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1. Introduction

Let� be a domain in Cn. An upper semicontinuous function u : � → [−∞, ∞) is
said to be plurisubharmonic if the restriction of u to each complex line is subhar-
monic (we allow the function identically −∞ to be plurisubharmonic). We write
PSH(�) for the set of plurisubharmonic functions on �, PSH−(�) for the set of
plurisubharmonic functions bounded from above on �, and PSH(�̄) for the set
of plurisubharmonic functions on neighborhoods of �̄. If u is a function bounded
from above on �, then by u∗ we mean the upper regularization of u; that is, if
z∈ �̄ then

u∗(z) = lim sup
ξ→z

u(ξ).

For a given point z∈ �̄, we define the following class of Jensen measures:

J 1
z (�̄) =

{
µ∈ B(�̄) : u∗(z) ≤

∫
�̄

u∗ dµ ∀u∈ PSH−(�)
}

,

where B(�̄) is the set of positive regular Borel measures with mass 1 on �̄. We
can define J 2

z and J 3
z analogously when PSH−(�) is replaced by PSHc(�) (the

set of plurisubharmonic functions on �, continuous on �̄) and PSHc(�̄) (the set
of continuous functions on �̄ that are uniform limits of continuous functions in
PSH(�̄)), respectively. For simplicity of notation, we will write J i

z instead of
J i
z(�̄) if there is no risk of confusion. It is obvious that δz ∈ J 1

z ⊂ J 2
z ⊂ J 3

z , where
δz is the Dirac measure at z. With a little more effort, one can prove that each J i

z

is a closed convex subset of B(�̄). We say that � is J-regular if J 1
z = J 3

z for all
z ∈ �. The classes J 1

z , J
2
z , J 3

z are introduced and studied extensively in [CCeW;
DW; P; S2; W1; W2] and elsewhere. The main reason for introducing them is a
duality theorem of Edwards that allows us to express upper envelopes of plurisub-
harmonic functions as lower envelopes of integrals with respect to Jensen mea-
sures. Since the traditional method of constructing plurisubharmonic functions
has been to take envelopes over classes of plurisubharmonic functions, Edwards’s
duality theorem provides alternative ways of investigating these constructions. As
an illustration of this idea, we prove in [DW] that, for every bounded domain �

in Cn: (i) if J 1
z = J 2

z for all z∈� then every u∈ PSH−(�) is the pointwise limit
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of a sequence {uj}j≥1 with uj ∈ PSHc(�); and (ii) lim supj→∞ uj ≤ u∗ on ∂�.

There are some drawbacks to this result. First, the regularity of uj is not known
beyond continuity (on �̄); second, we do not know whether the approximating se-
quence can be chosen to be decreasing. Notice that, if � is B-regular, then (by
[W2, Thm. 4.1]) u∗ can be approximated on �̄ from above by a decreasing se-
quence {uj} in PSHc(�). In this case, it is also an open problem whether {uj} can
be chosen such that the Monge–Ampère mass of uj on� is finite—in other words,
such that

∫
�
(ddcuj)

n < ∞ for all j. Recall that it is always possible to do so if
we do not require uj ↓ u∗ on ∂� (see [Ce, Thm. 2.1]).

The main result of this paper is Theorem 3.2, where we show that if � is J-
regular then every u ∈ PSH−(�) is the pointwise limit of a sequence uj , where
the uj are smooth plurisubharmonic functions on neighborhoods of �̄. Moreover,
the sequence is eventually decreasing on each compact subset of �. One novelty
in this result is that, if u is locally bounded, then the approximating sequence uj
can be chosen to have the additional property that (ddcuj)n converges to (ddcu)n

in the sense of currents. The other main result of the paper is Theorem 4.4, which
gives a geometric sufficient condition for the J-regularity of �. Roughly speak-
ing, if we can cover the “bad” part of ∂� by biholomorphic images of � then �
is indeed J-regular. This result is similar to Theorem 3.5 in [DW]. Nevertheless,
in the proof we rely mainly on Edwards’s duality theorem instead of on the gluing
technique of plurisubharmonic functions introduced by Cegrell in Theorem 2.1 of
[Ce], as we did in the proof of Theorem 3.5 in [DW]. We conclude the paper by
giving a list of questions connected to our work.
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of 2006. I would like to express my gratitude to these departments for the hospi-
tality I received. I also want to thank the referee for helpful suggestions about the
exposition of the paper. This work is supported in part by the Vietnamese National
Research Program in Natural Sciences and the Vietnamese Overseas Scholarship
Program (322 project).

2. Background

Unless otherwise stated, by � we always mean a bounded domain in Cn. If ϕ is
an arbitrary function on �̄ then we define three kinds of envelopes for ϕ. More
precisely, if z∈ �̄ then we let

S1ϕ = sup{u : u∈ PSH(�) ∩ USC(�̄), u ≤ ϕ on �̄}, (1)

S2ϕ = sup{u : u∈ PSHc(�), u ≤ ϕ on �̄}, (2)

S3ϕ = sup{u : u∈ PSHc(�̄), u ≤ ϕ on �̄}, (3)

where USC(�̄) denotes the set of upper semicontinuous functions on �̄. The fol-
lowing result, essentially due to Wikström (see [W2, Cor. 2.2]), is a straightfor-
ward consequence of a general duality theorem of Edwards [E]. This reveals the
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connections between the aforementioned envelopes and the Jensen measures in-
troduced at the beginning of the paper.

