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On Elliptic Dunkl Operators

Pavel Etingof & Xiaoguang Ma

1. Introduction

Elliptic Dunkl operators for Weyl groups were introduced in [BuFV]. Another
version of such operators was considered by Cherednik [C1], who used them to
prove the quantum integrability of the elliptic Calogero–Moser systems. The goal
of the present paper is to define elliptic Dunkl operators for any finite group W

acting on a (compact) complex torus X. (Although we work with a general finite
group W, the theory essentially reduces to the case when W is a crystallographic
reflection group [GeM, 5.1] because W can be replaced by its subgroup gener-
ated by reflections.) We attach such a set of operators to any topologically trivial
holomorphic line bundle L on X with trivial stabilizer in W and to any flat holo-
morphic connection ∇ on this bundle. When W is the Weyl group of a root system
and X is the space of homomorphisms from the root lattice to the elliptic curve,
our operators coincide with those of [BuFV]. We prove that the elliptic Dunkl op-
erators commute, and we show that the monodromy of the holonomic system of
differential equations defined by them gives rise to a family of |W |-dimensional
representations of the Hecke algebra Hτ(X,W) of the orbifold X/W defined in
[E]; conjecturally, this gives generic irreducible representations of this algebra. In
the case of Weyl groups, the algebra Hτ(X,W) is the double affine Hecke algebra
(DAHA) of Cherednik [C2], while in the case W = Sn � (Z/
Z)n (
 = 2, 3, 4, 6)
it is the generalized DAHA introduced in [EGO]. We reproduce known families
of representations of these algebras and also explain how to use the elliptic Dunkl
operators to construct representations from category O over the elliptic Cherednik
algebra—that is, the Cherednik algebra of the orbifold X/G defined in [E].

In future work we plan to use the elliptic Dunkl operators to construct new
quantum integrable systems. Namely, we expect that for any X and a complex
reflection group W acting on X there exists a commuting system of differential
operators L1, . . . ,Ld , where d = dimX, whose symbols are generators of the ring
of W -invariant polynomials on the tangent space to X at the origin. This system is
supposed to depend on the same collection of parameters (“coupling constants”)
as the elliptic Dunkl operators (except for the bundle L, on which it should be in-
dependent), and it should be obtained by appropriately symmetrizing the elliptic
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Dunkl operators and then degenerating the bundle L into the trivial bundle (fol-
lowing the idea outlined in [BuFV]). In the case when W is a Weyl group, this
system is the elliptic quantum Calogero–Moser system. We note that if W is not a
Weyl group then the integrable system L1, . . . ,Ld will be somewhat “unphysical”,
since it won’t have a second-order Hamiltonian.

2. Preliminaries

2.1. Finite Group Actions on Complex Tori

Let V be a finite-dimensional complex vector space. A nontrivial element g ∈
GL(V ) is called a reflection if it is semisimple and fixes a hyperplane in V

pointwise.
Let W be a finite subgroup of GL(V ), and let � ⊂ V be a lattice that is pre-

served by W. Then we have a W -action on the complex torus X = V/�. (Note
that we don’t assume that X is algebraic, i.e., an abelian variety. For example, if
W is a trivial group then � can be any lattice. However, in interesting examples X
is an abelian variety and, moreover, a power of an elliptic curve.) For any reflec-
tion g ∈W, let Xg be the set of x ∈X s.t. gx = x. A reflection hypertorus is any
connected component of Xg that has codimension 1. Let Xreg be the complement
of reflection hypertori in X.

Let H be a reflection hypertorus, and let WH ⊂ W be the stabilizer of a generic
point in H. Then WH is a cyclic group with order nH . The generator gH is the ele-
ment in WH with determinant exp(2π i/nH ). Let S denote the set of pairs (H, j),
where H is a reflection hypertorus and j = 1, . . . , nH − 1.

