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On the Existence of Nontrivial 3-folds
with Vanishing Hodge Cohomology

J ing Zhang

1. Introduction

We study the structure of algebraic manifolds Y of dimension 3 withH i(Y,�j

Y ) =
0 for all j ≥ 0 and i > 0. Originally this question was raised by J.-P. Serre for
complex manifolds [Se]. Since by Serre duality Y is not complete, Y is affine if it
is a curve [H2, p. 68]. If Y is a surface, it has been classified by Mohan Kumar [M]
(see the following theorem in this section). We are interested in the 3-dimensional
case. Suppose that X is a smooth completion of Y. If there are nonconstant reg-
ular functions on Y (i.e., if h0(Y, OY) > 1), then Y contains no complete curves
and the boundary is connected [Zh]. We may therefore assume that the boundary
is of pure codimension 1 by suitable blowing-up of subvarieties on the boundary.
Let D be an effective divisor with simple normal crossings [KM, p. 5] such that
suppD = X − Y. The condition h0(Y, OY) > 1 is equivalent to κ(D,X) > 0.
Here we use the standard definition of D-dimension due to Iitaka. If for all inte-
gers m > 0 we have H 0(X, OX(mD)) = 0, then we define the D-dimension of
X, denoted by κ(D,X), to be −∞. If h0(X, OX(mD)) ≥ 1 for some m, choose
a basis {f0, f1, . . . , fn} of the linear space H 0(X, OX(mD)); it defines a ratio-
nal map �mD from X to the projective space P

n by sending a point x on X to
(f0(x), f1(x), . . . , fn(x)) in P

n. Then we define κ(D,X) to be the maximal di-
mension of the images of the rational map �mD; that is,

κ(D,X) = max
m

{dim(�mD(X))}.
Let KX be the canonical divisor of X. Then the Kodaira dimension of X is the
KX-dimension of X, denoted by κ(X):

κ(X) = κ(KX,X).

Before we state our theorems, we need Mohan Kumar’s result for surfaces.

Theorem (Mohan Kumar). Let Y be a smooth algebraic surface over C with
H i(Y,�j

Y ) = 0 for all j ≥ 0 and i > 0. Then Y is one of the three types described
as follows.

1. Y is affine.
2. Let C be an elliptic curve and E the unique nonsplit extension of OC by itself.

Let X = PC(E) and let D be the canonical section; then Y = X −D.
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3. LetX be a projective rational surface with an effective divisorD = −K, where
D2 = 0. Let O(D)|D be nontorsion, and let the dual graph ofD be D̃8 or Ẽ8.

Then Y = X −D.

Theorem 1.1. If Y is an algebraic manifold of dimension 3 withH i(Y,�j

Y ) = 0
for all j ≥ 0 and i > 0 and with h0(Y, OY) > 1, then we have a surjective mor-
phism from Y to a smooth affine curveC such that all smooth fibres are of the same
type—that is, exactly one of the three types of open surfaces in Mohan Kumar’s
classification. Moreover, if one fibre is not affine then X has Kodaira dimension
−∞ and D-dimension 1.

It is well known that the type-2 and type-3 projective surfaces are rigid. However,
the rigidity of the projective surfaces does not imply the rigidity of the open sur-
faces. The problem is that if a surface is affine, then its smooth completion can be
any projective surface; in particular, it can be type-2 or type-3 projective surface.
More precisely, assume that a type-3 projective surfaceX0 deforms to a projective
surface X1; then X0 and X1 have the same minimal model (see [I1; B+, Chap. VI,
Thm. 8.1]). If S0 and S1 are the open surfaces in Y contained inX0 andX1, respec-
tively, then H i(S0,�j

S0
) = H i(S1,�j

S1
) = 0 for all j ≥ 0 and i > 0 [Zh]. Since

both affine surfaces and type-3 open surfaces satisfy this condition, S0 and S1 may
not be of the same type even though X0 is a priori isomorphic to X1. So we need
to rule out the following case: some isolated fibre is affine but general fibres are
not affine. We will carefully analyze how the cohomology of the sheaves OX(nD)

changes when restricted to each fibre in order to obtain the deformation invariant
of the open surfaces.

Theorem 1.2. With the same assumptions as in the previous theorem, if one
smooth fibre S0 of f |Y over t0 ∈C is affine then, by removing finitely many fibres
S1, S2 , . . . , Sm from Y, the new 3-fold Y ′ = Y − ⋃

Si is affine.

When restricted to a fibre, if the global divisorD on X is ample then Theorem 1.2
is trivial by [KMo, Prop. 1.41]. However, if an open fibre is affine, we know only
that its boundary on the corresponding projective surface is the support of an ample
divisor on the surface. There is no guarantee that this ample divisor on the fibre
can be extended to a global divisor on X. We will use Goodman and Hartshorne’s
result (Lemma 3.1) to transfer the cohomology condition on the open fibre to the
closed fibre in order to apply the upper semicontinuity theorem of Gravert and
Grothendieck.

Let C̄ be a smooth projective curve containing C. Let Fn = �
j

X ⊗ OX(nD).

Now we do not assume H i(Y,�j

Y ) = 0 for all j ≥ 0 and i > 0. We want to know
whether Y satisfies this condition if every fibre S satisfies it, that is, ifH i(S,�j

S ) =
0 for all j ≥ 0 and i > 0. We know that if globally Y is such a 3-fold, then each
fibre must satisfy the same vanishing condition [Zh]. The converse is very subtle.
Assume that each fibre and the base satisfy some property in a fibre space; then
globally the property may fail. A famous example is Skoda’s counterexample [Sk]
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for Serre’s question [Se]: Is the total space of a holomorphic fibre bundle with
Stein base Z and Stein fibre F a Stein manifold? In order to prove that the van-
ishing Hodge cohomology holds for Y, we will first prove the local freeness of the
higher direct images Rif∗Fn for n � 0. This local freeness is interesting in its
own right.

Theorem 1.3. If f is proper and surjective in the commutative diagram

Y ↪−→X�f |Y
�f

C ↪−→ C̄

and if each fibre Xt over t ∈C is a type-2 projective surface, then Rif∗Fn|C is lo-
cally free for all i ≥ 0 and n � 0. Therefore, H i(Y,�j

Y ) = 0 for all j ≥ 0 and
i > 0.

If we also assume that every horizontal divisor Di (i.e., f(Di) = C̄ ) intersects
each smooth fibre Xt = f −1(t) over t ∈C with one prime divisor on Xt , then for
type-3 fibres the theorem still holds. We add this technical condition because a
prime component of D might intersect some fibre with two or more curves.

