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Interpolation by Entire Functions
with Growth Conditions

Myriam Ounaïes

0. Introduction

Let p : C → [0, +∞[ be a weight (see Definition 1.1) and let Ap(C) be the vec-
tor space of all entire functions satisfying supz∈C|f(z)| ≤ exp(−Bp(z)) < ∞ for
some constant B > 0. For instance, if p(z) = |z|, then Ap(C) is the space of all
entire functions of exponential type.

Following [3], the interpolation problem we are considering is as follows. Let
V = {(zj ,mj)}j be a multiplicity variety; that is, suppose {zj}j is a sequence
of complex numbers diverging to ∞, |zj | ≤ |zj+1|, and {mj}j is a sequence of
strictly positive integers. Let {wj,l}j,0≤l<mj be a doubly indexed sequence of com-
plex numbers.

Under what conditions does there exist an entire function f ∈Ap(C) such that

f (l)(zj )

l!
= wj,l ∀j, ∀0 ≤ l < mj?

In other words, if we denote by ρ the restriction operator defined on Ap(C) by

ρ(f ) =
{
f l(zj )

l!

}
j,0≤l<mj

,

what is the image of Ap(C) by ρ?
We say that V is an interpolating variety when ρ(Ap(C)) is the space of all

doubly indexed sequences W = {wj,l} satisfying the growth condition

|wj,l| ≤ A exp(Bp(zj )) ∀j, ∀0 ≤ l < mj ,

for certain constants A,B > 0.
We have the following important result.

Theorem 0.1 [2, Cor. 4.8]. V is an interpolating variety for Ap(C) if and only
if, for some constants A,B > 0, the following conditions hold:

(i) for all R > 0, N(0,R) ≤ AP(R)+ B;
(ii) for all j ∈ N, N(zj , |zj |) ≤ AP(zj )+ B.

Here, N(z, r) denotes the integrated counting function of V in the disc of center z
and radius r (see Definition 1.3).
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In [3], Berenstein and Taylor describe the space ρ(Ap(C)) in the case where
there exists a function g ∈ Ap(C) such that V = g−1(0). They used groupings
of the points of V with respect to the connected components of the set {|g(z)| ≤
ε exp(−Bp(z))} for some ε,B > 0 and the divided differences with respect to this
grouping.

The main aim of this paper is to determine more explicitly the space ρ(Ap(C))
in the more general case where condition (i) is satisfied. Clearly, (i) holds whenV
is not a uniqueness set for Ap(C)—that is, when there exists f ∈Ap(C) not iden-
tically equal to zero such that V ⊂ f (−1)(0). See [6] and [10] for similar results in
the case where p(z) = |z|α.

As in [3] and [6], the divided differences will be important tools. Our condi-
tion will involve the divided differences with respect to the intersections of V with
discs centered at the origin. To be more precise, the main theorem—stated in the
case where all multiplicities equal 1 for simplicity—is as follows.

Theorem 0.2. Assume V verifies Theorem 0.1(i). Then W = {wj}j ∈ ρ(Ap(C))
if and only if, for all R > 0,∣∣∣∣ ∑

|zk |<R
wk

∏
|zm|<R,m �=k

R
/
(zk − zm)

∣∣∣∣ ≤ A exp(Bp(R)),

where A,B > 0 are positive constants depending only on V and W.

We will denote by Ãp(V ) the space of sequencesW = {wj}j satisfying the condi-
tion of Theorem 0.2. We will show that in general ρ(Ap(C)) ⊂ Ãp(V ) and so we
can consider ρ : Ap(C) → Ãp(V ). In this context, the theorem states that condi-
tion (i) implies the surjectivity of ρ.

On the other hand, we will prove that condition (i) is actually equivalent to say-
ing that V is not a uniqueness set or, in other words, that it is equivalent to the
noninjectivity of ρ.

As a corollary of the main theorem, we will find the sufficiency in the geometric
characterization of interpolating varieties given in Theorem 0.1.

The difficult part of the proof of the main theorem is the sufficiency. As in [4;
7; 11], we will follow a Bombieri–Hörmander approach based on L2-estimates
of the solution to the ∂̄-equation. The scheme will be as follows. The condition
on W gives a smooth interpolating function F with good growth, using a parti-
tion of unity and Newton polynomials (see Lemma 2.5). Then we are led to solve
the ∂̄ equation: ∂̄u = −∂̄F withL2-estimates, using Hörmander’s theorem [8]. To
do so, we must construct a subharmonic function U with a convenient growth
and with prescribed singularities on the points zj (see Lemma 2.6). Following
Bombieri [5], the fact that e−U is not summable near the points {zj} forces u to
vanish on the points zj , and we are done by defining the interpolating entire func-
tion by u+ F.

Notation. We use A, B, and C to denote positive constants whose actual value
may change from one occurrence to the next. By A(t) � B(t) we mean that there
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exists a constant C > 0, not depending on t, such thatA(t) ≤ CB(t). We useA �
B to mean that A � B � A.

