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Quasihyperbolic Growth Conditions and
Compact Embeddings of Sobolev Spaces

Pekka Koskela & Juha Lehrbäck

1. Introduction

In this paper, � will always denote an open and connected subset of the Euclidean
space R

n, n ≥ 2. Recall that the Sobolev space W 1,p(�) consists of the func-
tions in Lp(�) whose first-order distributional derivatives all belong to Lp(�)

also. One of the fundamental inequalities associated with Sobolev functions is the
Sobolev–Poincaré inequality, according to which(∫

�

|u − u�|np/(n−p) dx

)(n−p)/np

≤ C

(∫
�

|∇u|p dx

)1/p

(1)

holds for 1 ≤ p < n whenever u ∈ W 1,p(�) and � is sufficiently nice—say,
when � is bounded and satisfies the cone condition. In such a domain it follows
that W 1,p(�) ⊂ Lnp/(n−p)(�), and one has a compact embedding of W 1,p(�) into
Lq(�) for all 1 ≤ q < np/(n−p). This is called the Rellich–Kondrachov compact
embedding theorem (cf. [7]) and it, together with its analogues, are of fundamental
importance in the study of certain partial differential equations (e.g., for the Neu-
mann problem for second-order elliptic equations). In fact, the discreteness of the
spectrum is equivalent to the weaker conclusion that the embedding of W 1,2(�)

into L2(�) is compact; see [10]. This compact embedding is usually called the
Rellich lemma [12].

One is then led to ask for minimal regularity conditions on � that would allow
for the compactness of the embedding of W 1,p(�) into Lp(�). It is essentially
due to Nikodym [11] that we must require some additional condition (besides the
necessary boundedness assumption) to be posed on �. In this paper we consider
conditions given in terms of the quasihyperbolic metric, defined by setting

k�(x, y) = inf
γ

∫
γ

ds

d(z, ∂�)

for each pair of points x, y ∈ �, where the infimum is taken over all rectifiable
curves γ in � joining x to y. In 1985, Axler and Shields [1] asked if the growth
condition

k�(x, x0) ≤ C1 log

(
1

d(x, ∂�)

)
+ C2 (2)
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for a simply connected planar � implies that∫
�

|u − u�|2 dx ≤ C

∫
�

|∇u|2 dx (3)

for functions in W 1,2(�). We can easily check that this Poincaré inequality is nec-
essary for the compactness of the embedding of W 1,2(�) into L2(�) (cf. [17]). In
1990, Smith and Stegenga [14] answered this question in the positive by proving
that (2) implies the Poincaré inequality (3) even without the assumption of sim-
ple connectivity. They also established the corresponding Poincaré inequality for
W 1,n(�) in higher dimensions, where the exponent 2 is replaced by n. Moreover,
they verified that (2) guarantees the compactness of the embedding of W 1,n(�)

into Ln(�). In the subsequent paper [15], Smith and Stegenga relaxed the growth
condition (2) essentially to

k�(x, x0) ≤ C1

(
log

(
1

d(x, ∂�)

))3/2

+ C2

without altering their conclusions (cf. Corollary 4 and its proof in [15]). Notice
that this growth order is slower than any root of 1/d(x, ∂�). In this paper we prove
the following sharp result.

Theorem 1.1. Suppose that k�(x, x0) ≤ C0 d(x, ∂�)−α for all x ∈ �, where
x0 ∈ � is a fixed basepoint. If α < n

2n−1, then the embedding of W 1,n(�) into
Ln(�) is compact. Moreover, there is a bounded domain � for which the preced-
ing growth order holds with α = n

2n−1 and for which the embedding of W 1,n(�)

into Ln(�) fails to be compact.

For simply connected planar domains, Theorem 1.1 could be reformulated in terms
of univalent multipliers of the Dirichlet space; see [1].

