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1. Introduction

Let S be a scheme, G a flat S-group scheme, and X a G-scheme (i.e., an S-scheme
on which G acts). In [18], a G-linearization of an invertible sheaf on X is defined.
As quasi-coherent sheaves are important in studying a scheme, G-linearized quasi-
coherent sheaves are important in studying a scheme with a group action. If S, G,
and X = SpecA are all affine, then the category Lin(G,X) of G-linearized quasi-
coherent sheaves on X is equivalent to the category of (G,A)-modules (see [8]).
In particular, if S = Spec k = X with k a field, then Lin(G,X) is equivalent to the
category ofG-modules. However, the definition of aG-linearization in [18] is com-
plicated, and probably it is difficult to study the homological algebra of Lin(G,X)

only from the definition. In [9], the diagram BM
G (X) of schemes is defined and the

category of quasi-coherent sheaves Qch(G,X) = Qch(BM
G (X)) is studied. Note

that Lin(G,X) and Qch(G,X) are equivalent. The category Qch(X) of quasi-
coherent sheaves on X is embedded in the category of OX-modules Mod(X),
and this embedding gives some flexibility to the homological algebra of Qch(X).

Similarly, Qch(G,X) is embedded in Mod(G,X) := Mod(BM
G (X)), and the ho-

mological algebra of Qch(G,X) is considered in Mod(G,X). Note that BM
G (X)

is a diagram of schemes of the form

G×S G×S X

1G×a−−→
µ×1X−−→
p23−−→

G×S X

a−−→
p2−−→X,

where a : G ×S X → X is the action, µ : G ×S G → G is the product, and p2

and p23 are appropriate projections. Thus, in the study of sheaves on diagrams of
schemes, it is important to consider Lin(G,X).

Local cohomology is a powerful tool in commutative ring theory. The local
cohomology H i

m on a local ring (A, m) is especially important. However, when
we consider a group action, “local phenomena” sometimes occur on nonaffine
schemes; see Example 8.19. Thus, to construct a theory of equivariant local
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cohomology, it seems that we need to discuss local cohomology on diagrams of
not necessarily affine schemes.

The objectives of this paper are to give foundations of local cohomology on di-
agrams of schemes and give an application to invariant theory. We also introduce
the notion of G-localness of a G-scheme.

The local cohomology is a derived functor of the local section functor �U,V for a
pair of open subdiagrams of schemesU andV of a diagram of schemesX such that
U ⊃ V. As in the usual single-scheme case, �U,V depends only on U \V. However,
it is interesting to point out that U \V may not be a subdiagram of schemes. More-
over, not all families of locally closed subsets (Zi) of Xi can be expressed as Zi =
Ui \Vi for a pair of open subdiagrams U and V such that U ⊃ V.

Because unbounded homological algebra is getting more and more important,
we discuss unbounded derived functor of �U,V . We introduce the notion of K-
flabby property over a diagram of schemes.

Section 2 consists of preliminaries. Problems of commutativity of diagrams is
inevitable in studying sheaves over diagrams of schemes. In Section 3, we prove
some basic commutativity of diagrams. We also prove that, for a locally quasi-
coherent sheaf over a locally Noetherian diagram of schemes, the local section
functor can be expressed in terms of some inductive limit of hom functors. In Sec-
tion 4, we discuss local cohomology and the K-flabby property; in Section 5, we
slightly modify and discuss Kempf’s quasi-flabby property. In Section 6, we state
and prove the flat base change. In the theory of local cohomology for the usual
single schemes, the flat base change and the independence theorem (see Corol-
lary 4.17) are important. We generalize and prove these theorems. In Section 7, we
consider the group action. We study the local cohomology with a group action, the
equivariant local cohomology. This is realized as a cohomology on the diagram of
schemes BM

G (X). We prove that the local section functor �U,V is compatible with
the G-invariance functor. In Section 8 we define an equivariant version of a local
scheme, a G-local G-scheme (Definition 8.13); give some examples; and prove
some basic properties. It seems that this notion has some importance in invari-
ant theory, since if G is a (strongly) geometrically reductive k-group scheme (see
Section 8.22 for the definition), A is a G-algebra, and p ∈ SpecAG, then Ap :=
A⊗AG AG

p is G-local (Proposition 8.27).
In Section 9 we apply equivariant local cohomology on a G-local G-scheme to

prove the following result.

Theorem 9.5. Let k be a field, G a linearly reductive k-group scheme, and X a
Cohen–Macaulay Noetherian G-scheme. Let π : X→ Y be a geometric quotient
under the action of G in the sense of [18]. Assume that π is an affine morphism.
Then Y is Noetherian and Cohen–Macaulay.

As we will show, this is a generalization of the special case (that the ring in ques-
tion contains a field) of the theorem of Hochster and Eagon [11, Prop. 13] on
the Cohen–Macaulay property of the invariant subrings under the action of finite
groups.
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The authors are grateful to Professor Melvin Hochster for kindly communicat-
ing Theorem 9.10 and Corollary 9.11.

2. Preliminaries

2.1. We use the notation, terminology, and results from [9] freely (however, see
Section 2.11).

2.2. Let f : Y→ X be a ringed continuous functor between ringed sites as de-
fined in [9, (2.3), (2.4), (2.19)]. As in [9], let PM(X) and Mod(X) denote the cat-
egory of presheaves and sheaves, respectively, of OX-modules. Let f #

♥ : ♥(X)→
♥(Y) denote the canonical pull-back and let f ♥# : ♥(Y)→♥(X) denote its left
adjoint, where ♥ denotes either PM or Mod.

For b, c ∈Mod(Y), �Mod : f Mod
# (b ⊗ c) → f Mod

# b ⊗ f Mod
# c is the composite

of the following (see [9, (1.40), (2.19), (2.20), (2.52)]):

f#(b ⊗ c) = af#qa(qb ⊗p qc)
ε−1⊗pε−1−−−−−→ af#qa(qaqb ⊗p qaqc)

u⊗pu−−−→ af#qa(qaf
#f#qb ⊗p qaf #f#qc)

θ⊗pθ−−−→ af#qa(qf
#af#qb ⊗ qf #af#qc)

c⊗pc−−→ af #qa(f #qaf#qb ⊗pf #qaf#qc)

mPM−−→ af #qaf #(qaf#qb ⊗p qaf#qc)

θ−→ af#qf
#a(qaf#qb ⊗p qaf#qc)

c−→ af#f
#qa(qaf#qb ⊗p qaf#qc)

ε−→ aqa(qaf#qb ⊗p qaf#qc)

ε−→ a(qaf#qb ⊗p qaf#qc) = f#b ⊗ f#c.

See [9, Sec. 2] for the notation. It is easy to see that this composite map agrees with

f#(b ⊗ c) = af#qa(qb ⊗p qc)
u−1−→ af#(qb ⊗p qc)

�PM−−→ a(f#qb ⊗pf#qc)

u⊗pu−−−→ a(qaf#qb ⊗p qaf#qc) = f#b ⊗ f#c

(see [9, Lemma 2.34]).

2.3. Lemma. Let notation be as before. If �PM : f#(qb⊗pqc)→ f#qb⊗pf#qc

is an isomorphism, then so is �Mod : f#(b ⊗ c)→ f#b ⊗ f#c.

Proof. This follows immediately from the previous discussion and [9, Lemma
2.18].
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2.4. The map �(x,�PM), which is the map �PM at the section at x ∈X, is given
as follows. It is the map

�(x, f#(b ⊗p c))

= lim−→�(x, OX)⊗�(y,OY) (�(y, b)⊗�(y,OY) �(y, c))→ �(x, f#b ⊗pf#c)

= (lim−→�(x, OX)⊗�(y ′,OY) �(y
′, b))

⊗�(x,OX) (lim−→�(x, OX)⊗�(y ′′,OY) �(y
′′, c))

given by α ⊗ (β ⊗ γ ) �→ (α ⊗ β) ⊗ (1⊗ γ ), where the colimits are taken over
y, y ′, y ′′ ∈ (I

f
x )

op, respectively. This description is obtained from the definition
of � [9, (1.40)] and the explicit descriptions of u, m, and ε in [9, (2.20), (2.50)].
If the category (I

f
x )

op (cf. [9, (2.6)]) is filtered, then the inverse of �(x,�PM) is
given explicitly by mapping (α⊗ β)⊗ (α ′ ⊗ γ ) to αα ′ ⊗ (β ⊗ γ ). Thus we have
our next lemma.

2.5. Lemma. Assume (I fx )op is filtered for every x∈X. Then�PM : f#(b⊗pc)→
f#b ⊗p f#c is an isomorphism for b, c ∈ PM(Y). Hence �Mod : f#(b

′ ⊗ c ′) →
f#b

′ ⊗ f#c
′ is an isomorphism for b ′, c ′ ∈Mod(Y).

We remark that C : f #OY → OX is also an isomorphism if (I fx )op is filtered for
every x ∈X.

2.6. For b, c ∈Mod(X), the evaluation map ev: [b, c]⊗ b→ c is the composite

[b, c]⊗ b = a(q[b, c]⊗p qc)
H̄−→ a([qb, qc]⊗p qc)

evPM−−→ aqc
ε−→ c,

where [b, c] denotes HomOX
(b, c) and so on.

2.7. Let the notation be as in Section 2.2. Assume that, for any x ∈ X, the cat-
egory (I

f
x )

op is filtered. Then, by Lemma 2.5, �PM and �Mod are isomorphisms.
Thus P : f# [b, c]→ [f#b, f#c] is defined for b, c ∈Mod(Y) (see [9, (1.50)]; it is
the composite

f# [b, c] = af#q[b, c]
ε−1−→ aqaf#q[b, c]

tr−→ a[qaf#qb, qaf#q[b, c]⊗p qaf#qb]

P̄−→ [aqaf#qb, a(qaf#q[b, c]⊗p qaf#qb)]

ε−1−→ [af#qb, a(qaf#q[b, c]⊗p qaf#qb)]

(u⊗pu)−1−−−−−→ [af#qb, a(f#q[b, c]⊗pf#qb)]

�−1−−→ [af#qb, af#(q[b, c]⊗ qb)]
u−→ [af#qb, af#qa(q[b, c]⊗ qb)]
H−→ [af#qb, af#qa([qb, qc]⊗ qb)]
ev−→ [af#qb, af#qaqc]

ε−→ [af#qb, af#qc] = [f#b, f#c]
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by [9, (2.48)] and Section 2.2. It is straightforward to check that this composite
map agrees with

f# [b, c] = af#q[b, c]
H̄−→ af# [qb, qc]

P−→ a[f#qb, f#qc]

P̄−→ [af#qb, af#qc] = [f#b, f#c]. (1)

2.8. Let X be as in Section 2.7. By the definition of P [9, (1.50)] and the explicit
descriptions of tr, �, and ev in [9, (2.42)], Section 2.4, and [9, (2.41)], the map
PPM is described as follows:

�(x, f# [b, c]) = lim−→�(x, OX)⊗�(y,OY) HomOY/y
(b|y , c|y)

→ HomOX/x
((f#b)|x , (f#c)|x) = �(x, [f#b, f#c]),

which sends β ⊗ ϕ to the map that sends β ′ ⊗ α to ββ ′ ⊗ ϕ(α) for β ∈�(x, OX),
ϕ : b|y → c|y , β ′ ∈�(x ′, OX), and α ∈�(y ′, b) for some commutative diagram

x ′ ��

��

fy ′

fρ

��

y ′

ρ

��

x �� fy y ,

where the colimit is taken over y ∈ (I fx )op.

Thus we have the following statement.

2.9. Lemma. Let j : U → X be an open immersion of ringed spaces. Then
P : j ∗ [b, c]→ [j ∗b, j ∗c] is an isomorphism for b, c ∈♥(X) for ♥ = PM, Mod.

Proof. First consider the case ♥ = PM. Then, for V ⊂ U,

�(V,P) : �(V, j ∗ [b, c])→ �(V, [j ∗b, j ∗c])

is the identity map of HomOV
(b|V , c|V ). Thus it is an isomorphism.

Now consider the case of ♥ = Mod. Then PMod is the composite

j ∗ [b, c] = aj ∗q[b, c]
H̄−→ aj ∗ [qb, qc]

PPM−−→ a[j ∗qb, j ∗qc]
P̄−→ [aj ∗qb, aj ∗qc]

as described in Section 2.7. Note that H̄ is an isomorphism by definition [9,
Lemma 2.38]. The natural map PPM is also an isomorphism, as we have just seen,
and P̄ is an isomorphism because j ∗qc is a sheaf (see [9, (2.39)]). Thus PMod is
also an isomorphism.

2.10. Proposition. Let f : X → Y be a morphism of schemes and let b, c ∈
Mod(Y ). If one of the following conditions holds, then P : f ∗ [b, c]→ [f ∗b, f ∗c]
is an isomorphism.
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(i) f is locally an open immersion—that is, there exists an open covering (Uλ)

of X such that f |Uλ
is an open immersion for every λ;

(ii) f is flat and b is coherent.

Proof. (i) By [9, Lemma 1.54] we may assume that f is an open immersion, and
this case is Lemma 2.9.

(ii) By [9, Lemma 1.54] and Lemma 2.9, we may assume that both X and Y are
affine. Hence there is a presentation of the form On

Y → Om
Y → b → 0. By the

five lemma, we may assume that b = OY , and this case is easy.