Theorem 1.4. In the commutative diagram of Theorem 1.3, if each fibre Xt over
t ∈C is a type-3 projective surface then Rif∗Fn|C is locally free for all i ≥ 0 and
n � 0. Furthermore, H i(Y,�j

Y ) = 0 for all j ≥ 0 and i > 0.

Corollary 1.5. If there is a surjective morphism from a smooth 3-fold Y to a
smooth affine curve C such that every fibre is smooth and the diagram of Theo-
rem 1.3 commutes, then H i(Y,�j

Y ) = 0 for all j ≥ 0 and i > 0 if and only if, for
every fibre S, H i(S,�j

S ) = 0 for all j ≥ 0 and i > 0.

One consequence of Theorems 1.1–1.4 is the following existence result.

Theorem 1.6. There exist nonaffine and nonproduct 3-folds Y withH i(Y,�j

Y ) =
0 for all j ≥ 0 and i > 0.

We shall prove these theorems in the sections that follow. The proof of Theorem1.4
is similar to that of Theorem 1.3 and so will be omitted.

Question. Are the 3-folds Y Stein in Theorem 1.3 and Theorem 1.4?

Convention. Unless otherwise explicitly mentioned, we always use Zariski
topology. Thus, “open set” means a Zariski open set.

Acknowledgments. I would like to express my thanks to the following profes-
sors for helpful discussions: Michael Artin, Steven Dale Cutkosky, Dan Edidin,
N. Mohan Kumar, Zhenbo Qin, A. Prabhakar Rao, David Wright, and Qi Zhang.
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2. Proof of Theorem 1.1

Theorem (Iitaka). Let X be a normal projective variety and let D be an effec-
tive divisor onX. Then there exist two positive numbers α and β such that, for all
sufficiently large n,

αnκ(D,X) ≤ h0(X, OX(nD)) ≤ βnκ(D,X).

For the proof of Iitaka’s theorem, see Lecture 3 in [I4] or Theorem 8.1 in [U].
The following two lemmas are known (see [M]).

Lemma 2.1. Let S be a smooth open surface with H i(S,�j

S ) = 0 for all j ≥ 0
and i > 0. Let S̄ be a smooth projective surface containing S, and let G be the
divisor in Mohan Kumar’s theorem. Then there are three cases.

(1) If S is affine, then κ(G, S̄ ) = 2 and

h0(S̄, OS̄ (nG)) ≥ cn2

for some positive constant c and n � 0.
(2) If S is of type 2, then

h0(S̄, OS̄ (nG)) = h1(S̄, OS̄ (nG)) = 1 and h2(S̄, OS̄ (nG)) = 0

for all n � 0.
(3) If S is of type 3, then

h0(S̄, OS̄ (nG)) = 1 and h1(S̄, OS̄ (nG)) = h2(S̄, OS̄ (nG)) = 0

for all n � 0.

Proof. (1) Since S is affine, it follows from Goodman’s theorem (see [H2, p. 69])
that S̄ − S is the support of an ample divisor A. Therefore, κ(A, S̄ ) = κ(G, S̄ ) =
2 [I3; B+, Chap 14]. The estimate is obvious by Iitaka’s theorem.

(2) The equalities follow from [M, Lemma 1.8] and Lemma 2.2(1) to follow.
(3) See [M, Lemma 1.8, Lemma 3.1] and Lemma 2.2(2).

Lemma 2.2. With the preceding notation, we have:

(1) if S̄ is of type 2, then G2 = 0, KS̄ = −2G, pg = 0, and q = 1;
(2) if S̄ is of type 3, then G2 = 0, KS̄ = −G, and pg = q = 0.

Proof. (1) This is a standard result for the ruled surface over an elliptic curve. The
proof can be found in [H3, Chap. V, Sec. 2] or in [M].

(2) See Lemma 1.6 and Lemma 3.1 in [M].

Let f : X → Z be a morphism between varieties (schemes) with Z connected.
Let z0 ∈ Z, k(z0) = K, and Xz0

∼= X0. Then the other fibres Xz of f are called
deformations of X0 [H3, p. 89]. In the proof of Theorem 1.1, the deformation of a
nonsingular complex surface X0 means the following by the same notation: Both
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X and Z are smooth, and f is a surjective, proper, and flat morphism (i.e., OX,x

is a flat OZ,f(x)-module for all x ∈X) such that the fibre over z0 ∈Z is Xz0
∼= X0

[B+, p. 36]. By [I1] we know that the deformation of a rational surface is again
rational. By [B+, Chap. VI, Thm. 8.1], the deformation of a ruled surface over a
smooth curve of genus g ≥ 1 is also of the same type—that is, it has the same
minimal model.

We need Kodaira’s stability of (−1)-curves, which is Theorem 5 in [Ko].

Theorem (Kodaira). Let f : X → Z be a surjective and proper holomorphic
map that is flat. If for some point 0 ∈ Z the fibre X0 contains a (−1)-curve E0,
then there exist an open neighborhood (in complex topology) U of 0 in Z as well
as a closed and connected submanifold E of f −1(U) such that E ∩X0 = E0 and
E ∩Xt = Et is a (−1)-curve for every t ∈U.
Moreover, in Kodaira’s theorem there is a g : X ′ → U, which is a surjective, flat,
and proper holomorphic map such that the following diagram commutes:

X
h−−→ X ′

�f
�g

U
≈−−→ U ;

here h|Xt : Xt → X ′
t is the blowing-down of Et . Let us state the contraction part

precisely. The proof is due to Suwa (see [I2, Apx. 1]).

Theorem (Suwa). Let X and Z be complex manifolds, and let f be a proper,
surjective, and flat holomorphic map from X to Z such that every fibre Xz is a
smooth surface. If there exists a complex submanifold E of X whose restriction
to Xz , Ez = E ∩Xz , is an irreducible exceptional curve of the first kind on Xz at
any z∈Z, then we can construct a complex manifoldX ′ (which is proper over Z)
and a holomorphic map h : X → X ′ over Z such that h|Xz : Xz → X ′

z shrinks Ez
to a point inX ′

z for every point z∈Z and such that h|X−E : X−E → X ′ − h(E)
is biholomorphic.

Upper Semicontinuity Theorem (Grauert & Grothendieck). Let f : X → Z

be a proper morphism of Noetherian schemes, and let F be a coherent sheaf on
X that is flat over Z.

(1) The ith direct image Rif∗F is a coherent sheaf on Z for any nonnegative in-
teger i.

