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1. Introduction

In this paper, we construct a local ringA such that the kernel of the mapG0(A)Q →
G0(Â)Q is not zero, where Â is the completion of A with respect to the maximal
ideal and where G0(·)Q is the Grothendieck group of finitely generated modules
with rational coefficients. In our example, A is a 2-dimensional local ring that is
essentially of finite type over C, but it is not normal.

For a Noetherian ring R, we set

G0(R) =

⊕
M: f.g. R-mod.

Z[M ]

〈[L]+ [N ]− [M ] | 0→ L→ M → N → 0 is exact〉 ;

this is called the Grothendieck group of finitely generated R-modules. Here [M ]
denotes the free basis corresponding to a finitely generatedR-module (f.g.R-mod.)
M of the free module

⊕
Z[M ], where Z is the ring of integers.

For a flat ring homomorphism R → A, we have the induced map G0(R) →
G0(A) defined by [M ] �→ [M ⊗R A].

We are interested in the following problem (Question 1.4 in [7]).

Problem 1.1. Let R be a Noetherian local ring. Is the map G0(R)Q → G0(R̂)Q

injective?

Here R̂ denotes the m-adic completion of R, where m is the unique maximal ideal
of R. For an abelian group N, NQ denotes the tensor product with the field of ra-
tional numbers Q.

Next we explain motivation and applications.
Assume that S is a regular scheme and that X is a scheme of finite type over S.

Then, by the singular Riemann–Roch theorem [3], we obtain an isomorphism

τX/S : G0(X)Q
∼−→A∗(X)Q ,

where G0(X) (resp. A∗(X)) is the Grothendieck group of coherent sheaves on X
(resp. Chow group of X). We refer the reader to Chapters 1, 18, and 20 in [3] for
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the definitions of G0(X), A∗(X), and τX/S. Note that G0(X) (resp. τX/S) is de-
noted by K0(X) (resp. τX) in [3]. The map τX/S usually depends on the choice of
S. In fact, we have

τP1
k
/P1

k
([OP1

k
]) = [P1

k ]∈A∗(P1
k )Q = Q[P1

k ]⊕Q[t],

τP1
k
/Spec k([OP1

k
]) = [P1

k ]+ χ(OP1
k
)[t] = [P1

k ]+ [t]∈A∗(P1
k )Q ,

where t is a k-rational closed point of P1
k over a field k. Here, for a closed sub-

variety Y, [Y ] denotes the algebraic cycle corresponding to Y. Hence

τP1
k
/P1

k
([OP1

k
]) �= τP1

k
/Spec k([OP1

k
])

in this case. However, for a local ring R that is a homomorphic image of a regular
local ring T, the map τSpecR/Spec T is independent of the choice of T in many cases.
In fact, if R is a complete local ring or if R is essentially of finite type over either a
field or the ring of integers, it is proved in [9, Prop. 1.2] that the map τSpecR/Spec T

is actually independent of T.
From now on, for simplicity we denote τSpecR/Spec T by τR/T . It is natural to ask

the following question.

Problem 1.2. Let R be a homomorphic image of a regular local ring T. Is the
map τR/T independent of T?

We remark that, by the singular Riemann–Roch theorem, the diagram

G0(R)Q

τ
R/T

��

��

A∗(R)Q

��

G0(R̂)Q

τ
R̂/T̂

�� A∗(R̂)Q

is commutative, where the vertical maps are induced by the completion R→ R̂.

We wish to emphasize that the bottom map as well as the vertical maps are in-
dependent of the choice of T because R̂ is complete [9, Prop. 1.2]. Hence if the
vertical maps are injective, then the top map is also independent of T.

Therefore, if the answer to Problem 1.1 is affirmative then so is the answer to
Problem 1.2.

We offer another motivation as follows. Roberts [11] and Gillet–Soulé [4] proved
the vanishing theorem of intersection multiplicities for complete intersections. If
a local ring R is a complete intersection, then τR/T ([R]) = [SpecR] holds, where

[SpecR] =
∑

p∈SpecR
dimR/p=dimR

�Rp
(Rp)[SpecR/p]∈AdimR(R)Q.