Proposition 2.1. Let ϕ : �̄ → [−∞, ∞] be a lower semicontinuous function.
Then

S1ϕ(z) = inf

{∫
�̄

ϕ dµ : µ∈ J 1
z

}
∀z∈�,

S2ϕ(z) = inf

{∫
�̄

ϕ dµ : µ∈ J 2
z

}
∀z∈ �̄,

S3ϕ(z) = inf

{∫
�̄

ϕ dµ : µ∈ J 3
z

}
∀z∈ �̄.

It is pointed out in [DW] that there is a minor gap in the statement of Corollary 2.2
in [W2], since the set {u∗ : u∈ PSH−(�)} considered there is not a convex cone.
(In general, (u+ v)∗ is strictly smaller than u∗ + v∗ on ∂�.) So the first identity
claimed in that corollary holds only for interior points, and this result is obtained
by looking at the set PSH(�)∩USC(�̄), which is truly a cone. We will also need
to recall some elements of pluripotential theory. A set P ∈ Cn is called pluripolar
if, for every z ∈ P, there exist a neighborhood U of z and a u ∈ PSH(U) such
that u �≡ −∞ on every connected component of U and u ≡ −∞ on U ∩ P. A
set P ⊂ � is called complete pluripolar in � if there exists a u ∈ PSH(�), u �≡
−∞, such that P = {z ∈� : u(z) = −∞}. A deep theorem of Josefson (see [K,
Thm. 4.7.4]) shows that u can be chosen to be plurisubharmonic on Cn. In par-
ticular, u can be made to be negative on any fixed bounded neighborhood of P.
One of basic tools in pluripotential theory is the complex Monge–Ampère opera-
tor (ddc)n, an analogue of the classical Laplacian. According to the fundamental
work of Bedford and Taylor in [BTa] (see also [K, Chap. 3]), the operator (ddc)n is
well-defined (in the sense of currents) over the classL∞

loc(�)∩PSH(�) of locally
bounded plurisubharmonic functions. More precisely, if u ∈L∞

loc(�) ∩ PSH(�)

then (ddcu)n is a positive Borel measure. Furthermore, (ddc)n is continuous un-
der monotone sequences in this class (see [Ce] for a more recent account of these
matters). Recall also that, following Sibony [S2], a bounded domain � is called
B-regular if every real-valued continuous function on ∂� can be extended contin-
uously to a plurisubharmonic function on �. It is well known that every smoothly
bounded strictly pseudoconvex domain is B-regular. There is a characterization
of B-regularity in terms of Jensen measures: � is B-regular if and only if J 2

z =
{δz} for every z ∈ ∂� (see [S2, Thm. 2.1; W2, Cor. 3.8]). We now collect some
useful facts about the envelopes introduced in (1)–(3).

Lemma 2.2. (a) If ϕ ∈ C(�̄) then S1ϕ ∈ PSH−(�).
(b) Let z0 ∈ � and i, j ∈ {1, 2, 3}; then J i

z0
= J j

z0
if and only if Siϕ(z0) =

Sjϕ(z0) for all ϕ ∈ C(�̄).

Proof. (a) Since S1ϕ ≤ ϕ on �̄ and ϕ ∈ C(�̄), it follows that (S1ϕ)
∗ ≤ ϕ on �̄.

Hence (S1ϕ)
∗ ∈ PSH−(�) and so S1ϕ ≡ (S1ϕ)

∗ ∈ PSH−(�).
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(b) If J i
z0

= J j
z0

then, using Proposition 2.1, we deduce that Siϕ(z0) = Sjϕ(z0)

for all ϕ ∈ C(�̄). Conversely, if there is some µ∈ J i
z0

\J j
z0

then, by applying the
Hahn–Banach separation theorem for the closed convex set J j

z0 of B(�̄), we find
a ϕ ∈ C(�̄) such that ∫

�̄

ϕ dµ < 0 <

∫
�̄

ϕ dν ∀ν ∈ J j
z0
.

By Proposition 2.1 we have Si(z0) < Sj(z0)—a contradiction.

The following simple fact is a slight variation of [S2, Lemma 1.5].

Gluing Lemma. Let �′ be a subdomain of �, and let u1 ∈ PSHc(�′) and u2 ∈
PSHc(�̄). Assume that u1 ≤ u2 on �̄ ∩ ∂�′. Set

u3 =
{

max{u1, u2} on �′,
u2 on �̄\�′.

Then u3 ∈ PSHc(�̄).

The following lemma gives a sufficient condition for J 3
z = {δz} to hold at z∈ ∂�.

Lemma 2.3. Let z0 ∈ ∂�. Assume there exist a neighborhoodU of z0 and a nega-
tive plurisubharmonic function u onU ∩� such that (i) u∗ < 0 on (U ∩∂�)\{z0},
(ii) limz→z0 u(z) = 0, and (iii) U ∩ ∂� is of class C1. Then J 3

z0
= {δz0}.

Proof. The main idea stems from [S2, Thm. 2.1]. By the smoothness of ∂� near
z0, we can find open balls B1 and B2 centered at z0 and ε0 > 0 (respectively)
such that:

(a) B2 ⊂⊂ B1 ⊂⊂ U and B2 ∩� ⊂⊂ (B1 ∩�)+ εn for all ε ∈ (0, ε0), where n
is the unit outward normal to ∂� at z0; and

(b) u∗ < 0 on � ∩ ∂B2.