(2) Let Fz = F |Xz (the sheaf F restricted to the fibre Xz = f −1(z)); then the
function

di(z) = hi(Xz, Fz) = dimk(z) H
i(Xz, Fz)

is upper semicontinuous on z. That is: for anyn∈ Z , the set {z∈Z : di(z)≥ n}
is a closed set, where k(z) = Oz/Mz, the residue field at the point z.
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(3) The Euler characteristic of the restriction sheaf Fz,
χ(Fz) =

∑
(−1)i dimk(z) H

i(Xz, Fz),
is locally constant on Z.

(4) The following statements are equivalent:
(i) hi(Xz, Fz) is a constant function on Z;

(ii) Rif∗F is locally free sheaf on Z and, for all z∈Z, the natural map

Rif∗F ⊗Oz
k(z) −→ H i(Xz, Fz)

is an isomorphism.
In addition, if conditions (i) and (ii) are satisfied, then

Ri−1f∗F ⊗Oz
k(z) −→ H i−1(Xz, Fz)

is an isomorphism for all z∈Z.
For a proof, see [Mu, pp. 46–53].

In this section, from now on we assume that the condition of Theorem 1.1 holds.
Theorem 1.1 is a direct consequence of the following lemmas.

Lemma 2.3. If one smooth fibre St0 = S0 is a type-2 or a type-3 open surface in
Mohan Kumar’s classification, then there is an affine open set U such that St =
f −1(t)−D over every t ∈U is of the same type.

Proof. Consider the commutative diagram

Y ↪−→ X�f |Y
�f

C ↪−→ C̄

[Zh], where f is proper and surjective and where Xt = f −1(t) is a smooth pro-
jective surface for all t ∈C. The minimal model of Xt is the same as the minimal
model of a type-2 or type-3 surface, but it may contain exceptional curves of the
first kind.

Note thatS0 is not affine. LetX0 = f −1(t0). By Lemma 2.1and [U, Lemma 5.3],
H 0(X0, O(nD0)) = C for all nonnegative integers n even though the divisorD0 =
D|X0 contains exceptional curves of the first kind. Let Dt = D|Xt ; then Dt is a
connected curve on Xt = f −1(t), since Xt is smooth and since H i(St ,�

j

St
) = 0

[M, Lemma 1.4]. By upper semicontinuity, there is an affine open set U in C such
that H 0(Xt , O(nDt)) = C, since every Dt is effective. Hence, by Lemma 2.1,
every fibre St over t ∈U is not affine.

Second, if S0 is a type-2 open surface in Mohan Kumar’s classification, then
pg(X0) = h2(OX0 ) = 0 and q(X0) = h1(OX0 ) = 1 (Lemma 2.2). Here the
boundary divisor D0 = D|X0 may contain exceptional curves and so X0 may not
be minimal. But pg is birational invariant [B+, p. 107] and q is bimeromorphic
invariant [H3, p. 181]. Since Rif∗(OX) and Rif∗(OX(KX)) are locally free for all
i ≥ 0 [K1; K2], again by upper semicontinuity it follows that pg(Xt) = 0 and
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q(Xt) = 1 for every t ∈C. NowX0 has the minimal model of a ruled surface over
an elliptic curve by the classification theorem [B+, Chap. VI, Thm. 1.1, p. 243]
and the deformation theorem [B+, Chap. VI, Thm. 8.1, p. 263]. Hence there is an
affine open set U such that, for every t ∈U,Xt has the same minimal model asX0

in Mohan Kumar’s theorem—that is, a type-2 projective surface.
Similarly, if S0 is a type-3 open surface then there is an affine open set U such

that St over every t ∈ U is of the same type, since the deformation of a rational
surface is still rational [I1].

Remark 2.4. If S is a type-2 open surface in Mohan Kumar’s theorem, then any
point on S cannot be contained in any exceptional curve of S̄, where S̄ is a smooth
completion of S. Hence, if S̄ is not minimal then all exceptional curves are con-
tained in the boundary S̄ − S.

Lemma 2.5. If there is an affine open set U in C such that, for every t ∈U, St =
f −1(t) − D is a type-2 open surface and t �= t0, where t0 is a fixed point of U,
then S0 must be a surface of the same type.

Proof. First, S0 cannot be of type 3 because Xt = f −1(t) is not rational and the
deformation of a rational surface is still rational [I1]. We know that there are three
possible smooth fibres [M; Zh], so we need only prove that S0 is not affine. For
this it suffices to prove that h0(X0, OX0(nD0)) is bounded for all n; in fact, in our
case it is 1. Here X0 = f −1(t0), D0 = D|X0 , and S0 = X0 −D0.

By Suwa’s theorem and Kodaira’s stability theorem of (−1)-curves, we may as-
sume that D0 has no exceptional curve of the first kind. Hence there is a small
open set V in C (complex topology) such that, for all points t ∈V,Dt = D|Xt has
no exceptional curves of the first kind. In fact, if there is a t1 ∈ V and if Dt1 has
a component E1 such that E1 is an exceptional curve of the first kind, then E 2

1 =
E1 · KX1 = −1, where X1 = f −1(t1). There is a prime component G of D in X
such that E1 ⊂ G. Let Et = G|Xt for t ∈ V ; then, by upper semicontinuity, the
Euler characteristic of OXt (nEt) is constant for every t ∈V and every n ≥ 0. As
a result, for any n ≥ 0,

χ(OXt (nEt)) = χ(OX0(nE0)).

By the Riemann–Roch formula, for all n ≥ 0 we have
1
2n

2E 2
t − 1

2nEt ·KXt = 1
2n

2E 2
1 − 1

2nE1 ·KX1 .

Therefore, E 2
t = Et ·KXt = −1 for all t ∈V ; in particular, E 2

0 = E0 ·K0 = −1.
This is impossible because D0 has no (−1)-curves by our assumption. Thus, for
all t ∈V and t �= t0, Xt is a type-2 surface (i.e., a minimal ruled surface over an
elliptic curve). But Dt may not be a prime divisor. Let D ′

t be the elliptic curve (a
section) as in Mohan Kumar’s classification. Then there is a positive integer n(t)
depending on t and such that Dt = n(t)D ′

t . Since the function n(t) is discrete,
there is a dense subset B in V such that n(t) is a constant c for all t ∈B. Let t1 ∈
V −B andK1 = KX1 . Consider the divisorD+ cKX restricted to the correspond-
ing fibre X1 = f −1(t1). By upper semicontinuity we have
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h0(Xt1, OXt1
(Dt1 + 2cK1)) ≥ h0(Xt , OXt(Dt + 2cKt)) = 1

and
h0(Xt1, OXt1

(−Dt1 − 2cK1)) ≥ h0(Xt , OXt(−Dt − 2cKt)) = 1,

where t ∈ B and Dt + 2cKt = cD ′
t + 2cKt = c(D ′

t + 2Kt) = 0 (Lemma 2.2).
So OXt1

(Dt1 + 2cK1) must be trivial; that is,

Dt1 + 2cK1 = n(t1)D
′
1 + 2cK1 = −2n(t1)K1 + 2cK1 = 0.