Under the gH -action, we have the decomposition

V = V gH ⊕VH ,

where V gH is the codimension-1 subspace of V with a trivial action of gH and
where VH = ((V ∗)gH )⊥, which is a gH -invariant 1-dimensional space. We also
have a similar decomposition on the dual space: V ∗ = (V ∗)gH ⊕V ∗

H .

2.2. Holomorphic Line Bundles on Complex Tori

Let us recall the theory of holomorphic line bundles on complex tori (see [Mu] or
[La] for more details).

Let X = V/� be a complex torus. Any holomorphic line bundle L on X is a
quotient of V × C by the � action:

γ : (z, ξ) �→ (z + γ,χ(γ, z)ξ),

where χ(γ, ·) : V → C
∗ is a holomorphic function s.t.

χ(γ1 + γ2, z) = χ(γ1, z + γ2)χ(γ2, z).

Denote by L(χ) the line bundle corresponding to χ.
Let V ∨ = Hom C̄(V, C) be the vector space of C-antilinear forms on V. We

have a nondegenerate R-bilinear form
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ω : V ∨ × V → R, ω(α, v) = Imα(v).

Then we define �∨ = {α ∈V ∨ | ω(α,�) ⊂ Z}. It is easy to see that �∨ is a lattice
in V ∨ and that we have the dual torus X∨ = V ∨/�∨.

To any element α ∈ X∨ we can associate a line bundle Lα = L(χα), where
χα(γ, z) = exp(2π iω(α, γ )). This is a topologically trivial line bundle on X.

Proposition 2.1. The map α �→ Lα is an isomorphism of groups

X∨ → Pic0(X).

Now suppose that a finite group W acts faithfully on V and preserves a lattice �.
By using the bilinear form ω, we can define the dual W -action on V ∨ that pre-
serves the dual lattice �∨. Hence we have an action of W on the complex torus X
and its dual X∨.

We define a W -action on Pic0(X) by

w : Lα �→ Lw
α = Lwα.

We have (Lg)h = Lhg.

2.3. The Poincaré Residue

Suppose α is a meromorphic 1-form on an n-dimensional complex manifold X

with a simple pole on a smooth hypersurface Z ⊂ X and no other singularities.
Near any point of Z, we can choose local coordinates (z1, . . . , zn) on X s.t. Z is
locally defined by the equation z1 = 0. Then α can be locally expressed as

α = 1

z1

n∑
i=1

βi(z1, . . . , zn) dzi,

where the βi are holomorphic. Then β1|Z is a holomorphic function onZ and does
not depend on the choice of coordinates. We define the Poincaré residue of α at Z
to be ResZ(α) = β1|Z.

More generally, let E be a holomorphic vector bundle on X, and let s be a mero-
morphic section of E ⊗T ∗X that has a simple pole on a smooth hypersurface Z ⊂
X and no other singularities. Similarly as before, we define the Poincaré residue
of s to be an element in �(Z, E |Z) denoted by ResZ(s).

3. Construction of Elliptic Dunkl Operators

3.1. The Sections f L
H,j

The goal of this subsection is to define certain meromorphic sections f L
H,j of the

bundle (Lg
j

H )∗ ⊗ L ⊗ V ∗
H that are used in the definition of elliptic Dunkl operators.

The line bundle (Lw
α )

∗ ⊗ Lα is topologically trivial, and it is holomorphically
trivial if and only if α is a fixed point ofw. BecauseW acts faithfully on V, we can
always find a point α ∈X∨ that is not fixed by any w ∈W ; in other words, there
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exists a topologically trivial line bundle L := Lα such that (Lw)∗⊗L is nontrivial
for any w ∈W. From now on, we fix such a line bundle.

Let H ⊂ X be a reflection hypertorus.

Lemma 3.1. For j = 1, . . . , nH −1, the holomorphic line bundle (Lg
j

H )∗ ⊗ L has
a global meromorphic section s with a simple pole on H and no other singulari-
ties. Such s is unique up to a scalar.