Set uε(z) = u(z − εn) and �′ = B2 ∩ �. Then from (a) we infer that uε is
plurisubharmonic on a neighborhood of �′. Let µ ∈ J 3

z0
(�′) and fix ε ∈ (0, ε0).

Then, for δ > 0 small enough, the convolution uε ∗ ρδ defines a smooth and
plurisubharmonic function on a neighborhood of �′. Recall that ρδ denotes a
standard regularizing kernel with support in B(0, δ), the open ball centered at 0
with radius δ, and that

(uε ∗ ρδ)(z) :=
∫

uε(z − w)ρδ(w) dλ(w),

where dλ is the Lebesgue measure in Cn. Then

(uε ∗ ρδ)(z0) ≤
∫
�′
(uε ∗ ρδ) dµ.

Let δ → 0 and ε → 0; then applying Fatou’s lemma yields

0 = lim
ε→0

uε(z0) ≤
∫
�′
u∗ dµ.

Combining this with (b), we deduce that µ = δz0 . Now the lemma follows from
[S2, Prop. 1.4].
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We also need the following simple fact, whose proof is left to the reader.

Lemma 2.4. Let {ϕj}j≥1 be a sequence of continuous functions on �̄ that increases
to a lower semicontinuous function ϕ on �̄. Then, for every sequence {aj}j≥1 →
a ∈ �̄, aj ∈ �̄, we have

ϕ(a) ≤ lim inf
j→∞ ϕj(aj ).

The last preparatory fact is the classical Choquet topological lemma (see [K,
Lemma 2.3.4]).

Choquet’s Lemma. Let {uα}α∈A be a family of functions on �̄ that are locally
bounded from above. Then there exists a countable subfamily {αj} ⊂ A such that

(sup{uα : α ∈A})∗ = (sup{uαj : j ≥ 1})∗.
Moreover, if uα is lower continuous for every α ∈A, then we can choose {αj} such
that

sup{uα : α ∈A} = sup{uαj : j ≥ 1}.

3. Equality of Jensen Measures

We start with a simple fact.

Proposition 3.1. The following assertions are equivalent:

(i) J 2
z = J 3

z for all z∈ �̄;
(ii) every u ∈ PSHc(�) can be approximated uniformly on �̄ by elements in

PSHc(�̄).

Proof. (ii) ⇒ (i) follows easily from the definitions of J 2
z and J 3

z . For the reverse
implication, let u∈ PSHc(�); then clearly we have S2u ≡ u on �̄. On the other
hand, Proposition 2.1 gives S2u ≡ S3u on �̄ and so S3u ≡ u on �̄. Applying the
Choquet topological lemma yields a sequence uj ∈ PSHc(�̄) that is increasing to
S3u on �̄. By Dini’s lemma, this convergence is uniform on �̄.

Remarks. 1. If � has C1 boundary then (ii) and hence (i) always hold by [FWi,
Thm. 1].

2. Consider the hyperconvex domain � := "\I, where " is the unit disk in C
and I is the segment [0,1/2] ⊂ ". Let u be the harmonic function on �, contin-
uous on �̄, such that u ≡ 0 on ∂" and u ≡ 1 on I. Using the maximum princi-
ple, we can check that u cannot be approximated uniformly on �̄ by elements in
PSHc(�̄). According to Proposition 3.1(ii), � is not J-regular.

Here is the main result of this section.

Theorem 3.2. Assume that J 1
z = J 3

z for all z ∈ �\P, where P is a subset of
Lebesgue measure 0 in �. Then there exists a pluripolar subset P ′ of � such that
the following statements hold.
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(i) J 1
z = J 3

z for all z∈�\P ′.
(ii) For every u ∈ PSH−(�), there exists a sequence uj ⊂ PSH(�̄) ∩ C∞(�̄)

that satisfies the following conditions.
(a) uj → u pointwise on �\P ′, with lim supj→∞ uj ≤ u∗ on �̄.
(b) There exists an increasing sequence of compact setsKj of �\P ′ such that⋃

Kj = �\P ′ and uj ≥ uj+1 on Kj . In particular, for every z0 ∈�\P ′,
the sequence {uj(z0)}j≥1 is decreasing from a sufficiently large index j.

(c) If u is locally bounded on �, then the sequence uj can be chosen to have
the additional property that (ddcuj)n → (ddcu)n in the sense of currents.

Proof. (i) We first claim that there exists a pluripolar P ′ ⊂ � such that, for every
ϕ ∈ C(�̄), we have S1ϕ = S3ϕ on �\P ′. For this, we choose a countable dense
subset {ϕj}j≥1 of C(�̄). By Lemma 2.2(a), S1ϕj ∈ PSH−(�). Applying Proposi-
tion 2.1 now yields S1ϕj = S3ϕj on �\P. It follows that

S1ϕj = S3ϕj = (S3ϕj )
∗ a.e. on �.

Therefore, S1ϕj ≡ (S3ϕj )
∗ on �, since these functions are plurisubharmonic on

�. According to [BTa, Thm. 7.1], there exist pluripolar subsets Pj of � such that
S3ϕj = (S3ϕj )

∗ on �\Pj . Set P ′ = ⋃
Pj ; then P ′ is pluripolar and S1ϕj ≡ S3ϕj

on �\P ′ for all j ≥ 1. Now let ϕ be an arbitrary function in C(�̄); then we can
find a sequence {ϕkj}j≥1 that converges uniformly to ϕ on �̄. From (1) and (3) we
deduce that S1ϕkj and S3ϕkj converge uniformly to S1ϕ and S3ϕ (respectively) on
�̄. Putting all this together, we obtain S1ϕ ≡ S3ϕ on �\P ′ and so the claim fol-
lows. Now we apply Lemma 2.2(b) to get J 1

z = J 3
z for all z∈�\P ′.

