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1. Introduction

Many problems in classical projective geometry ask about the nature of special sub-
varieties of some given family of varieties. For example: How many isolated sin-
gular points can a surface of degree d in P

3 have? When is it true that the members
of a certain family of varieties contain a line or contain a linear space of any pos-
itive dimension? The reader can easily supply other examples of such questions.

This is the kind of problem we consider in this paper: What types of complete
intersection varieties of codimension r in P

n can one find on the generic hyper-
surface of degree d?

In case r = 2 it was known to Severi [Se] that, for n ≥ 4, the only complete
intersections on a general hypersurface are obtained by intersecting that hyper-
surface with another.

This observation was extended to P
3 by Noether (and Lefschetz) [Le; GrH]

for general hypersurfaces of degree ≥ 4. These ideas were further generalized by
Grothendieck [Gro].

Our approach to the question just posed uses a mix of projective geometry and
commutative algebra and is much more elementary and accessible than, for exam-
ple, the approach of Grothendieck. We are able to give a complete answer to the
question we raised for complete intersections of codimension r in P

n that lie on a
general hypersurface of degree d whenever 2r ≤ n+ 2. In particular, we treat the
case of complete intersections of small codimension. The case of complete inter-
section curves on hypersurfaces (i.e., complete intersection of small dimension)
was treated and solved by Szabó in [Sz].

The paper is organized as follows. In Section 2 we lay out the question we want
to consider and explain what are the interesting parameters for a response.

In Section 3 we collect some necessary technical information about varieties
of reducible forms and their joins. In order to find the dimensions of these joins
(using Terracini’s lemma), we calculate the tangent space at a point of any vari-
ety of reducible forms. We also recall some information about Artinian complete
intersection quotients of a polynomial ring.

In Section 4, we use the technical facts collected in Section 3 to reformulate our
original question. We illustrate the utility of this reformulation to discuss complete
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intersections of codimension r in P
n on a general hypersurface when 2r < n + 1.

We further use our approach to give a new proof for the existence of a line on the
general hypersextic of P

5.

In Section 5 we state and prove our main theorem, which gives a complete de-
scription of all complete intersections of codimension r in P

n that lie on a generic
hypersurface when 2r ≤ n + 2.

2. Question

The objects of study of this paper are complete intersection subschemes of pro-
jective space. Recall that Y ⊂ P

n is a complete intersection scheme if its ideal is
generated by a regular sequence; more precisely, I(Y ) = (F1, . . . ,Fr), Fi ∈ S =
C[x0, . . . , xn], and F1, . . . ,Fr form a regular sequence in S. If degFi = ai for all
i, we say that such a Y is a CI(a1, . . . , ar) and will assume that a1 ≤ · · · ≤ ar (note
that Y is unmixed of codimension r in P

n). With this notation, we can rephrase
the statement

the degree-d hypersurface X contains a CI(a1, . . . , ar)

in terms of ideals as

I(X) = (F ) ⊂ (F1, . . . ,Fr) for forms Fi forming a regular sequence
and such that degFi = ai for all i.

Clearly, not all choices of the degrees are of interest for us; for example, if ai >

d for all i, then no CI(a1, . . . , ar) can be found on a degree-d hypersurface. On
the other hand, any hypersurface of degree d contains a CI(a1, . . . , ar) if ai = d

for some i: simply cut that hypersurface with general hypersurfaces of degrees aj ,
j �= i.

So, one need only consider CI(a1, . . . , ar) where none of the ai = d.

Lemma 2.1. Let a1 ≤ · · · ≤ ai < d < ai+1 ≤ · · · ≤ ar with r ≤ n. The follow-
ing are equivalent facts:

• there is a CI(a1, . . . , ar) on the general hypersurface of degree d in P
n;

• there is a CI(a1, . . . , ai) on the general hypersurface of degree d in P
n.

Proof. Let I(X) = (F ), where X is a general hypersurface of degree d in P
n.

Let I(Y ) = (F1, . . . ,Fr) be the ideal of a CI(a1, . . . , ar), with degrees ai as before.
Then X ⊃ Y if and only if

F =
i∑

j=1

FjGj

and hence if and only if X ⊃ Y ′, where Y ′ is the complete intersection defined by
F1, . . . ,Fi.