The notationD(z, r)will be used for the Euclidean disk of center z and radius r.
We denote ∂f = ∂f

∂z
and ∂̄f = ∂f

∂z̄
. Then #f = 4∂∂̄f denotes the Laplacian of f.

1. Preliminaries and Definitions

Definition 1.1. A subharmonic function p : C → R+ , is called a weight if, for
some positive constants C,

(a) ln(1 + |z|2) ≤ Cp(z),
(b) p(z) = p(|z|),
(c) there exists a constant C > 0 such that p(2z) ≤ Cp(z).

Property (c) is referred to as the doubling property of the weight p. It implies that
p(z) = O(|z|α) for some α > 0.

Let A(C) be the set of all entire functions. We consider the space

Ap(C) = {f ∈A(C) and, for all z∈ C,

|f(z)| ≤ A exp(Bp(z)) for some A > 0, B > 0}.
Remark 1.2. (i) Property (a) implies that Ap(C) contains all polynomials.

(ii) Property (c) implies that Ap(C) is stable under differentiation.

Here are some examples of weights.

• p(z) = ln(1 + |z|2); then Ap(C) is the space of all the polynomials.
• p(z) = |z|; then Ap(C) is the space of entire functions of exponential type.
• p(z) = |z|α (α > 0); then Ap(C) is the space of all entire functions of order ≤
α and of finite type.

Let V = {(zj ,mj)}j∈N be a multiplicity variety. For a function f ∈ A(C), we
will writeV = f −1(0) when f vanishes exactly on the points zj with multiplicity
mj andV ⊂ f −1(0)when f vanishes on the points zj (but possibly elsewhere) with
multiplicity at least equal to mj . We will say that V is a uniqueness set for Ap(C)
if there is no function f ∈Ap(C), except the zero function, such that V ⊂ f −1(0).

We now recall definitions of counting functions and integrated counting func-
tions as follows.

Definition 1.3. Let V = {(zj ,mj)}j be a multiplicity variety. For z ∈ C and
r > 0,

n(z, r) =
∑

|z−zj |≤r
mj ,

N(z, r) =
∫ r

0

n(z, t)− n(z, 0)

t
dt + n(z, 0) ln r

=
∑

0<|z−zj |≤r
mj ln

r

|z− zj | + n(z, 0) ln r.
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An application of Jensen’s formula in the disc D(0,R) shows that, if V is not a
uniqueness set for Ap(C), then the following condition holds:

∃A > 0, ∃B > 0 : ∀R > 0, N(0,R) ≤ AP(R)+ B. (1)

We will later show that the converse property holds.
By analogy with the spaces A(C) and Ap(C), we define the spaces

A(V ) = {W = {wj,l}j,0≤l<mj ⊂ C}
and

Ap(V ) =
{
W = {wj,l}j,0≤l<mj ⊂ C :

∀j,
mj−1∑
l=0

|wj,l| ≤ A exp(Bp(zj )) for some A > 0, B > 0

}
.

The space Ap(C) can be seen as the union of the Banach spaces

Ap,B(C) =
{
f ∈A(C), ‖f ‖B := sup

z∈C

|f(z)| exp(−Bp(z)) < ∞
}

and has a structure of an (LF)-space with the topology of the inductive limit. The
analogue holds for Ap(V ).

Remark 1.4 (cf. [1, Prop. 2.2.2]). Let f be a function inAp(C). Then, for some
constants A > 0 and B > 0,

∀z∈ C,
∞∑
k=0

∣∣∣∣f
(k)(z)

k!

∣∣∣∣ ≤ A exp(Bp(z)).

As a consequence of this remark, we see that the restriction map

ρ : Ap(C) → A(V ),

f �→
{
f l(zj )

l!

}
j,0≤l≤mj−1

maps Ap(C) into Ap(V ); in general, however, the space Ap(V ) is larger than
ρ(Ap(C)). It is clear thatρ is injective if and only ifV is a uniqueness set forAp(C).

When ρ(Ap(C)) = Ap(V ) we say that V is an interpolating variety for Ap(C).
As mentioned in the Introduction, Berenstein and Li have given the following geo-
metric characterization of these varieties.

Theorem 1.5 [2, Cor. 4.8]. V is an interpolating variety for Ap(C) if and only
if conditions (1) and

∃A > 0, ∃B > 0 : ∀j ∈ N, N(zj , |zj |) ≤ Ap(zj )+ B (2)

hold.
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In this paper we are concerned with determining the subspace ρ(Ap(C)) of A(V )
when condition (1) is verified.

To any W = {wj,l}j,0≤l≤mj−1 ∈A(V ) we associate the sequence of divided dif-
ferences '(W ) = {φj,l}j,0≤l≤mj−1 defined by induction as follows. First, we es-
tablish the following notation:

)q(z) =
q∏
k=1

(z− zk)
mk for all q ≥ 1;

φ1,l = w1,l for all 0 ≤ l ≤ m1 − 1,

φq,0 = wq,0 − Pq−1(zq)

)q−1(zq)
,

φq,l =
wq,l − P

(l)
q−1(zq )

l! − ∑ l−1
j=0

1
(l−j)!)

