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Canonical Hilbert–Burch Matrices
for Ideals of k[x, y]

Aldo Conca & Giuseppe Valla

1. Introduction

Let k be a field of arbitrary characteristic and R the polynomial ring k[x1, . . . , xn].
Let τ be a term order on R. Given a nonzero f ∈ R, we denote by Ltτ(f ) the
largest term with respect to τ appearing in f and by Lcτ(f ) the coefficient of
Ltτ(f ) in f. For an ideal I of R we denote by Ltτ(I ) the (monomial) ideal gener-
ated by Ltτ(f )with f ∈ I \{0}. LetE be a monomial ideal of R. Consider the set
V(E) of the homogeneous ideals I of R such that Ltτ(I ) = E. The set V(E) has
a natural structure of affine variety. Namely, given I in V(E), we can consider I
as a point in an affine space AN with coordinates given by the coefficients of the
nonleading terms in the reduced Gröbner basis of I ; see Section 2 for details. The
equations defining (at least set-theoretically) V(E) can be obtained from Buch-
berger’s Gröbner basis criterion. Provided dimk R/E is finite, one can give the
structure of affine variety also to the set V0(E) of the ideals I (homogeneous or
not) such that Ltτ(I ) = E.

These and similarly defined varieties play important roles in many contexts,
such as the study of various types of Hilbert schemes and the problem of deform-
ing nonradical to radical or prime ideals (see [ASt; Br; CRV; ES1; ES2; G1; G2;
Ha; H1; H2; I1; I2; IY; KRo2; MSt]).

Many of the equations defining V(E) or V0(E) contain parameters that appear
in degree 1 and that can be eliminated. It happens quite often that, after dispensing
with the superfluous parameters, one is left with no equations—that is, the variety
is an affine space. But it is well known that, in general,V(E) can be reducible and
can have irreducible components that are not affine spaces; see Examples 2.1–2.3.

On the other hand, for n = 2 and d = dimk R/E <∞ it is known that V0(E)

and V(E) are affine spaces. This has been proved (for some term orders) by
Briançon [Br] and Iarrobino [I1]; for general τ, it follows from a general result of
Bialynicki-Birula [Bi1; Bi2] on smooth varieties with k∗-actions. Here it is im-
portant to note that V0(E) coincides with the set of points of the Hilbert scheme
Hilbd(A2) that degenerate to E under a suitable k∗-action associated to a weight
vector representing the term order on monomials of degree≤ d+1. By the analogy
with Schubert cells for Grassmannians, we call V0(E) and V(E) Gröbner cells.
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Our goal here is to show that, for n = 2 and τ the lexicographic order induced
by x > y, bothV(E) andV0(E) can be described as affine spaces in a very explicit
way (see Theorem 3.3). To achieve this goal, we identify canonical Hilbert–Burch
matrices of the ideals involved. The main point is to introduce (redundant) systems
of generators for the ideals in V0(E) that, instead of being themselves “simple”,
have “simple” syzygies.

We can then easily deduce formulas for the dimensions of V(E) and V0(E)

and of two other subvarieties of V0(E); see Corollary 3.1. Dimension formulas
for these varieties were originally obtained in [Br; ES1; ES2; G2; I1; IY]. In Sec-
tion 4 we re-prove and generalize some results of Iarrobino [I2] concerning the
Betti strata of V(E).

For standard facts on Gröbner bases we refer the reader to [KRo1] or [Ei]. The
results of this paper were discovered, suggested, and double-checked by extensive
computer algebra experiments performed with CoCoA [Co]. We thank Anthony
Iarrobino and Lorenzo Robbiano for useful discussions regarding the material of
this paper.

2. V(E) as an Affine Variety

With notation as just described, we first recall how V(E) and V0(E) can be given
the structure of affine varieties. For every minimal monomial generator m of E,
consider the polynomial

fm = m−
∑

λ(m,m′)m′,

where the sum is extended to the monomialsm′ /∈E such that degm = degm′ and
m′ < m with respect to τ. Denote by N the total number of parameters λ(m,m′).
The property of being a Gröbner basis for the fm is turned into the vanishing of
polynomials (say, B1, . . . ,Br) on the parameters λ(m,m′). Because an ideal has a
unique reduced Gröbner basis, the points of the affine variety of AN defined by the
vanishing of the Bi are in bijection with the elements of V(E). The polynomials
Bi can be explicitly computed through Buchberger’s criterion for Gröbner basis.
There are many degrees of freedom in the application of Buchberger’s criterion
(e.g., one can use all the S-pairs or carefully chosen subsets of them, the reduc-
tion process can be performed in various ways, and so on). So the actual nature
of the polynomials Bi depends on these choices but not, of course, on the variety
that they define. Similarly, if dimk R/E is finite then one can give the structure of
an affine variety toV0(E) by dropping the assumption that degm = degm′ in the
definition of fm.