In [11], Roberts proved the vanishing theorem of intersection multiplicities not
only for complete intersections but also for local rings satisfying τR/T ([R]) =
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[SpecR]. Inspired by his work, Kurano [9] began a study of local rings satisfy-
ing the condition τR/T ([R]) = [SpecR] and called them Roberts rings. If R is
a Roberts ring, then the completion, the henselization, and the localizations of R
are also Roberts rings [9]. However, the following problem remained open.

Problem 1.3. If R̂ is a Roberts ring, then must R also be a Roberts ring?

It is proved in [7, Prop. 6.2] that the answer to Problem 1.3 is affirmative if and
only if the answer to Problem 1.1 is.

The following partial result concerning Problem 1.1 was given by Theorem 1.5
in [7].

Theorem 1.4. Let R be a homomorphic image of an excellent regular local ring.
Assume that R satisfies at least one of the following three conditions:

(i) R is henselian;
(ii) R = Sn, where S is a standard graded ring over a field and n =⊕

n>0 Sn;
(iii) R has only isolated singularity.

Then the induced map G0(R)→ G0(R̂) is injective.

However, the following example was given by Hochster [6].

Example 1.5. Let k be a field. We set

T = k[x, y, u, v](x,y,u,v),

P = (x, y),

f = xy − ux 2 − vy2.

Then Ker(G0(T/fT )→ G0(T̂/fT ))� [T/P ] �= 0. In this case, 2 · [T/P ] = 0.

The ring T/fT is not normal in Example 1.5. Dao [2] has found the following
example.

Example 1.6. We set

R = R[x, y, z,w](x,y,z,w)/(x
2 + y2 − (w + 1)z2),

P = (x, y, z),

where R is a normal local ring. Then, Ker(G0(R) → G0(R̂)) � [R/P ] �= 0. In
this case, 2 · [R/P ] = 0.

The following result is the main theorem of this paper.

Theorem 1.7. There exists a 2-dimensional local ring A, which is essentially of
finite type over C, that satisfies

Ker(G0(A)Q → G0(Â)Q) �= 0.
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Remarks 1.8. (1) By Theorem 1.7, we know that the answers to both Problem 1.1
and Problem 1.3 are negative. In other words, there exists a local ring R such that
R̂ is a Roberts ring but R is not.

(2) Problem 1.2 is still open.
(3) In [10] we defined a notion of numerical equivalence on G0(R) and A∗(R).

SetG0(R) = G0(R)/∼num. andA∗(R) = A∗(R)/∼num.. Then the following state-
ments hold.

(a) G0(R)→ G0(R̂) is injective for any local ring R.
(b) The induced map τR/T : G0(R)Q

∼−→A∗(R)Q is independent of T.
(c) R is a numerically Roberts ring if and only if R̂ is. (The definition of numer-

ically Roberts rings was given in [10]; the vanishing theorem of intersection
multiplicities holds true for numerically Roberts rings.)

(4) The ring A constructed in the main theorem is not normal. We do not know
any example of a normal local ring that does not satisfy Problem 1.1.

Theorem 1.7 follows immediately from Lemmas 1.9 and 1.10.

Lemma 1.9. Let K be an algebraically closed field, and let S =⊕
n≥0 Sn be a

standard graded ring over K—that is, a Noetherian graded ring generated by S1

over S0 = K. We set X = Proj S and assume that X is smooth over K with d =
dimX ≥ 1. Let h be the very ample divisor on X of this embedding. Let π : Y →
Spec S be the blow-up at n =⊕

n>0 Sn. We make the following assumptions.

1. SetR = Sn and let R̂ be the completion ofR. Then the mapA1(R)Q → A1(R̂)Q

induced by completion is an isomorphism.
2. There exists a smooth connected curve C in Y that satisfies the following two

conditions:
(i) C transversally intersects with π−1(n) � X at two points—namely, P1

and P2.

