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1. Introduction

The purpose of this paper is to explain some explicit formulas that one can develop
in the theory of the box spline and the corresponding algorithms of approxima-
tion by functions—in particular, (2.11) and (3.2). The theory of splines is a large
subject, and even the part on the box spline is rather well developed. The reader
should consult the fundamental book by de Boor, Höllig, and Riemenschneider
[7] or the recent notes by Ron [19]. Of this large theory we concentrate on some
remarkable theorems of Dahmen and Micchelli (see [3; 4; 5]) and on the the-
ory of quasi-interpolants and the Strang–Fix conditions, for which we refer to
de Boor [6].

In essence, here we make explicit certain constructs that are already present in
[6]. Thus, from a purely computational point of view, there is probably no real dif-
ference with that paper, yet we believe that the explicit formulas (2.11) and (3.2)
shed a light on the whole procedure. In fact, the main new formula is (3.2) since
(2.11) is essentially in Dahmen–Micchelli (although not so explicit).

We also show how some facts about matroids, which are recalled in an appen-
dix written by A. Björner, give a proof of one of the basic theorems of the theory
on the dimension of a certain space of polynomials describing box splines locally.

2. Preliminaries

2.1. Box Splines

The theory has been developed in the general framework of approximation theory
by splines—in particular, two special classes of functions: the multivariate spline
TX(x) and the box spline BX(x).

Take a finite list X := {a1, . . . , am} of nonzero vectors ai ∈ V = R
s, thought

of as the columns of a matrix A. If X spans R
s, one builds an important function

for numerical analysis, the box spline BX(x), which is implicitly defined by the
formula ∫

Rs

f (x)BX(x) dx :=
∫ 1

0
· · ·

∫ 1

0
f

( m∑
i=1

ti ai

)
dt1 . . . dtm, (2.1)

where f(x) varies in a suitable set of test functions.
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If 0 is not in the convex hull of the vectors ai then one has a simpler function
TX(x), the multivariate spline (cf. [7]), which is characterized by the formula∫

Rs

f (x)TX(x) dx =
∫ ∞

0
· · ·

∫ ∞

0
f

( m∑
i=1

ti ai

)
dt1 . . . dtm, (2.2)

where f(x) varies in a suitable set of test functions (usually continuous functions
with compact support or, more generally, exponentially decreasing on the cone
C(X)). From now on, in any statement regarding the multivariate spline TX(x)

we shall tacitly assume that the convex hull of the vectors in X does not contain 0.
An efficient way of studying these functions is through the Laplace transform:

Lf(u) :=
∫
V

e−〈u|v〉f(v) dv. (2.3)

We think of each a ∈X as a linear function of U := V ∗, and we have

LBX =
∏
a∈X

1− e−a

a
, LTX =

∏
a∈X

1

a
. (2.4)

These functions are splines in the sense that there is a polyhedral decomposi-
tion of the ambient space such that, on each polyhedron, the functions coincide
with a polynomial lying in a finite-dimensional space D(X) of polynomials. One
of the important theorems characterizes D(X) by differential equations.

In order to describe these equations, we need a definition from the theory of
matroids (see the Appendix).

Definition 1. We say that a sublist Y ⊂ X is a cocircuit if the elements in X \Y
do not span V.

If a is a vector, we denote by Da the directional derivative relative to a. If Y ⊂
X, let

DY :=
∏
a∈Y

Da.

We denote the set of cocircuits by E(X).

Theorem 2.1. (1) The space D(X) is given by

D(X) := {f ∈ S [U ] | DYf = 0 ∀Y ∈ E(X)}. (2.5)

(2) The dimension of D(X) is the number d(X) of bases that can be extracted
from X.

Although this theorem originates from the theory of the box spline, it is also of in-
terest for commutative algebra and algebraic geometry—particularly in the theory
of hyperplane arrangements and partition functions.

A basic invariant of X is the minimum length of a cocircuit, which we denote
by m(X). By Theorem 2.1, all the polynomials of degree < m(X) lie in D(X).

Moreover, if m(X) ≥ 2 then BX must be a continuous function of class Cm(X)−2.
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The main relationship between this theory and our hyperplane arrangements is
explained in [10]. The hyperplane arrangement in V ∗ is that given by the hyper-
planes whose linear equations are determined by the vectors in X. There we show
how the basic function TX is built out of special polynomials that appear as suit-
able residues for certain points at infinity of the wonderful model associated to the
arrangement. A similar theory is developed later for the arithmetic function and
the formulas for the partition functions; for a survey, see [11].

The connection with commutative algebra has been explored in several papers
(see [8; 9; 15; 21]). One point—the connection with the theory of Reisner–Stanley
algebras—is discussed in the Appendix by Anders Björner.

In particular, this discussion gives a matroid-theoretic proof of the following
more precise statement (see [12]).

Theorem 2.2. The graded dimension of D(X) is given by

HX(q) :=
∑

b∈B(X)

qm−s−e(b) = qm−sT (X, 1, q−1), (2.6)

where e(b) is the external activity of a basis b ∈ B(X) (see the Appendix for a
definition) and T(X, x, y) is the Tutte polynomial [25].

Proof. Consider the algebra S [V ]/I for I the ideal generated by the products∏
i∈I ai, where the ai (i ∈ I ) form a cocircuit in X.

We claim that the variety defined by the ideal I reduces to the unique point 0.
For this, note that the variety of zeros of a set of equations—each one of which is
itself a product of equations—is the union of the subvarieties defined by selecting
an equation out of each product.

If we now take one element bY from each cocircuit Y, then the resulting set of
vectors {bY } spans V. Indeed, if (by contradiction) these elements do not span V

then their complement is a cocircuit. Because we selected an element from each
cocircuit, this is not possible.

It follows that the equations bY = 0 for Y ∈ E(X) define the subvariety con-
sisting of the point 0, and hence our claim follows. As a consequence, we deduce
using standard facts of commutative algebra that S [V ]/I is finite-dimensional and
is dual to the space D(X). Thus S [V ]/I has the same dimension and Hilbert series
as D(X).

The algebra S [V ]/I can be also constructed as follows. First take a variable xi

corresponding to each vector ai in X and define (as explained in the Appendix)
the face ring (denoted by k[M ]), which is the polynomial algebra in the variables
xi modulo the ideal generated by the monomials

∏
i∈I xi; here the ai (i ∈ I ) form

a cocircuit in X.