We note in passing that V0(E) is contained, usually properly, in the variety

UE = {I ⊂ R : the monomials not in E form a K-basis of R/I }.
For R = k[x, y], the variety UE is studied in detail in [Ha; H1; KRo2; MSt].

As stated in the Introduction, the varietiesV(E) andV0(E) quite often are affine
spaces. Roughly speaking, what happens is as follows. Let m, n be monomial
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generators of E with m′ < m and let t = m′n/GCD(m, n) satisfy t /∈ E. Then
the coefficient of t in the S-polynomial associated to fm and fn is just λ(m,m′)
or λ(m,m′) − λ(n, n′) depending on whether or not there exists an n′ < n

such that t = n′m/GCD(m, n). Performing the reduction procedure, λ(m,m′)
cannot be cancelled because at each iteration the degree of the coefficients in-
volved increases by 1. At the end of the reduction procedure, the coefficient of
t in the polynomial we are left with must vanish. Hence we have equations of
the form

λ(m,m′)+ B = 0 or λ(m,m′)− λ(n, n′)+ B = 0, (2.1)

where B is a polynomial in the λ(·, ·) not involving monomials of degree 1. Of
course, if B does not involve λ(m,m′) at all then we can use (2.1) to remove pa-
rameter λ(m,m′) from the equations. This elimination process can be iterated. In
many cases, at the end of the elimination process the equations vanish completely,
and this shows that the associated variety is an affine space. We have implemented
this rough algorithm in CoCoA [Co]. For example, we have verified that V(E) is
an affine space for τ = Lex, n = 3, and E any ideal generated by monomials of
degree 3.

The following examples show that in general the varietyV(E) has a more com-
plicated structure. For simplicity, the coordinates of the ambient affine spaces
λ(m,m′) are denoted by ai. All the computations are done over a field of charac-
teristic 0.

Example 2.1. Set n = 3,E = (x4
3 , x4

2 , x1x
2
2x3, x3

1x3), and τ = Lex. ThenV(E)
is a subvariety of A17, where the inclusion is given by the parameterization

x3
1x3 − x 2

1 x
2
2 a1− x 2

1 x2x3a2 − x 2
1 x

2
3 a3 − x1x

3
2 a4 − x1x2x

2
3 a5 − x1x

3
3a6

− x3
2 x3a7 − x 2

2 x
2
3 a8 − x2x

3
3a9,

x1x
2
2 x3 − x1x2x

2
3 a10 − x1x

3
3a11− x3

2 x3a12 − x 2
2 x

2
3 a13 − x2x

3
3a14,

x4
2 − x3

2 x3a15 − x 2
2 x

2
3 a16 − x2x

3
3a17,

x4
3 .

Buchberger’s criterion yields three equations, two of which can be written as

a14 = −a2
10a12 − a10a13 − a11a12 and

a9 = 2a1a
2
10a

2
12a15 + other 46 terms in the ai not involving a9 and a14.

Setting b17 = a3
10 − a2

10a15 + 2a10a11 − a10a16 − a11a15 − a17, the third equation
is a1b17 = 0. Hence V(E) has two irreducible components, each of which is iso-
morphic to A14.

Example 2.2. Let n = 4, E = (x 2
4 , x2x4, x 2

2 , x1x4), and τ = Lex. Then V(E)
is a subvariety of A8, where the inclusion is given by the parameterization
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x 2
4 ,

x2x4 − x 2
3 a1− x3x4a2,

x 2
2 − x2x3a3 − x 2

3 a4 − x3x4a5,

x1x4 − x2x3a6 − x 2
3 a7 − x3x4a8.

The parameters a1, a7, a4 can be eliminated, so V(E) is indeed contained in A5.

After renaming b3 = 2a2 − a3, the defining ideal of V(E) in A5 takes the form
b3a6, a5a6. Hence V(E) has two irreducible components, one isomorphic to A3

and the other to A4.

Example 2.3. Let n = 4, E = (x 2
4 , x2x4, x1x4, x1x2, x 2

1 ), and τ = Lex. Then
V(E) is a subvariety of A16, where the inclusion is given by the parameterization

x 2
4 ,

x2x4 − x 2
3 a1− x3x4a2,

x1x4 − x 2
2 a3 − x2x3a4 − x 2

3 a5 − x3x4a6,

x1x2 − x1x3a7 − x 2
2 a8 − x2x3a9 − x 2

3 a10 − x3x4a11,

x 2
1 − x1x3a12 − x 2

2 a13 − x2x3a14 − x 2
3 a15 − x3x4a16.