(ii) [P1]− [P2 ] �= 0 in A0(X)Q/h · A1(X)Q.

Then there exists a local ring A, of dimension d + 1, that is essentially of finite
type over K and such that

Ker(G0(A)Q → G0(Â)Q) �= 0.

Lemma 1.10. Set S = C[x0, x1, x2 ]/(f ), where f is a homogeneous cubic poly-
nomial. Assume that X = Proj S is smooth over C. Then R satisfies the assump-
tions in Lemma 1.9 with d = 1.

We shall prove Lemmas 1.9 and 1.10 in Sections 2 and 3, respectively.

2. A Proof of Lemma 1.9

Let p be the prime ideal of S satisfying Spec S/p = π(C). Set R = Sn and m =
nR. Then C is the normalization of Spec S/p. We denote by vi the normalized
valuation of the discrete valuation ring at Pi ∈C for i = 1, 2.
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We begin by showing the following claim.

Claim 2.1. There exists an s ∈m/pR such that

1. v1(s) = v2(s) > 0, and
2. K[s](s) ↪→ R/pR is finite.

Proof. Let C ′ be the smooth projective connected curve over K that contains C
as a Zariski open set. We regard P1 and P2 as points of C ′.

Let R(C ′) be the field of rational functions on C ′. Since P1 is an ample divisor
on C ′, there exists a t1 ∈R(C ′)× such that

• P1 is the only pole of t1, and
• P2 is neither a zero nor a pole of t1.

Similarly, one can find a t2 ∈R(C ′)× such that

• P2 is the only pole of t2, and
• P1 is neither a zero nor a pole of t2.

Replacing t1 (resp. t2) with a suitable power of t1 (resp. t2), we may assume that
v1(t1) = v2(t2) < 0.

Put t = 1/t1t2 ∈ R(C ′)×; then {P1,P2} is the set of zeros of t. Observe that
v1(t) = v2(t) > 0.

Let Ovi be the discrete valuation ring at Pi for i = 1, 2. Then K[t](t) is a sub-
ring of

Ov1 ∩Ov2 = S/p ⊗S/p R/pR,

where the overline denotes normalization of the given ring.
Since {P1,P2} is just the set of zeros of t, it follows thatOv1∩Ov2 is the integral

closure of K[t](t) in R(C ′). In particular, S/p ⊗S/p R/pR is finite over K[t](t).
Let I be the conductor ideal of the normalization

R/pR ⊂ S/p ⊗S/p R/pR.

Let mi be the maximal ideal of S/p ⊗S/p R/pR corresponding to Pi for i = 1, 2.
Since I is contained in m/pR, we have

I ⊂ m1 ∩m2

and therefore √
I = m1 ∩m2 � t.

Thus, t n is contained in I for a sufficiently large n. In particular, t n is in m/pR.
Consider the following commutative diagram:

K[t n](t n) ��

��

R/pR

��

K[t](t) �� S/p ⊗S/p R/pR .

The left and bottom morphisms are both finite. Therefore, all morphisms are finite.
Now put s = t n. Then s satisfies all the requirements.
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Let R
ξ−→ R/pR be the natural surjective morphism. We set A = ξ−1(K[s](s)).

Then

R
ξ

�� R/pR

A

��

�� K[s](s).

��

In the rest of this section, we shall prove that the ring A satisfies the required
condition.

We shall now prove our next claim.

Claim 2.2. The morphism A → R is finite birational, and A is essentially of
finite type over K of dimension d + 1.

Proof. Observe that
A ⊃ pR �= 0

because the dimension of R is at least 2. Take 0 �= a ∈ pR. Since A[a−1] =
R[a−1], it follows that A→ R is birational.

One can prove that A is a Noetherian ring by Eakin–Nagata’s theorem. How-
ever, we shall prove here that A is essentially of finite type over K without using
Eakin–Nagata’s theorem.