2.11. Let I be a small category. For a category C, the functor category Func(I op, C )
is denoted by P(I, C ). We denote the category of schemes by Sch. An object of
P(I, Sch) is called an I op-diagram of schemes. Although in [9], whose nota-
tion we mainly use, diagrams of schemes are denoted by X•,Y•,Z•, . . . , we write
X,Y,Z, . . . for simplicity of notation. Similarly, morphisms in P(I, Sch) are de-
noted by f•, g•,h•, . . . in [9], but we use f , g,h, . . . .

Let X ∈ P(I, Sch). For i ∈ I, X(i) is denoted by Xi; for φ ∈Mor(I ), X(φ) is
denoted by Xφ. For a property of schemes P, we say that X satisfies P if Xi sat-
isfies P for every i ∈ I. Let Q be a property of morphisms. We say that X has Q

arrows if Xφ satisfies Q for each φ ∈Mor(I ). Let S be a scheme and consider the
case X ∈P(I, Sch/S). We say that X is Q over S if the structure morphism Xi →
S satisfies Q for each i. Let f : X→ Y be a morphism in P(I, Sch). We say that
f is Q if fi is Q for each i. We say that f is Cartesian if the commutative diagram
Yφfj = fiXφ is a Cartesian square for each (φ : i → j)∈Mor(I ).

For a subcategory J of I, the restriction of X• to J was written X•|J in [9].
In this paper, X• is written as X and X|J is likewise simplified to XJ . Similarly,
for a morphism f of P(I, Sch), the restriction of f to J is denoted by fJ rather
than f |J .
2.12. Let X ∈ P(I, Sch). As in [9], we denote the category of OX-modules by
Mod(X). Let M∈Mod(X). The restriction of M to Xi is denoted by Mi for i ∈
I. We say that M is locally quasi-coherent (resp. locally coherent) if Mi is quasi-
coherent (resp. coherent) for each i ∈ I. We say that M is quasi-coherent (resp.
coherent) if M is locally quasi-coherent (resp. locally coherent) and equivariant
[9, (4.14)]. We denote the full subcategory of Mod(X) consisting of equivariant
(resp. locally quasi-coherent, locally coherent, quasi-coherent, coherent) sheaves
by EM(X) (resp. Lqc(X), Lch(X), Qch(X), Coh(X)). The derived categories
such as D(Mod(X)), D+Lqc(X)(Mod(X)), and Db

Qch(X)(Lqc(X)) are denoted (re-

spectively) by D(X), D+Lqc(X), and Db
Qch(Lqc(X)) for short.

2.13. Lemma. Let f : X → Y be a morphism in P(I, Sch) and let b, c ∈
Mod(Y ). Then

P : f ∗ HomOY
(b, c)→ HomOX

(f ∗b, f ∗c)

is an isomorphism if one of the following holds:
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(i) f is locally an open immersion and b is equivariant ;
(ii) f is flat and b is coherent.

Proof. By [9, Lemma 1.59], the diagram

(?)if ∗ [b, c] θ−1
��

P

��

f ∗i (?)i[b, c] H �� f ∗i [bi, ci]

P

��

(?)i[f ∗b, f ∗c]
H �� [(?)if ∗b, (?)if ∗c]

[θ,θ−1]
�� [f ∗i (?)ib, f ∗i (?)ic]

is commutative for every i ∈ I, where [·, ·] denotes the Hom sheaf. Since b is as-
sumed to be equivariant in both cases, the horizontal arrows are isomorphisms by
[9, Lemma 7.22] and [9, Lemma 6.33]. By Proposition 2.10, the rightmost verti-
cal P is an isomorphism. Thus, the leftmost P is also an isomorphism. Since i is
arbitrary, we are done.

A morphism of schemes is said to be concentrated if it is quasi-compact and quasi-
separated. A scheme X is said to be concentrated if the unique morphism X →
Spec Z is concentrated.

2.14. Lemma. Let

X ′
f ′

��

h

��

Y ′

g

��

X
f

�� Y

be a Cartesian square in P(I, Sch), and let M ∈Mod(Y ′). Then θ : f ∗g∗M→
h∗(f ′)∗M is an isomorphism if one of the following holds:

(i) f is locally an open immersion;
(ii) g is concentrated, f is flat, and M∈Lqc(Y ′).

Proof. Using [9, Lemma 1.22] twice, it is easy to see that the diagram

f ∗i (gi)∗(?)i
c ��

θ

��

f ∗i (?)ig∗
θ �� (?)if ∗g∗

θ

��

(hi)∗(f ′i )∗(?)i
θ �� (hi)∗(?)i(f ′)∗

c �� (?)ih∗(f ′)∗

is commutative. Because the horizontal arrows are isomorphisms, we may assume
that the all diagrams of schemes are single schemes.

For (i), the case of f an open immersion is proved in the first paragraph of the
proof of [9, Lemma 7.12], and the general case follows from [9, Lemma 1.23].
Part (ii) is nothing but [9, Lemma 7.12].
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3. Local Section Functor for Diagrams

3.1. Let X be an I op-diagram of schemes. As in [9], the category of presheaves
and sheaves of abelian groups are denoted by PA(X) and AB(X), respectively.
Let U be an open subdiagram of schemes of X, and let V be an open subdiagram
of schemes of U. Let both f : U → X and g : V → U be the inclusion.

For M∈Mod(X) or M∈AB(X), we denote the kernel of the unit of adjunction

u : f∗f ∗M→ f∗g∗g∗f ∗M
by �U,V M. We denote the canonical inclusion �U,V M ↪→ f∗f ∗M by ι. Note that
the formation of �U,V is compatible with the forgetful functor Mod(X)→ AB(X).

If U = X then there is an exact sequence

0 −→ �X,V M ι′−→M u−→ g∗g∗M,

where ι′ is the composite

�X,V M ι−→ (idX)∗(idX)∗M u−1−→M.

3.2. Lemma. �U,V : Mod(X)→ Mod(X) is a left exact functor.

Proof. Let 0→ L→M→ N be an exact sequence in Mod(X). Since f ∗ and
g∗ are exact and since f∗ and g∗ are left-exact, it follows that the diagram

0

��

0

��

0

��

0 �� �U,V L ι ��

��

f∗f ∗L u ��

��

f∗g∗g∗f ∗L

��

0 �� �U,V M ι ��

��

f∗f ∗M u ��

��

f∗g∗g∗f ∗M

��

0 �� �U,V N ι �� f∗f ∗N u �� f∗g∗g∗f ∗N
has exact rows and that the second and the third columns are exact. Hence the first
column is exact, and the assertion follows.

3.3. Let X, U, V, f , and g be as in Section 3.1. Let J be a subcategory of I, and
let M∈Mod(X). Then we have the commutative diagram with exact rows

0 �� �UJ,VJ MJ
ι �� (fJ)∗f ∗J MJ

u ��

c−1θ

��

(fJ)∗(gJ)∗g∗Jf
∗
J MJ

c−1c−1θθ

��

0 �� (�U,V M)J
ι �� (f∗f ∗M)J

u �� (f∗g∗g∗f ∗M)J ,
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where c−1θ is the composite isomorphism

(fJ)∗f ∗J (?)J
θ−→ (fJ)∗(?)Jf ∗

c−1−→ (?)Jf∗f ∗;
see [9, Example 5.6, 2], [9, Lemma 6.25], and [9, Lemma 1.24]. Similarly,
c−1c−1θθ is the composite

(fJ)∗(gJ)∗g∗Jf
∗
J (?)J

θ−→ (fJ)∗(gJ)∗g∗J(?)Jf
∗ θ−→ (fJ)∗(gJ)∗(?)Jg∗f ∗

c−1−→ (fJ)∗(?)Jg∗g∗f ∗
c−1−→ (?)Jf∗g∗g∗f ∗.

Thus we obtain a unique natural map

γ̂ = γ̂U,V,J : �UJ,VJ (?)J → (?)J�U,V

such that ιγ̂ = c−1θι. Note that γ̂ is an isomorphism by the five lemma.

3.4. Lemma. With notation as before, let K be a subcategory of J. Then the
composite

�UK,VK(?)K
c−→ �UK,VK(?)K,J(?)J

γ̂−→ (?)K,J�UJ,VJ (?)J
γ̂−→ (?)K,J(?)J�U,V

c−1−→ (?)K�U,V

is γ̂U,V,K.

Proof. Consider the diagram

�UK,VK(?)K

c

��

ι ��

(a)

(fK)∗f ∗K(?)K

c

��

��

��

c−1θ

��

�UK,VK(?)K,J(?)J

γ̂

��

ι ��

(b)

(fK)∗f ∗K(?)K,J(?)J

c−1θ

��

(e)

(?)K,J�UJ,VJ (?)J
ι ��

γ̂

��

(c)

(?)K,J(fJ)∗f ∗J (?)J

c−1θ

��

(?)K,J(?)J�U,V

c−1

��

ι ��

(d)

(?)K,J(?)Jf∗f ∗

c−1

��

(?)K�U,V
ι �� (?)Kf∗f ∗.

The commutativity of (a) and (d) is trivial. The commutativity of (b) and (c) fol-
lows from the definition of γ̂. The commutativity of (e) is a consequence of [9,
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Lemma 1.4] and [9, Lemma 1.22]. So the whole diagram is commutative, and the
assertion then follows from the definition of γ̂.

3.5. Let

V ′
g ′

��

hV

��

(a)

U ′
f ′

��

hU

��

(b)

X ′

h

��

V
g

�� U
f

�� X

(2)

be a commutative diagram in P(I, Sch) such that the horizontal arrows are inclu-
sion maps of open subdiagrams.

By [9, Lemma 1.24], we have the commutative diagram with exact rows

0 �� �U,V h∗
ι �� f∗f ∗h∗

cθ

��

u �� f∗g∗g∗f ∗h∗

ccθθ

��

0 �� h∗�U ′,V ′
ι �� h∗f ′∗(f ′)∗

u �� h∗f ′∗g ′∗(g ′)∗(f ′)∗,

(3)

where cθ is the composite

f∗f ∗h∗
θ−→ f∗(hU)∗(f ′)∗

c−→ h∗f ′∗(f
′)∗

and ccθθ is the composite

f∗g∗g∗f ∗h∗
θ−→ f∗g∗g∗(hU)∗(f ′)∗

θ−→ f∗g∗(hV )∗(g ′)∗(f ′)∗

c−→ f∗(hU)∗g ′∗(g
′)∗(f ′)∗ c−→ h∗f ′∗g

′
∗(g
′)∗(f ′)∗.

In this way we induce the unique natural map

γ̄ = γ̄U,V,U ′,V ′,h : �U,V h∗ → h∗�U ′,V ′

such that ιγ̄ = cθι. In particular, considering the case where X ′ = X and h is the
identity,

γ̄ = γ̄U,V,U ′,V ′ : �U,V → �U ′,V ′

is defined.

3.6. Lemma. Assume that (a) and (b) in diagram (2) are Cartesian. Then
γ̄U,V,U ′,V ′,h is an isomorphism.

Proof. By the five lemma, it suffices to show that cθ and ccθθ in (3) are isomor-
phisms. Yet this is an immediate consequence of Lemma 2.14.
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3.7. Lemma. Let

V ′′
g ′′

��

kV

��

U ′′
f ′′

��

kU

��

X ′′

k

��

V ′
g ′

��

hV

��

U ′
f ′

��

hU

��

X ′

h

��

V
g

�� U
f

�� X

be a commutative diagram in P(I, Sch) such that the horizontal maps are inclu-
sions of open subdiagrams. Then the composite

�U,V (hk)∗
c−→ �U,V h∗k∗

γ̄−→ h∗�U ′,V ′k∗
γ̄−→ h∗k∗�U ′′,V ′′

c−1−→ (hk)∗�U ′′,V ′′

equals γ̄.

Proof. Consider the diagram

�U,V (hk)∗
ι ��

c

��

(a)

f∗f ∗(hk)∗

c

��

��

��

cθ

��

�U,V h∗k∗

γ̄

��

ι ��

(b)

f∗f ∗h∗k∗

cθ

��

(e)

h∗�U ′,V ′k∗
ι ��

γ̄

��

(c)

h∗f ′∗(f ′)∗k∗

cθ

��

h∗k∗�U ′′,V ′′

c−1

��

ι ��

(d)

h∗k∗f ′′∗ (f ′′)∗

c−1

��

(hk)∗�U ′′,V ′′
ι �� (hk)∗f ′′∗ (f ′′)∗.

The commutativity of (a) and (d) is trivial. The commutativity of (b) and (c) fol-
lows from the definition of γ̄. The commutativity of (e) is a consequence of [9,
Lemma 1.4] and [9, Lemma 1.22]. So the whole diagram is commutative, and the
assertion then follows from the definition of γ̄.

3.8. Lemma. Let (2) be as in Section 3.5 and let J be a subcategory of I. Then
the diagram

�UJ,VJ (?)J h∗
γ̂

��

c

��

(?)J�U,V h∗
γ̄

�� (?)J h∗�U ′,V ′

c

��

�UJ,VJ (hJ)∗(?)J
γ̄

�� (hJ)∗�U ′J,V ′J (?)J
γ̂

�� (hJ)∗(?)J�U ′,V ′

is commutative.