The parameters a1, a3, a4, a5, a10, a13, a14, a15 can be eliminated, soV(E) is indeed
contained in A8. After renaming

b9 = a2a8 + a7a8 − a6 + a9, b12 = 2a6 + b9 − a12, b7 = a2 − a7,

the defining ideal of V(E) in A8 takes the form (b7b9, b9b12, a11b12−b7a16). Thus
V(E) has two components: one is isomorphic to A6, and the other is a quadric
hypersurface of rank 4 in A7.

3. Ideals in k[x, y]

From now on, let k be a field and let R = k[x, y] be the polynomial ring over k.
We equip R with the lexicographic term order > induced by x > y. In what fol-
lows, Ltτ(f ), Ltτ(I ), and Lcτ(f ) will be more simply denoted as Lt(f ), Lt(I ),
and Lc(f ).

Given a monomial ideal E ⊂ R with dimk R/E <∞, we want to describe the
set of ideals

V0(E) = {I such that Lt(I ) = E}
and its subsets

V1(E) = {
I : Lt(I ) = E and y ∈√I }

,

V2(E) = {
I : Lt(I ) = E and

√
I = (x, y)

}
,

V(E) = V3(E) = {I : Lt(I ) = E; and I is homogeneous}.
Our goal is to prove Theorem 3.3. As a corollary, we have the following result.
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Corollary 3.1. The set V0(E) is an affine space. The subsets V1(E), V2(E),
andV3(E) are also affine spaces; indeed, they are coordinate subspaces of V0(E).

Furthermore,

dimVi(E) =




dimk R/E +min{j : yj ∈E} if i = 0,

dimk R/E if i = 1,

dimk R/E −min{j : xj ∈E} if i = 2,

#S(E) if i = 3,

where S(E) is the set described just before Definition 3.2 and #S(E) denotes its
cardinality.

As stated in the Introduction, dimension formulas for the Vi(E)—as well as the
fact that they are affine spaces—have been proved in [Br; ES1; ES2; G2; I1; IY].

To prove Corollary 3.1 we could try to analyze the equations coming from Buch-
berger’s criterion. Yet this turns out to be quite difficult, so instead we parameter-
ize the syzygies and identify canonical Hilbert–Burch matrices.

Next we introduce some notation. Given a monomial idealE such that dimk R/E

is finite, we set t = min{j : xj ∈E}, m0 = 0, and mi = min{j : x t−iy j ∈E} for
every 1≤ i ≤ t. It is clear that m0 = 0 < m1 ≤ m2 ≤ · · · ≤ mt ,

E = (x t, x t−1ym1, . . . , xymt−1, ymt ),

and dimk R/E = ∑ t
i=0 mi. These generators of E are not minimal in general.

They minimally generate E if and only if m0 < m1 < m2 < · · · < mt—that is,
iff E is a lex-segment ideal. By construction, the correspondence

E←→ (m0, . . . ,mt)

is a bijection between monomial ideals of R with radical equal to (x, y) and se-
quences of integers 0 = m0 < m1 ≤ m2 ≤ · · · ≤ mt.

Given E or, equivalently, (m0, . . . ,mt), we set

di = mi −mi−1

for i = 1, . . . , t. Here d1 > 0 and di ≥ 0 for every i = 2, . . . , t. Clearly, E can be
as well described via the vector (d1, . . . , dt ). Furthermore, the lex-segment corre-
sponds exactly to the vectors with di > 0 for i = 1, . . . , t.

The matrix

M0(E) =




y d1 0 0 · · · 0 0
−x y d2 0 · · · 0 0
0 −x y d3 · · · 0 0
...

...
. . .

. . .
...

...

0 0 0 −x y dt−1 0
0 0 0 0 −x y dt

0 0 0 0 0 −x



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has size (t + 1) × t and is a Hilbert–Burch matrix of E in the sense that the
(signed) t-minors ofM0(E) are the monomials x t−iy mi and the columns generate
their syzygy module.

The matrix M0(E) represents a map from F1 = ⊕t
i=1R(−t + i − mi − 1)

to F0 =⊕t+1
i=1R(−t + i − 1−mi−1). It is useful to consider also the correspond-

ing degree matrix U(E) = (uij ). The entries of U(E) are the degrees of the
(homogeneous) entries of every matrix representing a map of degree 0 from F1 to
F0. We have

uij = mj −mi−1+ i − j for i = 1, . . . , t + 1 and j = 1, . . . , t. (3.1)

We remark that uii = mi −mi−1= di and ui+1,i = 1 for every i = 1, . . . , t. Define

S(E) = {(i, j) : 1≤ j < i ≤ t + 1 and 0 ≤ uij < dj}.
Definition 3.2. Let T0(E) be the set of (t +1)× t matrices N = (ni,j ), where

ni,j =
{

0 if i < j,

a polynomial in k[y] of degree < dj if i ≥ j.
Consider also the following conditions.