We clearly have a homomorphism ρ : k[M ] → S [V ]/I, from the face ring to
S [V ]/I, mapping xi �→ ai. In fact, the linear map j :

⊕m
i=1 Fxi → V, j : xi �→

ai is surjective with kernel an (m − s)-dimensional subspace K. It is clear that
the ideal generated by K (or, equivalently, by any basis of K) in k[M ] is the ker-
nel of ρ.
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We now apply Theorem A1, which shows that k[M ] is Cohen–Macaulay of di-
mension m− s. Since S [V ]/I is finite-dimensional, it follows from the theory of
Cohen–Macauly rings that any basis of K is a regular sequence in k[M ]. At this
point, formula (2.6) follows from Theorem A3.

2.2. Discrete Convolution

Box splines are functions of compact support; in fact, the support of BX is the
zonotope B(X) := ∑m

i=1 ti ai for 0 ≤ ti ≤ 1. Particularly interesting is the case
in which X is a list of vectors in a lattice ' (as Z

s ). In this case, for a ∈ ' the
translates BX(x− a) of BX form a partition on unity, and they are used in approx-
imation theory and, in particular, in the finite element method. Here the important
idea comes from the Strang–Fix conditions (see [23]). We present a new approach
to the construction of quasi-interpolants by using in a systematic way the concept
of a super function.

2.3. Scaling

We use the notation of Section 2.2. Theorem 2.10 tells us that the space D(X) co-
incides with the space of polynomials in the cardinal spline space SX. This has a
useful application for approximation theory. In order to state the results, we need
to introduce some notation.

For every real number h, we define the scale operator

(σhf )(x) := f(x/h).

In particular, we shall apply this when h = n−1 for n ∈ N, so that h' ⊃ ' is a
refinement of '.

We remark that, if U is a domain, then∫
U

f(x) dx = h−s

∫
hU

σhf dx.

Moreover, if f has as support a set C, then σhf has as support the set hC.

We define the scaling operator on distributions by duality. Thus, on a test func-
tion f ,

〈σh(T ) | f 〉 := 〈T | σ−1
h (f )〉 = 〈T | σ1/h(f )〉. (2.7)

In particular, 〈σhδa | f(x)〉 = 〈δa | f(hx)〉 = f(ha) and so

σhδa = δha , σh

∑
a

f(a)δa =
∑
a

f

(
a

h

)
δa.

Observe that σh acts as an automorphism with respect to convolution.
If T is represented by a function g, so that 〈T | f 〉 = ∫

V
g(x)f(x) dx, then

〈σh(T ) | f 〉 =
∫
V

g(x)f(hx) dx = h−s

∫
V

g(h−1x)f(x) dx;
hence σh(T ) is represented by the function h−sσh(g).

The relation between scaling and the Laplace transform is

L(σhf ) = hsσ1/hL(f ). (2.8)
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In fact,

L(σhf )(y) =
∫
V

e−〈x |y〉f
(
x

h

)
dx = hs

∫
V

e−〈u|hy〉f(u) du = hsσ1/hL(f )(y).

To simplify the notation, we shall denote the cardinal space SBX
by SX.

Lemma 2.3. The space σh(SX) equals the cardinal space ShX with respect to the
lattice h'.

Proof. Let f be a function on '. Then

σh(BX ∗ f ) =
∑
λ∈'

BX

(
x

h
− λ

)
f(λ) =

∑
µ∈h'

BX

(
x − µ

h

)
f

(
µ

h

)
.

One easily verifies that σhBX = hsBhX, so we deduce that

σh(BX ∗ f ) = hs
∑
µ∈h'

BhX(x − µ)(σhf )(µ)∈ S h'
hX .

The claim follows because the operator f �→ hsσhf induces a linear isomorphism
between the space of functions on ' and that of functions on h'.

We have the following commutation relations between σh and a derivative Dv , a
difference operator ∇a , and a translation τa:

Dvσh = h−1σhDv , σh∇a = ∇haσh, τaσh = σhτa/h. (2.9)

2.4. Approximation Power

Let us start with some definitions.

Definition 2. (A) A function on ' is called a mesh function.
(B) Let a : ' → C be a mesh function and let M(x) be any function with com-

pact support. We set M ∗ a to be the function

(M ∗ a)(x) :=
∑
λ∈'

M(x − λ)a(λ).

This is well-defined because M(x) has compact support, and M ∗ a is called the
discrete convolution of M with a.

(C) The vector space S'
M formed by all the convolutions M ∗ a, where a is a

mesh function, is called the cardinal space associated to M and '.

(D) A function a(x) on R
s restricts to a mesh function a|' on '. We set

M ∗′ a := M ∗ a|'
and call this a semi-discrete convolution of M with a.

The goal of this and the following sections is to approximate a function by a se-
quence of functions obtained by rescaling semi-discrete convolutions with BX.
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Definition 3. We say that M has approximation order≥ r in the Lp norm (1≤
p ≤ ∞) if, for any bounded domain G and a smooth function f in a neighborhood
of G, there exists a sequence fh ∈ σh(SM) with h = 1/n and n∈N such that

‖fh − f ‖Lp(G) = O(hr ).

When M has approximation order≥ r but M does not have approximation order ≥
r + 1, we say that M has approximation order r.

The Strang–Fix conditions consist of a general statement that we shall discuss only
in the case of box splines.

Strang–Fix Conditions. The approximation order of a function M is the max-
imum r such that the space of all polynomials of degree < r is contained in the
cardinal space SM.

Our goal is to present a different approach to the following classical theorem.

Theorem 2.4. BX has approximation order equal to m(X).

By [7] we know that BX does not have approximation order larger than m(X).

However, we want rather to explain an explicit approximation algorithm produc-
ing the required approximation order ≥ m(X). Note that it will be sufficient for
us to work with the L∞ norm because ‖g‖Lp(G) ≤ (Vol G)1/p‖g‖L∞(G) for any 1≤
p < ∞ and any L∞ function g on a bounded domain G.

2.5. The Space D(X)

Consider all hyperplanes generated by subsets of X and all of their translates. One
obtains a locally finite set of hyperplanes called the cut locus, and each connected
component of its complement is called a chamber.

Proposition 2.5. Each translate of BX, and hence each element of the cardinal
spline space, is a polynomial in D(X) on each chamber.

One of the main results of the theory is as follows.

Theorem 2.6. If p ∈D(X) then also BX ∗′p ∈D(X). This defines a linear iso-
morphism F of D(X) to itself that is given explicitly by the invertible differential
operator

FX :=
∏
a∈X

1− e−Da

Da

.

Proof. It is not hard to see that we can reduce to the case in which m(X) ≥ 2 (we
call this case nondegenerate). If X = {a} is a number and if s = 1, then clearly
D(X) reduces to the constants and so the statement reduces to the fact that the
translates of B{a} sum to a constant function.
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In the other cases, BX is a continuous function on R
s. One way of understand-

ing BX ∗′p is by applying the Poisson summation formula to the function of y:
BX(x + y)p(−y).