In the course of our proof of Theorem 1.1, we shall establish an essentially
sharp Sobolev–Poincaré type inequality in the domains under consideration. No-
tice that our result applies only to the borderline case p = n. For exponents p <

n, the correct assumption appears to be (2). Indeed, it follows from [8] that (2)
implies the compactness of the embedding of W 1,p(�) into Lp(�) when p >

max{1, n − n/C1}, but this may fail when 1 ≤ p = n − n/C1. See also [2] for
weaker results.

The paper is organized as follows. In Section 2, we give definitions and re-
sults related to the quasihyperbolic metric and Whitney decompositions that will
be needed later on. Section 3 contains the proof of the first part of Theorem 1.1
together with some generalizations. In the final section, Section 4, we give the
example referred to in Theorem 1.1.

2. Definitions and Preliminary Results

When A is a subset of the n-dimensional Euclidean space R
n, we denote by |A| the

n-dimensional Lebesgue measure of A. By C we will denote various constants,
which may vary from expression to expression.



Growth Conditions and Compact Embeddings of Sobolev Spaces 185

Let � ⊂ R
n (n ≥ 2) be a proper subdomain. The quasihyperbolic metric k� in

� is defined by

k�(x, y) = inf
γ

∫
γ

ds

d(z, ∂�)
,

where the infimum is taken over all rectifiable curves γ in � joining x to y. This
metric was introduced by Gehring and Palka in [4]. Given any two points x, y ∈
�, there exists (by results of Gehring and Osgood [3]) a quasihyperbolic geodesic
γ joining x to y. We fix such a geodesic for every pair x, y ∈ � and denote this
by γx,y.

In this paper, our main assumption for the domain � ⊂ R
n is that it satisfies the

quasihyperbolic growth condition

k�(x, x0) ≤ C0 d(x, ∂�)−α (4)

for all x ∈ �, where α > 0, x0 ∈ � is a fixed basepoint, and C0 > 0 is a constant.
Let W = W(�) be a Whitney decomposition of �—that is, a collection of

dyadic cubes Q ⊂ � having pairwise disjoint interiors and satisfying the condition

diam(Q) ≤ d(Q, ∂�) ≤ 4 diam(Q)

(see [16] for the existence and properties of Whitney decompositions). We denote
by cQ the center of a cube Q ∈ W. We also fix a central cube Q0 ∈ W and assume
that x0 is the center of Q0. For j ∈ N we then set

Wj = {Q ∈ W : j ≤ k�(cQ, x0) < j + 1}.
The quasihyperbolic metric k� and the Whitney decomposition W(�) have close
relations. In fact, when x, y ∈ � and |x − y| ≥ d(x, ∂�)/2, we have

N(x, y)/C ≤ k�(x, y) ≤ CN(x, y), (5)

where N(x, y) is the number of cubes Q ∈ W intersecting the quasihyperbolic
geodesic γx,y.

For Q ∈ W we set P(Q) = {Q′ ∈ W : Q′ ∩ γcQ,x0 �= ∅} and define the shadow
of a cube Q ∈ W by

S(Q) =
⋃

Q̃∈W
Q∈P(Q̃)

Q̃.

Next, we prove some preliminary results that relate the quasihyperbolic metric
to the Whitney decomposition and to the shadows of the Whitney cubes.

Lemma 2.1. Let � ⊂ R
n be a domain and let γ be a quasihyperbolic geodesic

in � starting at the fixed basepoint x0 ∈ �. Then there is a constant C = C(n) >

0 such that, for each j ≥ 1,

#{Q ∈ Wj : Q ∩ γ �= ∅} ≤ C.

Proof. Denote
aj := #{Q ∈ Wj : Q ∩ γ �= ∅}.
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Let Q1, . . . , Qaj
∈ Wj be the cubes intersecting γ, ordered so that if k < l then there

exist xk ∈ Qk ∩γ such that, for every x ∈ Ql ∩γ, we have k�(xk , x0) ≤ k�(x, x0).

We may assume that d(x1, xaj
) ≥ d(x1, ∂�)/2; thus, by (5), k�(x1, xaj

) ≥ aj

C
.