(1) ni,i = 0 for every i = 1, . . . , t.
(2) For every j such that dj > 0, the polynomial ni,j has no constant term for

every i = j + 1, . . . , k + 1, where k = max{v : j ≤ v ≤ t and mv = mj}.
(3) The polynomial

ni,j =
{

0 if (i, j) /∈ S(E),
pijy

uij if (i, j)∈ S(E),
with pij ∈ k.

Accordingly, we define:

T1(E) = {N ∈ T0(E) : N satisfies (1)};
T2(E) = {N ∈ T0(E) : N satisfies (1) and (2)};
T3(E) = {N ∈ T0(E) : N satisfies (3)}.

Theorem 3.3. For every monomial ideal E, the map φ : T0(E) → V0(E) de-
fined by sending N ∈ T0(E) to the ideal of t-minors of the matrix M0(E)+ N is
a bijection. Furthermore, the restriction of φ induces bijections between Ti(E)
and Vi(E) for i = 1, 2, 3.

By construction, the sets Ti(E) are affine spaces and their dimension can be easily
computed from their defining conditions. Therefore, Corollary 3.1 is an immedi-
ate consequence of Theorem 3.3.

Before embarking in the proof of this theorem, we consider an example.

Example 3.4. LetE = (x3, xy3, y 5)= (x3, x 2y3, xy3, y 5). Thenm= (0, 3, 3, 5),
d = (3, 0, 2), and
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M0(E) =



y3 0 0
−x 1 0
0 −x y2

0 0 −x


, U(E) =




3 2 3
1 0 1
2 1 2
1 0 1


.

We have t = 3, min{i : yi ∈E} = 5, dimR/E = 11, and #S(E) = 4.
The matrices in T0(E) have the form


n1,1 0 0
n2,1 0 0
n3,1 0 n3,3

n4,1 0 n4,3


,

where the ni,1 are polynomials in y of degree < 3 and the ni,3 are polynomials in
y of degree < 2. The matrices in T1(E) are those of T0(E) such that n1,1 = 0 and
n3,3 = 0. The matrices in T2(E) are those of T1(E) such that n2,1, n3,1, n4,3 have
no constant term. Finally, the matrices in T3(E) have the form


0 0 0

p21y 0 0
p31y

2 0 0
p41y 0 p43y


,

where the pij ∈ k.
As predicted by Theorem 3.1, we obtain dimV0(E) = 16, dimV1(E) = 11,

dimV2(E) = 8, and dimV3(E) = 4.

Proof of Theorem 3.3. The proof proceeds in three steps, which show in turn that
the map φ is well-defined (Step 1); that the map φ is bijective (Step 2); and that,
for i = 1, 2, 3, we have φ(N )∈Vi(E) iff N ∈ Ti(E) (Step 3).

Step 1. Proof that φ is well-defined
For N ∈ T0(E) set I = φ(N ). We show that Lt(I ) = E. For i = 0, . . . , t, let
fi be (−1)t−i times the determinant of the submatrix of M0(E)+N obtained by
deleting the (i + 1)th row. By construction, Lt(fi) = x t−iy mi and Lc(fi) = 1.
We show that f0, . . . , ft form a Gröbner basis of I. The syzygy module of leading
terms of the fi is generated by the syzygies

y di (x t−i+1ymi−1)− x(x t−iy mi ) = 0 (3.2)

with i = 1, . . . , t. To prove that the fi form a Gröbner basis it is enough to show
that the S-polynomials associated to these syzygies reduce to 0. Because

y difi−1− xfi +
t∑

j=i−1

nj+1,ifj = 0,

it is enough to show that if y difi−1−xfi �= 0 then Lt(nj+1,ifj ) ≤ Lt(y difi−1−xfi)
for every nj+1,i �= 0. Observe that the nonzero factors nj+1,ifj have leading terms
that involve different powers of x. Therefore, max(Lt(nj+1,ifj ) : nj+1,i �= 0) =
Lt(y difi−1− xfi).
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Step 2 will be a corollary of the following two lemmas. Indeed, Lemma 3.6 is
the main technical result of the paper and is similar, in spirit, to analogous results
appearing in [Br] and [IY].

Lemma 3.5. Let I be an ideal of R such that Lt(I ) = E, and let f0, . . . , ft ∈
I such that Lt(fi) = x t−iy mi and Lc(fi) = 1. Then, for every f ∈ I such that
Lt(f ) = x t−iy b for some 0 ≤ i ≤ t, there exist polynomials gj ∈ k[y] with j =
i, . . . , t and of deg gi = b −mi such that f + gifi + · · · + gtft = 0.