Given our definition of the Laplace transform, we have

Lf(ξ) = (2π)n/2f̂ (iξ),

where f̂ denotes the usual Fourier transform and, in order to avoid confusion, we
use ξ to denote the variables in the Laplace transform. The Laplace transform of
BX(x + y)p(−y) is obtained from the Laplace transform ex

∏
a∈X(1− e−a)/a of

BX(x+y) by applying the polynomial p̂ = p
(

∂
∂ξ1

, . . . , ∂
∂ξs

)
as differential operator.

We now want to apply the classical Poisson summation formula (cf. [27]), which
gives—for a function φ with suitable conditions and, in particular, if φ is contin-
uous with compact support—∑

µ∈'∗
Lφ(µ) =

∑
λ∈'

φ(λ),

where µ runs in the dual lattice '∗ of elements for which 〈µ | λ〉 ∈ 2πiZ for all
λ∈'.

As a result, when Lφ(µ) = 0 for all µ �= 0 and µ∈'∗, we have

Lφ(0) =
∑
λ∈'

φ(λ).

This is the key result of Dahmen and Micchelli that we shall prove in our setting
and that will imply all the main results.

Before proving the main lemma (Lemma 2.8), we write in a suitable form the
action of differential operators of some degree k given by a polynomial p

(
∂

∂x1
, . . . ,

∂
∂xs

)
on a power series F(x1, . . . , xs).

Lemma 2.7. Introducing the auxiliary variables t1, . . . , ts , we have

p

(
∂

∂x1
, . . . ,

∂

∂xs

)
[F(x1, . . . , xs)]

= F

(
x1 + ∂

∂t1
, . . . , xs + ∂

∂ts

)
[p(t1, . . . , ts)]t1=···=ts=0. (2.10)

Proof. Start from the obvious identity:

p

(
∂

∂x1
, . . . ,

∂

∂xs

)
[F(x1 + t1, . . . , xs + ts)]

= p

(
∂

∂t1
, . . . ,

∂

∂ts

)
[F(x1 + t1, . . . , xs + ts)],

from which it follows that

p

(
∂

∂x1
, . . . ,

∂

∂xs

)
[F(x1, . . . , xs)]

= p

(
∂

∂t1
, . . . ,

∂

∂ts

)
[F(x1 + t1, . . . , xs + ts)]t1=···=ts=0.
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Now use the fact that, if p, q are two polynomials in the variables ti, then

p

(
∂

∂t1
, . . . ,

∂

∂ts

)
[q(t1, . . . , ts)]t1=···=ts=0

= q

(
∂

∂t1
, . . . ,

∂

∂ts

)
[p(t1, . . . , ts)]t1=···=ts=0.

The main observation of Dahmen and Micchelli is as follows.

Lemma 2.8. If p(x) ∈ D(X), then the Laplace transform of BX(x + y)p(−y)

(viewed as a function of y) vanishes at all points µ �= 0 with µ∈'∗.

Proof. If a = (a1, . . . , as) then we use the notation

a = 〈a | ξ〉 =
∑
i

ai ξi, ea = exp

{∑
i

ai ξi

}
, ex = exp

{∑
i

xi ξi

}
.

With this notation, the Laplace transform of BX(x+ y)p(−y) (as a function of y)
equals

p

(
∂

∂ξ1
, . . . ,

∂

∂ξs

)[
ex

∏
a∈X

1− e−a

a

]
.

We may assume that p(y) is homogeneous of some degree k.

Now we can apply formula (2.10). Replace ξi with ξi + ∂
∂ti

to obtain

1− e−〈a | ξ+∂t〉

〈a | ξ + ∂t〉 = 1− e−〈a | ξ〉

〈a | ξ〉 +Ha(ξ, ∂t )Da ,

where we have set 〈a | ∂t〉 = Da. Then

LX(ξ + ∂t ) = e〈x | ξ+∂t〉 ∏
a∈X

(
1− e−〈a | ξ〉

〈a | ξ〉 +Ha(ξ, ∂t )Da

)

=
∑
Y⊂X

e〈x | ξ+∂t〉 ∏
a /∈Y

(
1− e−〈a | ξ〉

〈a | ξ〉
) ∏

a∈Y
Ha(ξ, ∂t )Da.

Take a summand relative to Y and the corresponding function:

e〈x | ξ+∂t〉 ∏
a /∈Y

(
1− e−〈a | ξ〉

〈a | ξ〉
) ∏

a∈Y
Ha(ξ, ∂t )Da[p(t1, . . . , ts)]t1=t2=···=ts=0.

Then we have either that Y is a cocircuit or that X \ Y contains a basis. In the
former case, since p(t) ∈ D(X) we have

∏
a∈Y Dap(t) = 0. These terms are

identically zero. In the latter case, the elements of X \Y span the vector space and
so at least one of the a ∈X \ Y does not vanish at µ whenever µ �= 0. Hence, if
µ is in the lattice '∗, then (1− e−a)/a vanishes at µ and thus the entire product
vanishes.

We return now to the proof of Theorem 2.6. By Lemma 2.8, Poisson summation
degenerates to the computation at 0.
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Recall that ex = e〈x | ξ〉 = exp
{∑s

i=1 xi ξi
}
. Consider the duality 〈p | f 〉 de-

fined as follows. Take a polynomial p(ξ1, . . . , ξs), compute it in the derivatives
∂
∂ξi

, apply it as differential operator to the function f , and then evaluate the result-
ing function at 0. We have for each i that

〈p | ξif 〉 =
〈
∂p

∂ξi

∣∣f 〉
.

Thus, setting FX := ∏
a∈X

1−e−a

a
, we have

p

(
∂

∂ξ1
, . . . ,

∂

∂ξs

)(
ex

∏
a∈X

1− e−a

a

)
(0) =

〈
p | ex

∏
a∈X

1− e−a

a

〉
= 〈FXp | ex〉 = FXp(x).

This follows because, for any polynomial q,〈
q

(
∂

∂ξ

)∣∣ e〈x | ξ〉〉 = q(x).

Since D(X) is stable under derivatives and since FX is clearly invertible, both our
claims follow.

Corollary 2.9. On D(X), the inverse of FX is given by the following differen-
tial operator of infinite order :

Q :=
∏
x∈X

Dx

1− e−Dx
. (2.11)

Observe that Q is like a Todd operator in that its factors can be expanded using
the Bernoulli numbers Bn by the defining formula

Dx

1− e−Dx
=

∞∑
k=0

Bn

n!
(−Dx)

n;

thus Q acts on D(X) as an “honest” differential operator.
Theorem 2.6 tells us that D(X) ⊂ SX. On the other hand, we have the follow-

ing result.

Theorem 2.10. If p is a polynomial in SX, then p ∈D(X). Thus, D(X) coin-
cides with the space of all polynomial in SX.