Hence n(t1) = c for every t1 ∈V −B and soDt = cD ′
t for every t ∈V. By chang-

ing coefficients locally, we may assume that D|Xt = D ′
t , where 2D ′

t +Kt = 0.
Since 2Dt + KXt = 0 for every t �= t0, we may similarly consider the divisor

2D +KX restricted to every fibre Xt and obtain

h0(X0, OX0(2D0 +K0)) ≥ h0(Xt , OXt (2Dt +KXt )) = 1.

On the other hand,

h0(X0, OX0(−2D0 −K0)) ≥ h0(Xt , OXt (−2Dt −KXt )) = 1.

We therefore have

h0(X0, OX0(2D0 +K0)) = h0(X0, OX0(−2D0 −K0)) = 1.

Again this implies that the sheaf OX0(2D0 +K0)) is trivial. Hence 2D0 +K0 =
0. Since St has vanishing Hodge cohomology and since X0 is isomorphic to Xt ,
it follows that

h0(X0, OX0(2nD0)) = h0(X0, OX0(−nK0))

= h0(Xt , OXt (−nKt)) = h0(Xt , OXt (2nD
′
t )) = 1.

Consequently, S0 is not affine.

Remark 2.6. LetU be covered by a set of small open discsUi. By the foregoing
argument, for each i there is a constant ci such that Dt = ciD

′
t for t ∈ Ui, where

D ′
i is the irreducible boundary elliptic curve on Xt . Because U is connected, all

these c ′
i are equal. That is, there exists a constant c such that D|Xt = Dt = cD ′

t

for all t ∈ U. Thus, by changing the coefficients of D, we have proved that the
new boundary divisor D ′ on X satisfies D ′|Xt = D ′

t .

Lemma 2.7. If there is an affine open set U in C such that, for every t ∈U, St is
a type-3 open surface and t �= t0, where t0 is a fixed point of U, then S0 must be
of the same type.

Proof. First, S0 is not a type-2 open surface because X0 is rational by Iitaka’s
theorem [I1]. As in Lemma 2.5, we need only prove that S0 is not affine. For
this it suffices to prove that h0(X0, OX0(nD0)) < cn2 for all positive numbers c
(Lemma 2.1).

As in Lemma 2.5, we may assume thatDt contains no exceptional curves of the
first kind for every t in U. In fact, if there is an exceptional curve E1 of the first
kind inDt1 for some point t1 inU then, locally analytically,E1 sits in an irreducible



On the Existence of Nontrivial 3-folds with Vanishing Hodge Cohomology 455

nonsingular divisor D1 of X; that is, D1 is a prime component of D. (We may
assume that D is an effective divisor on X with simple normal crossings [Zh].)
Now f is proper onD1 andD1 is a manifold, so we can apply Kodaira’s extension
theorem locally on D1 near Dt1. More precisely, in our case we can compute it
directly. SinceD1 is smooth it follows that, for a small number ε > 0, in a neigh-
borhood V = {t ∈C, |t − t1| < ε} of t1,D1 intersects every fibre Xt with a prime
divisor on Xt . Since h0(OXt ) = 1 and h1(OXt ) = h2(OXt ) = 0 by Lemmas 2.1
and 2.2, respectively, the Riemann–Roch formula and upper semicontinuity yield

χ(OXt (nEt)) = 1 + 1
2n

2E 2
t − 1

2nEt ·KXt = 1 + 1
2n

2E 2
1 − 1

2nE1 ·KX1 ,

where E1 = D1|Xt . So Et is again an (−1)-curve on D1. This implies that all
the extended (−1) exceptional curves near Dt1 sit in D1 and do not meet Y. Thus,
after contraction, Y remains the same; that is, when contracting (−1)-curves, we
change only the boundary Dt while all the open surfaces St over t ∈ U remain
unchanged.

If Dt is the special divisor D ′
t as in Mohan Kumar’s theorem (i.e., if its dual

graph is either D̃8 or Ẽ8), then by Lemma 2.2 we have Dt + KXt = 0 for every
t ∈U and t �= t0. By inequalities similar to those in the proof of Lemma 2.5,

h0(X0, OX0(D0 +K0)) = h0(X0, OX0(−D0 −K0)) = 1.

Hence D0 + K0 = 0. Since X0 is a type-3 projective surface and since also
H i(S0,�j

S0
) = 0, we know that S0 is not affine and must be a type-3 open surface.

But we cannot guarantee that the dual graph of Dt is either D̃8 or Ẽ8. We know
only that Dt has nine components and that every prime component is isomorphic
to P

1 with self-intersection −2 [M]. In Lemma 2.5 we could assume that the spe-
cial divisorD ′

t onXt is the restriction of a global divisorD onXt , becauseD ′
t has

only one component by Remark 2.6. Here the situation is more delicate.
Let D ′

t be the special divisor of a type-3 projective surface as before (i.e., its
dual graph is either D̃8 or Ẽ8), letD ′

t ·D ′
t = D ′

t ·Kt = 0, and let OD ′
t
(D ′

t ) be non-
torsion [M]. For any nonnegative integer n, there is an m such that mD ′

t − nDt is
effective. For example, we may choose m = an, where a is the maximum coeffi-
cient of Dt ’s components. Hence

0 < h0(Xt , OXt (nDt)) ≤ h0(Xt , OXt (mD
′
t )) = 1.

Therefore, h0(Xt , OXt (nDt)) = 1. By Serre duality, H 2(Xt , OXt (nDt)) = 0 for
all n � 0, since KXt and Dt have the same support by Lemma 2.2. We now con-
sider h1(Xt , OXt (nDt)), for which there are three cases [Za].

Case 1. h1(Xt , OXt (nDt)) is bounded. In other words, there is a positive inte-
ger k such that, for all n ≥ 0,

h1(Xt , OXt (nDt)) ≤ k < ∞.