Proof. By assumption, f0, . . . , ft is a Gröbner basis of I. Hence x t−iy b is divis-
ible by some x t−jy mj, so t − j ≤ t − i and mj ≤ b. It follows that i ≤ j and
mi ≤ mj ≤ b. Therefore, f − Lc(f )y b−mifi is still in I and has a smaller lead-
ing term (if it is nonzero). We desire the desired representation by iterating the
procedure.

Lemma 3.6. Let I be an ideal of R such that Lt(I ) = E. Then there exist
f0, . . . , ft ∈ I such that :

(1) Lt(fi) = x t−iy mi and Lc(fi) = 1 for every i = 0, . . . , t; and
(2) for every i = 1, . . . , t there exist nj+1,i ∈ k[y] with i − 1 ≤ j ≤ t and

deg nj+1,i < di such that

y difi−1− xfi +
t∑

j=i−1

nj+1,ifj = 0. (3.3)

Moreover, the polynomials fi and nj+1,i with these two properties are uniquely
determined by I.

Proof. We prove the existence first. A set of polynomials f0, . . . , ft ∈ I satisfying
(1) clearly exists. We show how to modify those polynomials in order to satisfy
(2). For a given k (1 ≤ k ≤ t), suppose that we have already modified fk , . . . , ft
so that (1) is still fulfilled and (2) is fulfilled for i = k + 1, . . . , t. We show how
to modify fk−1 in order to fulfill (2) for i = k. Note that (a) y dkfk−1− xfk is in I
and involves only terms with x-exponent≤ t − (k−1) and (b) if x t−(k−1)y b is in-
deed present then b < mk. By Lemma 3.5 we have that there exist gk−1, . . . , gt ∈
k[y] such that gk−1 is either 0 or of degree < dk and

y dkfk−1− xfk + gk−1fk−1+ gkfk + · · · + gtft = 0. (3.4)

Set h = y dk + gk−1 and perform, for j = k, . . . , t, division with remainder:
gj = hqj + rj with qj , rj ∈ k[y] and rj either 0 or of degree < dk. Then

y dkf ′k−1− xfk + gk−1f
′
k−1+ rkfk + · · · + rtft = 0 (3.5)

with f ′k−1 = fk−1+ qkfk + · · · + qtft . Note that f ′k−1 is in I and that Lt(f ′k−1) =
Lt(fk−1) and Lc(fk−1) = Lc(f ′k−1). We may replace fi−1 with f ′i−1 and then (3.5)
is the desired relation.

We prove now the uniqueness of the fi and nj+1,i fulfilling (1) and (2). Sup-
pose we have other polynomials f ′i and n′j+1,i fulfilling (1) and (2). Observe that
ft = f ′t because they are both the monic generator of I ∩ k[y]. Hence we may
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assume that fj = f ′j for j = k, . . . , t in order to show that fk−1 = f ′k−1. By
assumption,

y dkfk−1− xfk + nk,kfk−1+
t∑

j=k
nj+1,kfj = 0 (3.6)

and

y dkf ′k−1− xf ′k + n′k,kf ′k−1+
t∑

j=k
n′j+1,kf

′
j = 0, (3.7)

where the nj+1,k and n′j+1,k are polynomials in k[y] of degree < dk.

Lemma 3.5 applied with f = f ′k−1 yields the equation

f ′k−1 = fk−1+ gkfk + · · · + gtft (3.8)

with gj ∈ k[y]. Set h = y di + nk,k and h′ = y di + n′k,k. After replacing f ′k−1 in
(3.7) with the right-hand side of (3.8) and then subtracting (3.6), we obtain

(h′ − h)fk−1+
t∑

j=k
(h′gj + n′k,j+1− nk,j+1)fj = 0. (3.9)

Since the leading terms of the fi involve distinct powers of x, the fi are lin-
early independent over k[y]. Hence the coefficients h′gj +n′k,j+1−nk,j+1 of (3.9)
must be 0. Therefore, h′gj = −n′k,j+1+ nk,j+1. But n′k,j+1+ nk,j+1 has degree <
dk and h′ has degree dk. Hence gj = 0 for every j and so fk−1 = f ′k−1. Having
shown that the fi fulfilling (1) and (2) are uniquely determined by I, it remains to
show that the coefficients nj+1,i are also uniquely determined. This is easy: given
other coefficients n′j+1,i satisfying (2), say

y difi−1− xfi +
t∑

j=i−1

n′j+1,ifj = 0, (3.10)

we may subtract (3.3) from (3.10) and obtain
t∑

j=i−1

(n′j+1,i − nj+1,i )fj = 0.

This implies that n′j+1,i = nj+1,i by the linear independence of the fi over k[y].