(l−j)
q−1 (zq)φq,j

)q−1(zq)
for 1 ≤ l ≤ mq − 1,

where

Pq−1(z) =
q−1∑
j=1

( mj−1∑
l=0

φj,l(z− zj )
l

j−1∏
t=1

(z− zt )
mt

)
.

Remark 1.6. Actually, Pq is the polynomial interpolating the values wj,l at the
points zj with multiplicitymj for 1 ≤ j ≤ q. It is the unique polynomial of degree
m1 + · · · +mq − 1 such that

P (l)
q (zj )

l!
= wj,l

for all 1 ≤ j ≤ q and 0 ≤ l ≤ mj − 1.

Examples. (i) Let W0 = {δ1,j δl,m1−1}j,0≤l<mj . Using that Pj(z) must coincide
with (z − z1)

m1−1 ∏j−1
k=2(z − zj )

mj and identifying the coefficient in front of
zm1+···+mj−1+l−1, we find that

φ1,1 = φ1,2 = · · · = φ1,m1−2 = 0, φ1,m1−1 = 1

and, for 0 ≤ l ≤ mj − 1 (j ≥ 2),

φl,j = (z1 − zj )
−(l+1)

j−1∏
k=2

(z1 − zk)
−mk.

(ii) In the special case where mj = 1 for all j and W = {wj}j , we have

φj =
j∑
k=1

wk
∏

1≤l≤j, l �=k
(zk − zl)

−1 for all j ≥ 1.

To compute the coefficients, we may use that Pj(z) must coincide with the La-
grange polynomial

∑j

n=1wn
∏

1≤k≤j,k �=n
(z−zk)
(zn−zk) and identify the coefficient in

front of zj−1.
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Let us denote by Ãp(V ) the subspace of A(V ) consisting of the elements W ∈
A(V ) such that the following condition holds:

for all n ≥ 0, |zj | ≤ 2n and 0 ≤ l ≤ mj − 1,

|φj,l|2n(l+m1+···+mj−1) ≤ A exp(Bp(2n)),
(3)

where A and B are positive constants depending only on V and W.
We have chosen to use a covering of the complex plane by discs D(0, 2n), but

we can replace 2n by any Rn with R > 1.

Lemma 1.7. Assume that z1 = 0. Then condition (1) holds if and only if

W0 = {δ1,j δl,m1−1}j,0≤l<mj ∈ Ãp(V ).
Proof. Suppose that (1) is verified. Let n∈ N, 0 < |zj | ≤ 2n, and 0 ≤ l ≤ mj − 1.
By definition, we have

N(0, 2n) =
∑

0<|zk |≤2n

mk ln
2n

|zk| +m1 ln(2n) ≥ ln

(
2n(m1+···+mj )

j∏
k=2

|zk|−mk
)

and

|φj,l| = |zj |mj−l−1
j∏
k=2

|zk|−mk ≤ 2n(mj−l−1)
j∏
k=2

|zk|−mk

≤ exp(N(0, 2n))2−n(m1+···+mj−1+l+1).

We readily obtain the estimate (3), using that N(0, 2n) ≤ Ap(2n)+ B.

Conversely, let n be an integer. Using the estimate (3) when j ≥ 2 is the num-
ber of distinct points {zk} in D(0, 2n) and l = mj − 1, we obtain

N(0, 2n) = ln

(
2n(m1+···+mj )

j∏
k=2

|zk|−mk
)

= ln(2n(m1+···+mj )|φj,mj−1|) ≤ Ap(2
n)+ B.

Using this with 2n−1 ≤ R < 2n and the doubling property of p, we can deduce
the estimate for N(0,R).

We define the norm

‖W‖B = sup
n

‖W(n)‖n exp(−Bp(2n)),
where

‖W(n)‖n = sup
|zj |≤2n

sup
0≤l≤mj−1

|φj,l|2−n(l+m1+···+mj−1).

The space Ãp(V ) can also be seen as an (LF)-space that is an inductive limit of
the Banach spaces

Ãp,B(V ) = {W ∈A(V ), ‖W‖B < ∞}.
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We are now ready to state the main results.

Proposition 1.8. The restriction operator ρ maps Ap(C) continuously into
Ãp(V ).

Proposition 1.9. Under the assumption of condition (1), Ãp(V ) is a subspace
of Ap(V ).

Proposition 1.10. If conditions (1) and (2) are verified, then Ãp(V ) = Ap(V ).

Theorem 1.11. If condition (1) holds, then

Ãp(V ) = ρ(Ap(C)).

In other words, condition (1) implies that the mapρ : Ap(C)→ Ãp(V ) is surjective.

The combination of Proposition1.10 and Theorem1.11shows easily the sufficiency
in Theorem 1.5.