Let B be the integral closure of K[s] in R/pR, and recall that B is of finite type
overK. SinceR/pR is finite overK[s](s), we haveB⊗K[s]K[s](s) = R/pR. Then

R
ξ

�� R/pR B��

S

��

K[s](s)

��

K[s].��

��

Take an element s ′ ∈R that satisfies ξ(s ′) = s. Suppose S = K[s1, . . . , sn]. Since
B ⊗K[s] K[s](s) = R/pR, there must exist gi ∈ B and fi ∈ K[s] \ (s) such that
ξ(si) = gi/fi for i = 1, . . . , n. Take an element f ′i ∈K[s ′ ] such that ξ(f ′i ) = fi
for i = 1, . . . , n. Put

S ′ = K[s ′, s1f
′

1, . . . , snf
′
n ].

Observe that R is a localization of S ′ and that ξ(S ′) ⊂ B. Because B is of finite
type over K, there exists a ring D that satisfies the following conditions:

• S ′ ⊂ D ⊂ R;
• D is of finite type over K;
• R is a localization of D; and
• ξ(D) = B.

Put φ = ξ|D and E = φ−1(K[s]). Then D is finite over E, and we have
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D
φ

�� B

E

��

�� K[s].

��

Since B ⊗K[s] K[s](s) = R/pR, there is only one prime ideal N of B lying over
(s) ⊂ K[s]. Therefore, φ−1(N ) is the only prime ideal lying over the prime ideal
φ−1((s)) of E. Localizing all the rings in the previous diagram yields

D ⊗E Eφ−1((s))
�� B ⊗E Eφ−1((s))

Eφ−1((s))

��

�� K[s]⊗E Eφ−1((s)) .

��

We remark that

D ⊗E Eφ−1((s)) = R, K[s]⊗E Eφ−1((s)) = K[s](s), B ⊗E Eφ−1((s)) = R/pR.

Therefore, A coincides with Eφ−1((s)).

Since D is finite over E and since D is of finite type over K, it follows that E is
also of finite type over K. Hence we know that A is essentially of finite type over
K and that R is finite over A. It is then easy to see that

dimA = dimR = dim S = d + 1.

In particular, A is a homomorphic image of a regular local ring T. We thus have
the commutative diagram

G0(A)Q

τ
A/T

��

��

A∗(A)Q

��

G0(Â)Q

τ
Â/T̂

�� A∗(Â)Q

by the singular Riemann–Roch theorem [3, Chaps.18 and 20]. Observe that the hor-
izontal maps in the above diagram are isomorphisms. Therefore, in order to prove
that Ker(G0(A)Q → G0(Â)Q) is not 0, it is sufficient to prove that Ker(A1(A)Q →
A1(Â)Q) is not 0.

The diagram

R ��
R̂

A ��

��

Â

��

induces the commutative diagram



492 Kazuhiko Kurano & Vasudevan Srinivas

A1(R)Q
��

��

A1(R̂)Q

��

A1(A)Q
�� A1(Â)Q ,

(1)

where the vertical maps are induced by the finite morphisms A→ R and Â→ R̂

and where the horizontal maps are induced by the completions A→ Â and R→
R̂. By Lemma 1.9(1), the top map in the diagram (1) is an isomorphism.

Here we shall show, for each prime ideal of A, that there exists only one prime
ideal of R lying over it. Let q be a prime ideal of A, and recall that the conductor
ideal pR is a prime ideal of both A and R. If q does not contain pR, then Aq coin-
cides with R ⊗A Aq. Hence there exists only one prime ideal of R lying over q in
this case. Next suppose that q contains pR. Then q is either pR or the unique max-
imal ideal of A. In any case, there exists only one prime ideal of R lying over q.

Consider the following commutative diagram:

0 �� Rat1(R) ��

��

Z1(R) ��

��

A1(R) ��

��

0

0 �� Rat1(A) �� Z1(A) �� A1(A) �� 0

(see [3, Chap. 1] for the definition of Rat∗ and Z∗). Because the morphism A→
R is finite injective, the cokernel of Rat1(R)→ Rat1(A) is torsion by [3, Chap. 1,
Prop.1.4]. Since, for each prime ideal ofA, there is only one prime ideal ofR lying
over it, it follows that the map Z1(R)→ Z1(A) is injective and that the cokernel
of this map is a torsion module Z/(2v), where v = v1(s) = v2(s). Therefore, the
map on the left-hand side of diagram (1) is also an isomorphism.