(ii) Consider u∈ PSH−(�). Since u is bounded from above, there exists a se-
quence {ϕj}j≥1 ⊂ C(�̄) that decreases to u∗ on �̄. Then (i) and Proposition 2.1
yield S1ϕj ≡ S3ϕj on �\P ′. Notice that the sequence S1ϕj is also decreasing
and that

u ≤ S1ϕj ≤ ϕj ∀j.
This implies that S1ϕj decreases to u on �. Let {�j}j≥1 be a sequence of sub-
domains in � such that

⋃
�j = � with �j ⊂⊂ �j+1. Choose h∈ PSH(�) such

that h �≡ −∞ and h ≡ −∞ on P ′. Fix j ≥ 1. Then, by the Choquet topological
lemma, we can find a sequence {vk,j}k≥1 ⊂ PSHc(�̄) that increases to S3ϕj on �̄.
Since S3ϕj is continuous on the compact Kj := �j \Vj , where Vj = {z : h(z) <
−j}, by Dini’s lemma it follows that the sequence vk,j converges uniformly to
S3ϕj = S1ϕj on Kj . Thus we can find kj so large that

S3ϕj − 1

2j+2
≤ vkj,j ≤ S3ϕj on Kj . (4)

Convolving vkj,j with a suitable regularizing kernel ρδj , we obtain

vj ∈ PSH(�̄) ∩ C∞(�̄) such that 0 ≤ vj − vkj,j ≤ 1

2j+2
on �̄.

Set uj = vj + 1/2j and P ′ = h−1(−∞). Then uj ∈ PSH(�̄) ∩ C∞(�̄) and uj ≥
uj+1 on Kj . It follows that (lim supj→∞ uj)

∗ = u on � and so lim supj→∞ uj ≤ u

on �. Notice also that, for z∈ ∂�,
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lim sup
j→∞

uj(z) = lim sup
j→∞

vkj,j(z) ≤ lim sup
j→∞

S3ϕj(z) ≤ u∗(z).

Thus we have constructed a sequence uj satisfying (a) and (b). For (c), let u ∈
PSH−(�) be locally bounded. Since the conclusion is trivial for n = 1, we may
assume that n ≥ 2. Retaining the notation used until (4), we claim that there exists
a sequence {uj}j≥1 ⊂ PSH(�̄) ∩ C∞(�̄) with the following properties:

uj ≥ uj+1 on Kj ; (5)∣∣∣∣
∫
�j−1

(uj − S1ϕj )(dd
cS1ϕj )

n−m−1 ∧ (ddcuj)
m ∧ ω

∣∣∣∣ < 3

j
(6)

for all 1 ≤ m ≤ n− 1 and j ≥ 2, where ω is the Kähler form ddc|z|2.
To see this, first observe that, since S1ϕ ∈ PSH(�) ∩ L∞(�),

0 ≤ Aj =
∫
�̄j

(ddcS1ϕj )
n−1 ∧ ω < ∞.

Let {λj}j≥1 be a sequence satisfying

λ1 = 1, 0 < λj+1 < min

(
λj ,

1

2j+2
,

1

jAj + 1

)
.

Define a sequence {aj}j≥1 as a1 = 0 and aj = (λj − λj+1)/2 for all j ≥ 2. Fix
j ≥ 2. Then, by Dini’s lemma, there exist kj so large that

S3ϕj − aj ≤ vk,j ≤ S3ϕj on Kj

for all k ≥ kj .

Let θ be a nonnegative smooth (1,1)-form with compact support in � such that
θ = ω on a neighborhood of �j . Then, for all 1 ≤ m ≤ n− 1,∫

�j

(S1ϕj − vk,j)(dd
cS1ϕj )

n−m−1 ∧ (ddcvk,j)
m ∧ ω

≤
∫
�

(S1ϕj − vk,j)(dd
cS1ϕj )

n−m−1 ∧ (ddcvk,j)
m ∧ θ.

Observe that {vk,j}k≥1 increases pointwise to S1ϕj except on a pluripolar set. The
monotone convergence theorem of Bedford and Taylor implies that the sequences
of currents

S1ϕj(dd
cS1ϕj )

n−m−1 ∧ (ddcvk,j)
m, vk,j(dd

cS1ϕj )
n−m−1 ∧ (ddcvk,j)

m

converge to S1ϕj(dd
cS1ϕj )

n−1 for 1 ≤ m ≤ n − 1 and that (ddcS1ϕj )
n−m−1 ∧

(ddcvk,j)
m ∧ ω converges to (ddcS1ϕj )

n−1 ∧ ω. It follows that

lim
k→∞

∫
�

(S1ϕj − vk,j)(dd
cS1ϕj )

n−m−1 ∧ (ddcvk,j)
m ∧ θ = 0

and

lim sup
k→∞

∫
�j

(ddcS1ϕj )
n−m−1 ∧ (ddcvk,j)

m ∧ ω ≤
∫
�j

(ddcS1ϕj )
n−1 ∧ ω.