Proof. Let H̄ = {x ∈X | x+H = H }. Then H̄ is a complex torus. It is sufficient
to assume in the proof that H = H̄.

We have a short exact sequence of complex tori:

0 −→ H
µ−→ X

ν−→ E −→ 0,

where E = X/H is an elliptic curve. This sequence induces in turn a short exact
sequence for the dual tori:

0 −→ E∨ −→ X∨ −→ H∨ −→ 0,

which can be written, using the isomorphism of Proposition 2.1, as

1 −→ Pic0(E)
ν∗−→ Pic0(X)

µ∗−→ Pic0(H ) −→ 1.

Since µ∗((Lg
j

H )∗ ⊗ L) is trivial, there exists a topologically trivial line bundle
L′ on E such that ν∗L′ = (Lg

j

H )∗ ⊗ L. It is well known that L′ has a unique mero-
morphic section, up to a scalar, which has simple pole at zero. Then s = ν∗s ′ is
the required section of the bundle (Lg

j

H )∗ ⊗ L on X.
Now we prove the uniqueness of s up to a scalar. The section s can be viewed as

a global holomorphic section of the line bundle F = (Lg
j

H )∗ ⊗ L ⊗ O(H ). Since
O(H ) is the pullback of O(0) on E, it follows that F is the pullback of the bundle
L′ ⊗O(0) on E. Therefore, H 0(X, F ) � H 0(E, L′ ⊗O(0)) = C and s is unique
up to a scalar.

Now choose a nonzero element α ∈V ∗
H and consider s ⊗ α, where s is the global

meromorphic section described in Lemma 3.1. Then s ⊗ α is a global section of
the bundle (Lg

j

H )∗ ⊗ L ⊗ V ∗
H . Its only singularity is a simple pole at H, and it is

defined by this condition uniquely up to scaling.
Next, observe that since X is a torus, the bundle T ∗X is canonically trivial, and

we can canonically identify the fibers of T ∗X with V ∗. Thus we may consider
the Poincaré residue ResH (s⊗α), which is an element in �(H, ((Lg

j

H )∗ ⊗ L)|H ).
Since ((Lg

j

H )∗ ⊗ L)|H is trivial, ResH (s ⊗ α) is a holomorphic function on H ;
since H is compact, ResH (s ⊗ α) is a constant. By fixing this constant, we can
fix s ⊗ α uniquely—that is, we have the following lemma.

Lemma 3.2. For any (H, j)∈ S, there exists a unique global meromorphic sec-

tion f L
H,j of the bundle (Lg

j

H )∗ ⊗ L ⊗ V ∗
H with a simple pole on H, no other sin-

gularities, and residue 1 on H.
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3.2. Elliptic Dunkl Operators

For any g ∈ W there is a W -action on S: g(H, j) = (gH, j). Let C be a W -
invariant function on S. Choose a holomorphic flat connection ∇ on L.
Definition 3.1 (Elliptic Dunkl operators). For any v ∈V, the elliptic Dunkl op-
erator corresponding to v is defined as the following operator acting on the local
meromorphic sections of L:

DL,∇
v,C = ∇v −

∑
(H,j)∈S

C(H, j)〈f L
H,j , v〉gjH ,

where ∇v is the covariant derivative along v corresponding to the connection ∇
and where 〈·, ·〉 is the natural pairing between V and V ∗.

Remark 3.1. Let ∇,∇′ be two flat holomorphic connections on L. Then ∇−∇′ =
ξ, where ξ ∈V ∗ is a holomorphic 1-form on X. Therefore,

DL,∇
v,C − DL,∇′

v,C = ξ(v).

Hence elliptic Dunkl operators attached to different flat connections on the same
line bundle L differ by additive constants.

For simplicity, we will use the same notation ∇ for the connection on each bundle
Lw obtained from the connection ∇ on L by the action of w ∈W. Then we have
the following result on the equivariance of the elliptic Dunkl operators under the
action of W.