Proof. By Proposition 2.5 we know that each function f in the space SX, once re-
stricted to a chamber c, coincides with a polynomial fc in D(X). Hence, if f is
itself a polynomial, then it must coincide with fc everywhere.

Given an element v ∈V and a function F on V, we define the difference operator
∇vF and the translation operator τv by

∇vF(u) = F(u)− F(u− v), τvF(u) = F(u− v).
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Proposition 2.11. If X = (Y, z) then we have Dz(BX) = ∇zBY (in the sense of
distributions).

Proof. Given a function f in Schwartz space, we have

〈Dz(BX) | f 〉 = 〈BX | −Dz(f )〉

= −
∫ 1

0
· · ·

∫ 1

0

(∫ 1

0
Dz(f )

( m−1∑
i=1

ti ai + tz

)
dt

)
dt1 . . . dtm−1

=
∫ 1

0
· · ·

∫ 1

0

[
f

( m−1∑
i=1

ti ai

)
− f

( m−1∑
i=1

ti ai + z

)]
dt1 . . . dtm−1

=
∫ 1

0
· · ·

∫ 1

0
(∇−zf )

( m−1∑
i=1

ti ai

)
dt1 . . . dtm−1 = 〈∇zBY | f 〉.

Because it is also clear that (∇zB)∗a = B ∗∇za, for any subset Y ⊂ X we obtain

DY (BX ∗ a) = BX\Y ∗ ∇Y a. (2.12)

This gives another insight into Theorem 2.10. Assume that a polynomial p is of
the form p = BX ∗ a for some function a on ', and let Y be a cocircuit. Then
DYp = DY (BX ∗ a) = BX\Y ∗ ∇Y a is a distribution supported on the subspace
〈X \Y 〉. Being a polynomial, DYp must equal 0; this shows again that p ∈D(X).

3. Approximation Theory

As usual, we take an s-dimensional real vector space V in which we fix a Eu-
clidean structure, and we denote by dx the corresponding Lebesgue measure. We
also fix a lattice ' ⊂ V and a list X of vectors in ' spanning V as a vector space.

3.1. An Algorithm

We shall use the standard remainder estimate in the Taylor series as follows.

Theorem 3.1. Let G be a bounded domain in R
s, and let f be a Cr function on

G. Choose x0 ∈G, and let qr be the polynomial expressing the Taylor expansion
of f at x0 up to order r. For every 1 ≤ p ≤ ∞ there is a constant C, dependent
on p, r, s but independent of f , such that

‖f − qr−1‖Lp(G) ≤ C
∑
|α|=r

‖Dαf ‖Lp(G) diam(G)r. (3.1)

Recall (Corollary 2.9) that the operator

Q :=
∏
a∈X

Da

1− e−Da

has the property that
Q(BX ∗′ q) = q
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for every polynomial q ∈D(X). We formally write Q as a difference operator as
follows. Start with the identity ∇x = 1− e−Dx. The meaning of this identity in
general resides in the fact that the vector field Dx is the infinitesimal generator of
the 1-parameter group of translations v �→ v + tx. On the space of polynomials,
this is an identity as operators because both Dx and ∇x are locally nilpotent.

This identity gives

Dx = −log(1− ∇x) =
∞∑
k=1

∇ i
x

i
,

from which we deduce that

Dx

1− e−Dx
=

∞∑
k=0

∇ i
x

i + 1
.

Therefore,

Q :=
∏
a∈X

( ∞∑
i=0

∇ i
a

i + 1

)
. (3.2)

Remark 3.2. Recall that

Dx

1− e−Dx
=

∑
i≥0

Bi

i!
(−Dx)

i,

where Bi is the ith Bernoulli number. Thus, for each n ≥ 0,

Bn = (−1)n
[∑

i≥0

Bi

i!
(−Dx)

i

]
(xn)

∣∣
x=0=

n∑
i=0

∇ i
1

i + 1
xn

∣∣
x=0 .

Indeed,
∑n

i=0(∇ i
1/(i + 1))xn is a variant of the nth Bernoulli polynomial. As a

matter of fact, the difference between the nth Bernoulli polynomial and the nth
previously defined polynomial equals nxn−1 = Dx(x

n).

DefineQX to be the difference operator expressed byQ truncated at orderm(X)−1
(or perhaps higher). We have that QX also acts as the inverse of q �→ BX ∗′ q on
the polynomials of degree ≤ m(X)− 1.

The theory is already interesting in the 1-dimensional case. When X consists of
1 repeated m+ 1 times, we denote by bm(x) the corresponding box spline.

Example 3.3. The hat function b1(x):

b1(x) =



x for all 0 ≤ x ≤ 1,

2− x for all 1≤ x ≤ 2,

0 otherwise.

In this case, X = {1,1} and m(X) = 2. One easily verifies that the cardinal spline
space coincides with the space of all continuous functions on R that are linear on
the intervals [i, i + 1] for i ∈ Z. Such a function is completely determined by its
values f(i) on the integers. Moreover, given any function f on Z , we see that
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b1 ∗ f at i equals f(i − 1) =: τ1f(i). As for the operator QX, it equals 1+∇1 =
2 − τ1. However, on the space of linear polynomials we see that 2 − τ1 = τ−1,
so in this particular case the most convenient choice of QX is τ−1. In general it
is difficult to describe, in the simplest possible way, the operator QX as a linear
combination of translations.

Let QX = ∑;
i ciτ−bi

and set, for h ≤ 1 and g a function on V :

gh := σh[QXBX ∗′ (σ1/hg)]; (3.3)

gh(x) =
∑
i∈'

(QXBX)

(
x

h
− i

)
g(hi)

=
∑
i∈'

BX

(
x

h
− i

)[∑
i

cig(hi + hbi)

]
. (3.4)

We apply this definition to h := n−1 for n a positive integer and so obtain an inter-
polation algorithm An

X given by An
X(g) = g1/n.

We easily see that the algorithm is local in the sense that the value of gh at a
point x depends only on the values of g in a neighborhood that tends to x as h → 0.
Thus there is no harm in assuming that the functions we analyze are defined every-
where. We shall also assume that their derivatives (up to some required order) are
defined and bounded everywhere.

Let =R denote the closed disk centered at the origin of radius R. Define the
linear functional γ (f ) := QXf(0). Then

QX(f ) =
;∑

i=1

cif(x + bi), γ (f ) =
;∑

i=1

cif(bi).