Hence we can find kj ′ ≥ kj such that
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∫
�j

(S1ϕj − vkj ′,j )(dd
cS1ϕj )

n−m−1 ∧ (ddcvkj ′,j )
m ∧ ω <

1

j

for all 1 ≤ m ≤ n− 1 and such that∫
�j

(ddcS1ϕj )
n−m−1 ∧ (ddcvk,j)

m ∧ ω ≤ Aj + 1

2j
.

Convolving vkj ′,j with a suitable regularizing kernel and using again the mono-
tone convergence theorem of Bedford and Taylor, we find ṽj ∈ PSH(�̄)∩C∞(�̄)
such that 0 ≤ ṽj − vkj ′,j < aj−1 on �̄ and such that:∣∣∣∣

∫
�j−1

(S1ϕj − ṽj)(dd
cS1ϕj )

n−m−1 ∧ (ddcṽj)
m ∧ ω

∣∣∣∣ < 2

j
; (7)

∫
�j−1

(ddcS1ϕj )
n−m−1 ∧ (ddcṽj)

m ∧ ω < Aj + 1

j
. (8)

Set u1 ≡ supϕ1 and uj = ṽj + λj for j ≥ 2. Now (6) follows from (7) and (8).
For (5) we notice that, by the choices of aj , bj , λj , on Kj we have

uj = ṽj + λj ≥ vkj ′,j + λj ≥ S3ϕj − aj + λj ≥ S3ϕj+1 + λj+1 + aj ≥ uj+1.

The claim is proved. Observe also that uj → u pointwise on �\P ′ and that
lim sup uj ≤ u∗ on �̄.

It remains to show that (ddcuj)n → (ddcu)n in the sense of currents. Toward
this end, let χ be a smooth C∞-function with compact support in �. Choose C >

0 and j0 ≥ 1 so large that ddc(C|z|2 + χ(z)) ≥ 0 on � and suppχ ⊂ �j0 .

Integrating by parts, for j ≥ j0 + 1 we obtain∫
χ(ddcuj)

n =
∫

uj(dd
cuj)

n−1 ∧ ddcχ

=
∫

S1ϕj(dd
cuj)

n−1 ∧ ddcχ +
∫
(uj − S1ϕj )(dd

cuj)
n−1 ∧ ddcχ.

Given (6), we see that the last term in the second equality is smaller in absolute
value than 3C/j. We also have∫

S1ϕj(dd
cuj)

n−1 ∧ ddcχ =
∫

uj(dd
cS1ϕj ) ∧ (ddcuj)

n−2 ∧ ddcχ

=
∫

S1ϕj(dd
cS1ϕj ) ∧ (ddcuj)

n−2 ∧ ddcχ

+
∫
(uj − S1ϕj )(dd

cuj)
n−1 ∧ (ddcS1ϕj ) ∧ ddcχ.

We again infer by (6) that the last term in the second equality is smaller in absolute
value than 3C/j. Continuing in this manner, we obtain∣∣∣∣

∫
χ(ddcuj)

n −
∫

S1ϕj(dd
cS1ϕj )

n−1 ∧ ddcχ

∣∣∣∣ < 3nC

j
.
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Since S1ϕj ↓ u on �, it follows that S1ϕj(dd
cS1ϕj )

n−1 converges in the sense of
currents to u(ddcu)n−1. Putting all this together, we obtain

lim
j→∞

∫
χ(ddcuj)

n =
∫

χ(ddcu)n.

This proves the theorem.

Remarks. 1. If the set of points z where u is not locally bounded at z is con-
tained in a pseudoconvex domain �′ such that �′ ⊂⊂ �, then—by following the
lines of the proof of Theorem 3.2 and using convergence theorems for the Monge–
Ampère operator from [De] and [S1]—we can see that part (ii)(c) of Theorem 3.2
is still valid. More generally, if u belongs to some subclass of PSH−(�) where
the Monge–Ampère operator can be reasonably defined, then the conclusion of
Theorem 3.2(ii)(c) still holds. See [Ce] for a recent account of this matter.

2. We do not know whether it is possible to conclude that P = ∅ when P is
contained in some pluripolar subset of �.

Corollary 3.3. The following assertions are equivalent.

(i) � is J-regular.
(ii) For every u ∈ PSH−(�), there exists a sequence {uj}j≥1 in PSHc(�̄), uni-

formly bounded from above, such that uj → u pointwise on � and

lim sup
j→∞

uj(z) ≤ u∗ on ∂�.

(iii) For every u∈ PSH−(�) that is bounded from below, there exists a sequence
{uj}j≥1 in PSHc(�̄), uniformly bounded from above, such thatuj → u point-
wise on � and

lim sup
j→∞

uj(z) ≤ u∗ on ∂�.

Proof. (i) ⇒ (ii) follows from the proof given in part (ii) of Theorem 3.2. (ii) ⇒
(iii) is trivial. It remains to show (iii) ⇒ (i). For this, fix z0 ∈�, µ∈ J 3

z0
, and u∈

PSH−(�). We must show that

u(z0) ≤
∫
�̄

u∗ dµ. (9)

For each j ≥ 1, set uj = max(u,−j). Fix j ≥ 1. Let {uj,k}k≥1 be a sequence in
PSHc(�̄), uniformly bounded from above, such that

lim
k→∞ uj,k(z) = uj(z), z∈�,

lim sup
k→∞

uj,k(z) ≤ u∗
j (z), z∈ ∂�.

Then

uj,k(z0) ≤
∫
�̄

uj,k dµ ∀k ≥ 1.