From this lemma it is clear that the basic question to be considered is:

For which degrees a1, . . . , ar < d does the generic degree-d
hypersurface of P

n contain a CI(a1, . . . , ar)?
(Q)
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If, rather than restricting to the generic case, we asked if some hypersurface of
degree d contains a CI(a1, . . . , ar), then the answer is trivial. Indeed, the ideal of
any CI(a1, . . . , ar) (ai < d) always contains degree-d elements.

3. Technical Facts

If λ = (λ1, . . . , λs) is a partition of the integer d
(
i.e.,

∑s
i=1 λi = d and λ1 ≥ · · · ≥

λs > 0
)
, we write λ � d. For each λ � d, we define a subvariety Xλ ⊂ P(Sd) 


P
N

(
where N = (

d+n
n

) − 1
)

as follows:

Xλ := {[F ] ∈ Sd | F = F1 · · ·Fs , degFi = λi}.
We call Xλ the variety of reducible forms of type λ. The dimension of Xλ is easily
seen to be

[ ∑s
i=1

(
λi+n
n

)] − s. (For other elementary properties of Xλ see [Mam],
and for the special case λ1 = · · · = λs = 1 see [Ca1; Ca2] or [Chi] for the n = 2
case.)

If x1, . . . , xr are independent points of P
N, then we will call the P

r−1 spanned
by these points the join of the points x1, . . . , xr and write

J(x1, . . . , xr) := 〈x1, . . . , xr〉.
More generally, if X1, . . . ,Xr are varieties in P

N then the join of X1, . . . ,Xr is

J(X1, . . . ,Xr) := ⋃{J(x1, . . . , xr) | xi ∈Xi, {x1, . . . , xr} independent}.
If X1 = · · · = Xr = X then we write

J(X1, . . . ,Xr) := Secr−1(X)

and call this the (r − 1)th (higher) secant variety of X.

Joins and secants of projective varieties are important auxiliary varieties that
can help us better understand the geometry of the original varieties (see e.g. [Åd;
C-J; CGGi1; CGGi2; ChCi; Ci; G; LaMa]). One of the most fundamental ques-
tions we can ask about joins and secants is: What are their dimensions?

This is, in general, an extremely difficult question to answer. The famous lemma
of Terracini (our Lemma 3.1) is an important observation that will aid us in an-
swering this question.

Lemma 3.1 (Terracini’s lemma). Let X1, . . . ,Xr be reduced subvarieties of P
N,

and let p ∈ J = J(X1, . . . ,Xr) be a generic point of J. Suppose that p ∈
J(p1, . . . ,pr). Then the ( projectivized ) tangent space to J at p (i.e., Tp(J )) can
be written as

Tp(J ) = 〈Tp1(X1), . . . , Tpr
(Xr)〉.

Consequently,
dim J = dim〈Tp1(X1), . . . , Tpr

(Xr)〉.
We want to apply this lemma in the case that the Xi are all of the form Xλ(i) , where
λ(i) � d for i = 1, . . . , r. A crucial first step in such an application is, therefore, a
calculation of Tpi

(Xλ(i) ) when pi ∈ Xλ(i) .
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Proposition 3.2. Let λ � d for λ = (λ1, . . . , λs) and let p ∈ Xλ be a generic
point of Xλ. Write p = [F1 · · · Fs], where degFi = λi (i = 1, . . . , s), and let Ip ⊂
S = C[x0, . . . , xn] be the ideal defined by

Ip = (F2 · · · Fs , F1F3 · · · Fs , . . . , F1 · · · Fs−1).

Then the tangent space to Xλ at the point p is the projectivization of (Ip)d and
hence has dimension

dim Tp(Xλ) = dimC(Ip)d − 1.

Proof. Consider the map of affine spaces

� : Sλ1 × · · · × Sλs
→ Sd

defined by
�((A1, . . . ,As)) = A1 · · · As.

Let P ∈ Sλ1 × · · · × Sλs
be the point P = (F1, . . . ,Fs). A tangent direction at P is

given by any vector of the form v = (F ′
1, . . . ,F ′

s ), and the line through P in that
direction is

Lv := (F1 + µF ′
1, . . . ,Fs + µF ′

s ), µ∈ C.