By Zariski’s theorem [Za, p. 611],Dt is arithmetically effective. By the Riemann–
Roch formula and Lemmas 2.1 and 2.2, we have

h1(Xt , OXt (nDt)) = − 1
2n

2D2
t + 1

2nDt ·KXt .
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This equality yieldsD2
t = Dt ·Kt = 0, since h1(Xt , OXt (nDt)) is bounded for all

n. Then, for every prime component E in Dt , we have E ·Dt = 0 because Dt is
arithmetically effective. By [M, Lemma 1.7] we know that Dt = n(t)D ′

t , where
the positive integer n(t) depends on the point t in U. Hence, for every n ≥ 0, by
Lemma 2.1 we have

h1(Xt , OXt (mDt)) = h1(Xt , OXt (mn(t)D
′
t )) = 0.

Now the Euler characteristic of OX0(nD0) is

χ(OX0(nD0)) = 1 − 1
2n

2D2
0 + 1

2nD0 ·KX0 = 1.

Thus againD2
0 = D0 ·KX0 = 0. By the same argument as in the proof of Lemma

2.5 and Remark 2.6, there is a positive integer c such that Dt = cD ′
t for every t ∈

U when t �= t0. Considering the divisorD+ cKX onX when restricted toX0, we
have

h0(X0, OX0(D0 + cKX0 )) ≥ 1, h0(X0, OX0(−D0 − cKX0 )) ≥ 1.

Therefore, D0 = −cKX0 . Let D0 = P + N be the Zariski decomposition of D0;
then P is nef, N is negative definite (both are effective), and every component of
N does not intersect P. LetE be a prime component of P. Locally analytically, E
is contained in a prime divisorG of X. LetG|Xt = Et . Applying upper semicon-
tinuity and the Riemann–Roch formula to OX0(nE) and OXt (nEt) yieldsE ·K0 =
Et ·Kt = 0 [M, Lemma 3.1]. Thus E ·D0 = E · (−cK0) = 0. If E ·P > 0, then
E ·P = E · (D0 −N) = −E ·N > 0; hence E ·N < 0. This means that E must
be a component of N, which is a contradiction because no component of N inter-
sects P. So P 2 = 0. By [Bă, Cor. 14.18], κ(D0,X0) ≤ 1. By Lemma 2.1, S0 is
not affine.

Case 2. If h1(Xt , OXt (nDt)) is as large as cn for some positive number c, then
by Zariski’s theorem [Za, p. 611] it follows that Dt is arithmetically effective and
that the intersection form of Dt is negative definite. This contradicts Lemma 1.6
in [M], so this case cannot occur.

Case 3. If h1(Xt , OXt (nDt)) is as large as kn2 for some positive number k, then
the Riemann–Roch formula yields D2

t < 0. Let Dt = A + B be the Zariski de-
composition such thatA is arithmetically effective, B ≥ 0 is negative definite, and
every prime component of B does not meet A. Then there is a positive integer n0

such that n0A and n0B are integral. Without loss of generality, we may assume
that A and B are integral. Because there is a positive integer l such that lD ′

t −Dt
is effective, we have the exact sequence

0 −→ O(nDt) −→ O(nlD ′
t ) −→ Q −→ 0,

where Q is the cokernel. Hence we still have h0(Xt , OXt (nDt)) = 1 even though
Dt is different from D ′

t . Therefore, κ(Dt ,Xt) = 0 by Iitaka’s theorem. This im-
plies thatA2 = 0 (see [Za] or [Bă, Cor. 14.18]). SinceA is arithmetically effective
and since suppDt = suppA ∪ suppB, for every prime component E of Dt it fol-
lows that E · A = 0. By [M, Cor. 1.7] there exists a positive integer m0 such that
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A = m0D
′
t , so D2

t = B2 and Dt − D ′
t ≥ 0. Let D0,i be a prime component of

D0 = D|X0 . Choose a small neighborhood V of t0 such that, locally analytically
in V,D0,i lies in a unique prime divisorDi of f −1(V ). ThenDi cuts every fibreXt
(t ∈V ) with an irreducible (−2)-curve. As a result, over V there is a one-to-one
correspondence between the prime divisor ofDt and the prime divisor of f −1(V ).

We may rearrange the coefficients of Di locally (as in the proof of Lemma 2.5)
such that Dt = cD ′

t , where t0 �= t ∈V ; hence h1(Xt , OXt (nDt)) = 0 for all such
t. Then we reduce Case 3 to Case 1, proving that S0 is not affine.

Remark 2.8. IfDt is not the special divisor as in Mohan Kumar’s theorem—that
is, if Dt has different coefficients from D ′

t but they have the same support—then
we still have Dt · Kt = 0 by Lemma 3.1 in [M]. Since h0(Xt , OXt (nB)) = 1,
the Riemann–Roch formula yields h1(Xt , OXt (nDt)) = − 1

2n
2D2

t = − 1
2n

2B2 =
h1(Xt , OXt (nB))∼ cn2. ThusB2< 0. SinceB is negative definite, by [M, Lemma
1.6] we know that the support of B is strictly smaller than the support of Dt.

Remark 2.9. Let Xt be a type-3 projective surface and let D ′
t be the special di-

visor as before. Let E be any prime component ofD ′
t . Then E 2 = −2 [M]. Since

the canonical divisor Kt = −D ′
t , by Riemann–Roch we have

h1(Xt , OXt (nD
′
t + E)) = n2.

This together with the argument of Remark 2.8 means that, for any divisorDt with
the same support as D ′

t , either h1(Xt , OXt (nDt)) = 0 or h1(Xt , OXt (nDt)) ∼ cn2

for some positive integer c.

Lemma 2.10. If S0 is affine then there is an affine open set U in C such that St is
affine for every t ∈U.
Proof. This is a direct implication of the previous lemmas, since S0 can only be
one of the three types of surfaces.

Lemma 2.11. If there is an affine open set U in C such that St is affine for every
t �= t0, then S0 is affine.

Proof. This is an immediate consequence of Mohan Kumar’s classification and
the upper semicontinuity theorem.

The first half of Theorem 1.1 is entailed by the lemmas in this sectio; the second
half follows from Theorems 5.11 and 6.12 in [U]. In fact, the foregoing lemmas
show that if one smooth fibre X0 is not affine then all smooth fibres are not affine.
Since X0 is a ruled surface, κ(X0) = −∞; hence

κ(X) ≤ κ(X0)+ 1 = −∞.

By Lemma 2.1,
0 < κ(D,X) ≤ κ(Dt ,Xt)+ 1 = 1.

This completes the proof of Theorem 1.1.
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3. Proof of Theorem 1.2

Lemma 3.1 (Goodman & Hartshorne). Let V be a scheme and D an effective
Cartier divisor on V. Let U = V − SuppD and let F be any coherent sheaf on V.
Then, for every i ≥ 0,

lim−→
n

H i(V,F ⊗ O(nD)) ∼= H i(U,F |U).