Letting k tend to ∞ and applying Fatou’s lemma yields
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uj(z0) ≤
∫
�̄

u∗
j dµ.

Notice that lim supj→∞ u∗
j ≤ u∗ on ∂�. Letting j tend to ∞ and again using

Fatou’s lemma, we obtain (9), which finishes the proof.

Remarks. 1. Using an argument given in the proof of Theorem 4 in [FWi], it is
possible to prove (iii) ⇒ (ii) directly.

2. We will present an example of Fornaess and Wiegerinck on a smoothly
bounded domain � that is not J-regular. The example is contained in [FWi,
p. 260]; for the reader’s convenience we offer some details here. Let

� = {(z,w)∈ C2 : |w − eiϕ(|z|)| < r(|z|)},
where r and ϕ are real-valued C∞-functions on R. Fornaess and Wiegerinck show
that, if r and ϕ are well chosen, then we can find a bounded continuous plurisub-
harmonic function f on � and a compact subset K of � such that f cannot be
approximated uniformly onK by plurisubharmonic functions in neighborhoods of
�̄. By Theorem 3.2(ii), � is not J-regular. It is an open and interesting problem
to see if such an example can be found in the class of smoothly bounded pseudo-
convex domains.

As we observed in the remark following Proposition 3.1, � may not be J-regular
even if � is a regular domain in C. In view of this, the following result is some-
what surprising.

Proposition 3.4. Let � be a bounded domain in C. Assume that, for every ir-
regular point z0 in ∂�, there exists a neighborhood U such that U ∩ ∂� is polar.
Then J 1

z = J 2
z for all z∈�.

Proof. We split the proof into two steps.

Step 1. We show that there is a subharmonic function u on C such that J 1
z =

J 2
z for all z ∈ � when u(z) �= −∞. Let Q be the set of irregular points of
∂�. According to Kellog’s theorem (see [R, Thm. 4.2.5]), Q is polar. Fix z0 ∈
(∂�)\Q. Let f ∈ C(∂�) be such that f(z0) = 0 and f < 0 elsewhere. Denote by
u the (unique) solution of the generalized Dirichlet problem with boundary data
f. Clearly, u is negative and harmonic on �. Since every irregular point on ∂�

admits a neighborhood U such that U ∩ ∂� is polar, we see that u extends con-
tinuously to every point of ∂� and is strictly negative everywhere except at z0.

It follows that J 2
z = {δz} for all z ∈ Q. Choose a subharmonic function u in C

such that u ≡ −∞ on Q and u �≡ −∞. By [DW, Thm. 3.5] (see also the remark
following Theorem 4.4), we have J 1

z = J 2
z for all z∈� with u(z) �= −∞.

Step 2. Since the set {z : u(z) = −∞} has zero length, we can find a sequence
of domains �j such that �j ⊂⊂ �j+1,

⋃
�j = �, and u(z) �= −∞ for z ∈⋃

∂�j . Fix ϕ ∈ C(�̄). We claim that S1ϕ ≡ S2ϕ on �. Applying Proposition 2.1,
we obtain S1ϕ ≡ S2ϕ on

⋃
∂�′

j . Fix j ≥ 1 and ε > 0; then the Choquet topolog-
ical lemma yields a sequence vm ↑ S2ϕ on �̄. Now using Lemma 2.4, for δ > 0
small enough and m sufficiently large we have



Approximation of Plurisubharmonic Functions on Bounded Domains in Cn 707

(S1ϕ + u) ∗ ρδ ≤ vm + ε on ∂�′
j .

Set

vm,δ =
{ max((S1ϕ + u) ∗ ρδ , vm + ε) on �′

j ,

vm + ε on �̄\�′
j .

By the gluing lemma, vm,δ is subharmonic on � and continuous on �̄. Moreover,
for δ small enough we also have vm,δ ≤ ϕ + ε on �̄. It follows that vm,δ ≤
S2ϕ + ε. Letting m and δ go to ∞ and 0, respectively, we get S1ϕ ≡ S2ϕ on �′

j

and so the claim follows. By Lemma 2.2(b) we conclude that J 1
z = J 2

z for all
z∈�.

4. Examples of J-Regular Domains

It seems hard to find a good geometric characterization of domains on which we
have equality between Jensen measures. The proof of Theorem 4.10 in [W2] im-
plies that, if � is strongly star shaped in the sense that t� ⊂⊂ � for all t ∈ (0,1),
then J 1

z = J 2
z for all z ∈ �; the same proof shows that J 1

z = J 3
z for all z ∈ �.

Notice that there is a flaw in the formulation of Theorem 4.10 in [W2], since � is
assumed to be merely star shaped there. Observe also that a strongly star-shaped
domain may be very far from being pseudoconvex. Our Theorem 4.4 is a general-
ization of this fact. Before formulating it, we recall some terminology from [DW].

Definition 4.1. Let E be a pluripolar subset of �̄. The (relative) pluripolar hull
of E, pph(E), is defined as

pph(E) = {z∈�, u∈ PSH(�̄), u|E ≡ −∞ ⇒ u(z) = −∞},
where PSH(�̄) denotes the set of plurisubharmonic functions on neighborhoods
of �̄.

Definition 4.2. By an isotopy family of biholomorphic mappings defined on�,
we mean a continuous map 5 : [0,1] × �̄ → Cn with the following properties.