394 Mitsuyasu Hashimoto & Masahiro Ohtani

Proof. Consider the diagram

�UJ,VJ (?)J h∗
γ̂

��

ι

��

��

��

c

��

(a)

(?)J�U,V h∗
γ̄

��

ι

��

(b)

(?)J h∗�U ′,V ′

ι

��

��

��

c

��

(c)

(fJ)∗f ∗J (?)J h∗

c

��

c−1θ �� (?)Jf∗f ∗h∗
cθ ��

(d)

(?)J h∗f ′∗(f ′)∗

c

��

(e)

(fJ)∗f ∗J (hJ)∗(?)J
cθ ��

(f )

(hJ)∗(f ′J )∗(f
′
J )
∗(?)J

(g)

c−1θ �� (hJ)∗(?)Jf ′∗(f ′)∗

�UJ,VJ (hJ)∗(?)J

ι

��

γ̄
�� (hJ)∗�U ′J,V ′J (?)J

ι

��

γ̂
�� (hJ)∗(?)J�U ′,V ′ .

ι

��

By the definition of γ̂, (a) and (g) are commutative; by the definition of γ̄, (b)
and (f ) are commutative. The commutativity of (c) and (e) is trivial, and the com-
mutativity of (d) follows from [9, Lemma 1.4] and [9, Lemma 1.22]. Since ι is a
monomorphism, the assertion follows.

3.9. Lemma. Given (2) as before, assume X = X ′ and h = id. If Ui \Vi =
U ′i \V ′i for any i ∈ I, then γ̄U,V,U ′,V ′ : �U,V → �U ′,V ′ is an isomorphism.

Proof. In view of Lemma 3.8, we may assume that X is a single scheme. Let
M ∈AB(X) or M ∈Mod(X). For any open set W ⊂ X, we have the following
commutative diagram with exact rows:

0 �� �(W,�U,V M)
ι ��

γ̄

��

�(W ∩ U, M)
res ��

res

��

�(W ∩V, M)

res

��

0 �� �(W,�U ′,V ′M)
ι �� �(W ∩ U ′, M)

res �� �(W ∩V ′, M).

By assumption, U = V ∪ U ′ and V ′ = V ∩ U ′. Hence

0→ �(W ∩ U, M)→ �(W ∩V, M)⊕ �(W ∩ U ′, M)→ �(W ∩V ′, M)

is exact. Thus γ̄ is bijective, as can be seen easily.

3.10. Let X ∈ P(I, Sch). Let Y be a Cartesian closed subdiagram of schemes
of X; that is, Y is a subdiagram of schemes such that the inclusion Y ↪→ X is a
Cartesian closed immersion. Let Z be a Cartesian closed subdiagram of schemes
of Y. If we now let Ui = Xi \ Zi then U = U(Z) is a Cartesian open subdiagram
of schemes of X, and if we let Vi = Xi \ Yi then V = U(Y ) is a Cartesian open
subdiagram of schemes of U. Thus �Y ;Z := �U(Z),U(Y ) is defined.

If Z is empty, then �Y ;∅ is denoted by �Y . There is an exact sequence

0 −→ �Y
ι′−→ Id

u−→ g∗g∗,

where g : U(Y )→ X is the inclusion.
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For a subcategory J of I, we have U(Y )J = U(YJ) and U(Z)J = U(ZJ). Thus
the isomorphism

γ̂Y ;Z;J := γ̂U(Z),U(Y ),J : �YJ ;ZJ
(?)J −→ (?)J�Y ;Z

is defined (see Section 3.3). We denote γ̂Y ;∅;J by γ̂Y ;J .

3.11. Let notation be as before, and let h : X ′ → X be a morphism in P(I, Sch).
Then Y ′ := h−1(Y ) is a Cartesian closed subdiagram of X ′ and Z ′ := h−1(Z) is a
Cartesian closed subdiagram of Y ′. Thus

γ̄Y ;Z;h := γ̄U(Z),U(Y ),U(Z ′ ),U(Y ′ ),h

is defined (see Section 3.5), and we denote γ̄Y ;∅;h by γ̄Y ;h. By Lemma 3.6, we
immediately have the following result.

3.12. Lemma. Let notation be as before. Then γ̄Y ;Z;h is an isomorphism.

3.13. Let X ∈P(I, Sch). A collection Z = (Zi)i∈I is called a locally closed sys-
tem of X if there exist some open subdiagram of schemes U of X and an open
subdiagram of schemesV of U such that Zi = Ui \Vi. Such a pair (U,V ) is called
a UV-pair ofZ. IfZ is a locally closed system ofX, thenZi is a locally closed sub-
set of Xi for any i. If ((Uλ,Vλ)) is a family of UV-pairs of Z, then

( ⋃
Uλ,

⋃
Vλ

)
is also a UV-pair of Z. So if Z is a locally closed system of X, then there is a
largest UV-pair (U(Z),V(Z)) of Z.

We define �Z := �U(Z),V(Z) for a locally closed system Z of X. If (U,V ) is a
UV-pair of Z, then γ̄ : �Z → �U,V is an isomorphism by Lemma 3.9. If Z is a
Cartesian closed subdiagram of schemes of X, then Z can be viewed as a locally
closed system of X and thus �Z is defined. This definition of �Z agrees with the
one in Section 3.10, so there is no conflict.

3.14. Let the commutative diagram (2) be as in Section 3.5. Assume that h is
flat. Then there is a commutative diagram with exact rows

0 �� h∗�U,V
ι �� h∗f∗f ∗

dθ

��

u �� h∗f∗g∗g∗f ∗

ddθθ

��

0 �� �U ′,V ′h
∗ ι �� f ′∗(f ′)∗h∗

u �� f ′∗g ′∗(g ′)∗(f ′)∗h∗,

where dθ is the composite

h∗f∗f ∗
θ−→ f ′∗h

∗
Uf
∗ d−→ f ′∗(f

′)∗h∗

and ddθθ is the composite

h∗f∗g∗g∗f ∗
θ−→ f ′∗h

∗
Ug∗g

∗f ∗ θ−→ f ′∗g
′
∗h
∗
Vg
∗f ∗

d−→ f ′∗g
′
∗(g
′)∗h∗Uf

∗ d−→ f ′∗g
′
∗(g
′)∗(f ′)∗h∗.

Hence there is a unique natural map δ̄ = δ̄U,V,U ′,V ′,h : h∗�U,V → �U ′,V ′h
∗ such

that ιδ̄ = dθι.
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3.15. Lemma. Assume that the squares (a) and (b) in (2) are Cartesian and that
h is flat. Let M∈Mod(X). Then δ̄ : h∗�U,V M→ �U ′,V ′h

∗M is an isomorphism
if one of the following conditions holds:
(i) h is locally an open immersion;

(ii) f and g are quasi-compact and M is locally quasi-coherent.

Proof. In both cases, θ : h∗f∗ → f ′∗h∗U and θ : h∗Ug∗ → g ′∗h∗V are isomorphisms
by Lemma 2.14. The assertion then follows from the five lemma.

3.16. Let notation be as described in Section 3.11, and assume that h is flat. Then
we define δ̄Y ;Z;h := δ̄U(Z),U(Y ),h−1(U(Z)),h−1(U(Y )),h. By Lemma 3.15, if h is locally
an open immersion or if X is locally Noetherian and M is locally quasi-coherent,
then δ̄Y ;Z;h is an isomorphism.

3.17. Lemma. Given the notation of Lemma 3.7, assume that h and k are flat.
Then the composite

(hk)∗�U,V
d−1−→ k∗h∗�U,V

δ̄−→ k∗�U ′,V ′h
∗ δ̄−→ �U ′′,V ′′k

∗h∗ d−→ �U ′′,V ′′(hk)
∗

is δ̄.

Proof. Consider the diagram

(hk)∗�U,V
ι ��

d−1

��

(a)

(hk)∗f∗f ∗

d−1

��

��

��

dθ

��

k∗h∗�U,V

δ̄

��

ι ��

(b)

k∗h∗f∗f ∗

dθ

��

(e)

k∗�U ′,V ′h
∗ ι ��

δ̄

��

(c)

k∗f ′∗(f ′)∗h∗

dθ

��

�U ′′,V ′′k
∗h∗

d

��

ι ��

(d)

f ′′∗ (f ′′)∗k∗h∗

d

��

�U ′′,V ′′(hk)
∗ ι �� f ′′∗ (f ′′)∗(hk)∗.

The commutativity of (a) and (d) is trivial. The commutativity of (b) and (c) fol-
lows from the definition of δ̄. The commutativity of (e) is a consequence of the
opposite assertion of [9, Lemma 1.4] and [9, Lemma 1.23]. So the whole diagram
is commutative, and the assertion then follows from the definition of δ̄.

3.18. Lemma. With notation as in Lemma 3.8, assume that h is flat. Then the
diagram
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h∗J(?)J�U,V

γ̂−1
��

θ

��

h∗J�UJ,VJ (?)J
δ̄ �� �U ′J,V ′J h

∗
J(?)J

θ

��

(?)J h∗�U,V
δ̄ �� (?)J�U ′,V ′h

∗ γ̂−1
�� �U ′J,V ′J (?)J h

∗

is commutative.

Proof. Consider the diagram

h∗J(?)J�U,V

ι

��

��

��

θ

��

(a)

h∗J�UJ,VJ (?)J
γ̂

�� δ̄ ��

ι

��

(b)

�U ′J,V ′J h
∗
J(?)J

ι

��

��

��

θ

��

(c)

h∗J(?)Jf∗f ∗

θ

��

h∗J(fJ)∗f
∗
J (?)J

dθ ��c−1θ��

(d)

(f ′J )∗(f
′
J )
∗h∗J(?)J

θ

��

(e)

(?)J h∗f∗f ∗
dθ ��

(f )

(?)Jf ′∗(f ′)∗h∗

(g)

(f ′J )∗(f
′
J )
∗(?)J h∗

c−1θ��

(?)J h∗�U,V

ι

��

δ̄ �� (?)J�U ′,V ′h
∗

ι

��

�U ′J,V ′J (?)J h
∗.

ι

��

γ̂
��

By the definition of γ̂, (a) and (g) are commutative; by the definition of δ̄, (b) and
(f ) are commutative. The commutativity of (c) and (e) is trivial, and the commu-
tativity of (d) follows from [9, Lemma 1.22] and [9, Lemma 1.23]. Since ι is a
monomorphism, the assertion follows.

3.19. Lemma. Let

VX ′
gX ′ ��

hV

��

UX ′
fX ′ ��

hU

��

X ′

h

��

VZ ′

k ′
V

���������� gZ ′ ��

h̄V

��

UZ ′

k ′
U

���������� fZ ′ ��

h̄U

��

Z ′

k ′
����������

h̄

��

V
g

�� U
f

�� X

VZ

kV

���������� gZ �� UZ

kU

���������� fZ �� Z

k

����������

be a commutative diagram in P(I, Sch). Assume that f , fZ , fX ′ , fZ ′ , g, gZ , gX ′ ,
and gZ ′ are inclusions of open subdiagrams, and assume that h and h̄ are flat.
Then the diagram
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h∗k∗�UZ,VZ

θ

��

h∗�U,V k∗
δ̄ ��

γ̄
�� �UX ′,VX ′h

∗k∗

θ

��

k ′∗h̄∗�UZ,VZ

δ̄ �� k ′∗�UZ ′,VZ ′ h̄
∗ �UX ′,VX ′ k

′∗h̄∗
γ̄

��

is commutative.

Proof. Consider the diagram

h∗k∗�UZ,VZ

ι

��

��

��

θ

��

(a)

h∗�U,V k∗
δ̄ ��

γ̄
��

ι

��

(b)

�UX ′,VX ′h
∗k∗

ι

��

��

��

θ

��

(c)

h∗k∗(fZ)∗f ∗Z

θ

��

h∗f∗f ∗k∗
dθ ��cθ��

(d)

(fX ′)∗f ∗X ′h
∗k∗

θ

��

(e)

k ′∗h̄∗(fZ)∗f ∗Z
dθ ��

(f )

k ′∗(fZ ′)∗f ∗Z ′ h̄
∗

(g)

(fX ′)∗f ∗X ′k
′∗h̄∗

cθ��

k ′∗h̄∗�UZ,VZ

ι

��

δ̄ �� k ′∗�UZ ′,VZ ′ h̄
∗

ι

��

�UX ′,VX ′ k
′∗h̄∗.

γ̄
��

ι

��

By the definition of γ̄, (a) and (g) are commutative; by the definition of δ̄, (b) and
(f ) are commutative. The commutativity of (c) and (e) is trivial, and the commu-
tativity of (d) follows from [9, Lemma 1.22] and [9, Lemma 1.23]. Since ι is a
monomorphism, the assertion follows.

3.20. Let X ∈P(I, Sch), and assume that X has flat arrows. Let Y be a Cartesian
closed subdiagram of schemes of X (i.e., a closed subdiagram such that the inclu-
sion j : Y ↪→ X is Cartesian) so that the defining ideal I of Y is quasi-coherent.
Set U := X \ Y. Then U is an open subdiagram of schemes of X. Note that
f : U → X is also Cartesian.

Because the sequence

I ⊗OX
I ⊗OX

· · · ⊗OX
I −→ OX −→ OX/I n −→ 0

is exact, OX/I n is coherent for n ≥ 1, since coherent sheaves are closed under
tensor products and cokernels. Applying (?)i to the exact sequence, we obtain
(OX/I n)i ∼= OXi

/I n
i .

For M∈Mod(X), there is a canonical monomorphism

8Y : lim−→ HomOX
(OX/I n, M)→M

induced by the obvious maps

8n : HomOX
(OX/I n, M)→ HomOX

(OX, M) ∼=M.

The composite
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HomOX
(OX/I n, M)

8Y−→M u−→ f∗f ∗M (4)

factors through

f∗f ∗ HomOX
(OX/I n, M) ∼= f∗ HomOX

(f ∗(OX/I n), f ∗M).