Proposition 3.1. One has

w � DL,∇
v,C � w−1 = DLw,∇

wv,C .

4. The Commutativity Theorem

4.1. The Elliptic Cherednik Algebra

Let c(H, j) = 1
2 (e

−2π ij/nH − 1)C(H, j), and set c(H, 0) = 0. Recall from [E] that
the sheaf of algebras H1,c,0,X,W on X/W is defined as follows. Let Ū be a small
open set inX/W, and letU be its preimage inX. Then the algebraH1,c,0,X,W(U) =
H1,c,0(U,W) is generated by the algebra of holomorphic functions O(U), the group
W, and the Dunkl–Opdam operators

Dv,φ = ∂v −
∑

(H,j)∈S
C(H, j)〈φH , v〉gjH .

Here φ = (φH ) is a collection of 1-forms on U that locally near H have the form
φH = d log 
H + φ ′

H ; 
H is a nonzero holomorphic function with a simple zero
along H, and φ ′

H is holomorphic. For brevity we will denote this sheaf by Hc,X,W .

It is called the Cherednik algebra of the orbifold X/W attached to the parameter
c, or the elliptic Cherednik algebra.
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The sheaf Hc,X,W sits inside W � DXreg , where DXreg is the sheaf of differ-
ential operators on X with poles on the reflection hypertori. Thus the sheaf
Hc,X,W has a filtration by order of differential operators. It is known [E] that
F 0Hc,X,W = W � OX.

4.2. The Commutativity Theorem

One of the main theorems of this paper is the following result.

Theorem 4.1. The elliptic Dunkl operators commute; that is, [DL,∇
v,C , DL,∇

u,C ] = 0.

Proof. Since 〈f L
H,j , v〉 depends only on the projection of v to VH , which is a 1-

dimensional space, it is easy to check that the commutator [DL,∇
v,C , DL,∇

u,C ] does not
have differential terms. In other words, we have

[DL,∇
v,C , DL,∇

u,C ] =
∑
g∈W

ϕgg,

where ϕg is a meromorphic section of the line bundle (Lg)∗ ⊗ L.
We claim that ϕ1 = 0. Indeed, write DL,∇

v,C in the form

DL,∇
v,C = ∇v −

∑
H

〈FH , v〉,

where FH = ∑nH−1
j=1 C(H, j)f L

H,j g
j

H . To show that ϕ1 = 0, it suffices to show that

[〈FH , v〉, 〈FK , u〉] + [〈FK , v〉, 〈FH , u〉] = 0

if WH ∩WK �= 1. But this is obvious, given that 〈FH , v〉 depends only on the pro-
jection of v to VH , which is 1-dimensional, and VH = VK once WH ∩WK �= 1.

The rest of the proof is based on the following key lemma.

Lemma 4.1. The sections ϕg are holomorphic.

The lemma clearly implies the theorem, since the bundle (Lg)∗ ⊗ L is a topologi-
cally, but not holomorphically, trivial bundle and hence every holomorphic section
of this bundle is zero.

Proof of Lemma 4.1. The lemma is proved by local analysis—that is, essentially,
by reduction to the case of usual (rational) Dunkl–Opdam operators [DOp]. It is
sufficient to show that the ϕg are regular when restricted to a small W -invariant
neighborhood Xb of Wb, where b ∈X is an arbitrary point. Let Wb be the stabi-
lizer of b in W. Then Xb is a union of |W/Wb| small balls around the points of the
orbit Wb. Let us pick a trivialization of L on Xb. This trivialization defines a triv-
ialization of the line bundle Lw for every w ∈ W. With these trivializations, the
elliptic Dunkl operators DL,∇

v,C become operators acting on meromorphic functions
on Xb.

The remainder of the proof is based on the theory of Cherednik algebras for or-
bifolds. Namely, it is clear from the definition of the elliptic Dunkl operators that
they belong to the algebra Hc,X,W(Xb). Since F 0Hc,X,W = W � OX, this implies
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that the sections ϕg , upon trivialization, become holomorphic functions on Xb.