(a) 5t := 5(t, ·) maps � biholomorphically onto its image; moreover, 5t is a
homeomorphism between �̄ and 5t(�).

(b) 5−1
t (z) is real analytic in t on a neighborhood of 0 for all z∈�.

(c) 5−1
t converges uniformly to 5−1

0 = Id on �̄ as t → 0.

Definition 4.3. Let 5t be an isotopy family of biholomorphic mappings on �.
Then the boundary cluster set of 5t is defined as the set of limit points of se-
quences of elements in �̄ ∩5t(∂�) as t → 0.

Theorem 4.4. Let 5t be an isotopy family of biholomorphic maps on �, and let
X be the boundary cluster set of 5t. Assume there exists a pluripolar subset P of
X such that J 3

z = {δz} for all z∈X\P. Then the following statements hold.

(i) J 1
z = J 3

z for all z∈�\pph(P ); in particular, � is J-regular if pph(P )= ∅.
(ii) If pph(P ) is of Fσ and Gδ type and if Y is a compact subset of ∂� satis-

fying J 3
z = {δz} for all z ∈ Y, then for every u ∈ PSH−(�) there exists
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a sequence {uj}j≥1 ⊂ PSH(�̄) ∩ C∞(�̄) such that uj → u∗ pointwise on
(� ∪ Y )\pph(P ).

(iii) If pph(P ) = ∅ and Q is a Gδ subset of ∂� satisfying J 3
z = {δz} for all z ∈

(∂�)\Q, then for every u ∈ PSH−(�) there exists a sequence {uj}j≥1 ⊂
PSH(�̄)∩ C∞(�̄) such that uj → u∗ pointwise on �̄\Q. In addition, if u∗
is continuous on �̄\Q then the convergence is uniform on compact sets of
�̄\Q.

Proof. (i) Fix z0 ∈�\pph(P ). We will prove that S1ϕ(z0) = S3ϕ(z0) for all ϕ ∈
C(�̄). Given ϕ ∈ C(�̄), by Proposition 2.1 we have

S1ϕ ≡ S3ϕ ≡ ϕ on X\P. (10)

By the Choquet topological lemma, there exists a sequence {vj}j≥1 ⊂ PSHc(�̄)

that increases to S3ϕ on �̄. Since z0 /∈ pph(P ), we can find v ∈ PSH(�̄) such
that v < 0, v(z0) �= −∞, and v ≡ −∞ on P. Since ϕ ∈ C(�̄), by Lemma 2.2(a)
we have S1ϕ ∈ PSH−(�). For t ∈ [0,1] and ε > 0 we set

ut,ε = (S1ϕ) �5−1
t + εv.

Now we will use a reasoning similar in spirit to the proof of Proposition 3.4.
It is clear that ut,ε ∈ PSH−(5t(�)) for all t sufficiently close to 0. Let �k be a
sequence of subdomains in � satisfying �k ⊂⊂ �k+1 and

⋃
�k = �. Fix ε >

0. We claim that there exist t0 ∈ (0,1), k0 ≥ 1, and m ≥ 1 such that for all t ∈
(0, t0), k ≥ k0, there are

0 < δk < ak := min
0≤t≤t0

dist(5t(∂�),5t(∂�k))

satisfying
ut,ε ∗ ρδk ≤ vm + ε on �̄ ∩5t(∂�k). (11)

Assume otherwise; then we obtain sequences tj ↓ 0, kj ↑ ∞, mj ↑ ∞, {ξj} ⊂
�̄ ∩5tj (∂�kj ), and 0 < δkj < akj such that

(utj,ε ∗ ρδkj
)(ξj) > vmj (ξj)+ ε ∀j.

Since 5 is uniformly continuous on [0,1] × �̄, we may assume (after switching
to a subsequence) that ξj → ξ ∗ ∈ X. Since v ≡ −∞ on P, it follows that ξ ∗ ∈
X\P. Using Lemma 2.4 and (10), we see that the lim inf of the right-hand side of
the preceding inequality is larger than S3ϕ(ξ

∗)+ ε = S1ϕ(ξ
∗)+ ε when j → ∞.

Since v < 0 on �̄ and since 5−1
t converges uniformly to the identity map on �̄,

the definition of the convolution operator enables us to check that the lim sup of
the left-hand side is smaller than S1ϕ(ξ

∗). Thus we have a contradiction and the
claim follows. By increasing k0 and shrinking t0, we may also assume that z0 ∈
5t(�k) for all k ≥ k0 and 0 ≤ t < t0.

By the gluing lemma and (11), for k ≥ k0 and t ∈ (0, t0) the function

ṽt,k =
{

max(vm + ε, ut,ε ∗ ρδk ) on � ∩5t(�k),

vm + ε on �̄ \5t(�k)
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belongs to PSHc(�̄). Since v < 0, S1ϕ ≤ ϕ on �̄, and ϕ ∈ C(�̄), we can choose
k ≥ k0 large enough and t ∈ (0, t0) so small that

ut,ε ∗ ρδk ≤ ϕ + ε on 5t(�k).

Fix such k, t. Notice also that vm + ε ≤ ϕ + ε on �̄. Therefore, ṽt,k ≤ S3ϕ + ε.

In particular,

ut,ε(z0) ≤ (ut,ε ∗ ρδk )(z0) ≤ ṽt,k(z0) ≤ S3ϕ(z0)+ ε.