Since k�(xl , cQl
) ≤ 1 for all l = 1, . . . , aj , we calculate

aj

C
≤ k�(x1, xaj

) = k�(xaj
, x0) − k�(x1, x0)

≤ k�(caj
, x0) + k�(caj

, xaj
) − k�(c1, x0) + k�(c1, x1)

≤ (j + 1) + 1 − j + 1 = 3.

Hence aj ≤ 3C, where C is a constant depending only on n.

Lemma 2.2. Let � ⊂ R
n be a domain. Then there is a constant C = C(n) > 0

such that, for each j ≥ 1, ∑
Q∈Wj

χS(Q)(x) ≤ C

whenever x ∈ �.

Proof. Let x ∈ �. The number of Whitney cubes containing x is bounded, so we
may assume that there is a unique cube Q(x) ∈ W such that x ∈ Q(x). Let γ be
the fixed geodesic joining cQ(x) to x0. Then x ∈ S(Q) for Q ∈ Wj if and only if
γ ∩ Q �= ∅. By Lemma 2.1, the number of such cubes Q ∈ Wj is bounded by a
constant that is independent of j. This proves the lemma.

The next lemma, which we use in the proof of our main theorem, is an integral
version of Lemma 2.2.

Lemma 2.3. Let � ⊂ R
n be a domain. Then, for each s ≥ 1 and for every mea-

surable subset E ⊂ �, ∑
Q∈Wj

|S(Q) ∩ E|s ≤ C|E|s, (6)

where C = C(n, s) > 0.

Proof. The case s = 1 follows directly from Lemma 2.2:
∑

Q∈Wj

|S(Q) ∩ E| =
∫

E

∑
Q∈Wj

χS(Q)(x) dx ≤
∫

E

C.

But now (6) holds also for s > 1, since
∑

Q∈Wj

( |S(Q) ∩ E|
C|E|

)s

≤
∑

Q∈Wj

|S(Q) ∩ E|
C|E| ≤ 1.

When a domain � satisfies the condition (4) for some exponent 0 < α < 1, we ob-
tain the following estimate for the diameter of the shadow S(Q) for cubes Q ∈ Wj .

Lemma 2.4. Let � ⊂ R
n be a domain satisfying the quasihyperbolic growth

condition (4) with an exponent 0 < α < 1. Then there exists a constant C > 0,
independent of j, such that
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diam(S(Q)) ≤ Cj(α−1)/α (7)

for each Whitney cube Q ∈ Wj .

Proof. Let j ∈ N and let Q be a cube in Wj . Let Q̃ ⊂ S(Q) and let γ be the fixed
geodesic joining x0 to cQ̃. Then, by the definition of the shadow, there exists a
point xQ ∈ γ ∩ Q. From condition (4) and properties of the Whitney decomposi-
tion it follows that, for each Q ∈ Wi,

diam(Q) ≤ d(cQ, ∂�) ≤ (C0 i)−1/α.

By Lemma 2.1, γ intersects a bounded number of cubes from each Wi, i ≥ j.

Thus

d(cQ, cQ̃) ≤ d(cQ, xQ) + d(xQ, cQ̃)

≤ diam(Q) + diam(γ ∩ S(Q))

≤ diam(Q) +
∑
i≥j

∑
Q′∈Wi

Q′∩γ �=∅

diam(Q′)

≤ C
∑
i≥j

i−1/α ≤ Cj−1/α+1. (8)

Now we can take the supremum over all cubes Q̃ ⊂ S(Q) in (8) and use the trian-
gle inequality to obtain the lemma.

Note in particular that a domain � satisfying condition (4) with an exponent 0 <

α < 1 must be bounded. This is a special case of results of Gotoh [5].
Finally, we say that a domain of finite volume � ⊂ R

n is a (q, p)-Poincaré do-
main, 1 ≤ p ≤ q < ∞, if there exist a constant Mq,p > 0 such that(∫

�

|u − u�|q dx

)1/q

≤ Mq,p

(∫
�

|∇u|p dx

)1/p

(9)

for all u ∈ C∞(�). Here we use the notation u� = ∫
�

u dx = |�|−1
∫

�
u dx. Let

us record the following well-known result due to Maz’ja [9; 10]. For a simple
proof see [6, Thm. 5].