Using the results given so far, we can deduce our next theorem.

Theorem 1.12. The following assertions are equivalent.

(i) V is not a uniqueness set for Ap(C).
(ii) The map ρ is not injective.

(iii) V verifies condition (1).
(iv) The sequence W0 = {δ1,j δl,m1−1}j,0≤l<mj belongs to ρ(Ap(C)).

In particular, Theorem 1.2 shows that condition (1) is equivalent to the existence
of a function f ∈Ap(C) such that V ⊂ f −1(0). Combined with Theorem 1.11, it
shows both that (a) if ρ is not injective then it is surjective and (b) if the image
containsW0 then it contains the whole Ãp(V ).

Proof of Theorem 1.12. As mentioned previously, it is clear that (i) is equivalent
to (ii) and that (i) implies (iii).

(iv) implies (i): We have a function f ∈Ap(C) not identically equal to 0 such
that f (l)(zj ) = 0 for all j �= 1 and for all 0 ≤ l < mj . The function g defined by
g(z) = (z − z1)

m1f(z) belongs to Ap(C), thanks to property (i) of the weight p,
and vanishes on every zj with multiplicity at least mj .

(iii) implies (iv): Up to a translation, we may suppose that z1 = 0. By Lem-
ma 1.7, we know that W0 ∈ Ãp(C). By Theorem 1.11, W0 ∈ ρ(Ap(C)).

2. Proofs of the Main Results

Proof of Proposition 1.8. We first recall some definitions about the divided differ-
ences and the Newton polynomials. We refer the reader to [1, Chap. 6.2] or [9,
Chap. 6] for more details.
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Let f ∈A(C) and let x1, . . . , xq be distinct points of C. The qth divided differ-
ence of the function f with respect to the points x1, . . . , xq is defined by

#q−1f(x1, . . . , xq) =
q∑
j=1

f(zj )
∏

1≤k≤q,k �=j
(xj − xk)

−1,

and the Newton polynomial of f of degree q − 1 is

P(z) =
q∑
j=1

#j−1f(x1, . . . , xj )
j−1∏
k=0

(z− xk);

it is the unique polynomial of degree q−1 such that Pq(z) = f(xj ) for all 1 ≤ j ≤
q. When xj , 1 ≤ j ≤ q, are each one repeated lj times, the divided differences are
defined by

#l1+···+lq−1f(x1, . . . , x1︸ ︷︷ ︸
l1

, . . . , xq−1, . . . , xq−1︸ ︷︷ ︸
lq−1

, xq , . . . , xq︸ ︷︷ ︸
lq

)

= 1

l1! · · · lq!
∂ l1+···+lj

∂x
l1
1 · · · ∂x lqq

#q−1f(x1, . . . , xq).

The corresponding Newton polynomial is the unique polynomial of degree
l1 + · · · + lq − 1 such that, for all 0 ≤ j ≤ q and 0 ≤ l ≤ lj − 1,

P (l)(xj ) = f (l)(xj ).

We have the following estimate.

Lemma 2.1 [1, Lemma 6.2.9]. Suppose f ∈A(C),- is an open set of C, δ > 0,
and x1, . . . , xk are in -0 = {z∈- : d(z,-c) > δ}. Then

|#k−1f(x1, . . . , xk)| ≤ 2k−1

δk−1
sup
z∈-

|f(z)|.

Let B > 0 be fixed and f ∈Ap,B(C).

Let n be a fixed integer. Let |zj | ≤ 2n and 0 ≤ l ≤ mj − 1. We consider
the divided differences of f with respect to the points z1, . . . , zj , where each zk ,
1 ≤ k ≤ j − 1, is repeated mk times and each zj is repeated l times. Let Mj,l =
m1 + · · · +mj−1 + l; then the divided differences are

φj,l = #Mj,l f (z1, . . . , z1︸ ︷︷ ︸
m1 times

, . . . , zj−1, . . . , zj−1︸ ︷︷ ︸
mj−1 times

, zj , . . . , zj︸ ︷︷ ︸
l+1 times

).

Using Lemma 2.1 with- = D(0, 2n+2), δ = 2n+1, and k = Mj,l +1, we obtain

|φj,l| ≤ 2−nMj,l‖f ‖B exp(Bp(2n+2)) ≤ 2−nMj,l‖f ‖B exp(B ′p(2n)).

Hence
‖ρ(f )‖B ′ ≤ ‖f ‖B ,

and this concludes the proof of Proposition 1.8.
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Before proceeding with the proofs of the main results, we shall need the following
lemmas.

Lemma 2.2. Condition (1) implies that there exist constants A,B > 0 such that,
for all R > 0,

n(0,R) ≤ Ap(R)+ B.

Proof. Using property (c) of the weight, we have

n(0,R) ≤ 2
∫ 2R

R

n(0, t)

t
dt ≤ 2N(0, 2R) ≤ Ap(2R)+ B ≤ Ap(R)+ B.

