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1. Introduction

Let X be a smooth projective variety defined over an algebraically closed field of
characteristic p > 0 with a fixed very ample line bundle OX(1). We denote by F

the absolute Frobenius morphism F : X → X, which is the identity on the topo-
logical space underlying X and the pth power map on the structure sheaf OX. A
vector bundle E on X descends under F if there exists a vector bundle F such
that E ∼= F ∗(F ). This paper is inspired by the preprint of Joshi [6]. In the rel-
ative situation, where a morphism X → SpecR with generic fiber X := X0 is
given and R is a Z-domain of finite type, Joshi asked the following question:
Assume X is a smooth projective variety and suppose V is a vector bundle that
descends under Frobenius modulo an infinite set of primes; then is it true that V
is semistable (with respect to any ample line bundle on X)?” He gives a positive
answer to this question for rank-2 vector bundles under the additional assumption
that Pic(X) = Z.

In Section 2 we provide a class of examples that give a negative answer to this
question in general. We show that, on the relative Fermat curve

C = V+(Xd + Y d + Zd) → Spec Z

with d ≥ 5 odd, there exists a vector bundle E of rank 2 such that for infinitely
many prime numbers p the reduction Ep = E |Cp modulo p has a Frobenius de-
scent, but E0 = E |C0 is not semistable on the fiber over the generic point. In
Section 3 we give an affirmative answer to this question under the assumption
that, for every closed point m ∈ SpecR, every semistable vector bundle on the
fiber Xm is strongly semistable. We recall that a semistable vector bundle E is
strongly semistable if F e∗(E ) is semistable for all integers e ≥ 0. This provides
further examples of varieties with Pic(X) 	= Z (e.g., abelian varieties) for which
the question of Joshi still has a positive answer.
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2. A Counterexample for Vector Bundles on Curves

In this section we give an example of a rank-2 vector bundle on a generically
smooth projective relative curve over Spec Z such that infinitely many prime re-
ductions have a Frobenius descent but the bundle is not semistable on the generic
fiber in characteristic 0.

Our example will use the syzygy bundle Syz(X2,Y 2,Z2)(m) on Fermat curves
C = V+(Xd + Y d + Zd) ⊂ P2 defined over a field K. This vector bundle is de-
fined by the short exact sequence

0 −→ Syz(X2,Y 2,Z2)(m) −→ OC(m − 2)3 −→ OC(m) −→ 0,

where the penultimate mapping is given by (s1, s2, s3) �→ s1X
2 + s2Y

2 + s3Z
2.

The bundle Syz(X2,Y 2,Z2)(m) is semistable for d ≥ 5 by [2, Prop. 6.2]. In pos-
itive characteristic p > 0, since the presenting sequence involves only locally free
sheaves it is easy to see that the Frobenius pull-back F ∗(Syz(X2,Y 2,Z2)(m)) ∼=
Syz(X2p,Y 2p,Z2p)(mp).

Lemma 2.1. Let d = 2� + 1 with � ≥ 2, and let

C := ProjK[X,Y,Z]/(Xd + Y d + Zd)

be the Fermat curve of degree d defined over a field K of characteristic p ≡ �

mod d. Then the Frobenius pull-back of Syz(X2,Y 2,Z2)(3) sits inside the short
exact sequence

0 −→ OC(� − 1) −→ Syz(X2p,Y 2p,Z2p)(3p) −→ OC(−� + 1) −→ 0.

In particular, the Frobenius pull-back is not semistable and this sequence consti-
tutes its Harder–Narasimhan filtration.

Proof. We write 2p = dk+2� with k even. The pull-back Syz(X2p,Y 2p,Z2p) of
Syz(X2,Y 2,Z2) has a nontrivial global section in total degree d(k + 1 + k/2) by
[3, proof of Prop. 1.2]. From the presenting sequence of the pull-back one reads
off the degree as follows:

deg(Syz(X2p,Y 2p,Z2p)(d(k + 1 + k/2)) = d(2d(k + 1 + k/2) − 6p)

= d(2d(k + 1 + k/2) − 3(dk + 2�))

= d(2d − 6�)

= d(−2� + 2) < 0.