By the commutativity of diagram (1) we know that, in order to prove that
Ker(A1(A)Q → A1(Â)Q) is not 0, it is sufficient to show that

Ker(A1(R̂)Q −→ A1(Â)Q) = Q.

We know Â/(pR)Â = K̂[s](s) = K[[s]], so (pR)Â is a prime ideal of Â of height
d. We thus have the following bijective correspondences:

the set of prime ideals of R̂ lying over (pR)Â

←→ the set of minimal prime ideals of R̂/pR

←→ the set of maximal ideals of S/p ⊗S/p R/pR

←→ {P1,P2},
where S/p ⊗S/p R/pR is the normalization of R/pR. Hence there are only two
prime ideals of R̂ lying over (pR)Â, which we denote by p1 and p2.

It is easy to see that pR is the conductor ideal of the ring extension A ⊂ R—
that is,

pR = A :A R.
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Then (pR)Â = Â :Â R̂ is satisfied. Therefore, (pR)Â is the conductor ideal of the
ring extension Â ⊂ R̂. Now consider the map

ϕ : Z1(R̂) −→ Z1(Â).

Let q be a prime ideal of Â of height d. If q does not contain the conductor ideal
(pR)Â, then there exists only one prime ideal q′ of R̂ lying over q. Furthermore,
Â/q is birational to R̂/q′. Therefore,

ϕ([Spec R̂/q′ ]) = [Spec Â/q].

We will show that

ϕ([Spec R̂/p1]) = ϕ([Spec R̂/p2 ]) = v[Spec Â/(pR)Â],

where v = v1(s) = v2(s). Recall that

Ôv1 × Ôv2 = (R/pR)∧ = R̂/pR̂ = R̂/p1 × R̂/p2.

Therefore, we may assume Ôvi � R̂/pi for i = 1, 2. Then

rankÂ/(pR)Â R̂/pi = rankÂ/(pR)Â R̂/pi = rankÂ/(pR)Â Ôvi = rankK[[s]] Ôvi

= dimK Ôvi /sÔvi = dimK Ovi/sOvi = v

for i = 1, 2, where dimK denotes the dimension of the given K-vector space. We
thus have the exact sequence

0 �� Z · ([Spec R̂/p1]− [Spec R̂/p2 ]) �� Z1(R̂)
�� Z1(Â)

�� Z/(v) �� 0.

Now consider the following diagram:

0 �� Rat1(R̂)
��

��

Z1(R̂)
��

��

A1(R̂)
��

��

0

0 �� Rat1(Â)
�� Z1(Â)

�� A1(Â)
�� 0.

Because the morphism Â → R̂ is finite injective, the cokernel of Rat1(R̂) →
Rat1(Â) is torsion (cf. [3, Prop. 1.4]). We therefore have the exact sequence

0 �� Q · ([Spec R̂/p1]− [Spec R̂/p2 ]) �� A1(R̂)Q
�� A1(Â)Q

�� 0.

Hence we need only prove that

[Spec R̂/p1]− [Spec R̂/p2 ] �= 0

in A1(R̂)Q.

Let π̂ : Ŷ → Spec R̂ be the blow-up at mR̂. Since π̂−1(mR̂) � X, it follows that

A1(X)Q
i∗ �� A1(Ŷ )Q

π̂∗ �� A1(R̂)Q
�� 0

is exact and that
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π̂∗
([

Spec R̂/p1
]− [

Spec R̂/p2
]) = [Spec R̂/p1]− [Spec R̂/p2 ],

where i : X→ Ŷ is the inclusion. Consider the following commutative diagram:

Pi
��

��

{P1,P2} ��

��

X

��

SpecOvi
�� SpecR/p ��

��

Y

��

SpecR/p �� SpecR .