A simple calculation shows that the tangent vector to�(Lv) at the point�(P ) =
p is exactly

∑s
i=1 F1 · · · F ′

i · · · Fs , and this proves the proposition.

In view of Terracini’s lemma, the following corollary is immediate.

Corollary 3.3. Let λ(1), . . . , λ(r) be partitions of d, where

λ(i) = (λi1, λi2).

Let
I = (F11,F12,F21,F22, . . . ,Fr1,Fr2)

be an ideal of S generated by generic forms, where

degFij = λij for 1 ≤ i ≤ r, j = 1, 2.

If
J = J(Xλ(1) , . . . , Xλ(r) ),

then
dim J = dimC Id − 1.

Remark 3.4. It is useful to note the following.
(i) In Proposition 3.2 we are using that C has characteristic 0. The problem is

that the differential is not necessarily generically injective in characteristic p.
(ii) Observe that the generic point in Xλ, λ = (λ1, . . . , λs) � d, can always be

written as the product of s irreducible forms with the property that any �-subset of
these s forms (� ≤ n + 1) is a regular sequence.

(iii) The previous observation can be extended easily to joins of varieties of re-
ducible forms. In other words, the generic point in such a join can be written as a
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sum of elements with the property that each summand is a point that has the prop-
erty described in (ii). Moreover, every �-subset (� ≤ n + 1) of the set of all the
irreducible factors of all these summands is also a regular sequence.

(iv) Fröberg [F] made a conjecture about the multiplicative structure of rings
S/I, where S = C[x0, . . . , xn] and I is an ideal generated by a set of generic forms;
this conjecture gives the Hilbert functions of such rings. However, apart from the
cases of n = 1 (proved several times by various authors; see [F; GS; IK]) and
n = 2 (proved in [An]), this conjecture has resisted all attempted proofs. Observe
that, in terms of the geometric problem in Corollary 3.3, one need only consider
Fröberg’s conjecture for a strongly restricted collection of degrees.

We will need some specific information about the Hilbert function of someArtinian
complete intersections in polynomial rings. The following lemma summarizes the
facts we shall use.

Lemma 3.5. Let r > 1, and let F1, . . . ,Fr and G1, . . . ,Gr be generic forms in
C[y1, . . . , y2r−1] with degrees

1 < degF1 = a1 ≤ degF2 = a2 ≤ · · · ≤ degFr = ar ≤ d/2
and

d/2 ≤ degGr = d − ar ≤ · · · ≤ degG1 = d − a1

for a nonnegative integer d.
Consider the quotient

A = C[y1, . . . , y2r−1]/(F1, . . . ,Fr ,Gr , . . . ,G3,G2)

and its Hilbert function HA. The following statements hold:

(i) HA is symmetric with respect to

c = (r − 1)d + a1 − 2r + 1

2
;

(ii) if HA(i) ≥ HA(i + 1), then HA(j) is nonincreasing for j ≥ i;
(iii) the multiplication map on Ai given by Ḡ1 (the class of G1 in A) has maximal

rank.

Suppose that one of the following holds:

r = 2 and a1 ≥ 5; or

r = 3 and a1 ≥ 3; or

r = 3 and a1 = 2, d �= 4; or

r > 3 and a1 ≥ 2.

Then we also have:

(iv) if i ≤ a1, then HA(i) < HA(i + 1);
(v) if a1 < i ≤ c, then HA(a1) < HA(i);

(vi) if c < i, then HA(a1) > HA(i) if and only if c − a1 < i − c.

Proof. Since A is a Gorenstein graded ring, (i) follows immediately; (iii) is a con-
sequence of a theorem of Stanley [St] and Watanabe [W].
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To prove (ii) we can use the weak Lefschetz property, where multiplication by
a general linear form has maximal rank (see e.g. [MiM-R]). The condition on HA

together with the weak Lefschetz property yields that every element of Ai+1 is
the product of a fixed linear form and a form of degree i. Now consider an ele-
ment M of Ai+2; then, since A is a standard graded algebra, it follows that M =∑2r−1

i=1 yiCi, where yi is the class of yi in A and Ci is the class of a form of de-
gree i +1. By what we have already seen, Ci = LDi, where L is the form we had
earlier and the Di are forms of degree i. Rewriting yields M = L

∑2r−1
i=1 yiDi.