If we choose R so that bi ∈=R for each i = 1, . . . , ;, then γ is clearly a continu-
ous functional on the space C 0(=R) with L∞ norm. Its norm ‖γ ‖ is at most equal
to

∑;
i=1|ci |; in fact, |γ (f )| ≤ ∑;

i=1|ci |‖f ‖L∞(=R).
(
It is easy to see that ‖γ ‖ =∑;

i=1|ci |.
)

Take a point x and consider the finite set b(x |X) = ' ∩ (x − B(X)). Using
that BX is supported in B(X), we derive that the condition that BX(x/h− j) �= 0
implies j ∈ b(x/h |X). It follows from formula (3.3) that, for any function g,

gh(x) =
∑

j∈b(x/h|X)

BX

(
x

h
− j

)
γ (τ−j σ1/hg). (3.5)

Moreover,

|γ (τ−j σ1/hg)| ≤ ‖γ ‖‖τ−j σ1/hg‖L∞(=R) = ‖γ ‖‖g‖L∞(h(=R+j)). (3.6)

It is well known (see [7]) that BX is nonnegative and that, for any x, we have∑
j∈b(x/h|X)

BX

(
x

h
− j

)
= 1.
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Hence we may use (3.5) and (3.6) to obtain

|gh(x)| ≤ ‖γ ‖‖g‖L∞(h(=R+x/h−B(X))). (3.7)

Set = := =R − B(X). Since QXBX ∗′ – is the identity on polynomials of degree
at most m(X)−1, we immediately deduce that qh = q for every polynomial q of
degree < m(X).

Because 0∈=, using (3.7) for g = f − q yields

|fh(x)− f(x)| = |gh(x)− g(x)| ≤ (‖γ ‖ + 1)‖f − q‖L∞(x+h=).

Theorem 3.1 then implies that we can choose q in such a way that

‖f − q‖L∞(x+h=)) ≤ Khm(X)
∑

|j |=m(X)

‖Dj
f ‖L∞(x+h=)),

with K an absolute constant depending only on X, which can be bounded by
(st)m(X)/m(X)! for t any number such that = is contained in a disk of radius t.

Therefore,

|fh(x)− f(x)| ≤ (‖γ ‖ + 1)Khm(X)
∑

|j |=m(X)

‖Dj
f ‖L∞(x+h=)).

Finally, over any domain G we have

‖fh − f ‖L∞(G) ≤ (‖γ ‖ + 1)Khm(X)
∑

|j |=m(X)

‖Dj
f ‖L∞(G+h=).

Thus we have proved the following theorem.

Theorem 3.4. Under the explicit algorithm previously constructed, for any do-
main G we have

‖fh − f ‖L∞(G) = O(hm(X)).

In particular, this yields our new proof of Theorem 2.4.

Remark 3.5. The algorithm is not too sensitive to the way we truncate Q.

Suppose we take two truncations that differ by a difference operator T with terms
only of order N ≥ m(X). The difference between the resulting approximating
functions is then

σh[BX ∗′ Tσ1/h(g(x))].

The following lemma tells us that these terms contribute to order O(hN) and hence
do not change the statement of the theorem.

Let A = {a1, . . . , am} be a list of m nonzero vectors in R
s. We use the notation

|f |∞ for the L∞ norm on the whole space.

Lemma 3.6. Let f be a function of class Cm with bounded derivatives on the
space V. Then, for any positive h,

|∇Aσ1/hf |∞ ≤ hm|DAf |∞. (3.8)
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Proof. By elementary calculus, for any vector a we have

|∇aσ1/hf |∞ ≤ h

∣∣∣∣∂f∂a
∣∣∣∣∞.

By induction, set A := {B, a}. We have:

|∇B∇aσ1/hf | = |∇Bσ1/h∇haf | ≤ hm−1|DB∇haf |∞
= hm−1|σ1/hDB∇haf |∞
= hm−1|∇aσ1/hDBf |∞ ≤ hm|DAf |∞.

Example 3.7. Let s = 1, X = 1m (so BX = bm−1), m(X) = m, and B(X) =
[0, m]. If ∇ = ∇1 = 1− τ1, then QX is the truncation of( m−1∑

i=0

∇ i

i + 1

)m

=
( m−1∑

i=0

(1− τ1)
i

i + 1

)m

.

An estimate of ‖γ ‖ is
(∑m−1

i=0
2i

i+1

)m
, as for R = m(m−1), and then we have = =

[−m2, m(m− 1)]. The chambers are the open intervals (n, n+ 1) with n∈Z.

3.2. Derivatives in the Algorithm

We want to see next how this algorithm behaves with respect to derivatives. In
fact, the theory of Strang–Fix ensures that, when we have approximation power
m, we can approximate a function f with a spline to order O(hm) and at the same
time its derivatives of order k < m to order O(hm−k ). We want to show that our
proposed algorithm indeed satisfies this property. Since we shall work also with
subsets Y of X, we put Ah

X(f ) := fh, the approximant to f in the algorithm asso-
ciated to X at the step n = 1/h.

Again the algorithm is local, so we may assume that f and all of its derivatives
up to order m(X) are continuous and bounded everywhere by some constant C.

(If we assume that f has only bounded derivatives of order ≤ t, then we get the
same results but only for these derivatives.)

By Remark 3.5, the choice of truncation is not essential for the final Theo-
rem 3.10. To make our induction simpler, we establish some notations and nor-
malize the truncation as follows:

T (m)
a :=

m−1∑
i=0

∇ i
a

i + 1
, ∇ [m]

a :=
m∑
i=1

∇ i
a

i
= ∇aT

(m)
a ;

QX :=
∏
a∈X

( m(X)−1∑
i=0

∇ i
a

i + 1

)
=

∏
a∈X

T (m(X))
a . (3.9)

Note that this truncation is not the optimal one but rather the most convenient one
for carrying out the proof.

Example 3.8. For the 1-dimensional case X = 1m we have m(X) = m. In this
case a natural truncation is QX = (∑m−1

i=0
∇ i

i+1

)m
with ∇1 = ∇. For instance, for
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m = 2 we have (1+ ∇/2)2 = 1+ ∇ + ∇2/4 though the natural truncation is
1+ ∇, which in any case is also not the optimal choice. The optimal choice is
given by τ−1.

Lemma 3.9. Given a list A = {a1, . . . , ak} of nonzero vectors in V and m ≥ k,
consider the two operators

DA := Da1 · · ·Dak
, ∇ [m]

A := ∇ [m]
a1

· · · ∇ [m]
ak

.

Then, for x0 ∈V and any function g of class Cm+1, we have

|([∇ [m]
A −DA]σ1/hg)(x0)| ≤ hm+1K

∑
|α|=m+1

‖Dαg‖L∞(x0+=hr ),

where K is a constant that is independent of x0 and g.

Proof. On polynomials of degree ≤ m, every difference operator consisting of
terms of order > m is zero. Hence, on such polynomials

∇ [m]
A =

k∏
i=1

∞∑
i=1

∇ i
ai

i
= DA.