This proves the lemma.

Example 4.1 [BuFV, Sec. 3]. Let W be the Weyl group of a root system R with
root lattice Q, let V be the complexified reflection representation of W, and let
� = Q⊕ ηQ, where η is a complex number with positive imaginary part. In this
case we have X = Q⊗Z E, where E = C/〈1, η〉 is the elliptic curve defined by η.

Let θ1 be the standard Jacobi θ -function

θ1(z) = −
∞∑

n=−∞
e2πi(z+1/2)(n+1/2)+πiη(n+1/2)2;

it represents a section of the bundle O(1) over E. Consider the function of two
variables,

σw(z) = θ1(z − w)θ ′
1(0)

θ1(z)θ1(−w) ,

which has the following defining properties:

(i) σw(z + 1) = σw(z);
(ii) σw(z + η) = e2πiwσw(z);

(iii) σw is meromorphic with poles on the lattice generated by 1, η and residue 1
at zero.

Now let Hα be the reflection hypertorus in X through the origin defined by a
root α. Also, let L be a line bundle on X defined by the weight λ ∈ V ∗. Then it
follows from the above that

f L
Hα,1(x) = σ(λ,α∨ )((x,α))α.

Thus, the elliptic Dunkl operators have the form

DL,∇
v,C = ∇v −

∑
α>0

Cασ(λ,α∨ )((x,α))α(v)sα ,

where Cα is a W -invariant function on roots and sα is the reflection corresponding
to α. These are exactly the elliptic Dunkl operators from [BuFV].

5. Representations of Elliptic Cherednik Algebras
Arising from Elliptic Dunkl Operators

In this section we will use elliptic Dunkl operators to construct representations of
the sheaf of elliptic Cherednik algebras Hc,X,W on the sheaf F := ⊕

w∈W L∗w.
Let us write the elliptic Dunkl operator in the form

DL,∇
v,C = ∇v −

∑
g∈W

〈FL
C,g , v〉g,

where
FL
C,g =

∑
(H,j):gj

H
=g

C(H, j)f L
H,j

is a section of (Lg)∗ ⊗ L ⊗ V ∗. Note that FL
C,g = 0 unless g is a reflection.
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Lemma 5.1.

(i) Adw(FL
C,g) = FLw

C,wgw−1, where Adw denotes the adjoint action of w;
(ii) ∇u〈FL

C,g , v〉 = ∇v〈FL
C,g , u〉;

(iii)
∑

h,g :hg=k〈FL
C,g , v〉〈FLg

C,h, gu〉 = ∑
h,g :hg=k〈FL

C,g , u〉〈FLg

C,h, gv〉;
(iv)

∑
h,g :hg=k〈FL

C,g , v〉〈FLg

C,h, u〉 = ∑
h,g :hg=k〈FL

C,g , u〉〈FLg

C,h, v〉.
Proof. Statement (i) follows from Proposition 3.1. Statements (ii) and (iii) fol-
low from the commutativity of the elliptic Dunkl operators, using (i). Statement
(iv), using (iii), reduces to the identity∑

h,g :hg=k

(〈FL
C,g , v〉〈FLg

C,h, u− gu〉 − 〈FL
C,g , u〉〈FLg

C,h, v − gv〉) = 0.

Every summand in this sum is a skew symmetric bilinear form in u, v that factors
through Im(1 − g). But if FL

C,g is nonzero then g is a reflection, so Im(1 − g) is a
1-dimensional space. This means that every summand in this sum is zero, and the
identity follows.

Now we will define the representation of the elliptic Cherednik algebra. We start
by defining an action ρ = ρL,∇ of the sheaf W � DXreg on (local) sections of F
(with poles on reflection hypertori).