But
∑2r−1

i=1 yiDi is in Ai+1, so Ai+2 = LAi+1 and hence the dimension cannot
increase. Proceeding by induction proves the statement.

As for (iv), it suffices to give the proof for i = a1 because there are no gener-
ators of degree smaller than a1. Let Ā be a quotient obtained when all the forms
Fi and Gi have the same degree a = a1 = · · · = ar = d − ar = · · · = d − a2.

Notice that it is enough to show the result for Ā. In fact, whenever we pass from
Ā to another quotient A by increasing the degrees of s forms, we obtain

HA(a) = HĀ(a) + s and

HĀ(a + 1) + s(2r − 1) − s ≤ HA(a + 1),
(1)

and the inequality HĀ(a) < HĀ(a + 1) is preserved; these Hilbert function esti-
mates use that the forms Fi and Gi do not have linear syzygies. Straightforward
computations then yield

HĀ(a) =
(
a + 2r − 2

a

)
− 2r + 1,

HĀ(a + 1) =
(
a + 2r − 1

a + 1

)
− (2r − 1)2.

Hence the inequality HĀ(a) < HĀ(a + 1) is equivalent to(
a + 2r − 2

a + 1

)
− (2r − 1)(2r − 2) > 0. (2)

Observe that if (2) holds for the pair (a, r) then it holds for all the pairs (a+ i, r)
with i ≥ 0. By direct computation we verify that the inequality is satisfied for
(a, r) = (5, 2) and (3, 3) as well as for a = 2 and r > 3. Consequently, (2)
holds for:

r = 2 and a ≥ 5; or

r = 3 and a ≥ 3; or

r > 3 and a ≥ 2.

To complete the proof of (iv) it is enough to evaluate (1) for r = 3 and a = 2 in
the case d �= 4 (i.e., s > 0).

To show (v), notice that (ii) implies that if

HA(a1) > HA(i), a1 < i,
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then HA is definitely nonincreasing and hence, by (iv), it cannot be symmetric
with respect to c.

To obtain (vi), it is enough to use symmetry and (v).

4. Equivalences

In this section we give some equivalent formulations of our basic question (Q),
formulated at the end of Section 2.

Clearly, ifX ⊂ P
n is a hypersurface of degree d and if Y ⊂ X is a CI(a1, . . . , ar),

then the ideal inclusion I(X) = (F ) ⊂ I(Y ) = (F1, . . . ,Fr) yields

F = F1G1 + · · · + FrGr

for forms Gi of degrees d − ai. However, the converse is not true in general. If
F = F1G1 + · · · + FrGr and the forms Fi do not form a regular sequence, then
(F1, . . . ,Fr) is not the ideal of a complete intersection. To produce an equivalence
we need to use joins, as follows.

Lemma 4.1. The following statements are equivalent.

(i) A generic degree-d hypersurface of P
n contains a CI(a1, . . . , ar), where ai <

d for all i.
(ii) The join of the varieties of reducible forms X(ai,d−ai ), i = 1, . . . , r, fills the

space of degree-d forms in n + 1 variables; that is,

J(X(a1,d−a1), . . . , X(ar,d−ar )) = P(Sd).

Proof. The implication (i) ⇒ (ii) simply follows from the foregoing ideal in-
clusion argument, which yields the presentation F = ∑

FiGi for the generic
degree-d form, where [FiGi] ∈ X(ai,d−ai ) for all i. The implication (ii) ⇒ (i)
is easily shown using the description of the generic element of the join; see Re-
mark 3.4(iii).

Remark 4.2. Notice that there is an equality of varieties

X(i,j) = X(j,i)

for all nonnegative integers i and j. Hence, by Lemma 4.1, the condition

J(X(a1,d−a1), . . . , X(ar,d−ar )) = P(Sd)

is equivalent to the statement

a generic degree-d hypersurface of P
n contains a CI(b1, . . . , br),

where bi = ai or bi = d − ai for all i.

It follows from these observations that we can further restrict the range of the de-
grees in our basic question (Q); in other words, it is enough to consider

a1 ≤ · · · ≤ ar ≤ d/2.



128 E. Carlini , L . Chiantini , & A. V. Geramita

Now we exploit Terracini’s lemma and the tangent space description given in
Corollary 3.3 in order to produce another equivalent formulation of question (Q).