Since ∇ [m]
A is a finite difference operator, it follows that

(∇ [m]
A )f =

k∑
i=1

cif(x0 − ui), ui ∈',

for any function f. Hence one has the uniform estimate

|(∇ [m]
A f )(x0)| ≤ c‖f ‖L∞(x0+=r), (3.10)

where c = max(|ci |), r = max(|ui |), and =r denotes the disk of radius r centered
at 0.

Given f , let q be the Taylor series of f at x0 that is truncated at degree ≤ m;
then [∇ [m]

A − DA](f ) = [∇ [m]
A − DA](f − q). Since m ≥ k, we also have that

DA(f − q)(x0) = 0 and thus

[∇ [m]
A −DA](f )(x0) = (∇ [m]

A (f − q))(x0). (3.11)

We now apply (3.11) to the function f = σ1/hg at the point x0/h. Denote by q the
Taylor series of g at x0 truncated at degree ≤ m. Using (3.10) and (3.11) together
with (3.1), we obtain the estimate

|[∇ [m]
A −DA](σ1/hg)(x0)|
= (∇ [m]

A σ1/h(g − q))(x0) ≤ c‖σ1/h(g − q)‖L∞(x0/h+D(r))

= c‖g − q‖L∞(x0+D(hr)) ≤ hm+1K
∑

|α|=m+1

‖Dαg‖L∞(x0+D(hr)).

The constant K = c Cr m+1 is an absolute constant that is independent of g and
x0 (but depends on m and A).
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Theorem 3.10. Under the algorithm fh = Ah
X(f ), for any domain G and for

every multi-index α ∈N
s with |α| ≤ m(X)− 1 we have

‖∂ αfh − ∂ αf ‖L∞(G) = ‖∂ α(fh − f )‖L∞(G) = O(hm(X)−|α|).

Proof. Given any domain H whose closure lies in G, we may extend the restric-
tion of f to H to a function defined onV having uniformly bounded derivatives up
to order m(X)−1. By proving the estimate for such functions we are easily done.

We prove first the estimate

‖DYfh −DYf ‖∞ = O(hm(X)−|Y |) (3.12)

for the differential operators DY , where Y is a sublist in X that is not a cocircuit,
and then show how the required estimate follows easily from this. Recall (cf.
(2.11)) that DY (BX) = ∇YBX\Y as distributions. Under our assumptions, DY (BX)

as well as DYg for any g ∈ SX is in fact a function, although when |Y | = m(X) it
need not be continuous.

Let (DYf )h = Ah
X\Y (DYf ). Because m(X \Y ) ≥ m(X)−|Y |, we may deduce

from Theorem 3.4 that ‖(DYf )h−DYf ‖∞ = O(hm(X)−|Y |). Hence Theorem 3.10
is proved once we show the estimate ‖DYfh − (DYf )h‖∞ = O(hm(X)−|Y |).

Using the commutation rules (2.9) and QX as in (3.9), we obtain

DYfh = h−|Y |σh(DYBX ∗′QXσ1/hf ) = h−|Y |σh(∇YBX\Y ∗′QXσ1/hf ).

Set Q̃X\Y = ∏
z∈X\Y T (m(X))

z and observe that ∇Y

∏
z∈Y T (m(X))

z = ∇ [m]
Y (as in

Lemma 3.9). Then we have, finally,

DYfh = σh(BX\Y ∗′ Q̃X\Y h−|Y |∇ [m]
Y σ1/hf ). (3.13)

Now compare (3.13) with the approximants to DYf :

(DYf )h = σh(BX\Y ∗′QX\Y σ1/hDYf ).

By construction, Q̃X\Y − QX\Y is a sum of terms of order ≥ m(X \ Y ) and so
these approximants differ (by Lemma 3.6) from the approximants

(D̃Yf )h := σh(BX\Y ∗′ Q̃X\Y σ1/hDYf )

by order O(hm(X\Y )).

Given the estimate

|DYfh − (DYf )h| ≤ |DYfh − (D̃Yf )h| + |(D̃Yf )h − (DYf )h|,
we need only show that |DYfh − (D̃Yf )h| = O(hm(X)−|Y |+1). First,

DYfh − (D̃Yf )h = σh(BX\Y ∗′ Q̃X\Y [h−|Y |∇ [m]
Y σ1/hf − σ1/hDYf ]).

Then clearly we have

|σh(BX\Y ∗′ Q̃X\Y [h−|Y |∇ [m]
Y σ1/hf − σ1/hDYf ])|∞

= |Q̃X\YBX\Y ∗′ [h−|Y |(∇ [m]
Y −DY )σ1/hf ]|∞.
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The norm |f ∗ a|∞ of the convolution f ∗ a of a function with compact support f
by a sequence a is clearly bounded by C|a|∞, where C = |f |∞d for d the max-
imum number of points in ' that lie in the support of a translate τaf of f as a

varies in '. We can now apply the estimate to the sequence (∇ [m]
Y − DY )σ1/hf

(computed on points of ') given by (3.9). This yields the estimate O(hm(X)+1),
proving formula (3.12).

Now let m ≤ m(X)−1. Since for any sublist Y of X with m elements we have
that X \Y still generates V, it follows by a simple induction that the operators DY

span linearly the same space spanned by the partial derivatives ∂ α for α ∈N
s with

|α| = m. Thus, the claim of the theorem follows.

4. Super Functions and Nil Functions

4.1. Super Functions

There is an alternative way of presenting algorithm (3.3) that makes use of certain
special functions known as super functions.

Definitions 4. A super function is an element F ∈ SX with compact support
such that F ∗′ q = q for every polynomial q of degree ≤ m(X). A nil function is
an element F ∈ SX with compact support such that F ∗′ q = 0 for every polyno-
mial q ∈D(X). A function F ∈ Sf

X is nilpotent of size r if, for every polynomial
q of degree < r, we have F ∗′ q = 0.

The following statement is an obvious consequence.

Proposition 4.1. If Q is any difference operator inverting BX ∗′ – on D(X),
then QBX is a super function. In particular, since QXBX ∗′ q = q for every q ∈
D(X), it follows that QXBX is a super function.

If F1 is a super function and if F2 ∈ SX has compact support, then F2 is a super
function if and only if F1 − F2 is a nil function.

We can therefore write the basic algorithm of formula (3.4) as convolution by a
super function QBX:

f �→ BX ∗′Qf = (QBX) ∗′f. (4.1)

Once we have chosen a super function, we may describe them all using Propo-
sition 4.1 and a description of nil functions. Such functions can be described, but
this falls beyond the scope of this paper (see [11]).

With notation as in the paragraph preceding Example 3.3, we denote by sm(x)

the super function associated to bm(x):

sm(x) =
( m∑

i=0

∇ i

i + 1

)m+1

bm(x).