Since f ∗(OX/I n) = 0, it follows that (4) is zero; thus we induce the monomor-
phism

ρY : lim−→ HomOX
(OX/I n, M)→ �YM

such that ι′ρY = 8Y .

By [9, Lemma 1.47], the diagram

(?)i HomOX
(OX/I n, ?)

8n ��

H

��

(?)i

id

��

HomOXi
(OXi

/I n
i , ?)(?)i

8n �� (?)i

is commutative. Therefore,

(?)i lim−→ HomOX
(OX/I n, ?) ρY ��

∼=
��

(?)i�Y

γ̂−1
Y ;i

��

lim−→(?)i HomOX
(OX/I n, ?)

H

��

lim−→ HomOXi
(OXi

/I n
i , ?)(?)i

ρYi �� �Yi (?)i

(5)

is also commutative.

3.21. Lemma. Let X ∈P(I, Sch) be locally Noetherian with flat arrows, and let
Y be its Cartesian closed subdiagram. If M∈Lqc(X), then

ρY : lim−→ HomOX
(OX/I n, M)→ �YM

is an isomorphism.

Proof. Since OX/I n is coherent, H in (5) is an isomorphism by [9, Lemma 6.33].
Thus we may assume that X is a single scheme, and this is just a special case of
[6, Thm. 2.8].

4. Local Cohomology for Diagrams

4.1. Let the notation be as in Section 3.1. For a complex M of Mod(X), the right
derived functor Ri�U,V M is denoted by H i

U,V (M), and we call it the ith local co-
homology sheaf of M.

For a Cartesian closed subdiagram Y of X and a Cartesian closed subdiagram
Z of Y, Ri�Y ;ZM is denoted by H i

Y ;Z(M) and H i
Y ;∅(M) is denoted by H i

Y (M).
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4.2. Let F∈K(Mod(X)). We say that F is K-flabby if Fi (i ∈ I ) is K-flabby in
the sense of [21]. By [9, Lemma 8.17], a weakly K-injective complex is K-flabby.
By [9, Prop. 8.2], a K-flabby complex is K-limp. A single sheaf M∈Mod(X) is
said to be flabby if it is K-flabby as a complex. By [21, Prop. 5.13], M is flabby
if and only if Mi is a flabby sheaf on the topological space Xi in the usual sense.

4.3. Proposition. With notation as before, suppose I is a K-flabby complex in
Mod(X). Then I is �U,V -acyclic.

Proof. Let ϕ : I→ J be a K-injective resolution, which exists because Mod(X)

is Grothendieck (see [3]). Note that J is K-flabby and so, replacing I by the map-
ping cone of ϕ, we may assume that I is exact; we need to prove that �U,V (I) is
exact. For this it suffices to prove, for any i ∈ I, that (?)i�U,V (I) ∼= �Ui,Vi(Ii ) is
exact. So we may assume that X is a single scheme. To verify that �U,V (I) is ex-
act, it suffices to show that �(W,�U,V (I)) is exact for any open subset W of X.

Applying the functor �(W, ?) to the exact sequence

0 −→ �U,V
ι−→ f∗f ∗

u−→ f∗g∗g∗f ∗,

we obtain the exact sequence

0 −→ �(W, ?) � �U,V −→ �(U ∩W, ?)
res−→ �(V ∩W, ?).

ForZ := (U\V )∩W, we have that�(W, ?)�U,V is isomorphic to HomOX
(OZ⊂X, ?).

By [21, Prop. 5.21], �(W,�U,V (I)) ∼= Hom•OX
(OZ⊂X, I) is exact. This is what we

wanted to prove.

4.4. Let (X, OX) be a ringed space and F ∈ K(Mod(X)). Then F is K-flabby
if and only if F is K-flabby as a complex of sheaves of abelian groups. To ver-
ify this, it suffices to show that if F is a K-injective complex in Mod(X) then F is
K-flabby as a complex of sheaves of abelian groups. Let G be an exact complex
of sheaves of abelian groups that is bounded above, and assume that each term of
G is a direct sum of sheaves of the form ZZ⊂X for some locally closed subset Z
of X. Since G is Z-flat, G′ = OX ⊗Z G is again exact. Thus

Hom•Z(G, F) ∼= Hom•OX
(G′, F)

is exact by the K-injectivity of F. Hence F is K-flabby as a complex of sheaves of
abelian groups.

Similarly, a complex of OX-modules on a ringed site (X, OX) is K-limp if and
only if it is K-limp as a complex of sheaves of abelian groups.

4.5. Lemma [21, Prop. 5.15]. Let f : X → Y be a continuous map between
topological spaces. If F is a K-flabby complex of sheaves of abelian groups, then
so is f∗F.

Similarly, if f : Y → X is an admissible continuous functor (see [9. (2.8)]) be-
tween sites and if F is a K-limp complex of sheaves of abelian groups on X, then
f # F is also K-limp; see [9, Lemma 3.31].
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4.6. Lemma. Let X be a topological space, U an open subset of X, and F a
K-flabby (resp. K-limp) complex of abelian groups. Then F|U is again K-flabby
(resp. K-limp).

Proof. Let ϕ : F→ I be a K-injective resolution, and let i : U ↪→ X be the inclu-
sion. Since i∗ has an exact left adjoint i!, it follows that i∗I isK-injective. Because
i∗ is exact, i∗ϕ : i∗F→ i∗I is a K-injective resolution. Let J be the mapping cone
of ϕ. It suffices to show that, for any locally closed subset Z (resp. open subset V )

of U, �Z(U, i∗J) (resp. �(V, i∗J)) is exact. But this is trivial, since �Z(U, i∗J) ∼=
�Z(X, J) (resp. �(V, i∗J) ∼= �(V, J)).

4.7. Lemma. Let X be a topological space, and let U,V,W,W ′ be open subsets
of X such that V ⊂ U and W ′ ⊂ W. Set Z := W \W ′. Let F be a flabby sheaf of
abelian groups on X. Then the canonical map

�Z∩U(X,F )→ �Z∩V (X,F )

is surjective.

Proof. Let α ∈ �Z∩V (X,F ) = Ker(�(W ∩V,F )→ �(W ′ ∩V,F )). Then there
is a unique section α̃ ∈ �((W ′ ∩ U) ∪ (W ∩V ),F ) such that the restriction of α̃
to W ∩ V is α and the restriction of α̃ to W ′ ∩ U is zero. Because F is flabby,
α̃ is extended to an element β of �(W ∩ U,F ). Then β ∈ Ker(�(W ∩ U,F ) →
�(W ′ ∩U,F )) = �Z∩U(X,F ), and the restriction of β toW ∩V is α. This shows
that the canonical map

�Z∩U(X,F )→ �Z∩V (X,F )

is surjective.

4.8. Lemma (cf. [6, Lemma 1.6]). Let the notation be as in Section 3.1. Let I

be a K-flabby complex in Mod(X). Then �U,V I is again K-flabby.

Proof. We may assume that X is a single scheme.
Let W ′ ⊂ W ⊂ X be open subsets and let Z := W \W ′. As in the proof of

Proposition 4.3, it is easy to check that �Z(X, ?) ��U,V is isomorphic to the kernel
of the map

�(U ∩W, ?)→ �(V ∩W, ?)⊕ �(U ∩W ′, ?).

Since this map factors through the injective map

�((V ∩W) ∪ (U ∩W ′), ?)→ �(V ∩W, ?)⊕ �(U ∩W ′, ?),

�Z(X, ?) � �U,V is isomorphic to �E(X, ?), where E is the locally closed subset
(U ∩W) \ ((V ∩W) ∪ (U ∩W ′)) = (U \V ) ∩ (W \W ′).

First we consider the case where I is strictly injective (i.e., K-injective with each
term injective). Then

0 −→ �U,V I
ι−→ f∗f ∗I

u−→ f∗g∗g∗f ∗I −→ 0 (6)

is exact, since each term of I is flabby. By Lemma 4.5 and Lemma 4.6, f∗f ∗I
and f∗g∗g∗f ∗I are K-flabby. Therefore, the (−1)-shift of the mapping cone of
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u : f∗f ∗I→ f∗g∗g∗f ∗I is a K-flabby resolution of �U,V I. So to verify that �U,V I

is K-flabby, it suffices to show that (6) remains exact after applying �Z(X, ?)
for any locally closed subset Z of X. Applying �Z(X, ?) to (6) and letting E =
(U \V ) ∩ Z, we derive the sequence

0 −→ �E(X, I) −→ �U∩Z(X, I) −→ �V∩Z(X, I) −→ 0, (7)

which is exact by Lemma 4.7, as can be seen easily. This finishes the case where
I is strictly injective.

Next consider the general case. Let ϕ : I→ J be a strictly injective resolution,
which exists because Mod(X) is Grothendieck (see [3]). Since �U,V J is K-flabby,
it suffices to show that, for any locally closed subset Z of X, �Z(X,�U,V I) →
�Z(X,�U,V J) is a quasi-isomorphism. Letting K be the mapping cone of ϕ,
it thus suffices to show that �Z(X,�U,V K) is exact. But this is trivial, since
�Z(X,�U,V K) ∼= �E(X, K) and K is K-flabby exact (again, E = (U \V ) ∩ Z).

4.9. Lemma. Let X be a topological space, and let F be a complex of sheaves of
abelian groups. If F is K-limp and if each term of F is flabby, then F is K-flabby.

Proof. Let ϕ : F → I be a strictly injective resolution. Observe that I is K-limp
and that each term of I is flabby. So, replacing F by the mapping cone of ϕ, we
may assume that F is exact; we must prove that �Z(X, F) is exact for any locally
closed subset Z of X. Let V ⊂ U ⊂ X be open subsets of X such that U \V = Z.

Since each term of F is flabby,

0→ �Z(X, F)→ �(U, F)→ �(V, F)→ 0

is a short exact sequence of complexes. Since F is K-limp exact, �(U, F) and
�(V, F) are exact. Hence �Z(X, F) is also exact.

4.10. Lemma. With notation as in Section 3.1, there exists a triangle of the form

R�U,V
ι−→ Rf∗f ∗

u−→ Rf∗Rg∗g∗f ∗ −→ R�U,V [1].

Proof. Let I be a K-limp complex with each term of I flabby. Then there is a short
exact sequence of complexes

0 −→ �U,V I
ι−→ f∗f ∗I

u−→ f∗g∗g∗f ∗I −→ 0.

The lemma follows immediately.

4.11. Corollary. Let notation be as before. If f and g are quasi-compact, then
R�U,V (DLqc(X)) ⊂ DLqc(X). If f and g are quasi-compact Cartesian and if X
has flat arrows, then R�U,V (DQch(X)) ⊂ DQch(X).

Proof. This follows from Lemma 4.10, [9, Lemma 8.5], [9, Lemma 8.7], and [9,
Lemma 8.20].

4.12. Lemma. Given the notation of Section 3.1, assume that f : U ↪→ X and
g : V ↪→ U are quasi-compact. If X is quasi-compact and if I is finite, then
R�U,V : DLqc(X)→ DLqc(X) is way-out in both directions (see [7, (I.7)]).
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Proof. The statement is obvious by [9, Lemma 8.5] and Lemma 4.10.

4.13. Lemma. Let J be a subcategory of I. Then the canonical functor

ζ : R(�UJ,VJ (?)J)→ R�UJ,VJ (?)J

is an isomorphism.

Proof. This follows because, if I is a strictly injective complex of Mod(X), then
IJ is K-flabby.

Lemma 4.13 yields the isomorphism

R�UJ,VJ (?)J
ζ−1−→ R(�UJ,VJ (?)J)

Rγ̂−→ R((?)J�U,V )
ζ−→ (?)JR�U,V ,

which we denote simply by γ̂.

4.14. Lemma. Let the notation be as in Section 3.5. Then the canonical map
ζ : R(�U,V h∗)→ R�U,VRh∗ is an isomorphism.

Proof. Let I be a K-injective complex of OX ′ -modules. Then h∗I is K-flabby
by Lemma 4.5. Hence h∗I is �U,V -acyclic by Proposition 4.3, and the assertion
follows.

4.15. By Lemma 4.14, the canonical map

R�U,VRh∗
ζ−1−→ R(�U,V h∗)

γ̄−→ R(h∗�U ′,V ′)
ζ−→ Rh∗R�U,V ′ ,

which we denote by γ̄, is defined.

4.16. Lemma. With notation as in Section 3.5, the canonical map

ζ : R(h∗�U ′,V ′)→ Rh∗R�U ′,V ′

is an isomorphism.

Proof. If I is a strictly injective complex of OX ′ -modules then, by Lemma 4.8,
�U ′,V ′I is K-flabby. The lemma follows immediately.

4.17. Corollary (independence theorem; cf. [2, (4.2.1)]). Let notation be as in
Section 3.5, and assume that (a) and (b) in the diagram (2) are Cartesian. Then γ̄ :
R�U,VRh∗ → Rh∗R�U ′,V ′ is an isomorphism.

Proof. This follows immediately from Lemma 4.16 and Lemma 3.6.

4.18. With notation as in Section 3.1, let W ⊂ V be an open subdiagram of
schemes and let h : W ↪→ V be the inclusion. Let I be a complex in Mod(X).

Assume that each term of Ii is flabby for any i ∈ I. Then the diagram
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0

��

0

��

0

��

�V,W I

d−1cι

��

0 �� �U,V I
ι ��

γ̄

��

f∗f ∗I
u ��

id

��

f∗g∗g∗f ∗I ��

u

��

0

0 �� �U,W I
ι �� f∗f ∗I

��

uu �� f∗g∗h∗h∗g∗f ∗I

��

�� 0

0 0

is commutative with exact rows and columns, where d−1cι is the composite

�V,W
ι−→ (fg)∗(fg)∗

c−→ f∗g∗(fg)∗
d−1−−→ f∗g∗g∗f ∗.