Because a semistable vector bundle of negative degree cannot have nontrivial
global sections, the Frobenius pull-back Syz(X2p,Y 2p,Z2p) is not semistable.
We obtain a nontrivial mapping OC(� − 1) → Syz(X2p,Y 2p,Z2p)(3p). We want
to show that this mapping constitutes the Harder–Narasimhan filtration of the
pull-back, meaning that the mapping has no zeros. Hence, assume that we have a
factorization

OC(� − 1) −→ L −→ Syz(X2p,Y 2p,Z2p)(3p),
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where L is a subbundle of the syzygy bundle and has degree deg(L) := α ≥
(� − 1)d. We have the short exact sequence

0 −→ L −→ Syz(X2p,Y 2p,Z2p)(3p) −→ L′ −→ 0,

where L′ is a line bundle of degree −α. By [15, Cor. 2p] (or [16, Thm. 3.1]), the
inequality

µmax(S ) − µmin(S ) = α − (−α) = 2α ≤ 2g − 2

holds, where S := Syz(X2p,Y 2p,Z2p)(3p) and g denotes the genus of C. The
genus formula for plane curves yields

2g − 2 = (d − 1)(d − 2) − 2 = d(d − 3) = 2d(� − 1).

Thus we obtain α = d(�−1). Hence, OC(�−1) ∼= L and the Harder–Narasimhan
filtration is indeed 0 ⊂ OC(� − 1) ⊂ Syz(X2p,Y 2p,Z2p)(3p).

Remark 2.2. Using Hilbert–Kunz theory and its geometric interpretation devel-
oped in [4] and [17], one can give an alternative (but more complicated) proof that
the line bundle OC(� − 1) is the maximal destabilizing subbundle of the syzygy
bundle Syz(X2p,Y 2p,Z2p)(3p). We recall that, for a rank-2 vector bundle, the
Harder–Narasimhan filtration is already strong in the sense of [9, para. 2.6]. By
the formula given in [4, Thm. 3.6] we can use the short exact sequence

0 −→ L −→ Syz(X2p,Y 2p,Z2p)(3p) −→ L′ −→ 0

to compute the Hilbert–Kunz multiplicity eHK(I ) (see [12]) of the ideal I =
(X2,Y 2,Z2) in the homogeneous coordinate ring

R := K[X,Y,Z]/(Xd + Y d + Zd)

of the curve C and so obtain eHK(I ) = 3d + α2/dp2. But by [13, Thm. 2.3], the
Hilbert–Kunz multiplicity of I equals

eHK(I ) = 3d + d

4

(d − 3)2

p2
,

which implies that α = d(� − 1).

Remark 2.3. We briefly comment on the situation for � = 0,1. For � = 0 (and
p 	= 2) we have Syz(X2,Y 2,Z2)(3) ∼= O2

P1, and this is also true for its Frobenius
pull-back. For � = 1 we get the Fermat cubic, which is an elliptic curve. In this
case we have an exact sequence

0 −→ OC −→ Syz(X2,Y 2,Z2)(3) −→ OC −→ 0,

where the (only) global nontrivial section is given by the curve equation. Hence
the syzygy bundle is F2 in Atiyah’s classification [1] and is semistable but not sta-
ble. Its Frobenius pull-back is either F2 (for p ≡ 1 mod 3; i.e., Hasse invariant 1)
or O2

C (for p ≡ 2 mod 3; i.e., Hasse invariant 0).

In the relative situation

C := Proj(Zd [X,Y,Z]/(Xd + Y d + Zd)) −→ Spec Zd ,
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every fiber Cp := C ×Spec Zd
Spec Fp is a smooth projective curve—namely, the

Fermat curve defined over the prime field Fp (and C̄p := C×Spec Zd
F̄p is a smooth

projective curve over the algebraic closure of Fp) for every prime number p such
that p � d. We recall that, by the theorem of Dirichlet (see [14, Chap. VI, Sec. 4,
Thm. and Cor.]), there exist infinitely many prime numbers p ≡ � mod d.

Lemma 2.4. Let d = 2� + 1 with � ≥ 2, and consider the smooth projective
relative curve C := Proj(Zd [X,Y,Z]/(Xd + Y d + Zd)) −→ Spec Zd . Then the
sequence ( from Lemma 2.1)

0 −→ OCp(� − 1) −→ Syz(X2p,Y 2p,Z2p)(3p) −→ OCp(−� + 1) −→ 0

does not split for almost all primes p ≡ � mod d.