Denote by na,m = ∇abm the nil function (assume a > 0).
Figures 1 and 2 show examples of super functions associated to B1,1,1, B16 . In

Figures 3 and 4 we add some nil functions.
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Figure 1 s2(x)

Figure 2 s5(x)

Figure 3 n2,14(x)

Figure 4 n4,14(x)
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Remark 4.2. For any integrable function f we have
∫
V
∇af dµ = 0, where dµ

is a translation-invariant measure.
Thus, given any polynomial p(x1, . . . , xs) and elements ai ∈X,∫

V

p(∇a1, . . . ,∇as
)BX dµ = p(0).

In particular, by our previous remarks and the expression (3.2) of QX we deduce
that

∫
V
F dµ = 1 for any super function F.

5. Quasi-interpolants

The algorithm proposed in Section 3.1 is certainly not the only possible one. Let us
analyze some properties of possible algorithms of interpolation. We follow closely
the two papers [17] and [18].

The starting point of any such algorithm is a linear functional L mapping func-
tions on splines in the cardinal space S. Once such a functional is given, one can
repeat the approximation scheme associating to a function f and a parameter h

the approximant fh := σhLσ1/hf. Of course, for such an algorithm to be a real
approximation algorithm requires suitable hypotheses on L. Let us review some
of the principal requirements that we may ask of L.

• Translation invariance. By this we mean that L commutes with the translations
τa for all a ∈'.

• Locality. In this case one cannot impose a strong form of locality. However,
one may ask whether there is a bounded open set B such that, if f = 0 on B,
then also Lf equals 0 on B.

If we assume translation invariance then we also have locality for all the open
sets a +B with a ∈'.

• Projection property. One may ask whether L is the identity on suitable sub-
spaces of SX. For instance, the algorithm treated in Section 3.1 is the identity
on the space D(X) of polynomials contained in SX.

We shall commence analyzing these conditions in the unimodular case—that
is, when all the bases extracted from X ⊂ ' are in fact integral bases of the lattice
'. In this case one knows the linear independence of translates of the box spline
(see [7]).

For this unimodular case, the functional L can be expressed through its coor-
dinates:

Lf =
∑
a∈'

La(f )BX(x − a).

If we assume translation invariance, then

Lτbf =
∑
a∈'

La(f )BX(x − a − b) =
∑
a∈'

La+b(f )BX(x − a).

On the other hand, Lτbf = ∑
a∈' La(τbf )BX(x − a) and so, by linear indepen-

dence, we obtain the identities La+b(f ) = Laτbf for all a, b ∈'. In particular,
L is determined by the unique linear functional L0 by setting Laf := L0τaf.
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A question studied in [17; 18] is whether we can construct L0 and hence L so
that L is the identity on the entire cardinal space SX. From the previous discus-
sion we need only construct a linear functional L0 such that, on a spline g =∑

a∈' caBX(x − a), we have L0g = c0.

Here is one way to construct such a linear functional. Consider a bounded open
set B with 0∈B. The set

A = {α1, . . . , αk} := {α ∈' | (α + B(X)) ∩B �= ∅}
is finite. Since BX is supported on B(X), only the translates BX(x − α), α ∈ A,
do not vanish on B. Using the local polynomiality of BX, one can show (cf. [7])
that the restrictions of the functions BX(x−α), α ∈A, to B are still linearly inde-
pendent. Let us denote by SX(A) the k-dimensional space with basis the elements
BX(x − α) for α ∈A.

Observe that if L is local on B then

L0

(∑
a∈'

caBX(x − a)

)
= c0 = L0

(∑
α∈A

cαBX(x − α)

)
=

∑
α∈A

cαL(BX(x − α));

hence it suffices to evaluate L0 on the space SX(A).

Suppose that we show the existence of k linear functionals Ti (i = 1, . . . , k)
local on B and such that the k × k matrix with entries TiBX(x − αj ) is invertible.
By inverting the matrix one can easily write c0 on this space as a linear combina-
tion of the functionals Ti. So we take this formula as the definition of L0.

There are several possible approaches to the construction of functionals Ti with
the required properties. One is to consider the Hilbert space structure and define,
for αi ∈A, the functional Tif := ∫

B
f(x)BX(x−αi) dx. By the local linear inde-

pendence, these functionals are clearly linearly independent on the space SX(A).

A second method consists of observing that, by the linear independence, one
can find k points p1, . . . , pk ∈ B such that the evaluation of functions in SX(A)

at these points establishes a linear isomorphism between SX(A) and R
k. In other

words, the k× k matrix with entries BX(pi − a) (i = 1, . . . , k, a ∈A) is invertible
and we can define Ti as the evaluation at the point pi. In general it seems diffi-
cult to exhibit explicit points with the required property (although most k-tuples
of points satisfy the property).

We offer some remarks for when B = ◦
B(X), the interior of the zonotope. Let

X = {a1, . . . , am} be a list of integral vectors spanning the ambient space R
s, and

denote by B := {∑m
i=1 ti ai, 0 < ti < 1

}
the open zonotope. Let σX := ∑m

i=1 ai

and note the symmetry condition a ∈B if and only if σX − a ∈B.

Let A := B ∩ 2−1' be the set of half-integral points contained in B, and let
B := {j ∈' | [B− j ] ∩B �= ∅}.
Proposition 5.1. The mapping φ : a �→ 2a − σX, with inverse φ−1 : b �→
1/2(b + σX), is a bijiection between A and B.

Proof. First we show that, if a ∈A, then 2a − σX ∈B. In fact we have

σX − a = a − (2a − σX)∈B ∩ (B− (2a − σX)).
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Conversely, assume b ∈ B and let a := 1/2(b + σX); clearly a ∈ 2−1', and
we claim also that a ∈ B. By assumption there exists an element c ∈ B with
c − b ∈ B, and by symmetry σX − c + b ∈ B. Since B is convex, we conclude
that 1/2(σX − c + b + c) = a ∈B.

Conjecture 5.1. The half-integral points in B give rise to an invertible matrix
C with entries ca,b := BX(a − 2b + σX).

This can be verified by simple examples.
If Conjecture 5.1 is satisfied then one can use this matrix and the method pre-

viously sketched in order to construct an explicit projection to the spline space,
where the operator L0 is an explicit linear combination of the operators f �→
f(a), a ∈A, of evaluation at the half-integral points in

◦
B(X).

When f = ∑
b∈B cbB(x − b) we have

f(c) =
∑
a∈A

c2a−σXBX(c − 2a + σX) =
∑
a∈A

c2a−σXcc,a ,

so if ca,b are the entries of the matrix C−1 then

c0 =
∑
b∈A

cσX/2,bf(b),

and the projection operator L is given by

Lf =
∑
a∈'

[ ∑
b∈A

cσX/2,bf(b − a)

]
BX(x − a).