Take the fibre product with Spec R̂ over SpecR. We may assume that Spec R̂/pi
coincides with Spec Ôvi for i = 1, 2, so the following diagram commutes:

Pi

��

Pi
��

��

{P1,P2} ��

��

X

��

Spec R̂/pi

��

Spec Ôvi
�� SpecOvi ⊗R R̂

�� SpecR/p ⊗R R̂
��

��

Ŷ

��

Spec R̂/pi �� Spec R̂/pR̂ �� Spec R̂ .

Assume that
[Spec R̂/p1]− [Spec R̂/p2 ] = 0

in A1(R̂)Q. Then, there exists a δ ∈A1(X)Q such that

i∗(δ) =
[
Spec R̂/p1

]− [
Spec R̂/p2

]
.

Now consider the map

A1(Ŷ )Q
i! �� A0(X)Q;

that is, taking the intersection with π̂−1(mR̂) = X. Since i!i∗(δ) = −h · δ and

i!
([

Spec R̂/p1
]− [

Spec R̂/p2
]) = i!([Spec Ôv1 ]− [Spec Ôv2 ]) = [P1]− [P2 ],

we have
[P1]− [P2 ] = −h · δ.

This contradicts that
[P1]− [P2 ] �= 0

in A0(X)Q/h · A1(X)Q and thus we have completed the proof of Lemma 1.9.

3. A Proof of Lemma 1.10

Suppose that S = C[x0, x1, x2 ]/(f ) and X = Proj S satisfy the assumption in
Lemma 1.10. Let Z be the projective cone of X: Z = Proj C[x0, x1, x2, x3]/(f ).
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Let W
ξ−→ Z be the blow-up at (0, 0, 0,1). We set X∞ = V+(x3) and X0 =

ξ−1((0, 0, 0,1)). Notice that both X0 and X∞ are isomorphic to X. Then,W
η−→ X

is a P1-bundle.
Take any two closed points Q1,Q2 ∈ X. We set Li = η−1(Qi) for i = 1, 2.

Consider the Weil divisorL1+L2+X∞ onW. We shall prove the following claim.

Claim 3.1. The complete linear system |L1 + L2 + X∞| is basepoint-free, and

the induced morphism W
f−→ P n satisfies dim f(W ) ≥ 2.

Proof. Since the complete linear system |Q1 + Q2| on X is basepoint-free, so
is |L1 + L2|. Since the complete linear system |X∞| is basepoint-free, so is
|L1+ L2 +X∞|.

In order to prove dim f(W ) ≥ 2, we need only show that the set

{a ∈R(W )× | div(a)+ L1+ L2 +X∞ ≥ 0}
contains two algebraically independent elements over C.

Observe that W
η−→ X is a surjective morphism and so R(X) is contained in

R(W ). Consider

H 0(W, OW(L1+ L2 +X∞))
= {a ∈R(W )× | div(a)+ L1+ L2 +X∞ ≥ 0} ∪ {0},

H 0(X, OX(Q1+Q2)) = {a ∈R(X)× | div(a)+Q1+Q2 ≥ 0} ∪ {0}.
It is easy to see that

H 0(W, OW(L1+ L2 +X∞)) ⊃ H 0(X, OX(Q1+Q2)) ⊃ C.

The set H 0(X, OX(Q1 + Q2)) contains a transcendental element over C. Since
R(X) is algebraically closed in R(W ) and since

H 0(W, OW(L1+ L2 +X∞)) �= H 0(X, OX(Q1+Q2)),

it follows that H 0(W, OW(L1 + L2 + X∞)) contains two algebraically indepen-
dent elements over C.

Because |L1+ L2 +X∞| is basepoint-free as in Claim 3.1, we know that

div(a)+ L1+ L2 +X∞
is smooth for a general element a ∈H 0(W, OW(L1+L2+X∞)) \{0} (see e.g. [5,
III, Cor. 10.9]). Since dim f(W ) ≥ 2 as in Claim 3.1,

div(a)+ L1+ L2 +X∞
is connected for any a ∈H 0(W, OW(L1+ L2 +X∞)) \ {0} [5, III, Exer. 11.3].