Proof. Since Syz(X2p,Y 2p,Z2p)(3p) ∼= F ∗(Syz(X2,Y 2,Z2)(3)) holds on every
fiber Cp, the bundle Syz(X2p,Y 2p,Z2p)(3p) carries an integrable connection ∇p

with p-curvature 0 by the Cartier correspondence [7, Thm. 5.1]. Assume that the
sequence does split for somep ≡ �mod d. Then OCp(�−1) is a direct summand of
Syz(X2p,Y 2p,Z2p)(3p). The summand OCp(�−1) carries also a connection with
the same properties. Hence, again by the Cartier correspondence it has a Frobe-
nius descent and so its degree d(� − 1) is divisible by p. But this can only hold
for finitely many p.

Example 2.5. As before, we consider the smooth relative curve

C := Proj(Zd [X,Y,Z]/(Xd + Y d + Zd)) −→ Spec Zd

with d = 2� + 1 for � ≥ 2. The Čech cohomology class c = Zd−1/XY ∈
H1(C, OC(d − 3)) ∼= Ext1(OC(−� + 1), OC(� − 1)) defines an extension

0 −→ OC(� − 1) −→ E −→ OC(−� + 1) −→ 0

with the corresponding restrictions to each fiber Cp, where p = (0) or p = (p)

and where p � d. Note that this extension is nontrivial on every fiber. This vector
bundle E is our example. Since � ≥ 2, the bundle E0 = E |C0 is not semistable on
C0. By Lemma 2.1 we have, for p ≡ � mod d, an extension

0 −→ OCp(� − 1) −→ Syz(X2p,Y 2p,Z2p)(3p) −→ OCp(−� + 1) −→ 0

corresponding to c ′ ∈ H1(Cp, OCp(2� − 2)) = H1(Cp, OCp(d − 3)), and by
Lemma 2.4 we have c ′ 	= 0 for almost all p ≡ � mod d. We claim that Ep =
E |Cp ∼= F ∗(Syz(X2,Y 2,Z2)(3)) holds for these prime numbers. Since ωCp =
OCp(d − 3) = OCp(2�− 2) and h1(Cp,ωCp) = 1, it follows that c = λc ′ for some
λ∈ F×

p . Moreover, multiplication by λ induces an automorphism ωCp

·λ−→ ωCp of
line bundles as well as an automorphism H1(Cp,ωCp)

·λ−→ H1(Cp,ωCp) of vector
spaces. We obtain the commutative diagram

0 �� OCp(2� − 2) ��

·λ
��

Syz(X2p,Y 2p,Z2p)(3p + � − 1) ��

��

OCp
��

=
��

0

0 �� OCp(2� − 2) �� Ep(� − 1) �� OCp
�� 0,
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where the map in the middle is an isomorphism of vector bundles. Hence, Ep ∼=
Syz(X2p,Y 2p,Z2p)(3p) ∼= F ∗(Syz(X2,Y 2,Z2)(3)) and therefore Ep admits a
Frobenius descent on every fiber Cp.

Remark 2.6. Example 2.5 extends to all Fermat curvesCd = V+(Xd+Y d+Zd)

where the degree d has an odd divisor d ′ ≥ 5. To see this, we write d = d ′n and
look at the cover f : Cd → Cd ′

induced by the ring map that sends each variable
to its nth power. Then the pull-back under f of the vector bundles considered in
Example 2.5 provide also an example on Cd with the same properties.

3. A Positive Result

Let X → SpecR be a smooth projective morphism of relative dimension d ≥ 1,
whereR is a domain of finite type over Z. Typical examples for the base are Spec Z
or arithmetic schemes SpecD, where D is the ring of integers in a number field.
Let E be a vector bundle over X . In [6, Thm. 4.2], Joshi proved—under the as-
sumptions Pic(X) = Z (X = X0) and rk(E ) = 2—that E0 = E |X is semistable
if, for infinitely many closed points m ∈ SpecR of arbitrarily large residue char-
acteristic, the reduction Em admits a Frobenius descent on the fiber Xm = Xm.