This lemma enables us to transfer the cohomology information from Y to its com-
pletion X.

Proof of Theorem 1.2. The idea is to prove, for any coherent sheaf F on Y ′, that
H i(Y ′,FY ′) = 0 for all i > 0. Because the dimension of Y ′ is 3, we need only
consider i = 1, 2, 3. We use the technique in [Zh] with some modification, pre-
senting all the details for completeness.

Notice that Y ′ ⊂ Y. Let FY ′ be any coherent sheaf on Y ′; then it can be extended
to a coherent sheaf FX onX, and FY |St and FX|Xt are coherent [H3, pp. 115, 126].
We will not distinguish between them and will simply write F. Since a general
fibreXt over t ∈C is smooth and irreducible [Zh] and since, for any F, there is an
open set U in C such that Rif∗F is locally free on U, we may assume that Rif∗F
is locally free on C and that every fibre over C is smooth and irreducible.

Step 1: Proof of H 3(Y,F ) = 0. Since St is affine for every t in C, it fol-
lows that H i(St ,F |St ) = 0 for every i > 0. Let Fn = F ⊗ OX(nD) and Fn,t =
F ⊗ OX(nD)|Xt . By Goodman and Hartshorne’s lemma,

lim−→
n

H i(Xt ,Fn,t ) = 0

for all i > 0 and t ∈C. Since each fibre has dimension 2, we haveH 3(Xt ,Fn,t ) =
0 for all n ≥ 0 and t ∈ C. By upper semicontinuity, R3f∗Fn = 0 for all n. Again
by Goodman and Hartshorne’s lemma,

H 3(Y,F ) = lim−→
n

H 3(f −1(C),Fn) = lim−→
n

R3f∗Fn(C) = 0.

Step 2: Proof of H 2(Y,F ) = 0. It suffices to prove the claim for locally free
sheaves. In fact, suppose H 2(Y,L) = 0 for any locally free sheaf L on X. For
any coherent sheaf F on X, there is a locally free sheaf L on X such that we have
the surjective map L −→ F. LetK be the kernel; then we have the following short
exact sequence on Y :

0 −→ K −→ L −→ F −→ 0.

By Step 1 we know that H 3(Y,K) = 0, since K is also coherent [H3]. Hence
H 2(Y,L) = 0 implies H 2(Y,F ) = 0, so we may assume that F is a locally free
sheaf on X.

Let t ∈C. Given the exact sequence

0 −→ OX(nD) −→ OX((n+ 1)D) −→ OD((n+ 1)D) −→ 0,
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tensoring with F and then with OXt yields

0 −→ Fn,t −→ Fn+1,t −→ Fn+1,t |Dt −→ 0.

Since Dt is a curve, it follows that H 2(Xt ,Fn+1,t |Dt ) = 0 for all n ≥ 0 and t ∈
C. Therefore, the map H 2(Xt ,Fn,t ) → H 2(Xt ,Fn+1,t ) is surjective. Since St =
Xt −Dt is affine, by Goodman and Hartshorne’s lemma we obtain

lim−→
n

H 2(Xt ,Fn,t ) = H 2(St ,F ) = 0.

Thus for any t ∈ C there exists a positive integer n(t) depending on t and such
that, for every n ≥ n(t), we have H 2(Xt ,Fn,t ) = 0.

Given any n, there is an affine open set Un of C such that R2f∗Fn is lo-
cally free on Un. By the same argument as in the next paragraph, the intersec-
tion of these infinitely many open sets is not empty. Now fix some t0 in

⋂
Un

such that H 2(Xt0 ,Fn,t0) = 0 for every n ≥ n(t0), and suppose there is an
open neighborhood U0 of t0 in C̄ such that R2f∗Fn(t0) is locally free on U0.

Then H 2(Xt ,Fn(t0),t ) = 0 for every t in U0, so H 2(Xt ,Fn,t ) = 0 for every t
in U0 and every n ≥ n(t0). Let C − U0 = {t1, t2 , . . . , tk} and choose n0 =
max(n(t0), n(t1), . . . , n(tk)); then H 2(Xt ,Fn,t ) = 0 for every t ∈ C and every
n ≥ n0. By the upper semicontinuity theorem, (R2f∗Fn)t/P(R2f∗Fn)t = 0 for
all points t in C. By Nakayama’s lemma, R2f∗Fn|C = 0. Finally, by Goodman
and Hartshorne’s lemma,

H 2(Y,F ) = lim−→
n

H 2(f −1(C),Fn) = lim−→
n

R2f∗Fn(C) = 0.

Step 3: Proof of H1(Y ′,F ) = 0. Here Y ′ is an open subset of Y obtained by
removing finitely many fibres from Y.

Let Fn be as described in Step 1. For any fixed n, there is an open set Un in C̄
such that R1f∗Fn is locally free on Un. Let Un = C̄\An, where An is closed in C̄;
that is, Un consists of only finitely many points of C̄. Since any complete metric
space is a Baire space [Bo2, Chap. 9], it follows that B = C̄\⋃

An = ⋂
Un is a

dense subset of C̄ in complex topology. Hence, for every point t in B, all stalks
(R1f∗Fn)t are locally free. Write B as a union of connected subsets Bm: B =⋃
Bm. Then there is one Bm such that Bm is dense in C̄ and connected in complex

topology, so we may assume that B is connected. Again by the upper semiconti-
nuity theorem, for every point t in C and every n ≥ n0 we have

(R1f∗Fn)t ⊗ C ∼= H1(Xt ,Fn,t ),

since R2f∗Fn|C = 0. For any m we know that h1(Xt ,Fm,t ) is constant on B be-
cause R1f∗Fm is locally free at every point t in B and B is connected. Thus, for
n ≥ n0 and for all points t in B, there is an l such that the map

H1(Xt ,Fn,t ) → H1(Xt ,Fn+l,t )

is zero. Moreover, for every point t in C and sufficiently large n, we have the fol-
lowing commutative diagram:
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R1f∗Fn ⊗ C(t)
≈−−→ H1(Xt ,Fn,t )�α

�β
R1f∗Fn+l ⊗ C(t)

≈−−→ H1(Xt ,Fn+l,t ).
The map β is zero for every t ∈B, so the map

α : (R1f∗Fn)t/P(R1f∗Fn)t → (R1f∗Fn+l)t /P(R1f∗Fn+1)t

is zero for all points t in B. By the local freeness this means that, for every point
t in B, the stalks satisfy

lim−→
n

(R1f∗Fn)t = 0.