Lemma 2.3. Let W be an element of A(V ) and let q be in N
∗. We suppose that

for all 1 ≤ j ≤ q, for all n∈ N such that |zq| ≤ 2n, and for all 0 ≤ l ≤ mj − 1,

|φj,l|2n(l+m1+···+mj−1) ≤ A exp(Bp(2n)),

where A and B are positive constants depending only on V and W.
Then there exist constantsA,B > 0 depending only on V andW and such that,

for all n∈ N and |z| ≤ 2n,

+∞∑
l=0

|P (l)
q (z)|
l!

≤ A exp(Bp(2n))
q∑
j=1

22(m1+···+mj ),

+∞∑
l=0

|)(l)
q (z)|
l!

≤ 2(n+2)(m1+···+mq).

Proof. If |z| ≤ 2n+1, then for j = 1, . . . , q and |z− zj | ≤ 2n+2 we have

|Pq(z)| ≤
q∑
j=1

2(n+2)(m1+···+mj−1)

mj−1∑
l=0

|φj,l|2(n+2)l

≤ A exp(Bp(2n))
q∑
j=1

22(m1+···+mj )

and

|)q(z)| =
q∏
j=1

|z− zj |mj ≤ 2(n+2)(m1+···+mq).

Now for |z| ≤ 2n, if |z−w| ≤ 2 then |w| ≤ 2n+1. By the preceding inequalities
and Cauchy inequalities, for all l ≥ 0 it follows that

|P (l)
q (z)|
l!

≤ 1

2l
max|z−w|≤2

|Pq(w)| ≤ 1

2l
A exp(Bp(2n))

q∑
j=1

22(m1+···+mj ),

from which we readily obtain the desired estimate for Pq. Using Cauchy estimates
once again for the function )q yields the second inequality.
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Proof of Proposition 1.9. We assume that condition (1) holds. Let

W = {wj,l}j,0≤l≤mj−1 ∈ Ãp(V ).
Let q ≥ 1 and let n be the integer such that 2n−1 ≤ |zq| < 2n. We know that
P (l)
q (zq)/l! = wq,l for every 0 ≤ l ≤ mq−1. By Lemma 2.3,

mq−1∑
l=0

|wq,l| ≤
+∞∑
l=0

|P (l)
q (zq)|
l!

≤ A exp(Bp(2n))
q∑
j=1

22(m1+···+mj ).

By Lemma 2.2, m1 + · · · + mj ≤ n(0, |zj |) ≤ Ap(zj ) + B. Using that q ≤
n(0, |zq|) ≤ Ap(zq)+ B, we obtain

mq−1∑
l=0

|wq,l| ≤ A exp(Bp(2n)) ≤ A exp(Bp(zq));

that is, W ∈Ap(V ).
Proof of Theorem 1.10. We assume that conditions (1) and (2) are fulfilled. We
already have Ãp(V ) ⊂ Ap(V ) by Proposition 1.9. Before proving the reverse in-
clusion, we need the following useful consequences of (1) and (2).

Lemma 2.4. There exist constants A,B > 0 such that, for all j ∈ N
∗ and all

n∈ N such that |zj | ≤ 2n:

(i) 2nmj ≤A|zj |mj exp(Bp(2n))and 2n(m1+···+mj)≤A|zj |m1+···+mj exp(Bp(2n));
(ii) |zj |mj ≤ A exp(Bp(zj ));

(iii)
∏j−1

k=1|zj − zk|−mk ≤ A exp(Bp(2n))2−n(m1+···+mj−1).

Proof. (i) For 0 < |zj | ≤ 2n,

N(0, 2n) ≥
∑

0<|zk |≤2n

mk ln
2n

|zk| ≥ mj ln
2n

|zj | .

We readily obtain the result by condition (1).
The second inequality is obtained in the same way after noting that

N(0, 2n) ≥
j∑
k=1

mk ln
2n

|zk| ≥
(

ln
2n

|zj |
) j∑
k=1

mk.

(ii) This is a simple consequence of condition (2):

mj ln|zj | ≤ N(zj , |zj |) ≤ Ap(zj )+ B.

(iii) This also is a consequence of condition (2):

j−1∑
k=1

mk ln
|zj |

|zj − zk| ≤
∑

0<|zk−zj |≤|zj |
mk ln

|zj |
|zj − zk| = N(zj , |zj |) ≤ Ap(zj )+ B.

Using (i), we deduce that
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j−1∏
k=1

|zj − zk|−mk ≤ A exp(Bp(zj ))|zj |−(m1+···+mj−1)

≤ A2−n(m1+···+mj−1) exp(Bp(2n)).