Step 2. Proof that φ is bijective
We first prove that φ is injective. Suppose I = φ(N ) = φ(N ′) for matrices
N,N ′ ∈ T0(E). We saw in Step 1 that the signed t-minors f0, . . . , ft ofM0(E)+N
fulfill (1) and (2) of Lemma 3.6. The same is true for the signed t-minors f ′0, . . . , f ′t
of M0(E) + N ′. By the uniqueness of the fi in Lemma 3.6, fi = f ′i for every i.
By the uniqueness of the coefficients in (3.3), we conclude that N = N ′.

We now show that φ is surjective. Let I ∈ V0(E). We may find f0, . . . , ft ∈
I satisfying (1) and (2) of Lemma 3.6. Equation (3.3) is the reduction to 0 of
the S-polynomial corresponding to the syzygy (3.2) among the leading terms. We
know that these syzygies generate the syzygy module of the leading term of the
fi, so Schreyer’s theorem implies that (3.3) gives a system of generators for the



166 Aldo Conca & Giuseppe Valla

syzygy module of the fi. The corresponding matrix is of the form M0(E) + N
with N ∈ T0(E), and the Hilbert–Burch theorem (see [BHe]) then implies that
φ(N ) = I.
Step 3. Proof that φ(N )∈Vi(E) iff N ∈ Ti(E)
Throughout the proof, N denotes a matrix in T0(E), I = φ(N ), and f0, . . . , ft are
the signed t-minors of M0(E)+N.

Because the fi form a Gröbner basis with respect to the lexicographic order,
ft =∏t

i=1(y
di + ni,i ) generates I ∩k[y]. We have that y ∈√I iff ft divides some

power of y. But this is clearly equivalent to the vanishing of ni,i for i = 1, . . . , t,
which proves that N ∈ T1(E) iff φ(N )∈V1(E).

In order to prove that N ∈ T2(E) iff φ(N ) ∈ V2(E), we may assume that N ∈
T1(E) and then show that

√
I = (x, y) iffN fulfills condition (2) of Definition 3.2.

Since we already know y ∈ √I , it follows that
√
I = √

I + (y). Replace y with
0 in M0(E)+ N, and denote by W1 the resulting matrix. The first row of W1 is 0
(since d1 > 0). Denote by W the submatrix of W1 obtained by deleting the first
row. By construction, I + (y) = (detW, y). We must show that detW is a power
of x iff N fulfills condition (2) of Definition 3.2.

Let C = {i : i = 1, . . . , t and di > 0}, say C = {i1, . . . , ip} with i1 < · · · < ip.

By assumption, i1 = 1 and we set ip+1 = t + 1 by convention. The matrix W has
a block decomposition

W =




J1 0 0 · · · 0

∗ J2 0 · · · 0

∗ ∗ J3 · · · 0
...

...
. . .

. . .
...

∗ ∗ · · · ∗ Jp




,

where each Jv is a square block of size, say, u = iv+1− iv and has the form




−x + a1 1 0 · · · · · · 0

a2 −x 1 0 · · · 0

a3 0 −x · · · · · · 0
...

...
...

. . .
. . .

...

au−1 0 · · · 0 −x 1

au 0 · · · 0 0 −x



;

here aj = niv+j,iv (0) for j = 1, . . . , u. Now detW = ∏
v det Jv. The determinant

of the matrix Jv is, up to sign, xu − a1x
u−1− a2x

u−2 − · · · − au. Hence detW is
a power of x if and only if the coefficients aj in each Jv are 0. This is condition
(2) of Definition 3.2.

Finally, we have to show that N ∈ T3(E) iff I is homogeneous. The “only if”
direction follows immediately because the matrix M0(E) + N is homogeneous
for every N ∈ T3(N ). The “if” direction follows from the observation that the
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polynomials fi and ni,j of Lemma 3.6 are homogeneous if we start with a homo-
geneous ideal I.

This completes Step 3 and thus the proof of Theorem 3.3.

4. Betti Strata of V(E)

Let h = h(z) be the Hilbert series of a graded Artinian quotient of R. It is known
that h(z) is of the form

h(z) = 1+ 2z+ · · · + czc−1+
s∑

j=c
hj z

j

with s + 1 ≥ c ≥ hc ≥ · · · ≥ hs > 0. Denote by G(h) the variety that parame-
terizes graded ideals I in R such that the Hilbert series hR/I(z) = h(z). Iarrobino
proved in [I1] that G(h) is a smooth projective variety whose dimension is given
by the beautiful formula

dim G(h) = hc +
s∑

j=c
pjpj+1, (4.1)

where p(z) =∑s+1
0 piz

i = (1− z)h(z) is the first difference of h(z).
Among the ideals with Hilbert series h(z), the lex-segment plays a special role.

We denote it byL(h) or justL if h(z) is clear from the context. If char k = 0, then
V(L) is dense in G(h) so that dimV(L) = dim G(h). Therefore, by Corollary 3.1
we have

dim G(h) = #S(L). (4.2)

To double-check, the curious reader can show directly that the right-hand sides of
(4.1) and (4.2) indeed coincide. It is a simple, but not obvious, exercise.