Lemma 4.3. The following statements are equivalent.

(i) The generic degree-d hypersurface of P
n contains a CI(a1, . . . , ar), where

ai < d for all i.
(ii) Let F1, . . . ,Fr and G1, . . . ,Gr be generic forms in S = C[x0, . . . , xn] of de-

grees a1 ≤ · · · ≤ ar < d and d − a1, . . . , d − ar , respectively; then

H(S/(F1, . . . ,Fr ,Gr , . . . ,G1), d) = 0,

where H(·, d) denotes the Hilbert function in degree d of the ring.

Proof. The condition on the join in Lemma 4.1 can be read, in terms of tangent
spaces, as being equivalent to

〈TP1(X(a1,d−a1)), . . . ,TPr
(X(ar,d−ar ))〉 = P(Sd)

for generic points P1 = [F1G1], . . . , Pr = [FrGr ]. Using the description of the
tangent space to the variety of reducible forms, this is equivalent to saying that

(F1,G1)d + · · · + (Fr ,Gr)d = Sd ,

where Sd is the degree-d piece of the polynomial ring S and where the forms Fi

and Gi are generic of degrees ai and d − ai, respectively.

As a straightforward application, we have the following result.

Proposition 4.4. If ai < d for all i, then the generic degree-d hypersurface of
P

n contains no CI(a1, . . . , ar) when 2r < n + 1.

Proof. We shall use Lemma 4.3. In S = C[x0, . . . , xn], consider the generic forms
F1, . . . ,Fr and G1, . . . ,Gr of degrees ai and d − ai, respectively. Letting I be the
ideal (F1, . . . ,Fr ,G1, . . . ,Gr), we want to show that H(S/I, d) �= 0; for this it
is enough to show that S/I is not an Artinian ring. Since I has height 2r and
since 2r < n + 1, the quotient cannot be zero-dimensional and so the conclusion
follows.

Remark 4.5. Using Lemma 4.3, we can also recover many classical results in
an elegant and simple way. More precisely, we can easily study the existence of
complete intersection curves (e.g., lines and conics) on hypersurfaces.

Example 4.6. As an example we prove the following claim without using Schu-
bert calculus.

Claim. The generic hypersextic of P
5 contains a line.

Proof. Let S = C[x0, . . . , x5] and consider the ideal

I = (L1, . . . ,L4,G1, . . . ,G4),
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where the forms Li are linear forms and the forms Gi have degree 5. We want to
show that H(S/I, 6) = 0. Clearly

S/I 
 C[x0, x1]/(Ḡ1, . . . , Ḡ4).

It is well known [F; GS; IK] that four general binary forms of degree 5 generate
C[x0, x1]6, and we are done.

For more on this topic, see Remark 5.5.

5. The Theorem

We are now ready to prove the main theorem of this paper, a description of all the
possible complete intersections of codimension r that can be found on a general
hypersurface of degree d in P

n when 2r ≤ n + 2.

Theorem 5.1. Let X ⊂ P
n be a generic degree-d hypersurface with n, d > 1.

Then X contains a CI(a1, . . . , ar), with 2r ≤ n + 2 and the ai all less than d, in
the following (and only in the following) instances.

• n = 2: then r = 2, d is arbitrary, and a1 and a2 can assume any value less
than d.

• n = 3, r = 2: for d ≤ 3 we have that a1 and a2 can assume any value less
than d.

• n = 4, r = 3: for d ≤ 5 we have that a1, a2, and a3 can assume any value less
than d.

• n = 6, r = 4 or n = 8, r = 5: for d ≤ 3 we have that a1, . . . , ar can assume
any value less than d.

• n = 5 or 7 or n > 8, 2r = n+1 or 2r = n+ 2: we have only linear spaces on
quadrics; that is, d = 2 and a1 = · · · = ar = 1.

Proof. Given Lemma 2.1 and Remark 4.2, it is sufficient to consider the existence
of a CI(a1, . . . , ar) on the generic hypersurface of degree d when a1 ≤ · · · ≤
ar ≤ d/2.

When 2r < n + 1, by Proposition 4.4 we know that no complete intersection
exists. Hence we need only consider the cases 2r = n + 1 and 2r = n + 2.