For a section β of (L∗)w we define:

∀g ∈W, (ρ(g)β)(x) = β(gx)

(a section of (L∗)gw); if f is a section of OX, then

ρ(f )β = fβ;
and, for v ∈V,

ρ(∂v)β =
(
∇v +

∑
g∈W

〈FLw

C,g , v〉
)
β.

Proposition 5.1. These formulas define a representation of W�DXreg on F |Xreg .

Proof. The only relations whose compatibility with ρ needs to be checked are
[∂v , ∂u] = 0. This compatibility follows from statements (ii) and (iv) of Lem-
ma 5.1.

Corollary 5.1. The restriction of ρ to Hc,X,W ⊂ W �DXreg is a representation
of Hc,X,W on F.
Proof. We need to show that, for any section D of Hc,X,W , ρ(D) preserves holo-
morphic sections of F. It is sufficient to check this forD = Dv,φ , a Dunkl–Opdam
operator. Clearly, we have

ρ(Dv,φ)|Lw = ∇v +
∑

(H,j)∈S
C(H, j)(〈f Lw

H,j , v〉 − 〈φH , v〉gjH ).
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It is easy to see that each operator in parentheses preserves holomorphic sections,
so the result follows.

Note that the representation ρ of Hc,X,W belongs to category O, which is the cat-
egory of representations of Hc,X,W on coherent sheaves on X.

6. Monodromy Representation of
Orbifold Hecke Algebras

6.1. Orbifold Fundamental Group and Hecke Algebra

The quotient X/W is a complex orbifold. Thus, for any x ∈ X with trivial stabi-
lizer, we can define the orbifold fundamental group πorb

1 (X/W, x). It is the group
consisting of the homotopy classes of paths on X connecting x and gx for g ∈W,
with multiplication defined by the following rule: γ1 � γ2 is γ2 followed by gγ1,
where g is such that gx is the endpoint of γ2. It is clear that the orbifold funda-
mental group of X/W is naturally isomorphic to the semidirect product W � �.

The braid group of X/W is the orbifold fundamental group πorb
1 (Xreg/W, x).

It can also be defined as π1(X
′/W, x), where X ′ is the set of all points of X with

trivial stabilizer.
Now let H be a reflection hypertorus. Let CH be the conjugacy class in the

braid group πorb
1 (Xreg/W, x) corresponding to a small circle going counterclock-

wise around the image of H in X/W. Then we have the following result (see
e.g. [BMRo]).

Proposition 6.1. The group πorb
1 (X/W, x) = W � � is a quotient of the braid

group πorb
1 (Xreg/W, x) by the relations T nH = 1 for all T ∈CH .

Now, for any conjugacy class of H we introduce complex parameters τH,1, . . . ,
τH,nH . The entire collection of these parameters will be denoted by τ.

The Hecke algebra of (X,W), denoted Hτ(X,W, x), is the quotient of the group
algebra of the braid group, C[πorb

1 (Xreg/W, x)], by the relations
nH∏
m=1

(T − e2π im/nHeτH,m) = 0, T ∈CH .

(This relation is a deformation of the relation T nH = 1, which can be written as∏nH
m=1(T − e2π im/nH ) = 0.) The Hecke algebra is independent on the choice of x,

so we will drop x from the notation.

Remark 6.1. It is known from [E] that, if τ is a formal (rather than complex)
parameter, then the algebra Hτ(X,W) is a flat deformation of the group algebra
C[W � �].

Example 6.1. Let W be a Weyl group, let V be its reflection representation, and
let � = Q∨ ⊕ ηQ∨, where Q∨ is the dual root lattice of W and η ∈ C

+. Then
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Hτ(X,W) is the double affine Hecke algebra (DAHA) of Cherednik [C2]. (In
the type-BC case, the result is Sahi’s [S] 6-parameter version of the double affine
Hecke algebra.)