Utilizing the snake lemma, it is easy to see that the sequence

0 −→ �U,V I
γ̄−→ �U,W I

γ̄−→ �V,W I −→ 0

is exact. Thus we have a triangle

R�U,V

γ̄−→ R�U,W

γ̄−→ R�V,W
δ̂−→ R�U,V [1],

where δ̂ is induced by

�V,W ↪→ Cone(�U,W

γ̄−→ �V,W)
γ̄←−
�
�U,V [1]

and � denotes a quasi-isomorphism.

5. Quasi-flabby Sheaves

5.1. The following definition is due to Kempf [16], although we make a slight
modification here.

5.2. Definition. Let X be a topological space. A presheaf M of abelian groups
on X is said to be quasi-flabby if the restriction map �(U, M)→ �(V, M) is sur-
jective for any quasi-compact open subsets U and V such that U ⊃ V.

Note that a flabby sheaf is quasi-flabby. For the sake of completeness, we list
Kempf’s results for this modified definition.

5.3. Lemma [16]. Let X be a topological space such that the intersection of two
quasi-compact open subsets is again quasi-compact. Let
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0→ L→M→ N → 0

be a short exact sequence of sheaves of abelian groups. If L is quasi-flabby and
U is a quasi-compact open subset of X, then the sequence

0→ �(U, L)→ �(U, M)→ �(U, N )→ 0

is exact.

5.4. Corollary. Let X be as in the lemma. Let

0→ L→M→ N → 0

be a short exact sequence of sheaves of abelian groups. If L and M are quasi-
flabby, then so is N.

5.5. Corollary. Let X be as in Lemma 5.3. If L is quasi-flabby and U is a
quasi-compact open subset, then H i(U, L) = 0 for i > 0.

5.6. Lemma. Let f : X → Y be a continuous map of topological spaces. As-
sume that Y has an open basis consisting of quasi-compact open subsets and that
f −1(U) is quasi-compact if U is a quasi-compact open subset of Y. Assume, more-
over, that Y has an open covering (Uλ) such that, for any λ and quasi-compact
open subsets V,V ′ of f −1(Uλ), the intersection V ∩ V ′ is again quasi-compact.
Then, for a short exact sequence

0→ L→M→ N → 0

of sheaves of abelian groups on X with L quasi-flabby, the sequence

0→ f∗L→ f∗M→ f∗N → 0

is exact.

Proof. It suffices to show that (f |f −1(Uλ))∗M|f −1(Uλ)→ (f |f −1(Uλ))∗N |f −1(Uλ) is
surjective for each λ. Since L|f −1(Uλ) is quasi-flabby for each λ, we may assume
that, for any two quasi-compact open subsets V,V ′ of X, the intersection V ∩V ′
is quasi-compact, replacing f : X→ Y by f |f −1(Uλ) : f −1(Uλ)→ Uλ.

Because there is an open basis of Y consisting of quasi-compact open subsets,
it suffices to show that �(U, f∗M) → �(U, f∗N ) is surjective for any quasi-
compact open subset U of Y. Since f −1(U) is quasi-compact, this is Lemma 5.3.

5.7. Corollary. Let f : X → Y be as in the lemma. If L is a quasi-flabby
sheaf of abelian groups on X, then Rif∗L = 0 for i > 0.

Proof. The question is local on Y, and we may assume that, for any two quasi-
compact open subsets V,V ′ of X, V ∩ V ′ is again quasi-compact. Take a short
exact sequence of the form

0 −→ L −→ I p−→ L′ −→ 0
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with I injective. Because an injective sheaf is quasi-flabby, L′ is quasi-flabby by
Corollary 5.4.

We now use the induction on i. Note that

f∗I f∗p−−→ f∗L′ −→ R1f∗L −→ R1f∗I
is exact. Since I is injective, R1f∗I = 0. On the other hand, f∗p is surjective by
the lemma, so R1f∗L = 0.

Consider the case i ≥ 2. Then RiL ∼= Ri−1L′ = 0 by induction.

5.8. Lemma. Let X be a topological space. Assume that X has an open basis
consisting of quasi-compact open subsets. Let U be a quasi-compact open sub-
set of X, and let (Mλ) be a pseudo-filtered inductive system of sheaves of abelian
groups on X. Then the canonical map

lim−→�(U, Mλ)→ �(U, lim−→Mλ)

is an isomorphism.

5.9. Corollary. Let X be as in the lemma. Then a filtered inductive limit of
quasi-flabby sheaves is quasi-flabby.

5.10. Corollary. Let f : X→ Y be a quasi-compact morphism in P(I, Sch).
If (Mλ) is a pseudo-filtered inductive system of sheaves of abelian groups on X,
then the canonical map

lim−→ f∗Mλ→ f∗ lim−→Mλ

is an isomorphism.

Proof. By restriction, we may assume that the problem is on single schemes. Since
Y has an open basis consisting of quasi-compact open subsets, it suffices to show
that, for a quasi-compact open subset U of Y,

�(U, lim−→ f∗Mλ)→ �(U, f∗ lim−→Mλ) (8)

is an isomorphism. BecauseU and f −1(U) are quasi-compact, the canonical maps

lim−→�(U, f∗Mλ)→ �(U, lim−→ f∗Mλ)

and
lim−→�(f −1(U), Mλ)→ �(f −1(U), lim−→Mλ)

are isomorphisms by Lemma 5.8. Hence the map (8) is also an isomorphism, as
required.

5.11. Lemma. Let X ∈ P(I, Sch). Let U be an open subdiagram of X, and
let V be an open subdiagram of U. Assume that the inclusions f : U ↪→ X and
g : V → U are quasi-compact. Then, for a pseudo-filtered inductive system (Mλ)

of OX-modules, the canonical map

lim−→ �U,V Mλ→ �U,V lim−→Mλ

is an isomorphism.
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Proof. Consider the following commutative diagram with exact rows:

0 �� lim−→�U,V Mλ
ι ��

��

lim−→ f∗f ∗Mλ
u ��

��

lim−→ f∗g∗g∗f ∗Mλ

��

0 �� �U,V lim−→Mλ
ι �� f∗f ∗ lim−→Mλ

u �� f∗g∗g∗f ∗ lim−→Mλ .

The middle and the right vertical arrows are isomorphisms by Corollary 5.10. By
the five lemma, we are done.

5.12. Lemma. Let f : X→ Y be a concentrated morphism in P(I, Sch). Let I
be an OX-module such that I i is quasi-flabby for each i ∈ I. Then I is f∗-acyclic.

Proof. We may assume that the problem is on a single scheme. This case is Corol-
lary 5.7.

5.13. Lemma. Let X ∈ P(I, Sch). Let U be an open subdiagram of schemes
of X, and let V be an open subdiagram of schemes of U. Let f : U ↪→ X and
g : V ↪→ U be inclusions. Assume that f and g are concentrated. If M is a
quasi-flabby sheaf of abelian groups on X, then

0 −→ �U,V M ι−→ f∗f ∗M u−→ f∗g∗g∗f ∗M −→ 0

is exact.

Proof. It suffices to show that, for a quasi-compact open subset W of X, the re-
striction �(U ∩W, M)→ �(V ∩W, M) is surjective. This is trivial.

5.14. Corollary. Let notation be as in the lemma. Then M is �U,V -acyclic.

Proof. Note that f ∗M is quasi-flabby and hence is f∗-acyclic. Similarly, g∗f ∗M
is (fg)∗-acyclic. The lemma follows from the long exact sequence

0 −→ �U,V M ι−→ f∗f ∗M u−→ f∗g∗g∗f ∗M
−→ H 1

U,V M −→ R1f∗f ∗M −→ R1(fg)∗(fg)∗M −→ · · · ,
in which u : f∗f ∗M→ f∗g∗g∗f ∗M is surjective.

5.15. Let A be an abelian category and C a complex in A. For n∈Z , we define
τ≤nC to be the truncated complex

· · · → Cn−2 → Cn−1→ Ker d n→ 0.

Similarly, τ≥nC is defined to be the complex

0→ Coker d n−1→ Cn+1→ Cn+2 → · · · ,
which is quasi-isomorphic to C/τ≤n−1C.
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5.16. Lemma (cf. [17, (3.9.3.1)]). Let X, f : U → X, and g : V → U be as in
Lemma 5.13. Let (Cα) be a pseudo-filtered inductive system of complexes of OX-
modules such that, for each j ∈ I, there exists some nj ∈Z such that τ≤nj−1(Cα)j
is exact for any α. Set C = lim−→Cα. Then the canonical map

lim−→H i
U,V Cα → H i

U,V C (9)

is an isomorphism for i ∈Z.

Proof. We may assume that the problem is on single schemes. Let n be an integer
such that τ≤n−1Cα is exact for any α.

As in the proof of [17, (3.9.3.1)], let τ≥nCα → Fα be the Godement resolution
so that we have a composite quasi-isomorphism Cα → τ≥nCα → Fα. Observe
that each term ofFα is flabby. In particular, this is a�U,V -acyclic resolution. Then,
taking the inductive limit, we have a quasi-isomorphism C → F := lim−→Fα. Note
that each term of F is quasi-flabby by Corollary 5.9. Hence this is also a �U,V -
acyclic resolution.

As a result, the map (9) is nothing but the composite

lim−→H i(�U,VFα)
∼=−→ H i(lim−→ �U,VFα)

∼=−→ H i(�U,V lim−→Fα) = H i(�U,VF ),

where the second ∼= is an isomorphism by Lemma 5.11. This is what we wanted
to prove.

6. Flat Base Change of Local Cohomology of Diagrams

6.1. Let the commutative diagram (2) be as in Section 3.5. Assume that h is flat.
Then there is a canonical composite map

h∗R�U,V

ζ−1−→ R(h∗�U,V )
Rδ̄−→ R(�U ′,V ′h

∗)
ζ−→ R�U ′,V ′h

∗,

which we denote by δ̄.

6.2. Lemma. Let notation be as before. If h is an open immersion, then

ζ : R(�U ′,V ′h
∗)→ R�U ′,V ′h

∗

is an isomorphism.

Proof. Let I be a K-injective complex of OX-modules. Then, by Lemma 4.6, h∗I
is K-flabby and hence is �U ′,V ′ -acyclic. The assertion follows.

6.3. Corollary. Let the commutative diagram (2) be as in Section 3.5. If
h is locally an open immersion and if (a) and (b) are Cartesian in (2), then
δ̄ : h∗R�U,V → R�U ′,V ′h

∗ is an isomorphism.



Local Cohomology on Diagrams of Schemes 409

Proof. For i ∈ I, the diagram

h∗iR�Ui,Vi(?)i
γ̂

��

δ̄

��

h∗i (?)iR�U,V
θ �� (?)ih∗R�U,V

(?)i δ̄

��

R�U ′
i
,V ′

i
h∗i (?)i

θ �� R�U ′
i
,V ′

i
(?)ih∗

γ̂
�� (?)iR�U ′,V ′h

∗

is commutative by Lemma 3.8. It suffices to show that the right vertical arrow
(?)i δ̄ is an isomorphism. For this we need only show that the left vertical arrow
δ̄ : h∗iR�Ui,Vi(?)i → R�U ′

i
,V ′

i
h∗i (?)i is an isomorphism. Hence we may assume that

the problem is on single schemes.
First assume that h is an open immersion. Then the assertion follows immedi-

ately from Lemma 6.2 and Lemma 3.15.
Now consider the general case. Take an open covering

⋃
λWλ of X ′ such that

h|Wλ
is an open immersion for each λ. It suffices to show that j ∗δ̄ : j ∗h∗R�U,V →

j ∗R�U ′,V ′h
∗ is an isomorphism for each λ, where j : W = Wλ→ X ′ is the inclu-

sion. However, the diagram

j ∗h∗R�U,V
d−1

��

j∗ δ̄
��

(hj)∗R�U,V

δ̄

��

j ∗R�U ′,V ′h
∗ δ̄ �� R�W∩U ′,W∩V ′j ∗h∗

d−1
�� R�W∩U ′,W∩V ′(hj)∗

is commutative by Lemma 3.17, and the all arrows except for j ∗δ̄ are isomor-
phisms by what we have already proved. Hence j ∗δ̄ is also an isomorphism, as
desired.

6.4. Lemma (cf. [17, (3.9.3.2)]). Let X, f : U → X, and g : V → U be as
in Lemma 5.13. Let (Cα) be a pseudo-filtered inductive system of complexes in
Mod(X). Assume one of the following:

(a) U is locally Noetherian and, for each i ∈ I, Ui admits an open covering (Uα)

such that each Uα is of finite Krull dimension;
(b) Cα has locally quasi-coherent cohomology groups for each α;
(c) for each j ∈ I, there exists some nj ∈ Z such that τ≤nj−1(Cα)j is exact for

any α.

Then the canonical map
lim−→H i

U,V Cα → H i
U,V C

is an isomorphism for i ∈Z , where C = lim−→Cα.