Lemma 2.5. If � ⊂ R
n is a (q, p)-Poincaré domain, then the embedding of

W 1,p(�) into Ls(�) is compact for all 1 ≤ s < q.

3. Proof of the First Part of Theorem 1.1

We begin with the following theorem, in which we obtain for the planar case the
essentially sharp quasihyperbolic growth condition needed to guarantee that a do-
main � ⊂ R

2 is a (q, 2)-Poincaré domain for some q ≥ 2.

Theorem 3.1. Let � ⊂ R
2 satisfy the quasihyperbolic growth condition (4)

with an exponent 0 < α < 2
3 . Then � is a (q, 2)-Poincaré domain for all

2 ≤ q < 41−α

α
.
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Proof. By a capacity-type characterization of Poincaré domains due to Maz’ja
([9; 10]; see also [6, Thm. 1]), it suffices to show that

|E|2/q ≤ C

∫
�

|∇u|2 (10)

whenever E ⊂ � is a compact subset such that E ∩ Q0 = ∅ and u ∈ C∞(�)

satisfies u|Q0 = 0 and u|E ≥ 1.

Let E ⊂ � and u ∈ C∞(�) be as before. We may assume that, for each x ∈ E,
there is a cube Q(x) ∈ W such that x ∈ Q(x) and uQ(x) ≥ 1

2 . Indeed, if this is not
the case then we denote

Eg = {
x ∈ E : x ∈ Q ∈ W, uQ ≤ 1

2

}

and use Poincaré’s inequality on cubes to obtain

|Eg|2/q ≤
∑

Q∈W
|Eg ∩ Q|2/q

≤ 4
∑

Q∈W
Q∩Eg �=∅

(∫
Q

|u − uQ|q
)2/q

≤ C
∑

Q∈W
Q∩Eg �=∅

(∫
Q

|∇u|2
)

≤ C

∫
�

|∇u|2.

Thus (10) holds for the set Eg.

Using a straightforward chaining argument as in [14, Lemma 8] with the as-
sumption uQ(x) ≥ 1

2 , it now follows that, for every x ∈ E,

1 ≤ C
∑

Q∈P(Q(x))

diam(Q)

∫
Q

|∇u(y)| dy. (11)

Integration of (11) over E and a simple use of Hölder’s inequality give

|E| ≤ C

∫
E

∑
Q∈P(Q(x))

diam(Q)

(∫
Q

|∇u(y)|2 dy

)1/2

dx. (12)

We can now interchange the order of summation and integration in (12) and then
use Schwarz’s inequality to obtain

|E| ≤ C
∑

Q∈W
|S(Q) ∩ E|

(∫
Q

|∇u(y)|2 dy

)1/2

≤ C

( ∑
Q∈W

|S(Q) ∩ E|2
)1/2( ∑

Q∈W

∫
Q

|∇u(y)|2 dy

)1/2

. (13)

Next, we estimate the first part of the product in (13) using Lemmas 2.3 and 2.4.
If 0 < s ≤ 1, we calculate
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∑
Q∈W

|S(Q) ∩ E|2 ≤
∞∑

j=1

max
Q∈Wj

(|S(Q) ∩ E|s )
∑

Q∈Wj

|S(Q) ∩ E|2−s

≤ C|E|2−s

∞∑
j=1

max
Q∈Wj

(diam(S(Q))2s )

≤ C|E|2−s

∞∑
j=1

j 2s(α−1)/α. (14)

Here the sum converges if s > α

2(1−α)
. Thus, by (13) and (14) we have that

|E| ≤ C|E|(2−s)/2

(∫
�

|∇u(y)|2 dy

)1/2

and hence

|E|s ≤ C

∫
�

|∇u(y)|2 dy

for s > α

2(1−α)
. We can now choose s = 2

q
, and so (10) holds for E and the proof

is complete.