We come now to study the Betti strata of V(E). For a homogeneous ideal I in
k[x, y], denote by βi,j(I ) the (i, j)th Betti number. In particular, β0,j(I ) is the
number of minimal generators of I of degree j. It is well known that each pair
of the three sets of invariants {β0,j(I )}j , {β1,j(I )}j , and {dim Ij}j determine the
third. Given integers j and u, we define

V(E, j, u) = {I ∈V(E) : β0,j(I ) = u},
V(E, j,≥u) = {I ∈V(E) : β0,j(I ) ≥ u}.

For b = (b1, . . . , bj , . . . ) a vector with integral entries, we define

V(E, b) =
⋂
j

V (E, j, bj )

and
V(E,≥b) =

⋂
j

V (E, j,≥bj ). (4.3)

We consider a monomial ideal E and its associated sequence m0, . . . ,mt. The
ideals in V(E) are parameterized by the affine space An, where n = #S(E). We
denote by pij with (i, j) ∈ S(E) (or simply by p1, . . . ,pn) the coordinates of An.
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Given p ∈ An, we consider the matrix N ∈ T3(E), defined in condition (3) of
Definition 3.2. Set M(p) = M0(E) + N. By the Hilbert–Burch theorem, the
ideal I of maximal minors of M(p) has the free resolution

0 −→
t⊕
i=1

R(−bi) M(p)−−−→
t+1⊕
i=1

R(−ai) −→ 0, (4.4)

where ai = t +1− i+mi−1 for i = 1, . . . , t +1 and bi = ai+1+1 for i = 1, . . . , t.
For every j, we set

wj = {i : ai = j} and vj = {i : bi = j}.
Tensoring (4.4) with k and then taking the degree-j component yields the complex
of vector spaces

0 −→ k#vj
M(p)j−−−→ k#wj −→ 0,

whose homology gives the Betti numbers of I. Here M(p)j is the submatrix of
M(p) with rows indices wj and column indices vj . It follows that

β0,j(I ) = #wj − rankM(p)j (4.5)

and hence V(E, j,≥u) is the determinantal variety defined by the condition

rankM(p)j ≤ #wj − u.
If i1 ∈wj and i2 ∈ vj , then the (i1, i2)th entry of M(p) is:

pi1i2 if i1 > i2 and di2 > 0;
0 if i1 > i2 and di2 = 0;
1 if i1 = i2;
0 if i1 < i2.

Hence the matrices M(p)j have entries that are either variables or 0 or 1. Fur-
thermore, the sets of the variables involved in M(p)j and in M(p)i are disjoint if
i �= j. We may summarize as follows.

Lemma 4.1. The variety V(E,≥b) is the transversal intersection of the deter-
minantal varieties V(E, j,≥bj ). In particular, the codimension of V(E,≥b) is
the sum of the codimensions of the V(E, j,≥bj ), and V(E,≥b) is irreducible iff
V(E, j,≥bj ) is irreducible for every j.

From now on we concentrate our attention on the varietyV(E, j,≥u). If i ∈wj∩vj ,
then the (i, i)th entry of M(p)j is 1 and all the other entries in that column are
0; hence we can simply eliminate the column and the row containing the 1s. De-
note by M(p)∗j the submatrix obtained from M(p)j by removing the 1s together
with their columns and rows. Since the 1s are in different rows and columns, it
follows that

rankM(p)j = rankM(p)∗j + #(wj ∩ vj ).
After noticing that #(wj \ wj ∩ vj ) is exactly β0,j(E), we may conclude as

follows.
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Lemma 4.2. The variety V(E, j,≥u) is defined by the condition

rankM(p)∗j ≤ β0,j(E)− u.
The matrices M(p)∗j have entries that are either 0 or distinct variables, and if the
(i1, i2)th entry is 0 then the same is true for the (h1,h2)th entry also when h1 ≤ i1
and h2 ≥ i2; that is, they look like




• • 0 0 0 0

• • 0 0 0 0

• • • 0 0 0

• • • 0 0 0

• • • • • 0

• • • • • •
• • • • • •




, (4.6)

where each • is a distinct variable.

Remark 4.3. The ideals of minors of a given size of the matrices of type (4.6)
are radical (to prove this one can use Gröbner bases) but obviously are not prime
in general. They can have clearly minimal primes of different codimension.

The following example shows that V(E,≥u) is not irreducible in general.

Example 4.4. Let E = (x6, x 5y, x4y3, x3y 4, x 2y 4, xy 5, y7). Here d = (1, 2,1,
0,1, 2) and a = (6, 6, 7, 7, 6, 6, 7) and b = (7, 8, 8, 7, 7, 8). We have that V(E) is
an 8-dimensional affine space parameterized by the following matrix.