Proof. The case when (c) is satisfied is Lemma 5.16. We consider the case where
(a) or (b) is satisfied. By restriction, we may assume that the problem is on a sin-
gle scheme. Also, we may assume by Corollary 6.3 that X is an affine scheme.
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If we assume (a) (resp. (b)) then there exists some d0 ∈ Z such that—for any
i ∈ Z , any d ≥ d0, and any complex D in Mod(X) (resp. any complex D in
Mod(X) with quasi-coherent cohomology groups)—Rif∗f ∗(τ≤i−dD) = 0 and
Ri(gf )∗(gf )∗(τ≤i−dD) = 0; see [17, Remarks in (3.9.3.2)]. This implies that
H i

U,V (τ
≤i−dD) = 0 for any i ∈ Z , any d ≥ d0 + 1, and any complex D in

Mod(X) (resp. any complex D in Mod(X) with quasi-coherent cohomology).
Hence H i

U,V (D)→ H i
U,V (τ

≥i−dD) is an isomorphism for d ≥ d0. The square

lim−→H i
U,V (Cα)

∼= ��

��

lim−→H i
U,V (τ

≥i−d0Cα)

��

H i
U,V (C)

∼= �� H i
U,V (τ

≥i−d0C)

is commutative and so, replacingCα by τ≥i−d0Cα , we may assume that there exists
some n∈Z such that τ≤n−1Cα is exact for each α. This is the case where (c) is as-
sumed, and we are done.

6.5. Corollary (cf. [17, (3.9.3.3)]). Let X, f : U → X, and g : V → U be as
in Lemma 6.4. Let (Cα) be a small family of complexes in Mod(X). If one of (a),
(b), or (c) in the lemma is satisfied, then the canonical map

⊕
α

R�U,V Cα → R�U,V

(⊕
α

Cα

)

is an isomorphism.

6.6. Corollary. Let X, f : U → X, and g : V → U be as in Lemma 6.4. If X
is concentrated, then R�U,V : DLqc(X)→ DLqc(X) has a right adjoint.

Proof. Note that DLqc(X) is compactly generated by [9, Lemma 17.1]. The corol-
lary follows from Corollary 6.5 and Neeman’s theorem [19, Theorem 4.1].

6.7. Corollary (cf. [17, 3.9.3.4)]). Under the assumptions of Lemma 6.4, if
each Cα is �U,V -acyclic then C is �U,V -acyclic.

Proof. By assumption, H i(�U,V Cα)→ H i
U,V Cα is an isomorphism for each i ∈

Z and α. Taking the inductive limit, the composite

H i(�U,V C) ∼= lim−→H i(�U,V Cα) ∼= lim−→H i
U,V Cα

∼= H i
U,V C

is an isomorphism, where the first ∼= is an isomorphism by Lemma 5.11 and the
last ∼= is an isomorphism by Lemma 6.4. Therefore, C is �U,V -acyclic.

6.8. Corollary (cf. [17, (3.9.3.5)]). Let X, f : U → X, and g : V → U be as
in Lemma 5.13. Let C be a complex in Mod(X), and assume one of the following.
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(a) U is locally Noetherian, Ui (i ∈ I ) admits an open covering (Uα) such that
each Uα is of finite Krull dimension, and each term of Ci (i ∈ I ) is quasi-
flabby;

(b) X is locally Noetherian and, for each i ∈ I, each term of Ci is an injective
object of Qch(Xi).

Then C is �U,V -acyclic.

Proof. Let C → I be a K-injective resolution. Then Ii is �Ui,Vi -acyclic for each
i ∈ I, since Ii is K-flabby. So it suffices to show that each Ci is �Ui,Vi -acyclic, and
we may assume that the problem is on single schemes.

In every case, each term Cn of C is �U,V -acyclic. Indeed, in case (a), this is
Corollary 5.14. In case (b) this is obvious, since an injective object of Qch(X) is
an injective object of Mod(X) [7, (II.7)]. Thus the truncated subcomplex

σ≥nC : · · · → 0→ 0→ Cn→ Cn+1→ · · ·
of C is �U,V -acyclic for any n ∈ Z. Since C ∼= lim−→ σ≥nC, the assertion follows
from Corollary 6.7.

6.9. Lemma. Let h : X ′ → X be a flat morphism between locally Noetherian
schemes. Let Y be a closed subscheme of X, and let I be an injective object of
Qch(X). Then h∗I is �Y ′ -acyclic, where Y ′ := h−1(Y ).

Proof. By [7, Thm. II.7.18], h∗I has an injective resolution J in Qch(X ′); it is an
injective resolution in Mod(X ′) as well (see [7, (II.7)]). Let I be the defining ideal
sheaf of Y. Then Y ′ is defined by IOY ′ . So, by Lemma 3.21 and [7, Prop. II.5.8],

Ri�Y ′(h
∗I) = H i(�Y ′(J)) ∼= H i(lim−→ HomOX ′(h

∗(OX/I n), J))

∼= lim−→ ExtiOX ′(h
∗(OX/I n),h∗I)

∼= lim−→ h∗(ExtiOX
(OX/I n, I)) = 0

for i > 0.

6.10. Theorem (flat base change; cf. [2, Thm. 4.3.2]). Let h : X ′ → X be a flat
morphism in P(I, Sch). Assume that X and X ′ are locally Noetherian. Let Y be
a Cartesian closed subdiagram of schemes of X, and let Z be a Cartesian closed
subdiagram of schemes of Y. Then the canonical map δ̄ : h∗R�Y ;Z → R�Y ′;Z ′h∗
is an isomorphism of functors from DLqc(X) to DLqc(X

′), where Y ′ = h−1(Y )

and Z ′ = h−1(Z).

Proof. By an argument similar to the proof of Corollary 6.3, we may assume that
the problem is on single schemes. Moreover, the question is local both on X and
X ′ by Corollary 6.3, so we may assume that both X = SpecA and X ′ = SpecB
are affine.

Now, by Lemma 4.12, �Y ;Z : DLqc(X)→ DLqc(X) and �Y ′;Z ′ : DLqc(X
′)→

DLqc(X
′) are way-out in both directions. By the way-out lemma [7, Prop. I.7.1],
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it suffices to show that δ̄ : h∗R�Y ;ZI → R�Y ′;Z ′h∗I is an isomorphism for an
injective object I of Qch(X).

Observe that δ̄ is the composite

h∗R�Y ;ZI ζ−1−→ R(h∗�Y ;Z)I Rδ̄−→ R(�Y ′;Z ′h∗)I ζ−→ R�Y ′;Z ′h∗I.
Hence it suffices to show that Rδ̄ and ζ are isomorphisms.

By Lemma 3.15, δ̄ : h∗�Y ;ZI → �Y ′;Z ′h∗I is an isomorphism. Since I is in-
jective in Mod(X) [7, (II.7)], it follows that Rδ̄ is an isomorphism.

To prove that ζ is an isomorphism, we need only prove thath∗I is�Y ′;Z ′-acyclic.
By Section 4.18, there is an exact sequence

· · · → H i
Z(h

∗I )→ H i
Y (h

∗I )→ H i
Y ;Z(h

∗I )→ H i+1
Z (h∗I )→ · · · .

By Lemma 6.9, H i
Y (h

∗I ) = 0 (i > 0) and H i
Z(h

∗I ) = 0 (i > 0). So

H i
Y ;Z(h

∗I ) = 0 for i > 0,

as desired.

7. Compatibility with G-invariance

7.1. Let S be a scheme, G a flat S-group scheme, and X an S-scheme with a triv-
ial G-action. As in [9, (30.1)], we denote the G-invariance functor Mod(G,X)→
Mod(X) by (?)G. By [9, Lemma 30.3], (?)G agrees with (?)−1R�M

, where R�M
:

Mod(G,X) = Mod(BM
G (X))→ Mod(B̃M

G (X)) is the right induction for B̃M
G (X)

the augmented diagram described in [9, (30.2)]. If G is concentrated over S, then
(?)G(Lqc(G,X)) ⊂ Qch(X). Note that B̃M

G (X)�M
= BM

G (X). As in [9, Sec. 29],
for a G-morphism f we let BM

G (f )∗ be simply denoted by f∗ and BM
G (f )∗ by f ∗,

et cetera.
We know that (?)G = (?)−1R�M

has an exact left adjoint (?)�M
L−1. Hence

(?)G : Mod(G,X)→ Mod(X)

preserves injectives and R(?)G : D(G,X)→ D(X) preserves K-injectives.
It seems that the following question is fundamental.

7.2. Question. Let I be an injective object of Qch(G,X). Then, for i > 0,
does Ri(?)GI = 0?

This is not obvious a priori, since the derived functor is computed in D(G,X).

7.3. Let f : X → Y be a morphism of S-schemes with trivial G-actions. Then
B̃M
G (f ) : B̃M

G (X)→ B̃M
G (Y ) is induced. Note that B̃M

G (f ) is Cartesian. The com-
posite isomorphism

e = ef : f∗(?)G = f∗(?)−1R�M

c−1−→ (?)−1B̃
M
G (f )∗R�M

ξ−→ (?)−1R�M
BM
G (f )∗ = (?)Gf∗

is induced (see [9, Cor. 6.26]).
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7.4. Moreover, the natural map

ε = εf : f ∗(?)G = f ∗(?)−1R�M

θ−→ (?)−1B̃
M
G (f )∗R�M

µ−→ (?)−1R�M
BM
G (f )∗ = (?)Gf ∗

is induced; see [9, (6.27)]. We distinguish ε from ε. Note that θ is an isomor-
phism by [9, (6.25)]. Exactly the same proof as in [9, (10.7)] shows that µ is an
isomorphism of functors from Lqc(G,Y ) to Qch(X), provided f is flat and G is
concentrated over S. Similarly, µ is an isomorphism of functors from Mod(G,Y )
to Mod(X) if f is locally an open immersion. Thus we have the following result.

7.5. Lemma. Let f : X→ Y be an S-morphism between S-schemes with trivial
G-actions. If f is flat and G is concentrated over S, then

ε : f ∗(?)G→ (?)Gf ∗

is an isomorphism between functors from Lqc(G,Y ) to Qch(X). If f is locally
an open immersion, then ε is an isomorphism between functors from Mod(G,Y )
to Mod(X).

7.6. Lemma. Let f : X→ Y be as in Section 7.3. Then the diagram

(?)G
u ��

id

��

f∗f ∗(?)G

eε

��

(?)G
u �� (?)Gf∗f ∗

is commutative.

Proof. We need to prove that the composite

(?)−1R�M

u−→ f∗f ∗(?)−1R�M

θ−→ f∗(?)−1B̃
M
G (f )∗R�M

µ−→ f∗(?)−1R�M
f ∗

c−1−→ (?)−1B̃
M
G (f )∗R�M

f ∗
ξ−→ (?)−1R�M

f∗f ∗

agrees with u. Since c−1µ in the displayed composition agrees with µc−1 by the
naturality of c−1, it suffices to show that the composite

(?)−1
u−→ f∗f ∗(?)−1

θ−→ f∗(?)−1B̃
M
G (f )∗ c−1−→ (?)−1B̃

M
G (f )∗B̃M

G (f )∗ (10)

agrees with u and that the composite

R�M

u−→ B̃M
G (f )∗B̃M

G (f )∗R�M

µ−→ B̃M
G (f )∗R�M

f ∗
ξ−→ R�M

f∗f ∗ (11)

agrees with u.

By [9, Lemma 1.24], (10) agrees with u; (11) agrees with u by the commutativ-
ity of the diagram
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R�M

u

��������������
u �� R�M

f∗f ∗

u

�������������

ξ−1

��

g∗g∗R�M

u ��

��

µ

��

g∗g∗R�M
f∗f ∗

ξ−1

��

g∗g∗g∗R�M
f ∗

ε

��

g∗R�M
f ∗u��

ξ

��

id

�������������

g∗R�M
f ∗ ξ

�� R�M
f∗f ∗,

where g = B̃M
G (f ).

7.7. Let X be a G-scheme, U a G-stable open subscheme of X, and V a G-stable
open subscheme of U. The local section functor �BM

G
(U),BM

G
(V ) : Mod(G,X) →

Mod(G,X) is simply denoted by �U,V and is called the equivariant local section
functor. The right derived functor Ri�U,V is denoted by H i

U,V and is called the
equivariant local cohomology. For a G-stable closed subscheme Y of X and a
G-stable closed subscheme Z of Y, the local section functor �BM

G
(Y );BM

G
(Z) is sim-

ply denoted by �Y ;Z. As usual, �Y ;∅ is denoted by �Y . The derived functor Ri�Y ;Z
is denoted by H i

Y ;Z , and Ri�Y is denoted by H i
Y .

7.8. Let X be an S-scheme with a trivial G-action. Let U be an open subscheme
of X, and let V be an open subscheme of U. Let f : U ↪→ X be the inclusion, and
let g : V ↪→ U be the inclusion.

By Lemma 7.6, we have a commutative diagram with exact rows:

0 �� �U,V (?)G
ι �� f∗f ∗(?)G

u ��

eε

��

f∗g∗g∗f ∗(?)G

eeεε

��

0 �� (?)G�U,V
ι �� (?)Gf∗f ∗

u �� (?)Gf∗g∗g∗f ∗.

(12)

Hence there is a unique natural map

E : �U,V (?)
G→ (?)G�U,V

such that ιE = eει.

By Lemma 7.5, the vertical maps in (12) are isomorphisms. Consequently, E is
an isomorphism.

8. G-local G-schemes

Let S be a scheme, G a flat S-group scheme concentrated over S, and X a G-
scheme (i.e., an S-scheme with a left G-action).
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8.1. Let ι : Y ↪→ X be a subscheme. We denote the composite

G× Y
1G×ι−−→ G×X

a−→ X

by aY , where a is the action. If aY factors through Y, then we say that Y isG-stable.
In this case, Y has a unique G-scheme structure such that ι is a G-morphism.