From the proof of Theorem 3.1 we obtain the following corollary.

Corollary 3.2. If � ⊂ R
2, |�| < ∞, and there is a constant C > 0 such that

∑
Q∈W

|S(Q) ∩ E|2 ≤ C|E|2(q−1)/q (15)

whenever E ⊂ � is a compact subset with E∩Q0 = ∅, then � is a (q, 2)-Poincaré
domain.

Remarks. (i) From the estimates in (14) we see that (15) holds if |S(Q)|2/q ≤
Cj−t for some t > 1 for all Q ∈ Wj . On the other hand, the estimate |S(Q)|2/q ≤
j−1 is known to be necessary but, in general, not sufficient for a simply connected
� to be a (q, 2)-Poincaré domain (cf. [13]).

(ii) A similar argument was used in [8] for W 1,p (p < n) under the growth con-
dition (2).

From Theorem 3.1 and Lemma 2.5 we obtain the next corollary, which proves the
first part of Theorem 1.1 in the case n = 2.

Corollary 3.3. Let � ⊂ R
2 satisfy the quasihyperbolic growth condition (4)

with an exponent 0 < α < 2
3 . Then, for each 2 ≤ q < 41−α

α
, the embedding

W 1,2(�) ⊂ Lq(�) is compact.

In R
n (n ≥ 3) we obtain results similar to Theorem 3.1. Theorem 3.4 also finishes

the proof of the first part of Theorem 1.1.



190 Pekka Koskela & Juha Lehrbäck

Theorem 3.4. Let � ⊂ R
n satisfy the quasihyperbolic growth condition (4) with

an exponent 0 < α < n

2n−1. Then � is a (q, n)-Poincaré domain for all

n ≤ q <
n2

n − 1
· 1 − α

α
,

and the embedding W 1,n(�) ⊂ Lq(�) is compact for all q as above.

Proof. The proof of the (q, n)-Poincaré inequality is the same as the proof of
Theorem 3.1 with following minor changes. We use Hölder’s inequality with ex-
ponent n in (12) and with exponents n

n−1 and n in (13). In (14) we take 0 < s ≤
1

n−1 and the sum converges when s > α

n(1−α)
. For these s we obtain

|E|s(n−1) ≤ C

∫
�

|∇u(y)|n dy.

We can now choose s = n

n−1
1
q

and hence, again by results of Maz’ja [10], � is a
(q, n)-Poincaré domain.

The compactness of the Sobolev embedding follows from the first part of the
theorem and Lemma 2.5.

4. Construction for the Second Part of Theorem 1.1

In this section, we construct examples that prove the second part of Theorem 1.1:
the upper bound for the exponent α given in Theorem 1.1 is the best possible. We
use the notation A � B if there exists a constant C > 0 such that A ≤ CB and the
notation A ≈ B if A � B � A.

Consider first the case n = 2. We show that, given 0 < α ≤ 2
3 , there exists a

bounded domain � ⊂ R
2 such that � satisfies the quasihyperbolic growth con-

dition (4) with exponent α; but for q = 41−α

α
the embedding W 1,2(�) ⊂ Lq(�)

is not compact. This example proves the essential sharpness of Corollary 3.3. By
Lemma 2.5, such a domain cannot be a (p, 2)-Poincaré domain for any p > q,
so this example proves also the essential sharpness of Theorem 3.1, although here
the case q = 41−α

α
remains unknown.

For λ > 1 and 0 < L ≤ 1 we define

T λ
L = {(t, y) ∈ R

2 : 0 < t ≤ L, 0 < y < t λ}.
We fix 0 < L ≤ 1, choose t0 = (L/2), and define tk = tk−1 − t λ

k−1 for each k ≥
1. Let T̃ λ

tk
be a copy of T λ

tk
rotated 90◦ counterclockwise around the point (tk , 0).