Example 6.2. Let W = Sn � (Z/
Z)n for 
 = 2, 3, 4, 6, let V = C
n, and let

� = >n, where > ⊂ C is a lattice invariant under Z/
Z (any lattice for 
 = 2, tri-
angular for 
 = 3, 6, square for 
 = 4). Then Hτ(X,W) is the generalized double
affine Hecke algebra of higher rank of type D4,E6,E7,E8, respectively, defined
in [EGO]. We remark that (a) if 
 = 2 then this reproduces the BC case from Ex-
ample 6.1 (Sahi’s algebra) and for (b) n = 1 these Hecke algebras were studied
earlier in [EOR] in connection with quantization of del Pezzo surfaces.

6.2. The Monodromy Representation

The representation ρ defines a structure of aW -equivariant holonomic O-coherent
D-module (i.e., aW -equivariant local system) on the restriction of the vector bun-
dle

⊕
w∈W(L∗)w to Xreg. This local system yields a monodromy representation

πL,∇ of the braid group πorb
1 (Xreg/W, x) (of dimension |W |). By Corollary 5.1,

this local system is obtained by localizing toXreg an OX-coherentHc,X,W -module.
Hence, by [E, Prop. 3.4], the representation πρ factors through the Hecke algebra
Hτ(X,W), where τ is given by the formula

τH,m = −2π i

nH

nH−1∑
j=1

C(H, j)e−2π ijm/nH.

Thus, for any collection of parameters τH,j with
∑

j τH,j = 0 for all H, we have
constructed a family of |W |-dimensional representations πL,∇ of the Hecke al-
gebra Hτ(X,W) that is parameterized by pairs (L, ∇); this family has 2 dimV

parameters.
Here is another version of the definition of the representationπL,∇ of Hτ(X,W),

one that refers directly to elliptic Dunkl operators and does not mention elliptic
Cherednik algebras. Consider the system of differential reflection equations

DL,∇
v,C ψ = 0, v ∈V. (1)

Let E be the sheaf of solutions of this equation on X ′/W (sections of this sheaf
over Ū = U/W are, by definition, solutions of this system on U). Then E is a
local system of rank |W | and so has a monodromy representation ξL,∇ . It is easy
to see that πL,∇ = ξ ∗

L,∇ .

Remark 6.2. We could generalize the preceding construction by replacing equa-
tions (1) by the eigenvalue equations

DL,∇
v,C ψ = λ(v)ψ, v ∈V,

where λ ∈V ∗, but this does not really give anything new because it is equivalent
to changing the connection ∇.
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Example 6.3. If W is a Weyl group (Example 6.1), then the relation
∑

j τH,j =
0 corresponds to the “classical” case of double affine Hecke algebras (q = 1). In
this case the DAHA is finitely generated over its center, and generically over the
spectrum of the center is an Azumaya algebra of rank |W |. Then our construc-
tion yields generic irreducible representations of this algebra. In this case, such
representations can also be constructed by using classical analogues of difference
Dunkl–Cherednik operators [C2].

If W = Sn � (Z/
Z)n (Example 6.2), then we obtain (an open part of ) the
2n-parameter family of |W |-dimensional representations of generalized DAHA
that was constructed in [EGO] by another method.

In other cases of crystallographic reflection groups, however, the family of repre-
sentations constructed here appears to be new.

Conjecture 6.1. For any W,V,�, if
∑

m τH,m = 0 for all H then the Hecke al-
gebra Hτ(X,W) is finitely generated as a module over its centerZτ(X,W), which
is the algebra of functions on an irreducible affine algebraic variety Mτ(X,W) of
dimension 2 dimV. Moreover, this algebra is an Azumaya algebra of rank |W | at
the generic point of Mτ(X,W), and the family of representations πL,∇ provides
generic irreducible representations of Hτ(X,W).

This conjecture is known only in the case of Weyl groups (Example 6.1); see [C2]
and, for the case dimV = 1, [EOR]. In particular, the conjecture is open in the
case of Example 6.2 for 
 = 3, 4, 6.
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