Let W = {wj,l}j,0≤l≤mj−1 be in Ap(V ). In order to show that W verifies (3), we
use Lemma 2.3 to show (by induction on q ≥ 1) the following property: For all
n∈ N such that |zq| ≤ 2n and for all 0 ≤ l ≤ mq − 1,

|φq,l|2n(l+m1+···+mq−1) ≤ A exp(Bp(2n)),

where A and B are positive constants depending only on V and W.
Suppose q = 1. Then, for |z1| ≤ 2n and 0 ≤ l ≤ m1 − 1, we have

|φ1,l| = |w1,l| ≤ A exp(Bp(z1))

≤ A exp(Bp(z1))2
−nl2nm1 ≤ A exp(Bp(2n))2−nl,

using parts (i) and (ii) of Lemma 2.4.
Now suppose the property holds for 1 ≤ j ≤ q − 1, and let n ∈ N be such that

|zq| ≤ 2n. Again we proceed by induction on l, 0 ≤ l ≤ mq − 1.
Let l = 0. By Lemmas 2.3 and 2.2, we have

|Pq−1(zq)| ≤ A exp(Bp(2n))
q−1∑
j=1

22(m1+···+mj )

≤ (q − 1)22(m1+···+mq−1) ≤ A exp(Bp(2n)).
By Lemma 2.4(iii),

|)q−1(zq)|−1 =
q−1∏
k=1

|zq − zk|−mk ≤ A exp(Bp(2n))2−n(m1+···+mq−1).

We deduce that
|φq,0| ≤ A exp(Bp(2n))2−n(m1+···+mq−1).

Now suppose the estimate true for 0 ≤ j ≤ l − 1. Using the inequalities from
Lemmas 2.3 and 2.2 yields

l−1∑
j=0

∣∣∣∣)
(l−j)
q−1 (zq)

(l − j)!
φq,j

∣∣∣∣ ≤ A exp(Bp(2n))

and ∣∣∣∣P
(l)
q−1(zq)

l!

∣∣∣∣ ≤ A exp(Bp(2n)).

As for l = 0, we use Lemma 2.4(iii) to complete the proof of Theorem 1.10.

Proof of Theorem 1.11. We already showed the necessity in Theorem 1.8, so we
now prove the sufficiency.

We assume condition (1). Let W = {wj,l}j,0≤l≤mj−1 be an element of Ãp(V ).
Let X be a smooth cutoff function such that X (x) = 1 if |x| ≤ 1 and X (x) = 0 if
|x| ≥ 4.
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Set Xn(z) = X (|z|2/22n) for n ∈ N, ρ0 = X0, and ρn+1 = Xn+1 − Xn. It is
clear that the family {ρn}n forms a partition of unity, that the support of Xn is con-
tained in the disk |z| ≤ 2n+1, and that the support of ρn is contained in the annulus
{2n−1 ≤ |z| ≤ 2n+1} for n ≥ 1.

We will denote by qn the number of distinct points zj in D(0, 2n); that is,
qn = ∑

|zj |≤2n 1.

Lemma 2.5. There exists a C∞ function F on C such that, for certain constants
A,B > 0:

(i) F (l)(zj )/l! = wj,l for all j ∈ N with 0 ≤ l ≤ mj − 1;
(ii) |F(z)| ≤ A exp(Bp(z)) for all z∈ C;

(iii) ∂̄F = 0 on D(0,1) and, for any n ≥ 2 and 2n−2 ≤ |z| < 2n−1,

|∂̄F(z)| ≤ A2−n(m1+···+mqn )
qn∏
k=1

|z− zk|mk exp(Bp(2n)).

Proof. We set
F(z) =

∑
n≥2

ρn−2(z)Pqn(z),

where

Pq(z) =
q∑
j=1

( mj−1∑
l=0

φj,l(z− zj )
l

) j−1∏
k=1

(z− zk)
mk.

This is the Newton polynomial mentioned in Remark 1.6.
(i) For all j ≥ 1 and 0 ≤ l ≤ mj − 1, if zj is in the support of ρn−2 then

P (l)
qn
(zj ) = l!wj,l . Thus

F (l)(zj ) =
∑
n≥2

( l∑
k=0

Ck
lρ
(l−k)
n−2 (zj )k!wj,k

)

=
l∑

k=0

Ck
l k!wj,k

(∑
n

ρn

)(l−k)
(zk) = l!wj,l .

(ii) For z ≥ 1, let n ≥ 2 be the integer such that 2n−2 ≤ |z| < 2n−1. Then we
have

F(z) = ρn−2(z)Pqn(z)+ ρn−1(z)Pqn+1(z).

For all 0 ≤ j ≤ qn we have |zj | ≤ 2n and |z − zj | ≤ 2n+1. Using Lemma 2.3,
condition (1), and property (c) of the weight yields

|Pqn(z)| � exp(Bp(2n)) ≤ A exp(Bp(2n)) ≤ A exp(Bp(z)).

The same estimation holds for Pqn+1, so

|F(z)| � exp(Bp(z)).