To see this, fix a point t0 in B; for any sufficiently large n and for the l just
described, choose an affine open set V containing t0 such that both R1f∗Fn and
R1f∗Fn+l are locally free on V. Hence there are two positive integers, m1 andm2 ,
such thatR1f∗Fn(V ) = O(V )m1 andR1f∗Fn+l(V ) = O(V )m2. Now, for infinitely
many maximal ideals P we have commutative diagram

O(V )m1
ψ−−−−→ O(V )m2

�π1

�π2

O(V )m1/PO(V )m1
φ−−−−→ O(V )m2/PO(V )m2 .

Since ψ(O(V )m1) ⊂ ⋂ PO(V )m2 = 0, where P runs over infinitely many maxi-
mal ideals of O(V ), it follows that ψ(O(V )m1) = 0. This proves

lim−→
n

(R1f∗Fn)t = 0.

Because the direct limit ofR1f∗Fn is quasi-coherent, its support is locally closed.
Now B is dense and connected in complex topology, so there exists an affine open
set U in C̄ such that, on U, the direct limit

lim−→
n

R1f∗Fn|U = 0.

Let Y ′ = f −1(U)−D. By Goodman and Hartshorne’s lemma, we have

H1(Y ′,F ) = lim−→
n

H1(f −1(U),Fn) = lim−→
n

R1f∗Fn(U) = 0.

This finishes the proof of Theorem 1.2.

Remark 3.2. In our Step 3 proof we encounter the following two questions if
we do not know the local freeness of R1f∗Fn.

1. IfU is a smooth affine curve, then O(U) = A is a Dedekind domain. LetN be
a finitely generated module over A. Then, under what conditions does

⋂
(PN) =

0? (Here P runs over all maximal ideals of A.) A sufficient condition is that N
be a projective module, but this condition is too strong. Our N is defined by co-
homology, so it is hard to see whether it is projective or not. It is definitely not
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sufficient for N to be a finitely generated module. For example, let U = A
1, A =

O(U) = C[x], and N = C[x]/(x 2); then
⋂
(PN) �= 0.

2. Given A and P as in the previous question, let (Mn, fn) be a direct system
of finitely generated A-modules. If

lim−→
n

(Mn/PMn) = 0,

then under what conditions can we say that

lim−→
n

Mn = 0?

Again, that all Mn are finitely generated is not sufficient. For example, let A =
C[[t]], the ring of formal power series, and let Mn = t−nA. Then

lim−→
n

Mn = K �= 0,

where K = C((t)), but
lim−→
n

Mn/PMn = 0.

4. Proof of Theorem 1.3

Lemma 4.1. Rif∗OX(nD) is locally free for all i ≥ 0 and n � 0.

Proof. Since each fibre has dimension 2, by the upper semicontinuity theorem it
follows that Rif∗OX(nD) = 0 for all i > 2 and n ≥ 0. By Lemma 2.1, since each
fibre Xt is of type 2, we have

h0(Xt , OXt (nDt)) = h1(Xt , OXt (nDt)) = 1 and h2(Xt , OXt (nDt)) = 0

for all t ∈C and n � 0.

Lemma 4.2. Rif∗�3
X(nD) = Rif∗OX(KX + nD) is locally free for all i ≥ 0

and n � 0.

Proof. SinceXt is smooth, we haveKX+D|Xt =KXt =Kt. Hence�3
X(nD)|Xt =

OX(KX + nD)|Xt = OXt (Kt + (n− 1)Dt), where Dt = D|Xt . By Lemma 2.1,

h0(Xt ,�
3
X(nD)|Xt ) = h0(Xt , OXt (Kt + (n− 1)Dt) = 1,

h1(Xt ,�
3
X(nD)|Xt ) = h1(Xt , OXt (Kt + (n− 1)Dt) = 1,

and
h2(Xt ,�

3
X(nD)|Xt ) = h2(Xt , OXt (Kt + (n− 1)Dt) = 0

for all n � 0. This proves the local freeness.

Lemma 4.3. Rif∗�1
X(nD) is locally free for all i ≥ 0 and n � 0.

Proof. From the exact sequences

0 −→ OXt −→ �1
X|Xt −→ �1

Xt
−→ 0
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[H3, Chap. II, Thm. 8.17; GHa, p. 157], tensoring with OX(nD) yields

0 −→ OXt(nDt) −→ �1
X(nD)|Xt −→ �1

Xt
(nDt) −→ 0.

We will prove that, for any two points t, t ′ ∈C and for all n � 0,

hi(Xt ,�
1
X(nD)|Xt ) = hi(Xt ′ ,�

1
X(nD)|Xt ′).

Then (by the upper semicontinuity theorem) we are done. By the preceding short
exact sequences, for fibres Xt and Xt ′ we have the commutative diagram

0 −−→ H 0(OXt (nDt))
α1−−→ H 0(�1

X(nD)|Xt ) α2−−→ H 0(�1
Xt
(nDt))

α3−−→ H1(OXt (nDt))∥∥∥∥
�φ

∥∥∥∥
∥∥∥∥

0 −−→ H 0(OXt ′(nDt ′))
β1−−→ H 0(�1

X(nD)|Xt ′)
β2−−→ H 0(�1

Xt ′
(nDt ′))

β3−−→ H1(OXt ′(nDt ′)),

where the natural map φ is defined as follows. If ξ ∈ H 0(�1
X(nD)|Xt ) is con-

tained in the image of H 0(OXt (nDt)) = C, then there is a number a ∈ C such
that ξ = α1(a). Thus we define φ(a) = β1(a). If ξ is not contained in the image
of α1, then α2(ξ) ∈ H 0(�1

Xt
(nDt)) and α3 � α2(ξ) = 0. Hence there is an η ∈

H 0(�1
X(nD)|Xt ′) such that β3 � β2(η) = 0. Define φ(ξ) = η; then, by [La, Lem-

ma 5], we have
H 0(�1

X(nD)|Xt ) = H 0(�1
X(nD)|Xt ′).

Similarly,
H i(�1

X(nD)|Xt ) = H i(�1
X(nD)|Xt ′)

for i > 0.

Lemma 4.4. Rif∗�2
X(nD) is locally free for all i ≥ 0 and n � 0.

Proof. Observe that we have the short exact sequence

0 −→ �1
Xt

−→ �2
X|Xt −→ �2

Xt
−→ 0

[H3, Chap. II, Thm. 8.17; GHa, p. 157]. Tensoring with OX(nD) then yields

0 −→ �1
Xt
(nDt) −→ �2

X(nD)|Xt −→ �2
Xt
(nDt) −→ 0.