Taking the lim sup of the left-hand side as t → 0 and observing that the curve
5−1
t (z0), being real analytic near 0, is not plurithin at t = 0, we infer that

S1ϕ(z0)+ εv(z0) ≤ S3ϕ(z0)+ ε.

If we let ε → 0 then, since v(z0) �= −∞, we obtain S1ϕ(z0) ≤ S3ϕ(z0). Thus
S1ϕ(z0) = S3ϕ(z0) for all ϕ ∈ C(�̄). Now by Lemma 2.2(a) we conclude that
J 1
z0

= J 3
z0
.

(ii) First we show there exists an h∈ PSH−(�) such that

pph(P ) = {z∈� : h(z) = −∞}.
To see this, we will use an argument similar to the one given in the proof of
Theorem 3.2 in [HDL]. More precisely: since pph(P ) is ofFσ andGδ type, we can
choose increasing sequences of compact sets Pj ⊂ pph(P ) and Qj ⊂ �\pph(P )
such that ⋃

Pj = pph(P ),
⋃

Qj = �\pph(P ).

Fix j ≥ 1 and a point a ∈Qj ; then we can find ua ∈ PSH(�̄) such that

ua < 0, ua(a) > −∞, ua|Pj ≡ −∞.

After regularizing ua and then composing with an increasing convex function, we
obtain a continuous plurisubharmonic function u′

a on a neighborhood of �̄ and on
a neighborhood Ua of a such that

u′
a < 0, u′

a|Ua
> −1, u′

a|Pj < −2j.

Using the compactness ofQj yields a continuous plurisubharmonic function vj on
a neighborhood of �̄ such that

vj < 0, vj |Pj < −2j, vj |Qj
> −1.

Set
h(z) =

∑
j≥1

2−jvj(z) ∀z∈�.

It is easy to check that h is the desired function, and the claim follows.
Next, we pick a sequence �j of subdomains in � such that �j ⊂⊂ �j+1 and⋃
�j = �. Let Kj = (Y ∪ �j )\Vj , where Vj = {z ∈� : h(z) < −j}. Now we

can proceed as in the proof of Theorem 3.2(ii). The details are omitted.
(iii) Let �̄\Q = ⋃

j≥1Kj , where Kj is compact. Since pph(P ) = ∅, we have
that � is J-regular and so J 1

z = J 3
z for all z∈Kj . We again follow the lines of the

proof of Theorem 3.2(ii) to reach the desired conclusion.
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Remarks. 1. The same proof as in (i) shows that a similar conclusion holds if
we consider J 2

z instead of J 3
z . This is precisely Theorem 3.5 in [DW].

2. Let � be the “worm” domain constructed by Diederich and Fornaess in
[DiF]; it is a smoothly bounded pseudoconvex domain in C2. Moreover, ∂� is
strictly pseudoconvex except on the disk P = {(z, 0) : 1 ≤ |z| ≤ r}. It follows
that J 3

z = {δz} for all z∈ (∂�)\P. Since the complex linew = 0 does not intersect
�, we have pph(P ) = ∅. Consider the family 5t ≡ Id for all t ∈ [0,1]; by Theo-
rem 4.4(i), � is J-regular. Moreover, Theorem 4.4(iii) implies that, for every u∈
PSH−(�) such that u∗ is continuous on �̄\P, there exists a sequence {uj}j≥1 ⊂
PSH(�̄) ∩ C∞(�̄) that converges uniformly to u∗ on compact sets of �̄\P. On
the other hand, there exists a holomorphic function f on � that is C∞-smooth on
�̄ which cannot be approximated uniformly on �̄ by holomorphic functions on
neighborhoods of �̄. (For more details see [DiF, p. 280].) I am grateful to Profes-
sor François Bertheloot for directing my attention to this worm domain.

We conclude this section with another consequence of Theorem 4.4.

Corollary 4.5. Let �1 be a boundedB-regular domain with C1 boundary in Cn,
and let K be a compact subset of �1 such that tK ⊂ int(K) for all t ∈ [0,1). Let
�2 = �1\K. Then, for every u ∈ PSH−(�2), there exists a sequence {uj}j≥1 of
C∞-smooth plurisubharmonic functions on neighborhoods of �̄2 such that u∗

j →
u pointwise on �2 ∪ ∂�1.

This result should be compared to [FS, Thm. 3.1], where a smoothing theorem is
obtained when �1 is a ball.

Proof of Corollary 4.5. Let 5t(z) = (1 + t)z. Clearly, 5t is an isotopy family
of biholomorphic maps on �2. Observe that the condition on K implies that the
boundary cluster set X is contained in ∂�1. By Lemma 2.3 we have J 3

z = {δz} for
all z∈X. Hence, Theorem 4.4(ii) applies.

5. Open Problems

We mention some questions connected to our work.
1. Is it possible to make the sequence uj in Theorem 3.2(ii) decreasing to u

on �?
2. Is there any smoothly bounded pseudoconvex domain that is not J-regular?
3. Is the product of two J-regular domains again J-regular?
4. Is J-regularity an invariant property under proper holomorphic mappings?

We remark that J-regularity is invariant under any biholomorphism that extends
beyond the boundaries of the domains.

5. Is there any description of J 1
z in terms of measures that are pushforwards of

the Lebesgue measure on the circle under closed analytic disks? In this connec-
tion, see [DW, Prop. 5.6] for a partial result; for J 2

z and J 3
z , such descriptions can

be found in [P].
6. Is � J-regular if the set {z∈� : J 1

z = J 3
z } is pluripolar?
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