Define

D̂λ
L = T λ

L ∪
∞⋃

k=0

T̃ λ
tk

and
Dλ

j = D̂λ
2−j + 2−j(−1,1),

where (as usual)
A + b = {a + b ∈ R

2 : a ∈ A}
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for A ⊂ R
2 and b ∈ R

2. Now we can define our domain �λ by setting

�λ = �0 ∪
∞⋃

j=0

Dλ
j ,

where �0 = [0,1] × [0, 2]. By construction, it is clear that �λ satisfies condi-
tion (4) for α = λ−1

λ
, so we need only show that the embedding W 1,2(�λ) ⊂

Lq(�λ) is not compact for λ = 4+q

q
.

Define functions uj : �λ → R as

uj(x, y) =




1 if x ∈ Dλ
j ∩ {(x, y) ∈ R

2 : x ≤ −2−(j+1)},
−2j+1x if x ∈ Dλ

j ∩ {(x, y) ∈ R
2 : −2−(j+1) < x < 0},

0 if x ∈ �λ \ Dλ
j ,

and denote Eλ
j = {uj ≡ 1}. Then uj is a Lipschitz function in Dλ

j for each j ∈ N

and is locally Lipschitz in �λ; moreover,∫
�λ

|∇uj |2 ≈ 2(1−λ)j. (16)

We also have ∫
�λ

|uj |2 ≈ |Eλ
j | ≈

∞∑
k=0

|T λ
tk
| ≈

∞∑
k=0

t λ+1
k , (17)

where the sequence (tk)k now corresponds to L = 2−j. For zk = (tk , t λ
k/2) we

have k�(zk , zk+1) ≈ 1 for all k ∈ N. Denote κ0 = k�(z0, x0). Then

k + κ0 ≈ k�(zk , x0) ≈ t1−λ
k

and so, by (17),
∫

�λ

|uj |2 ≈
∞∑

k=0

(k + κ0)(λ+1)/(1−λ) ≈ κ
2/(1−λ)

0 ≈ t 2
0 ≈ 2−2j. (18)

Since λ = 4+q

q
≤ 3, it follows that 2−j ≤ 2j(1−λ)/2, and we obtain from (16) and

(18) that
‖uj‖1,2 = ‖uj‖2 + ‖∇uj‖2 � 2j(1−λ)/2.

Now define vj = 2j(λ−1)/2uj ; then the sequence (vj ) is bounded in W 1,2(�λ) and,
because q = 4

λ−1,

‖vj‖q ≈ 2j(λ−1)/2|Eλ
j |1/q ≈ 2j(λ−1)/2 2j(−2/q) = 1

for all j ∈ N. Since the supports of functions vi and vj are disjoint when i �= j, this
implies that there does not exist a subsequence of (vj ) that converges in Lq(�λ)

to a function v ∈ Lq(�λ), and thus the embedding of W 1,2(�λ) to Lq(�λ) is not
compact.

We can construct similar examples in R
n, n ≥ 3. Define

T
λ,n

L = {(t, y) ∈ R
n = R × R

n−1 : 0 < t ≤ L, 0 < |y| < t λ, y1 > 0}
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and

T̃
λ,n

tk
= {(t, y) ∈ R

n = R × R
n−1 : tk+1 < t < tk ,

0 < |y| < tk − (tk − t)1/λ, y1 < 0},
and let �λ,n be an appropriate union of translations of sets T

λ,n
L and T̃

λ,n
tk

, follow-
ing the ideas presented in the case n = 2. Then one can show the following: (i) if

0 < α ≤ n

2n − 1

then the domain �λ,n ⊂ R
n, where λ = 1

1−α
, satisfies the quasihyperbolic bound-

ary condition (4) with exponent α; but (ii) the embedding

W 1,n(�λ,n) ⊂ Lq(�λ,n)

is not compact for

q = n2

n − 1
· 1 − α

α
.

This proves the essential sharpness of Theorem 3.4 and finishes the proof of
Theorem 1.1.
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