The aim of this section is to prove (using essentially the same methods) this result
for vector bundles of arbitrary rank under the assumption that, for every closed
point m, every semistable vector bundle F on Xm is strongly semistable; that is,
when F e∗(F ) is semistable for all e ≥ 0 (it is enough to assume this for infinitely
many closed points m of arbitrary large residue characteristic). It is interesting to
note that [6, Thm. 2.1] uses the condition Pic(Y ) = Z on a smooth projective va-
riety Y in positive characteristic and a further hypothesis on Y to prove that every
semistable rank-2 vector bundle on Y is strongly semistable.

Theorem 3.1. Let R be a Z-domain of finite type. Let f : X → SpecR be a
smooth projective morphism of relative dimension d ≥ 1 together with a fixed
f -very ample line bundle OX (1), and let E be a vector bundle on X . Further as-
sume that every semistable vector bundle is strongly semistable (with respect to
OXm

(1)) for every fiber Xm, where m is a closed point in SpecR. Then the follow-
ing statement holds: If Em = E |Xm

has a Frobenius descent for infinitely many
closed points m ∈ SpecR of arbitrarily large residue characteristic, then E0 is
semistable on the generic fiber X = X0 = X0.

Proof. One can show by induction over dimR that there exists a bound b such
that µmax(Em) ≤ b for all closed points m ∈ SpecR (see [5, Lemma 3.1] for an
explicit proof ). For a closed point m ∈ SpecR with descent data Em

∼= F ∗(Fm)

with Fm locally free on the fiber Xm, we have

µmax(Em) = char(κ(m))µmax(Fm)

because semistable vector bundles are strongly semistable on every fiberXm by as-
sumption. Since Em

∼= F ∗(Fm) for infinitely many closed points m of arbitrarily
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large residue characteristic, this forces the similar equalities deg(E0) = deg(Em) =
char(κ(m)) deg(Fm) (we take the degree always with respect to OXm

(1)), which
implies deg(Em) = deg(Fm) = 0. Assume that the restriction E0 to the generic
fiber X is not semistable. Then, by the openness of semistability [11, Sec. 5],
every restriction Em on Xm is not semistable. Again by our assumption, Fm is not
semistable either and so µmax(Fm) ≥ 1/r for r = rk(E ). This yields

b ≥ µmax(Em) = char(κ(m))µmax(Fm) ≥ char(κ(m))

r
,

which contradicts the assumption that we have Frobenius descent at closed points
m ∈ SpecR of arbitrarily large residue characteristic.

Corollary 3.2. Let R be a Z-domain of finite type. Let f : X → SpecR be
a smooth projective morphism of relative dimension d ≥ 1 together with a fixed
f -very ample line bundle OX (1), and let E be a vector bundle on X . Suppose that
the fibers Xm, with m ∈ SpecR closed, fulfill at least one of the following (not
necessarily independent) properties:

(1) Xm is an abelian variety;
(2) Xm is a homogenous space of the form G/P, where P is a reduced parabolic

subgroup;
(3) the cotangent bundle 'Xm

fulfills µmax('Xm
) ≤ 0.

Then the following holds: If Em has a Frobenius descent for infinitely many closed
points m ∈ SpecR of arbitrarily large residue characteristic, then E0 is semistable
on X = X0.

Proof. That every semistable vector bundle is strongly semistable in case (3) is due
to [10, Thm. 2.1], and (3) holds in particular for the varieties occurring in (1) and
(2). Other proofs of this property for cases (1) and (2) are given in [15, Cor. 3p] and
for case (3) in [9, Cor. 6.3]. Hence, the assertion follows from Theorem 3.1.

Remark 3.3. On the one hand, it is well known that every semistable vector bun-
dle on an elliptic curve is strongly semistable (see [18, Apx.]). So elliptic curves
provide an important class of smooth projective varieties with Pic(X) 	= Z for
which Theorem 3.1holds. On the other hand, it is also known that for every smooth
projective curve of genus g ≥ 2 there exists a semistable vector bundle F such that
F ∗(F ) is not semistable (see [8, Thm. 1]). Thus we see that Theorem 3.1 is appli-
cable in relative dimension 1 only for elliptic curves and the projective line P1.
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