(iii) Now, we want to estimate ∂̄F. It is clear that F(z) = Pq2(z) on D(0,1).
Let |z| ≥ 1 and let n be the integer such that 2n−2 ≤ |z| < 2n−1. Then

∂̄F(z) = ∂̄ρn−2(z)Pqn(z)+ ∂̄ρn−1(z)Pqn+1(z).
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Since z is outside the supports of ∂̄Xn−3 and ∂̄Xn−1, it follows that

∂̄F(z) = −∂̄Xn−2(z)(Pqn+1(z)− Pqn(z)) =
qn∏
k=1

(z− zk)
mkGn(z),

where

Gn(z) = −∂̄Xn−2(z)

qn+1∑
j=qn+1

j−1∏
k=qn+1

(z− zk)
mk

( mj−1∑
l=0

φj,l(z− zj )
l

)
.

For k ≤ qn+1 we have |z − zk| ≤ 2n+2. Hence, using the estimate given by (3)
and then Lemma 2.2, we can show that

|Gn(z)|A exp(Bp(2n))2−n(m1+···+qn)
qn+1∑

j=qn+1

2mqn+1+···+mj

� exp(Bp(2n))2−n(m1+···+mqn ).

We readily obtain the desired estimate.

While looking for a holomorphic interpolating function of the form f = F + u,
we are led to the ∂̄-problem

∂̄u = −∂̄F,

which we solve using Hörmander’s theorem [8, Thm. 4.2.1].
The interpolation problem is then reduced to the following lemma.

Lemma 2.6. There exists a subharmonic function U such that, for certain con-
stants A,B > 0:

(i) U(z) � mj log|z− zj |2 near zj ;
(ii) U(z) ≤ Ap(z)+ B for all z∈ C;

(iii) |∂̄F(z)|2 exp(−U(z)) ≤ A exp(B(p(z)) for all z∈ C.

Admitting this lemma for a moment, we proceed with the proof of the theorem.
By Hörmander’s theorem [8, Thm. 4.4.2] we can find a C∞ function u such that

∂̄u = −∂̄F and, denoting by dλ the Lebesgue measure,∫
C

|u(w)|2 exp(−U(w)− Ap(w))

(1 + |w|2)2 dλ(w)

≤
∫

C

|∂̄F |2 exp(−U(w)− Ap(w)) dλ(w).

By property (a) of the weight p, there exists a C > 0 such that∫
C

exp(−Cp(w)) dλ(w) < ∞.

Thus, using (ii) of the lemma and the estimate on |∂̄F(z)|2, we see that the last in-
tegral is convergent ifA is large enough. By condition (iii) we know that, near zj ,
exp(−U(w))(w − zj )

l is not summable for 0 ≤ l ≤ mj − 1. Hence necessarily
u(l)(zj ) = 0 for all j and 0 ≤ l ≤ mj − 1; as a result, f (l)(zj )/l! = wl

j .



168 Myriam Ounaïes

Now we must verify thatf has the desired growth. By the mean value inequality,

|f(z)| �
∫
D(z,1)

|f(w)| dλ(w) �
∫
D(z,1)

|F(w)| dλ(w)+
∫
D(z,1)

|u(w)| dλ(w).

Let us estimate the latter two integrals, which we denote by I1 and I2.

For w ∈D(z,1),

|F(w)| � exp(Bp(w)) � exp(Cp(z)).

Then
I1 � exp(Cp(z)).

To estimate I2, we use Cauchy–Schwarz inequality,

I 2
2 ≤ J1J2,

where

J1 =
∫
D(z,1)

|u(w)|2 exp(−U(w)− Bp(w)) dλ(w),

J2 =
∫
D(z,1)

exp(U(w)+ Bp(w)) dλ(w).

Then

J1 �
∫

C

|u(w)|2 exp(−U(w)− Bp(w)) dλ(w)

�
∫

C

|u(w)|2 exp(−U(w))
(1 + |w|2)2 dλ(w) < +∞,

by property (a) of p as long as B > 0 is chosen large enough.
To estimate J2, we use condition (i) of the lemma and property (b) of the weight

p. For w ∈D(z,1),

exp(U(w)+ Bp(w)) ≤ exp(Cp(w)) � exp(Ap(z)).

We easily deduce that J2 � exp(Ap(z)) and hence, finally, that f ∈ Ap(C); this
completes the proof of Theorem 1.11.

Proof of Lemma 2.6. For the sake of simplicity and up to a homotethy, we may
assume that |zk| > 2 for all zk �= 0. In the definition of the following functions
Vn, we will assume z1 �= 0; otherwise, we may add the term m1 ln|z| to each Vn.
We set

Vn(z) =
∑

0<|zj |≤2n

mj log
|z− zj |2

|zj |2 ;

then
V(z) =

∑
n≥2

ρn−2(z)Vn(z).

First we will show that V verifies (i), (ii), and (iii). Then we estimate#V from
below and add a correcting term W. The subharmonic function U will be of the
form V +W.
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(i) Let |zk| be such that 2m−1 < |zk| < 2m+1. For 2m−1 < |z| < 2m+1,

V(z) = ρm−1(z)Vm+1(z)+ ρm(z)Vm+2(z)+ ρm+1(z)Vm+3(z).

