
d − 1

i − r + d − 1

)
· hdeg(Ext iS(M, S)). (7)

This expression becomes more compact when dim M = dim S = d > 0:

hdeg(M) = deg(M) +
d∑

i=1

(
d − 1
i − 1

)
· hdeg(Ext iS(M, S)). (8)

Remark 7.4. Note that this definition morphs easily into an extended degree (de-
noted hdegI ), where Samuel multiplicities relative to I are used. The definition
of hdeg can be extended to any Noetherian local ring S by setting hdeg(M) =
hdeg(Ŝ ⊗S M). On other occasions, we may also assume that the residue field of
S is infinite, an assumption that can be realized by replacing (S, m) with the local
ring S [X]mS [X]. In fact, if X is any set of indeterminates then the localization is
still a Noetherian ring; hence the residue field can be assumed to have any cardi-
nality, as we shall assume in the proofs.

Specialization and Torsion. One of the uses of extended degrees is the fol-
lowing. Let M be a module and let x = {x1, . . . , xr} be a superficial sequence for
the module M relative to an extended degree Deg. How can we estimate the length
of H 0

m(M) in terms of M?
First consider the case of r = 1. Let H = H 0

m(M) and write

0 −→ H −→ M −→ M ′ −→ 0. (9)

Reduction modulo x1 gives the exact sequence

0 −→ H/x1H −→ M/x1M −→ M ′/x1M
′ −→ 0. (10)

From the first sequence we have Deg(M) = Deg(H ) + Deg(M ′), and from the
second we have

Deg(M/x1M) − Deg(H/x1H ) = Deg(M ′/x1M
′) ≤ Deg(M ′).

Taking local cohomology of the second exact sequence yields the short exact
sequence

0 −→ H/x1H −→ H 0
m(M/x1M) −→ H 0

m(M ′/x1M
′) −→ 0,

from which follows the estimation

Deg(H 0
m(M/x1M)) = Deg(H/x1H ) + Deg(H 0

m(M ′/x1M
′))

≤ Deg(H/x1H ) + Deg(M ′/x1M
′)

≤ Deg(H ) + Deg(M ′) = Deg(M).

We continue these observations in our next result.

Proposition 7.5. Let M be a module and let {x1, . . . , xr} be a superficial se-
quence relative to M and Deg. Then

λ(H 0
m(M/(x1, . . . , xr)M)) ≤ Deg(M).
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Now we derive a more precise formula using hdeg. It will be of use later.

Theorem 7.1. Let M be a module of dimension d ≥ 2 and let x = {x1, . . . , xd−1}
be a superficial sequence for M and hdeg. Then

λ(H 0
m(M/(x)M)) ≤ λ(H 0

m(M)) + T(M).

Proof. Consider the exact sequence

0 −→ H = H 0
m(M) −→ M −→ M ′ −→ 0.

We have Ext iS(M, S) = Ext iS(M
′, S) for d > i ≥ 0, and therefore T(M) =

T(M ′). On the other hand, reduction modulo x gives

λ(H 0
m(M/(x)M)) ≤ λ(H 0

m(M ′/(x)M ′)) + λ(H/(x)H )

≤ λ(H 0
m(M ′/(x)M ′)) + λ(H ),

which shows that it is enough to prove the assertion for M ′.
If d > 2, then the argument in the main theorem of [33] can be used to pass to

M ′/x1M
′. This reduces all the way to the case d = 2. Write h = x. The assertion

requires that λ(H 0
m(M/hM)) ≤ hdeg(Ext1S(M, S)). We have the cohomology ex-

act sequence

Ext1S(M, S)
h−→ Ext1S(M, S) −→ Ext2

S(M/hM, S) −→ Ext0
S(M, S) = 0,

where
λ(H 0

m(M/hM)) = hdeg(Ext2
S(M/hM, S)).

If Ext1S(M, S) has finite length then the assertion is clear. Otherwise, L =
Ext1S(M, S) is a module of dimension 1 over a discrete valuation domain V with h

for its parameter. By the fundamental theorem for such modules,

V = V r ⊕
( s⊕

j=1

V/hejV

)
,

so that multiplication by h yields

λ(L/hL) = r + s ≤ r +
s∑

j=1

ej = hdeg(L).

An alternative argument at this point is to consider the exact sequence (we may
assume dim S = 1)

0 −→ L0 −→ L
h−→ L −→ L/hL −→ 0,

where both L0 and L/hL have finite length. If H denotes the image of the multi-
plication by h on L, then by dualizing we obtain the short exact sequence

0 −→ HomS(L, S)
h−→ HomS(L, S) −→ Ext1S(L/hL, S) −→ Ext1S(L, S),

which shows that
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λ(L/hL) ≤ deg(L) + λ(L0) = hdeg(L),

as desired.

We now employ the extended degree hdegI to derive lower bounds for e1(I ). We
begin by making a crude comparison between hdeg(M) and hdegI(M).

Proposition 7.6. Let (R, m) be a Noetherian local ring and let I be an m-
primary ideal. Suppose mr ⊂ I. If M is an R-module of dimension d, then

hdegI(M) ≤ r d · deg(M) + r d−1 · (hdeg(M) − deg(M)).

Proof. If r is the index of nilpotency of R/I then, for any R-module L of dimen-
sion s,

λ(L/(mr )nL) ≥ λ(L/I nL).

The Hilbert polynomial of L gives

λ(L/(mr )nL) = deg(M)
r s

s!
ns + lower terms.

We now apply this estimate to the definition of hdeg(M), taking into account that
its terms are evaluated at modules of decreasing dimension.

Theorem 7.2. Let (R, m) be a Noetherian local ring, let I be an m-primary
ideal, and let M be a finitely generated R-module of dimension d ≥ 1. Let x =
{x1, . . . , xr} be a superficial sequence in I relative to M and hdegI . Then

hdegI(M/(x)M) ≤ hdegI(M).

Moreover, if r < d then

H 0(M/(x)M) ≤ hdegI(M) − e(I ;M).

If we apply this to R, passing to R ′ = R/(x1, . . . , xd−1), then we have the estimate
for H 0

m(R ′) so that equation (1) can be used as follows.

Corollary 7.7 (Lower bound for e1(I )). Let (R, m) be a Noetherian local ring
of dimension d ≥ 1. If I is an m-primary ideal, then

e1(I ) ≥ −hdegI(R) + e0(I ).

(Note that hdegI(R) − e0(I ) is the Cohen–Macaulay deficiency of R relative to
the degree function hdegI .)
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