The scheme-theoretic image of aY is denoted by Y ∗. If ι is quasi-compact,
then Y ∗ is the smallest closed G-stable subscheme of X containing Y (see [8,
Lemma 2.1.5]).

8.2. A closed subscheme Y of X is G-stable if and only if Y = Y ∗. Let (Yλ)λ∈E
be a family of closed subschemes of X. If Yλ is defined by a quasi-coherent ideal
sheaf Iλ, then the sum

∑
λ Iλ is also a quasi-coherent ideal sheaf and it defines the

intersection
⋂

λ Yλ (i.e., the direct product of Yλ in the category of X-schemes; it
is also the usual intersection, set theoretically). If each Yλ is G-stable, then

⋂
Yλ

is also G-stable. The complement of a G-stable closed subscheme is a G-stable
open subset.

8.3. The intersection of finitely many G-stable open subsets is G-stable. More-
over, the union of G-stable open subsets is G-stable. Letting a G-stable open
subset open, we can define a topology on X. We call this topology the G-Zariski
topology.

If X is quasi-compact with respect to the G-Zariski topology, we say that X is
G-quasi-compact. Since the G-Zariski topology is coarser than the Zariski topol-
ogy, a quasi-compact G-scheme is G-quasi-compact.

Let U be a G-stable open subset of X, and let Y be X \ U with the reduced
structure. It is easy to verify that Y ∗ does not intersect U (so Y ∗ = Y, set the-
oretically). Note that Y ∗ is G-stable, and hence U has a G-stable complement
Y ∗. Thus a closed subset in the G-Zariski topology is nothing but an underlying
subset of some G-stable closed subscheme. If Y is an open or closed G-stable sub-
scheme of X, then the G-Zariski topology of Y agrees with the induced topology
of Y induced by the G-Zariski topology of X. If f : X→ X ′ is a G-morphism of
G-schemes, then f is continuous with respect to the G-Zariski topologies.

8.4. Lemma. If X is G-quasi-compact and if Y is a G-stable closed subscheme
of X, then there exists a minimal nonempty closed G-subscheme of Y.

Proof. Observe that Y is G-quasi-compact, since it is a closed subset of quasi-
compact X, with respect to the G-Zariski topology. Let F be the set of nonempty
G-stable closed subschemes of Y. For Z,Z ′ ∈F, we say that Z ≤ Z ′ if Z ⊃ Z ′.
Then, by Zorn’s lemma, F has a maximal element and the proof is complete.

8.5. Lemma. Assume that G → S is universally open. Then any x ∈ X has a
quasi-compact G-stable open neighborhood.

Proof. LetU be an affine open neighborhood of x. Because the action a : G×X→
X is an open map, UG := a(G × U) is open; it is also G-stable, as can be seen
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easily. Since U is quasi-compact and since G is quasi-compact over S, it follows
that G× U is quasi-compact. Hence UG is quasi-compact. Now UG ⊃ U is ob-
vious, so UG is the desired open neighborhood of x.

Since we assume that G is flat, if G is locally of finite presentation over S then
G→ S is universally open (see [5, (I.10.4)]).

8.6. Corollary. Let G → S be universally open. If X is G-quasi-compact,
then X is quasi-compact.

Proof. By Lemma 8.5, X has an open covering Uλ consisting of quasi-compact
G-stable open subschemes. By assumption, there exist λ1, . . . , λn such that X =⋃n

i=1Uλi . Because each Uλi is quasi-compact, X is quasi-compact.

8.7. A topological space � is said to be local if it has a unique minimal nonempty
closed subset—say, H. In this case, we say that (�,H) is local.

8.8. Lemma. Let � be a topological space. Then the following statements are
equivalent.

(i) � is local.
(ii) � is nonempty and, if (Fλ) is a nonempty family of nonempty closed subsets

of �, then
⋂

Fλ is nonempty.
(iii) � is nonempty and, for any open covering (Uλ) of �, there exists some λ

such that X = Uλ.

In particular, a local topological space is nonempty and quasi-compact.

Proof. (i)⇒ (ii): Let (�,H) be local. Then � ⊃ H != ∅. Moreover,
⋂

λ Fλ ⊃
H != ∅.

(ii)⇒ (i): Let F be the set of nonempty closed subsets of �. Then
⋂

F∈F F is
the desired unique minimal nonempty closed subset of �.

(ii)⇔ (iii): This is trivial.

8.9. Corollary. If f : � → � ′ is a surjective continuous map of topological
spaces and if � is local, then � ′ is local. If (�,H) is local then (� ′,H′) is local,
where H′ is the closure of f(H).

Proof. Since f is a map and � is nonempty, it follows that � ′ is nonempty. Let
F′ be a nonempty set of nonempty closed subsets of � ′. Then f −1(F ′) != ∅ for
F ′ ∈F′ by the surjectivity of f. Hence f −1

( ⋂
F ′∈F′ F ′

) = ⋂
f −1F ′ != ∅ by the

localness of �, so � ′ is local.
We prove the last assertion. Let (� ′,H′) be local. Because f is surjective,

f −1(H′) is a nonempty closed subset of � and hence f −1(H′) ⊃ H. Therefore,
the closure of f(H) is a nonempty closed subset of H′. By minimality, they agree.

8.10. Lemma. A T0-space � is local if and only if � is quasi-compact and has
exactly one closed point γ. In this case, (�, γ ) is local.
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Proof. We first prove the “only if” part. By Lemma 8.8, � is nonempty and quasi-
compact. A nonempty quasi-compact T0-space has a closed point, so � has at
least one closed point γ. However, a closed point is minimal nonempty closed.
Such a point must be unique, and the last assertion is also obvious.

For the “if” part, let F be a nonempty closed subset of �. Then F is a nonempty
quasi-compact T0-space and has a closed point. This closed point must be γ, so
γ is the unique minimal nonempty closed subset of �.

For x, y ∈ �, we define x ≡ y if x̄ = ȳ, where the bar denotes closure. The quo-
tient space �/≡ is called the T0-ification of �.

8.11. Lemma. Let π : �→ �0 be the T0-ification. Then � is local if and only if
�0 is local. If (�,H) and (�0,H0) are local, then π(H) = H0 and H = π−1(H0).

Proof. Because π is surjective and continuous, if � is local then �0 is local by
Corollary 8.9.

We prove the converse. Since �0 is nonempty and π is surjective, it follows that
� is nonempty. Let F be a nonempty set of nonempty closed subsets of �. Then,
for each F ∈F, we have F = π−1(π(F )). Because π is submersive (i.e., for any
subset F ′ of �0, F ′ is closed if and only if π−1(F ′) is closed), π(F ) is both closed
and nonempty. Therefore,

π

( ⋂
F∈F

F

)
= π

(
π−1

(⋂
π(F )

))
=

⋂
π(F ) != ∅.

Hence
⋂

F is nonempty and � is local.
Nowπ(H) = H0 follows from Corollary 8.9, sinceH0 is a point by Lemma 8.10.

Since H is closed, H = π−1(π(H)) = π−1(H0).

8.12. Lemma. For a scheme Z, the following statements are equivalent.

(i) The underlying topological space of Z is local.
(ii) Z is local; that is, Z ∼= SpecA for some local ring (A, m).

(iii) Z is quasi-compact and has a unique closed point z.

In this case, (Z, z) ∼= (SpecA, m) are local topological spaces.

Proof. (i)⇒ (ii): Let (Uλ) be an affine open covering of Z. Then Z = Uλ for
some λ by Lemma 8.8, soZ ∼= SpecA is affine. SinceZ is nonempty, A is nonzero
and has a maximal ideal. If A has two or more maximal ideals, then Z has two or
more closed points and then Z cannot be local. Hence A is a local ring.

(ii)⇒ (iii): This is obvious.
(iii)⇒ (i): This follows from Lemma 8.10, since a scheme is T0.

The last assertion is obvious.

8.13. Definition. We say that aG-schemeX isG-local if there is a unique min-
imal nonempty G-stable closed subscheme of X. If X is G-local and if Y is the
unique minimal nonempty G-stable closed subscheme, then we say that (X,Y ) is
G-local.
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8.14. Lemma. Let X be a G-scheme. Then the following are equivalent :

(i) X is G-local;
(ii) X is local in the G-Zariski topology.

In particular, a G-local G-scheme is G-quasi-compact. Moreover, if (X,Y ) is
G-local, then (X,Y ) is local in the G-Zariski topology.

Proof. (i)⇒ (ii): Let (X,Y ) be G-local. If F is a nonempty closed subset of X
in theG-Zariski topology, thenF is the underlying set of some nonemptyG-stable
closed subscheme of X. So F ⊃ Y, and (X,Y ) is local in the G-Zariski topology.

(ii)⇒ (i): LetY =⋂
F∈F F, whereF is the set of all nonemptyG-stable closed

subschemes of X. Then Y is nonempty by assumption, and (X,Y ) is G-local.

8.15. Corollary. If G → S is universally open, then a G-local G-scheme is
quasi-compact.

Proof. This follows immediately from the lemma and Corollary 8.6.

8.16. Corollary. Let f : X→ X ′ be a surjective G-morphism of G-schemes.
If X is G-local, then X ′ is G-local. Moreover, if f is concentrated, (X,Y ) is G-
local, and (X ′,Y ′) is G-local, then the scheme-theoretic image of f |Y is Y ′.

Proof. The first assertion is an immediate consequence of the theorem and Corol-
lary 8.9. We prove the last assertion. Since f is surjective, Y ⊂ f −1(Y ′). Thus
the scheme-theoretic image of f |Y is contained in Y ′. Because f is concentrated,
f |Y is also concentrated and hence the scheme-theoretic image of f |Y is G-stable
closed, since (f |Y )∗OY ∈ Qch(G,X ′). By the minimality of Y ′, the scheme-
theoretic image of f |Y agrees with Y ′.

Here are some examples of G-local G-schemes.

8.17. Example. Assume that G is trivial. Then the G-Zariski topology agrees
with the usual Zariski topology and, by Lemma 8.12, X is G-local if and only if
X is a local scheme.

8.18. Example. If S = Spec k for k a field, then (G,G) is G-local, where G acts
on G left regularly.

Proof. It suffices to show that, if Y is a nonempty G-stable closed subscheme of
G, then Y = G. Since Y is nonempty, Y has a geometric point η : SpecK →
Y. Taking the base change and replacing k by K, we may assume that Y has
a k-rational point y. Then G → G (g �→ gy) is an isomorphism and hence
Y = Y ∗ ⊃ {y}∗ = G.

8.19. Example. Let k be a field, let G be affine and of finite type, and let X be
a homogeneous space G/H for some closed subgroup scheme H of G. If S =
Spec k, then (X,X) is G-local. This example shows that, even if S and G are
affine, a G-local G-scheme X need not be affine in general.
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Proof. Let p : G→ X = G/H be the canonical projection. Then p is faithfully
flat and is surjective. Since (G,G) is G-local by Example 8.18, (X,X) is G-local
by Corollary 8.16.

8.20. Example. Let S = Spec Z and let G = Gn
m, the split torus over S. Let

X = SpecA be affine. Then A is a Zn-graded ring in a natural way [8, (II.1.2)].
By definition, X is G-local if and only if A is H -local in the sense of Goto and
Watanabe [4].

8.21. Example. Let S = Spec k with k an algebraically closed field, and let G
be a reductive group, B a Borel subgroup of G, and P a parabolic subgroup of
G containing B. A Schubert subvariety of G/P is a B-stable closed subvariety
by definition. The point P/P is the unique minimal Schubert subvariety (see [15,
Chap. 13]), and we have that (G/P,P/P ) is B-local.

8.22. Let S = Spec k with k a field. We say that G is geometrically reductive if
G is affine of finite type and if, for any finite-dimensional G-module V and any
v ∈ V G \ 0, there exist an r > 0 and an f ∈ (Symr V

∗)G such that f(v) != 0.
Moreover, if we can take r to be 1 (for anyV and v), then we say that G is linearly
reductive. If r can be taken to be 1 if the characteristic of k is zero, and a power of
p if the characteristic p of k is positive, then we say that G is strongly geometri-
cally reductive (SGR for short). By definition, a linearly reductive group scheme
is SGR. We can prove that G is geometrically reductive if and only if G is SGR
if and only if the radical of the linear algebraic group (k̄ ⊗k G)red is a torus if and
only if, for any finitely generated k-algebra A with a G-action, AG is finitely gen-
erated [10]. This last fact is probably well known for linear algebraic groups, but
we will not use it here and mainly consider the SGR property.

8.23. Assume that G and S = SpecR are affine. We say that A is a G-algebra if
A is an R-algebra and if a G-scheme structure of SpecA is given. This is equiv-
alent to saying that A is both an R-algebra and a G-module (whose underlying
R-module structures agree) and that the product A ⊗R A → A is G-linear. An
ideal I of A is called a G-ideal if SpecA/I is a G-stable closed subscheme of
SpecA or, equivalently, if I is a (G,A)-submodule of A.

8.24. Lemma. Let S = Spec k with k a field, and let G be an SGR k-group
scheme. Let A be a G-algebra, and let f ∈ (∑

λ Iλ
)G
. If Iλ is a family of G-ideals,

then there exists some q such that f q ∈∑
λ I

G
λ , where q is a power of p if the

characteristic of k is p > 0 and q = 1 if k is of characteristic 0.

Proof. See [18, Apx. to Chap. 1, C].