Let {a1, . . . , an} be a C-basis of H 0(W, OW(L1+L2+X∞)). Let αi be the local
equation defining the Cartier divisor div(ai)+L1+L2+X∞ for i = 1, . . . , n. For
c = (c1, . . . , cn)∈Cn \{(0, . . . , 0)}, let Dc denote the Cartier divisor onW defined
by c1α1+ · · · + cnαn.

For a general point c ∈Cn, the divisor Dc does not contain X0 as a component
but does intersect with X0 at two distinct points. Recall that X0 is isomorphic to
X. Set Dc ∩X0 = {Qc1,Qc2} ⊂ X.



496 Kazuhiko Kurano & Vasudevan Srinivas

Choose an e ∈ X such that the Weil divisor 3e coincides with the very ample
divisor corresponding to the embedding X = Proj S. We regard the set of closed
points of the elliptic curve X as an abelian group with unit e in the usual way.

Let ϕ : X→ P1
C be the morphism defined by |2e|. For a general point c ∈Cn, set

θ(c) = ϕ(Qc1"Qc2)∈ P1
C ,

where " denotes the difference in the group X. One can prove that there exists a
nonempty Zariski open set U of Cn such that θ |U : U → P1

C is a nonconstant mor-
phism and Dc is smooth connected for any c ∈ U. Then there exists a nonempty
Zariski open set of P1

C contained in Im(θ |U). Let F be the set of elements of X of
finite order. Then it is well known that F is a countable set. In particular, ϕ(F )
does not contain Im(θ |U). Hence there exists a c ∈U such that θ(c) /∈ ϕ(F ). Then
Dc is a smooth connected curve inW, with Dc intersecting X0 � X at two points
{P1,P2} transversally such that P1" P2 has infinite order in X.

Let φ : X → A0(X) be a map defined by φ(P ) = [P ]− [e]. It is well known
that φ is a group homomorphism. We have the following exact sequence:

0 �� X
φ

�� A0(X)
deg

�� Z �� 0.

Because deg(h) = 3, we have an isomorphism

X ⊗Z Q
φ̄� A0(X)Q/hA1(X)Q.

By definition,
0 �= φ̄(P1" P2) = [P1]− [P2 ]

in A0(X)Q/hA1(X)Q.

Let Y be the blow-up of Spec S at the origin; then Y is an open subvariety of W.
We set C = Dc ∩ Y. Then C satisfies assumption 2 in Lemma 1.9.

Since H1(X, OX(n)) = 0 for n > 0, we have Cl(R) � Cl(R̂) by Danilov’s the-
orem (see [1, Prop. 8]). Therefore, R satisfies assumption 1 in Lemma 1.9. This
completes the proof of Lemma 1.10.

Remark 3.2. Let A be a 2-dimensional local ring constructed using Lemmas 1.9
and 1.10. Because A and Â are 2-dimensional excellent local domains, we have
the following isomorphisms:

G0(A) � Z⊕ A1(A),

G0(Â) � Z⊕ A1(Â).

Therefore,

Ker(G0(A) −→ G0(Â)) � Ker(A1(A) −→ A1(Â)).

We can use this expression to prove that

Ker(G0(A) −→ G0(Â)) � Z
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as follows. Consider the diagram

0

��

0

��

Z

��

A1(R)
f

∼ ��

i

��

A1(R̂)

��

A1(A)
g

��

��

A1(Â)

��

Z/(2v) ��

��

Z/(v)

��

0 0.

Let αi be the element of A1(R) such that f(αi) = [Spec R̂/pi] for i = 1, 2. Then
the kernel of g is generated by

i(α1)− v[SpecA/pR].

Here, note that

2(i(α1)− v[SpecA/pR]) = i(α1)− i(α2).

Since the kernel of g is not torsion, it must be isomorphic to Z.
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