M(p) =

7 8 8 7 7 8

6 y 0 0 0 0 0

6 −x y2 0 0 0 0

7 p1 −x + p4y y 0 0 0

7 p2 p5y −x 1 0 0

6 0 0 0 −x y 0

6 0 0 0 0 −x y2

7 p3 p6y 0 0 p7 −x + p8y

The numbers on the boundary are the degree of the syzygies (the first row) and the
degree of the generators (the first column).

Here the only interesting variety is V(E, 7,≥u). We have w7 = {3, 4, 7} and
v7 = {1, 4, 5}. The matrix M(p)7 is obtained via M(p), selecting the rows and
columns marked with 7:
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M(p)7 =

7 7 7

7 p1 0 0

7 p2 1 0

7 p3 0 p7

In order to get M(p)∗7 we must cancel rows and columns containing 1s:

M(p)∗7 =
(
p1 0
p3 p7

)
.

Hence V(E, 7,≥u) is defined by the condition

rankM(p)∗7 ≤ 2− u.
Therefore, V(E, 7,≥1) is defined by p1p7 = 0 and has two irreducible compo-
nents of codimension 1. The varietyV(E, 7,≥2) is defined by p1 = p3 = p7 = 0
and is irreducible of codimension 3.

This example can be generalized to show that every matrix of type (4.6) can arise
asM(p)∗j for someE and some j. Instead of giving complicated and cumbersome
details, we just give the following (it is hoped, illuminating) example and leave
the details to the interested reader.

Example 4.5. Starting with E associated to the sequence

d = (1,1, 2,1, 0,1,1,1, 2,1,1, 0,1,1, 2,1,1,1),

the matrix M(p)∗19 is 


• • 0 0 0 0 0

• • • • • 0 0

• • • • • 0 0

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •




and V(E,19,≥u) is defined by the condition rankM(p)∗19 ≤ 7− u.
If E is a lex-segment then di > 0 for every i. As a consequence, the matrices
M(p)j are matrices of indeterminates. Thus we obtain the following results of
Iarrobino [I2].

Corollary 4.6. Let L be a lex-segment. Then the variety V(L, j,≥u) is de-
fined by the condition rankM(p)j ≤ β0,j(L) − u, where M(p)j is a matrix of
distinct variables of size β0,j(L)× β1,j(L). In particular :

(1) V(L, j,≥u) is irreducible; it coincides with the closure of V(L, j, u) provided
V(L, j, u) is not empty—that is, provided β0,j(L)− β1,j(L) ≤ u ≤ β0,j(L).
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(2) If β0,j(L)− β1,j(L) ≤ u ≤ β0,j(L), then the codimension of V(L, j,≥u) is
(β1,j(L)− β0,j(L)+ u)u.

If I is an ideal with the same Hilbert function as the lex-segmentL and if β0,j(I ) =
u, then β1,j(L)− β0,j(L)+ u is exactly β1,j(I ). Hence the formula for the codi-
mension of V(L, j,≥u) can be written as β1,j(I )β0,j(I ).

As a result, we have the following statement.

Corollary 4.7. Let L be a lex-segment ideal and let I be a homogeneous ideal
with the Hilbert function of L. Set b = {β0,j(I )}. Then the variety V(L,≥b) is
irreducible; it is the closure of V(L, b) and has codimension

∑
j β1,j(I )β0,j(I ).

We conclude the paper with an example.

Example 4.8. Let L = (x8, x7y, x6y2, x 5y 4, x4y 5, x3y6, x 2y7, xy9, y10). Then
V(L) is A22, whose parameterization is given via the following matrix M(p).

9 9 10 10 10 10 11 11

8 y 0 0 0 0 0 0 0

8 −x y 0 0 0 0 0 0

8 0 −x y2 0 0 0 0 0

9 p1 p5 −x + yp9 y 0 0 0 0

9 p2 p6 yp10 −x y 0 0 0

9 p3 p7 yp11 0 −x y 0 0

9 p4 p8 yp12 0 0 −x y2 0

10 0 0 p13 p15 p17 p19 −x + yp21 y

10 0 0 p14 p16 p18 p20 yp22 −x
The matrices whose ranks describe the Betti strata are

M(p)9 =


p1 p5

p2 p6

p3 p7

p4 p8


 and M(p)10 =

(
p13 p15 p17 p19

p14 p16 p18 p20

)
.

For instance, with b = (bj ) defined by b9 = 3, b10 = 1, and bj = β0,j(L)

for j �= 9,10, the Betti strata V(L,≥b) is described by rankM(p)9 ≤ 1 and
rankM(p)10 ≤ 1.
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