In order to use Lemma 4.3, we consider the generic forms F1, . . . ,Fr and
G1, . . . ,Gr of degrees ai and d − ai, respectively. Putting S = C[x0, . . . , xn] and
I = (F1, . . . ,Fr ,Gr , . . . ,G1), we want to check whether or not H(S/I, d) = 0.

If 2r = n + 1, then S/I is an Artinian Gorenstein ring and e = r(d − 2) + 1
is the first place where one has H(S/I, e) = 0. Thus, the generic degree-d hyper-
surface contains a CI(a1, . . . , ar) if and only if H(S/I, d) = 0; this is equivalent
to the inequality

d ≥ r(d − 2) + 1,

which is never satisfied unless d = 2 and a1 = · · · = ar = 1.
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The case 2r = n + 2 will be proved using Lemma 3.5. In order to do this, we
divide the proof into four parts as follows.

(i) The hyperplane case: a1 = 1 for any r.

(ii) The plane case: a1 = 2, 3, 4 for r = 2 and hence n = 2.
(iii) The 4-space case: a1 = a2 = a3 = 2 and d = 4 for r = 3, so n = 4.
(iv) The general case:

r = 2 and a1 ≥ 5; or

r = 3 and a1 ≥ 3; or

r = 3 and a1 = 2 and d �= 4; or

r > 3 and a1 ≥ 2.

(3)

The hyperplane case. We need to study CI(1, a2, . . . , ar) on the generic degree-d
hypersurface of P

2r−2. Because one of the generators of the complete intersection
is a hyperplane, we can reduce to a smaller-dimensional case. In algebraic terms,
for a generic linear form L we consider the surjective quotient map

S −→ S/(L)

to obtain the following:

the generic element of Sd can be decomposed as a product of forms of
degrees 1, a2, . . . , ar; in other words, it has the form

∑r
i=1FiGi with

degF1 = 1 and degFi = ai, i = 2, . . . , r,

if and only if

the generic element of (S/(L))d 
 (C[x0, . . . , xn−1])d can be decomposed
as a product of forms of degrees a2, . . . , ar; that is, it has the form∑r

i=2 F̄iḠi with deg F̄i = ai, i = 2, . . . , r.

Hence, we must study CI(a2, . . . , ar) on the generic degree-d hypersurface of
P

2r−3 (i.e., codimension r ′ = r − 1 complete intersections in P
n′

, n′ = 2r − 3).
That 2r ′ = n′ +1 means this situation was treated before, and the only case where
complete intersections exist is for d = 2 and ai = 1 for all i.

The plane case. We must study CI(a1, a2) on the generic degree-d curve of P
2

for a1 = 2, 3, 4 and any a2 and d such that a1 ≤ a2 ≤ d. Now, S = C[x0, x1, x2 ]
and we consider forms F1, F2, G2, and G1 of respective degrees a1, a2, d − a2,
and d − a1. We want to study the ring

A = S/(F1,F2,G2)

and to compare H(A, a1) and H(A, d); this will enable us to apply Lemma 3.5(iii)
to show that

H(A/(Ḡ1), d) = 0.

Using Lemma 3.5(i), we see that the last nonzero value of HA occurs for

d + a1 − 3.
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In particular, for a1 = 2 we have H(A, d) = 0 and that a CI(2, a2) exists for any
a2 and d, 2 ≤ a2 ≤ d. If a1 = 3, then H(A, d) = 1 and the same conclusion holds
for CI(3, a2). Finally, if a1 = 4, then H(A, d) = H(A,1) and it is easy to see that
H(A,1) ≤ H(A, 4). Hence, for a1 = 2, 3, 4 and any a2, d such that a1 ≤ a2 ≤ d,
the generic degree-d plane curve contains a CI(a1, a2).

The 4-space case. We address the case of CI(2, 2, 2) on the generic degree-4
3-fold in P

4. Hence, we consider S = C[x0, . . . , x4] and generic quadratic forms
F1, F2, F3, G3, G2, and G1. Let A be the quotient ring

S/(F1,F2,F3,G3,G2)

and observe that, by the vanishing of the left-hand side of (2) in the proof
of Lemma 3.5, we have H(A, 2) = H(A, 3). Applying Lemma 3.5(ii) yields
H(A, 2) = H(A, 4) and hence the required complete intersection exists.