Because the ρn form a partition of unity, it is clear that V(z) − mk ln|z − zk|2 is
continuous in a neighborhood of zk. Observe that V is smooth on {|z| ≤ 2} since
we have assumed that all |zj | > 2.

(ii) Let n ≥ 2 and 2n−2 ≤ |z| < 2n−1. Then

V(z) = ρn−2(z)Vn(z)+ ρn−1(z)Vn+1(z).

For all |zj | < 2n, we have |z− zj | < 2n+1. Thus,

Vn(z) ≤
∑

|zj |≤2n

mj log
2n+1

|zj | ≤ N(0, 2n+1).

Finally, we obtain that

V(z) ≤ N(0, 2n+1)+N(0, 2n+2) � p(2n) � p(z)

by condition (1) and property (c) of the weight.
(iii) We have

−V(z)
2

=
∑

|zj |≤2n

mj ln
|zj |

|z− zj | + ρn+1(z)
∑

2n<|zj |≤2n+1

mj ln
|zj |

|z− zj | .

Note that for all 2n < |zj | ≤ 2n+1 we have |z − zj | > 2n − 2n−1 = 2n−1. We
obtain

−V(z)
2

≤
∑

|zj |≤2n

mj ln
2n

|z− zj | + ln 4
∑

2n<|zj |≤2n+1

mj

≤ ln

(
2n(m1+···+mqn )

qn∏
j=1

|z− zj |−mj
)

+ ln(A exp(Bp(2n)) (4)

for certain constantsA,B > 0, using Lemma 2.2. Finally, combining this inequal-
ity with Lemma 2.5(iii) yields

|∂̄F(z)| exp(−V(z)/2) � exp(Bp(2n)) � exp(Bp(z)).

Now, in order to obtain a lower bound of the Laplacian, we compute #V(z) as

#V =
∑
n≥2

ρn−2#Vn + 2 Re

(∑
n

∂̄ρn−2∂Vn

)
+

∑
n≥2

∂∂̄ρn−2Vn.

The first sum is positive because every Vk is subharmonic.
Let us estimate the second and third sums, which we denote respectively by

B(z) and C(z). Let n ≥ 2 and 2n−2 ≤ |z| < 2n−1; then, since z is outside the
supports of ∂̄Xn−3 and ∂̄Xn−1, we have

B(z) = 2 Re[∂̄Xn−2(z)∂(Vn(z)− Vn+1(z))],

C(z) = ∂∂̄Xn−2(z)(Vn(z)− Vn+1(z)).
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Moreover,

Vn(z)− Vn+1(z) =
∑

2n<|zj |≤2n+1

mj log
|z− zj |2

|zj |2 ,

∂(Vn(z)− Vn+1(z)) =
∑

2n<|zj |≤2n+1

mj
1

z− zj
,

and

|∂̄Xn−2(z)| �
1

2n
, |∂∂̄Xn−2(z)| �

1

22n
.

For z in the support of ∂̄Xn−2 we have |z| ≤ 2n−1, and for 2n ≤ |zj | < 2n+1 it
follows that 2n−1 ≤ |z− zj | ≤ 2n+2. Therefore,

|∂∂̄Xn−2(z)(Vn+1(z)− Vn(z))| �
n(0, 2n+1)− n(0, 2n)

22n
,

|∂̄Xn−2(z)∂(Vn+1(z)− Vn(z)| �
n(0, 2n+1)− n(0, 2n)

22n
.

Finally,

#V(z) � −n(0, 2n+1)− n(0, 2n)

22n
� −n(0, 23|z|)− n(0, 2|z|)

|z|2 .

To construct the correcting termW, we begin by putting W(z) = g(23|z|) and

f(t) =
∫ t

0
n(0, s) ds, g(t) =

∫ t

0

f(s)

s2
ds.

The following inequalities are easy to see:

f(t) ≤ tn(0, t), g(t) ≤
∫ t

0

n(0, s)

s
ds = N(0, s).

Thus, by condition (1) and property (c),

W(z) ≤ N(0, 23|z|) � p(23z) � p(z).

We must now estimate the Laplacian of W. Let t = 23|z|. Then

#W(z) = 1

t
g ′(t)+ g ′′(t) = 1

t 2

(
f ′(t)− f(t)

t

)

and

f(t) =
∫ t

0
n(0, s) ds =

∫ t/4

0
n(0, s) ds +

∫ t

t/4
n(0, s) ds

≤ t

4
n

(
0,
t

4

)
+ t

(
1 − 1

4

)
n(0, t).

Therefore,

f ′(t)− f(t)

t
= n(0, t)− f(t)

t
≥ 1

4

(
n(0, t)− n

(
0,
t

4

))
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and

#W(z) �
n(0, 23|z|)− n(0, 2|z|)

|z|2 .

Now, the desired function will be of the form

U(z) = V(z)+ αW(z),

where α is a sufficiently large positive constant.
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