By Lemma 2.1 we know that, for every t ∈C,

h0(Xt ,�
2
Xt
(nDt)) = h1(Xt , OXt (Kt + nDt)) = 1,

h2(Xt , OXt (Kt + nDt)) = 0.

Using the same argument as in the proof of Lemma 4.3, for any two points t, t ′ ∈
C and all n � 0 we may write the long exact sequences for t and t ′ and obtain

hi(Xt ,�
2
X(nD)|Xt ) = hi(Xt ′ ,�

2
X(nD)|Xt ′).

Lemma 4.5. For every t ∈ C we have H i(St ,�
j

Y |St ) = 0 for all j ≥ 0 and i >
0, where St = Xt −Dt.
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Proof. Since St is a surface, we need only consider i = 1, 2.
The claim is obvious for OY . Because St is smooth, we have the exact sequence

0 −→ φt/φ
2
t = OSt −→ �1

Y |St −→ �1
St

−→ 0,

where φt is the defining sheaf of St . Hence the claim holds for �1
Y |St . Since the

normal sheaf
NSt /Y = Hom(φt/φ2

t , OSt ) = OSt ,

we have
ωSt

∼= ωY ⊗ NSt /Y
∼= ωY ⊗ OSt = ωY |St

and so the claim holds for �3
Y |St . From the exact sequence

0 −→ �1
St

−→ �2
Y |St −→ �2

St
−→ 0

we derive the claim for �2
Y |St .

Lemma 4.6. For all j ≥ 0, H 2(Y,�j

Y ) = 0.

Proof. For all n � 0, the sheaves �j

X ⊗ OX(nD) are locally free by Lemmas
4.1–4.5. By the upper semicontinuity theorem, there exists an integer n0 such that
R2f∗�

j

X ⊗ OX(nD)|C = 0 for all n ≥ n0. By Goodman and Hartshorne’s lemma
[GoH], we have

H 2(Y,�j

Y ) = lim−→
n

H 2(f −1(C),�j

X ⊗ OX(nD))

= lim−→
n

R2f∗�
j

X ⊗ OX(nD)(C) = 0.

Lemma 4.7. For all j ≥ 0, H1(Y,�j

Y ) = 0.

Proof. By the local freeness lemmas and Goodman and Hartshorne’s lemma, we
have

H1(Y,�j

Y ) = lim−→
n

H1(f −1(C),�j

X ⊗ OX(nD))

= lim−→
n

R1f∗�
j

X ⊗ OX(nD)(C) = 0.

5. Proof of Theorem 1.6

We will prove Theorem 1.6 by constructing an example. Let Ct be a smooth pro-
jective elliptic curve defined by y2 = x(x − 1)(x − t), t �= 0,1, and let Z be the
elliptic surface defined by the same equation. Then we have surjective morphism
from Z to C = C − {0,1} such that, for every t ∈C, the fibre f −1(t) = Ct .

Lemma 5.1. There is a rank-2 vector bundle E on Z such that, when restricted
to Ct , E|Ct = Et is the unique nonsplit extension of OCt by OCt and f is the
morphism from Z to C.
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Proof. Since f : Z → C is an elliptic fibration, for every t we have

h1(f −1(t), Of −1(t)) = h1(OCt ) = 1.

Therefore,
R1f∗OZ ⊗ C(t) ∼= H1(Ct , OCt )

∼= C.

This yields
(R1f∗OZ)t/Pt(R1f∗OZ)t ∼= C.

By Nakayama’s lemma, R1f∗OZ is a line bundle on C. Since C[x,1/x,1/(x −1)]
is a principal ideal domain, the Picard group of C is trivial; that is, any line bundle
on C is trivial. Hence R1f∗OZ

∼= OC and

H1(Z, OZ) = R1f∗OZ(C) = OC(C) = C

[
x,

1

x
,

1

x − 1

]
.

Given any exact sequence of vector bundles

0 −→ OZ −→ E −→ OZ −→ 0,

let ξ be the image of unit of H 0(Z, OZ) in H1(Z, OZ). Thus we have an element
of H1(Z, OZ). Conversely, given any element ξ in H1(Z, OZ), we can obtain an
exact sequence like the one just displayed by the following procedure. Take any
(degree) large ample line bundle L on the elliptic surface Z; then, for any positive
integer n, we have an exact sequence

0 −→ OZ
α−→ L⊕n β−→ G −→ 0,

where G is the quotient that is a vector bundle. We may assume H1(Z,L) = 0
by raising the degree of L because L is ample. Hence we have a surjective map
H 0(Z,G) � H1(Z, OZ) and so ξ can be lifted to an element η inH 0(Z,G). This
element η defines a map from OZ toG (η : OZ → G) sending 1 to η. SettingE =
β−1(η(OZ)) then yields the exact sequence

0 −→ OZ
α−→ E

β−→ η(OZ) = OZ −→ 0.

So there is a one-to-one correspondence between the elements of H1(Z, OZ) and
the foregoing exact sequences. Moreover, we have the following commutative
diagram:

0 −−→ OZ −−→ L⊕n −−→ G −−→ 0∥∥∥
	

	
0 −−→ OZ −−→ E −−→ OZ −−→ 0.

Since C ⊂ H1(Z, OZ) = C[x,1/x,1/(x − 1)], it follows that 1 ∈ H1(Z, OZ).

This nonzero element 1 corresponds to a rank-2 vector bundle E such that, when
restricted to every fibre Ct , E|Ct is the nonsplit extension of OCt by OCt . In fact,
in the natural restriction map

H1(Z, OZ) −→ H1(Ct , OCt ),
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1 goes to 1. A nonzero element of H1(Ct , OCt ) determines a nonsplit extension of
OCt by OCt .

Lemma 5.2. There is a divisor D on X = PZ(E) such that, when restricted to
Xt = PCt(Et ), D|Xt = Dt is the canonical section of Xt .

Proof. By Lemma 5.1 there is a surjective map from E to OZ. This map corre-
sponds to a section σ : Z → X. When restricted to Ct , σ|Ct = σt : Ct → Xt is
the unique nonsplit extension of OCt by OCt .

Let Y = X −D. By Theorem 1.3, H i(Y,�j

Y ) = 0 for all i > 0 and j ≥ 0. Thus
we have constructed a nonaffine, nonproduct example of a 3-fold Y with vanishing
Hodge cohomology, which proves Theorem 1.6.

In the example that we have constructed, every fibre is Stein and the base curve
is Stein but we do not know whether the 3-fold is Stein. It would be interesting to
also construct a 3-fold with type-3 open surfaces as fibres.
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