The general case. Consider the ring

A = C[x0, . . . , x2r−2 ]/(F1, . . . ,Fr ,Gr , . . . ,G3,G2)

and the multiplication map given by the form Ḡ1 of degree d − a1:

m : Aa1 → Ad.

Clearly, with this notation one has that the generic degree-d hypersurface contains
a CI(a1, . . . , ar) if and only if

H(S/I, d) = H(A/(Ḡ1), d) = 0,

and this is equivalent to the surjectivity of m. We also recall that, by Lemma
3.5(iii), m has maximal rank. Hence, to study the surjectivity we need only com-
pare H(A, a1) = dimAa1 and H(A, d) = dimAd.

When d = 2, all the degrees ai are equal to 1, and this was treated in the hyper-
plane case.

Now we consider the d > 2 case; as before, we let

c = (r − 1)d + a1 − 2r + 1

2
.

If d ≤ c, then dimAa1 < dimAd by Lemma 3.5(v) and so m cannot be surjective.
Standard computations yield, for r > 3,

d ≤ c ⇐⇒ 2d ≤ (r − 1)d + a1 − 2r + 1 ⇐⇒ 2 + 5 − a1

r − 3
≤ d;

for r = 2, the inequality d ≤ c never holds. Thus, when one of the conditions (3)
holds, we have that m is not surjective if

r > 3 and d > 7
or

r = 3 and a1 > 5.
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In the case c < d we need to be more careful, and the distances α = c − a1 and
β = d − c must be considered. When one of the conditions (3) holds, by 3.5(vi)
it follows that m is surjective if and only if α ≤ β. Thus we solve the inequality
β − α ≥ 0. This is equivalent to

d ≤ 2 + 3

r − 2
for r > 2;

for r = 2, we always have β − α ≥ 0.
Summing up all these facts allows us to make the following statements when

one of the conditions (3) holds.

r = 2: m is surjective.

r = 3: d > 5, m is not surjective; d ≤ 5, m is surjective.

r = 4, 5: d > 3, m is not surjective; d ≤ 3, m is surjective.

r ≥ 6: d > 2, m is not surjective; d ≤ 2, m is surjective.

Then, using the previous treatment of the hyperplane, the plane, and the 4-space
cases, we obtain the final result.

Remark 5.2. That a general hypersurface of degree d ≥ 6 in P
4 cannot contain

a complete intersection of any type with a1, a2, a3 < d is also a consequence of
a result concerning vector bundles that was proved by Mohan Kumar, Rao, and
Ravindra [MoRRa].

In P
n, the existence statement for d = 2 is classical. The d = 3 cases in P

6 and
P

8 can be obtained using [H, Thm. 12.8] (see also Proposition 5.6 in this paper).
In P

4, for d = 3 and d = 4 the existence also follows from the analysis of arith-
metically Cohen–Macaulay rank-2 bundles on hypersurfaces (see [ACo; Mad]).

In P
4, for the case d = 5 and when min{ai} = 2, the result also follows from

the existence of a canonical curve on the generic quintic 3-fold of P
4; this was

essentially proved in [Kl].

Remark 5.3. For n = 2, Theorem 5.1 states that the generic degree-d plane
curve contains a CI(a, b) for any a, b < d, but it does not say that this is a set
of ab points. The complete intersection scheme could very well not be reduced.
Actually, we can show reducedness and hence the following holds:

the generic degree-d plane curve contains ab complete
intersection points for any a, b < d.

Remark 5.4. In the case n = 2, if a1 = a2 = a then Theorem 5.1 states that
Sec1(X(a,d−a)) is the whole space. Now, quite generally, the points of the vari-
ety of secant lines either lie on a true secant line or on a tangent line to X(a,d−a).

We claim that Proposition 3.2 allows us to conclude that the points of the tangent
lines are already on the true secant lines. In fact, if p = [FG] ∈ X(a,d−a), then
any point q of a tangent line to p can be written as [αFG′ + βF ′G] for forms G′
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and F ′ of respective degrees d − a and a and for scalars α and β. Thus, q lies
on the secant line to X(a,d−a) joining [FG′ ] and [GF ′ ]. In conclusion, we can
rephrase the equality Sec1(X(a,d−a)) = P(Sd) in terms of polynomial decomposi-
tions as follows:

If a < d, then any degree-d form in three variables F can be
written as F = F1G1 + F2G2 for suitable forms Fi of degree a

and Gi of degree d − a.