Appendix

A. Björner

In this appendix we review some facts about face rings of matroid complexes that
are relevant to the foregoing text.

A.1. Shellability and Face Rings

An abstract simplicial complex = is pure if all its facets (maximal faces) are of
the same dimension. A linear order F1, F2, . . . , Ft of its facets is called a shelling
if each facet Fi (i > 1) intersects the complex =i−1 = 2F1 ∪ · · · ∪ 2Fi−1 generated
by the preceding facets in a pure (dim =− 1)-dimensional subcomplex. Equiva-
lently, each facet Fi has a subface F̂i, called its restriction, such that =i \=i−1 =
{G : F̂i ⊆ G ⊆ Fi} for all i > 1. We put F̂1 = ∅. A pure complex = is said to be
shellable if it admits a shelling order of its facets. See [1, pp. 228–232] or [22,
pp. 78–83] for motivation and more details about the notion of shellability.

Let V = {x1, . . . , xn} be the set of vertices of a simplicial complex =. To each
subset F ⊆ V we associate a squarefree monomial x(F ) = ∏

xi∈F xi. The com-
mutative ring

k[=] = k[x1, . . . , xn]/(x(F ) | F /∈=)
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(k a field) is called the face ring (or Stanley–Reisner ring, or discrete Hodge al-
gebra) of =.

The relevance of the concept of shellability for commutative algebra is the fol-
lowing theorem, which shows that shellability induces a combinatorial decompo-
sition of face rings from which Hilbert series can be read.

Theorem A1. Let F1, F2, . . . , Ft be a shelling of the simplicial complex =, and
let (θ) = (θ1, θ2, . . . , θd) be a linear system of parameters for the ring k[=]. Then
k[=] is Cohen–Macaulay, and

{x(F̂i) : i = 1, 2, . . . , t}
is a k-basis of the quotient ring k[=]/(θ). It follows that

Hilbk[=](z) = h(z)

(1− z)d
,

where h(z) = ∑ t
i=1 z‖F̂i‖.

The realization that shellability implies Cohen–Macaulayness can be traced back
to the seminal work of Hochster [14] and Stanley [22]. The more detailed form of
the theorem is due to Garsia [13], Kind and Kleinschmidt [16], and Stanley [22,
Thm. 2.5, p. 82].

A.2. Matroids

A matroid M = (E, IN ) consists of a family IN of subsets of a finite set E such
that the following properties hold.

M1 Closure: A ⊆ B ∈ IN implies A∈ IN.

M2 Exchange: A, B ∈ IN and |A| > |B| implies that B ∪ {x} ∈ IN for some x ∈
A\ B.

The sets in IN are called independent, and maximal independent sets are bases.
All bases have the same cardinality, called the rank of M. The minimal dependent
sets are called circuits. A premier example of a matroid is given by linear inde-
pendence among a finite set of vectors. See for example the book series [26] for
an exposition on matroids.

Matroid theory contains a pleasant duality operation, defined as follows. If M

is a matroid on the ground set E, then there is a dual matroid M ∗ (having the same
ground set) whose bases are given by the set complements E \B of bases B of M.

The circuits of M ∗ are called cocircuits of M, and rank(M ∗) = |E| − rank(M).

If B is a basis of M and if p /∈ B, then there is a unique circuit cir(B, p) con-
tained in B ∪ p (we here dispense with set brackets for singletons). Dually, if q ∈
B then there is a unique cocircuit cocir(B, q) contained in (E \ B) ∪ q. These
basic circuits and cocircuits are related in the following way:

q ∈ cir(B, p) ⇐⇒ (B \ q) ∪ p is a basis ⇐⇒ p ∈ cocir(B, q).

From now on, assume that the ground set E is linearly ordered. Given a basis
B and an element p /∈ B, we say that p is externally active in B if p is the least
element of cir(B, p). Likewise, an element q ∈ B is said to be internally active
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in B if q is the least element of cocir(B, p). Note that these concepts are dual: p
is externally active in the basis B of M if and only if p is internally active in the
basis E \ B of M ∗.

Let ext(B) denote the number of elements that are externally active in the basisB
and int(B) the number of internally active elements. The two-variable polynomial

TM(x, y) =
∑

bases B of M

x int(B)y ext(B)

is called the Tutte polynomial of M. It depends only on the matroid M, and not on
the chosen linear order on the ground set needed for its computation in terms of
basis activities.

It follows from the axioms that the independent sets IN(M) of a matroid M

form a pure simplicial complex whose facets are the bases of M. The following
result appears in [1, pp. 233–236].

Theorem A2. The lexicographic order of the bases of M, induced by the linear
order of the ground set E, is a shelling of IN(M). The corresponding restriction
operator sends a basis B to the subset B̂ = {p ∈ B | p is not internally active
in B}.

A.3. Face Ring of a Matroid

Combining the information from Sections A.1 and A.2 allows us to draw the fol-
lowing conclusions about the face ring of a matroid complex. Let M be a matroid
of rank r on the set E = {x1, . . . , xn} and consider the polynomial ring k[M ] :=
k[x1, . . . , xn]/J, where J is the ideal generated by the squarefree monomials x(C)

corresponding to the cocircuits C of M. Then k[M ] is the face ring of the simpli-
cial complex IN(M ∗) of independent sets of the dual matroid M ∗, a complex that
is pure (n− r − 1)-dimensional.

According to Theorem A2, the complex IN(M ∗) is shellable and∑
B

z‖Ê\B‖ =
∑
B

zn−r−ext(B) = zn−rTM(1,1/z),

with summation running over all bases B of M. Then, by Theorem A1, the face
ring k[M ] is Cohen–Macaulay with Hilbert series

Hilbk[M ](z) = zn−rTM(1,1/z)

(1− z)n−r
.

Hence, modding out by a linear system of parameters (l.s.o.p.) yields the follow-
ing conclusion.

Theorem A3. Let (θ) be a linear system of parameters for k[M ]. Then k[M ]/(θ)
is a finite-dimensional algebra with Hilbert series

Hilbk[M ]/(θ)(z) = zn−rTM(1,1/z).

Furthermore, for each basis B of M, let Ext(B) be the set of its externally active
elements. Then the system of squarefree monomials
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{x((E \ B) \ Ext(B)) | B is a matroid basis of M}
gives a k-basis of k[M ]/(θ).

A.4. Remark

The following question, asked by C. Procesi, is to our knowledge open.
Given a matroid M, is there a (naturally defined) bigraded finite-dimensional

algebra A[M ] whose bigraded Hilbert polynomial is either the Tutte polynomial
TM(x, y) or a closely related evaluation such as xry n−rTM(1/x,1/y)?
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