8.25. Let S and G be affine, and let A be a G-algebra. A maximal element of

{I | I is a G-ideal and I != A}
is said to be G-maximal. We say that A is G-local if A has a unique G-maximal
G-ideal. Note that A is G-local if and only if SpecA is G-local.
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8.26. Lemma. Let S and G be affine. If A is a G-algebra and if I != A is a G-
ideal, then there is a G-maximal ideal of A containing I.

Proof. Since X = SpecA is quasi-compact, it is also G-quasi-compact. Now ap-
ply Lemma 8.4.

8.27. Proposition. Let S = Spec k with k a field, and let G be SGR. Let A be
a G-algebra. If p∈ SpecAG, then Ap := A⊗AG AG

p is G-local.

Proof. Observe that (Ap)
G = AG

p. Replacing A by Ap, we may assume that
(AG, m) is a local ring; we are to prove that A is G-local.

Because AG is nonzero, A is nonzero. By Lemma 8.26, A has a G-maximal
ideal. Assume that A has two different G-maximal ideals I and J. Since 1 /∈ I and
1 /∈ J, it follows that I G ⊂ m and JG ⊂ m. On the other hand, I + J = A by
maximality. By Lemma 8.24, 1∈ I G + JG ⊂ m. This is a contradiction, so A is
G-local.

Note that, in the proposition, pAp may not be the G-maximal ideal. Indeed, if
G = Gm and A = k[x] with deg x = 1 and p = 0 ⊂ AG = k, then 0 = pAp is
not G-maximal, since (x) ⊂ A is a G-ideal.

9. A Generalization of a Special Case of a
Theorem of Hochster and Eagon

Let S, G, and X be as in Section 8. In this section, we give an application of equi-
variant local cohomology on a G-local G-scheme to invariant theory.

9.1. Lemma. Let S = Spec k with k a field, and let G be SGR. Let A be a G-
algebra. Assume that the canonical map π : SpecA → SpecAG is a geometric
quotient in the sense of [18]. Then, for any prime ideal p of AG, pAp and the
G-maximal ideal P of the G-local ring Ap have the same radical.

Proof. Because pAp is a G-ideal of Ap, we have P ⊃ pAp. Assume that
√
P !=√

pAp. Then there is an algebraically closed extension field K of κ(p) such that
(a) there are K-valued points ξ of V(P ) and η of V(pAp) \V(P ) and (b) the set
of K-valued points of V(pAp) constitutes one orbit with respect to the action of
G(K). But since V(P ) is G-stable and since ξ ∈ V(P )(K) and η /∈ V(P )(K), it
follows that ξ and η cannot be on the same orbit. This is a contradiction; hence√
P = √

pAp.

9.2. LetX be a locally NoetherianG-scheme and M a coherent (G, OX)-module.
Then HomOX

(M, M) is also a coherent (G, OX)-module, as can be seen easily
from [9, Lemma 6.33] and [9, Lemma 7.11]. The canonical map

OX → HomOX
(M, M)

is (G, OX)-linear. Hence the kernel ann M is a coherent G-ideal. Therefore,
Supp M = V(ann M) is a G-stable closed subscheme of X.
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9.3. Let (X,Y ) be a G-local G-scheme and assume that X is Noetherian. Let Z
be any irreducible component of Y, and let ζ be the generic point of Z.

9.4. Lemma. The functor (?)ζ : Qch(G,X)→ Mod(OX,ζ ) is faithfully exact.

Proof. Clearly, the restriction Qch(G,X) → Qch(X) is exact. Moreover, the
stalk functor (?)ζ : Qch(X)→Mod(OX,ζ ) is exact. Hence the composite is exact.

We prove that the functor in question is faithful. Assume the contrary, and
let M ∈ Qch(G,X), M != 0, and Mζ = 0. Then, since Qch(G,X) is locally
Noetherian and since a Noetherian object of Qch(G,X) is nothing more than a
coherent (G, OX)-module by [9, Cor. 11.8], there exists some nonzero coherent
(G, OX)-submodule N of M. Let V := Supp N. Then V is nonempty, closed,
and G-stable, so V ⊃ Y ⊃ Z ' ζ. Hence 0 = Mζ ⊃ Nζ != 0, and this is a
contradiction.

9.5. Theorem. Let k be a field, G a linearly reductive k-group scheme, and X a
Cohen–Macaulay Noetherian G-scheme. Let π : X→ Y be a geometric quotient
under the action of G in the sense of [18]. Assume that π is an affine morphism.
Then Y is Noetherian and Cohen–Macaulay.

Proof. Since π is surjective, Y is quasi-compact. It therefore suffices to show that
Y is locally Noetherian and Cohen–Macaulay. The question is local on Y, and we
may assume that Y = SpecA is affine.

Since π is affine, it follows that X = SpecB is also affine, and A = BG by
assumption. We remark that A is a direct summand subring of B because G is
linearly reductive. In particular, A is Noetherian since B is (see [14, Prop. 6.15]).

It remains to show that A is Cohen–Macaulay. Toward this end, we localize A

at one of its maximal ideals and so may further assume that (A, m) is local. Note
that π is still submersive after localization, since G is linearly reductive and A =
BG (see the proof of [18, Thm. 1.1]). By Proposition 8.27, X is G-local. Let Z be
the unique minimal nonempty closed G-subscheme of X.

Let y be the closed point of Y. Then

H i
y(OY ) ∼= H i(R�y((π∗OX)

G)).

Let J be the injective resolution of π∗OX in Qch(G,Y ). Then JG is an injec-
tive resolution of (π∗OX)

G in Qch(Y ), because (?)G : Qch(G,Y ) → Qch(Y ) is
exact and preserves injectives (since it has an exact left adjoint (?)�M

L−1). Any
injective object of Qch(Y ) is injective in Mod(Y ) by [7, (II.7)]. Hence we have
isomorphisms

H i
y(OY ) ∼= H i(�y JG) ∼= H i((�y J)G) ∼= (H i(�y J))G,

where the second isomorphism is by Section 7.8 and the third isomorphism is by
the exactness of (?)G on Qch(G,Y ) (note that �y J is a complex in Qch(G,Y ) by
Corollary 4.11).

Thus, to show that Y is Cohen–Macaulay it suffices to show that the cohomol-
ogy of the complex �y J is concentrated in one place. By Lemma 9.1, π−1(y) and
Z agree set theoretically. So, by Corollary 4.17,
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H i(�y J) ∼= H i(R�y(π∗OX)) ∼= H i(R�yRπ∗OX)

∼= H i(Rπ∗R�π−1(y)OX) = H i(Rπ∗R�ZOX).

Observe that

(?)ζH
i
Z(OX) ∼= H i((?)ζR�ZOX) ∼= H i

ζ (OX,ζ )

by Theorem 6.10. We have H i
ζ (OX,ζ ) = 0 for i != d (d := dim OX,ζ ), since OX,ζ

is a Cohen–Macaulay local ring. Since (?)ζ is faithfully exact by Lemma 9.4,
H i

Z(OX) = 0 for i != d. Let M := H d
Z(OX), and note that M is quasi-coherent.

Then
Rπ∗R�ZOX

∼= Rπ∗M[−d ] ∼= π∗M[−d ].

As a result,

H i(�y J) ∼= H i(Rπ∗R�ZOX) = H d−i(π∗M) = 0

for i != d. This is what we wanted to prove.

9.6. Corollary. Let k be an algebraically closed field, G a linearly reductive
k-group scheme, and X = SpecB a Cohen–Macaulay affine G-scheme of finite
type. Let π : X→ Y = SpecBG be the canonical morphism, and set

U := {x ∈X | dimO(x) is maximal and O(x) is closed},
where O(x) is the G-orbit of x. Then U is a G-stable open subset of X, and π(U)

is Cohen–Macaulay.

Proof. This follows easily from the theorem and [20, Prop. 3.8].

9.7. Corollary. Let k be a field, G a linearly reductive finite k-group scheme,
and B a Noetherian and Cohen–Macaulay G-algebra. Then BG is Noetherian
and Cohen–Macaulay.

The corollary is an immediate consequence of a theorem of Hochster and Eagon
[11, Prop. 12] (note that B is integral over BG; see the proof of Lemma 9.8 to fol-
low). Indeed, the case of G a finite group is stated in [11, Prop. 13] (however, they
do not assume that B contains a field, and our corollary is not a complete gener-
alization of [11, Prop. 13]). Corollary 9.7 is also obvious by Theorem 9.5 and the
following lemma.

9.8. Lemma. Let k be a field and let G be a finite k-group scheme. Let B be a G-
algebra. Then the canonical map π : SpecB → SpecBG is a geometric quotient.

Proof. Since G◦ (the identity component of G) is normal in G, it suffices to prove
that SpecB → SpecBG◦ and SpecBG◦ → Spec (BG◦)G/G◦ are geometric quo-
tients. Thus we may assume that G is either infinitesimal or étale.

Consider the case where G is infinitesimal. We may assume that the character-
istic p of k is positive, since any group scheme over a field of characteristic 0 is
reduced [22, Thm. 11.4]. Let H be the coordinate ring of G◦. Since G◦ is a point
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(set theoretically), H is an Artinian local ring. Let m be the maximal ideal of H,
and take e ≥ 1 sufficiently large so that mpe = 0. Then it is easy to see that bp

e ∈
BG for any b ∈ B. This shows that any base change of π is a homeomorphism
(note also that B is integral over BG). Hence π is a geometric quotient, as can be
checked easily.

Next consider the case where G is étale. We show that B is integral over BG. To
verify this, we may assume (by virtue of the base change) that k is algebraically
closed. In this case, G is a finite group. Then b ∈B is integral over BG, since b is
a root of the monic polynomial

∏
g∈G(t − gb)∈BG[t].

It remains to show that π is an orbit space. To verify this, we may assume that k
is algebraically closed again. ThusG is a finite group, and it must be SGR. Indeed,
let V be a finite-dimensional G-module and let v ∈ V G \ 0; then there is a linear
form ϕ ∈V ∗ such that ϕ(v) != 0. Let H be the trivial subgroup of G if the charac-
teristic of k is 0, and let H be a p-Sylow subgroup of G if the characteristic p of
k is positive. Let r be the order of H, and let {g1, . . . , gl} be a complete set of rep-
resentatives of G/H. Note that l is nonzero in k. Then f :=∑ l

i=1 gi
(∏

h∈H hϕ
)

is in (Symr V
∗)G, and f(v) = lϕ(v)r != 0.

Now assume that π is not a geometric quotient. Then there is an algebraically
closed field K with SpecK → SpecBG such that the geometric fiber SpecC has
twoK-rational pointsx andy on two differentG(K)-orbits, whereC := K ⊗BG B.

For any c ∈ CG, there exists some q such that cq ∈ K, where q = 1 when the
characteristic of k is 0 and where q is a power of p when the characteristic p of
k is positive. This can be seen easily from Lemma A.1.2 of [18, Apx. to Chap. 1,
C]. Therefore, CG is a ring with only one prime ideal.

On the other hand, Gx and Gy are closed orbits in SpecC, since x and y are
closed points and G is finite. By the choice of x and y, we have Gx ∩ Gy = ∅.
By Lemma 8.24 and the proof of [18, Thm. 1.1], x and y are mapped to different
points in SpecCG. This contradicts the fact that CG has only one prime ideal.

9.9. Assume that the characteristic of k is 0. In addition to the assumption of
Theorem 9.5, assume that X is of finite type over k and has rational singulari-
ties. Then Y is of finite type and has rational singularities by Boutot’s theorem [1],
which makes Theorem 9.5 unnecessary. Similarly, if the characteristic is positive
and X is F-regular, then Y is F-regular by Corollary 9.11.

However, if D is a nonreduced Artinian local G-algebra with residue field k that
is finite over k, then SpecD × X is still of finite type and Cohen–Macaulay but
does not have rational singularities, since it is not even reduced. By [18, Prop. 1.9],
SpecD × X admits an affine geometric quotient, which is Cohen–Macaulay by
Theorem 9.5.

The following theorem and its corollary are due to Hochster. We include proofs
because there is no appropriate reference.

9.10. Theorem. Let B be a ring and A its pure subring. If A is Noetherian then,
for any maximal ideal m of A, there exists some maximal ideal M of B such that
Am → BM is pure.
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Proof. We remark that Am → Bm is pure. By [13, (2.2)], there exists some max-
imal ideal M ′ = MBm of Bm (M = M ′ ∩ B) such that Am → (Bm)M′ = BM

is pure. Let M be a maximal ideal of B containing M. Since M lies on m (by
the purity) and since m is maximal, it follows that M also lies on m. So M ′ =
MBm ⊂ MBm != Bm. Since M ′ is maximal, MBm = MBm and hence M = M

is maximal.

9.11. Corollary. Let B be a Noetherian ring and A its pure subring. If B is
normal (resp. of prime characteristic and weakly F-regular or of prime charac-
teristic and F-regular), then so is A.

Proof. Recall that A is Noetherian [14, Prop. 6.15]. The assertion for F-regularity
follows from that for weak F-regularity by localization, so we consider normality
and weak F-regularity. Note that each property in the problem is local on max-
imal ideals (see [12, (4.15)]). Hence by Theorem 9.10 we may assume that both
A and B are local. Because weakly F-regular implies normal by [12, (5.11)], B is
a normal domain. Now the assertion for normality follows from [14, Prop. 6.15],
and the assertion for weak F-regularity follows from [12, (4.12)].

Added in proof. Related to Section 8.22, we refer the reader to Section 2 of
W. van der Kallen, A reductive group with finitely generated cohomology alge-
bras, Algebraic groups and homogeneous spaces, pp. 301–314, Tata Inst. Fund.
Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007.
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