This answers a question raised during correspondence between Zinovy Reichstein
and the first author.

Remark 5.5. The restriction 2r ≤ n + 2 in Theorem 5.1 is related to the fact
that Fröberg’s conjecture is known to be true only when the number of forms does
not exceed one more than the number of variables. However, there are other par-
tial results on this conjecture that we can use to extend our theorem. For example,
Hochester and Laksov [HoL] showed that a piece of Fröberg’s conjecture holds.
More precisely, they showed that if an ideal is generated by generic forms of the
same degree d then the size of that ideal in degree d +1 is exactly as predicted by
Fröberg’s conjecture. Using this, we can prove the following result.

Proposition 5.6. The generic hypersurface of degree d > 2 in P
n contains a

complete intersection of type (a1, . . . , ar), where ai = 1 or ai = d − 1 for all i, if
and only if (

n − r + d

d

)
≤ (n − r + 1)r.

When a1 = · · · = ar = 1, this is the well-known result on the nonemptyness of
the Fano variety of (n− r)-planes on the generic degree-d hypersurface of P

n (see
e.g. [H, Thm. 12.8]).

Proof of Proposition 5.6. Using Lemma 4.3, we must show the vanishing, in de-
gree d, of the Hilbert function of

A = C[x0, . . . , xn]/(L1, . . . ,Lr ,F1, . . . ,Fr)

for generic linear forms Li and generic forms Fi of degree d − 1. Clearly, since
the linear forms are generic, it follows that

A 
 C[x0, . . . , xn−r ]/(F̄1, . . . , F̄r ).

Hence Ad = 0 if and only if (F̄1, . . . , F̄r ) contains all the degree-d forms. Using
the result of Hochester and Laksov, this is equivalent to(

n − r + d

d

)
≤ (n − r + 1)r.

Example 5.7. The variety X(1,3) of reducible quartic hypersurfaces of P
3 and its

secant line variety provide interesting examples for several reasons.
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First note that X(1,3) ⊂ P
34 is a variety of dimension 3 +19 = 22. From Corol-

lary 3.3 it is easy to deduce that dim Sec1(X(1,3)) = 33. Thus, X(1,3) is a defective
variety whose virtual defect e is

e = 2 dim X(1,3) + 1 − dim Sec1(X(1,3)) = 12.

(1) Consider the Noether–Lefschetz locus of quartic hypersurfaces in P
3 with

Picard group �= Z. The quartic hypersurfaces that contain a line are clearly in the
Noether–Lefschetz locus. If � is a line defined by the linear forms L1,L2, then the
degree-4 form F defines a hypersurface containing � if and only if

F = L1G1 + L2G2, where degGi = 3,

that is, if and only if [F ] ∈ Sec1(X(1,3)). Because

dim Sec1(X(1,3)) = 33

(as we have already observed), this forces the secant variety to be a component of
the Noether–Lefschetz locus.

We wonder how often joins of other varieties of reducible forms give compo-
nents of the appropriate Noether–Lefschetz locus.

(2) Since X(1,3) is defective for secant lines, it follows by a theorem of [ChCi]
that, for every two points on X(1,3), there is a subvariety - containing those two
points and whose linear span has dimension ≤ 2 dim- + 1 − e, where e is the
defect of X(1,3). We now give a description of such -s for the variety X(1,3).

Let [H1F1] and [H2F2 ] be two points of X(1,3), and let � be the line in P
3 de-

fined by H1 = 0 = H2. Consider - ⊂ X(1,3), the subvariety of reducible quartics
whose linear components contain �. Clearly, dim- = 1+19 = 20. Now 〈-〉, the
linear span of -, is contained in the subvariety of all quartics containing �, and
that variety has dimension 34 − 5 = 29. Thus,

dim〈-〉 ≤ 29 = 2(20) + 1 − 12 = 2 dim- + 1 − e,

as we wanted to show.
Observe that the existence of -, as described here, gives another proof of the

defectivity of X(1,3).
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