On the Solid Hull of the Hardy Space $H^{p}, 0<p<1$

Miroljub Jevtić \& Miroslav Pavlović

1. Introduction

Finding the solid hull $S\left(H^{p}\right)$ of the Hardy space H^{p}-that is, finding the strongest growth condition the absolute value of the coefficients of H^{p} functions must satisfy-is an old and difficult problem. It follows from Littlewood's theorem on random power series [7, Thm. A.5, p. 228] that $S\left(H^{p}\right)=H^{2}$ for $2<p<\infty$. Much later, Kisliakov [12] identified the solid hull of the space H^{∞}. A deep result of Kisliakov shows that $S\left(H^{\infty}\right)$ is also H^{2}. In this paper we identify $S\left(H^{p}\right)$ in the case $0<p<1$.

The Hardy space $H^{p}(0<p \leq \infty)$ is the space of all functions f holomorphic in the unit disc $U(f \in H(U))$ for which

$$
\|f\|_{p}=\lim _{r \rightarrow 1} M_{p}(r, f)<\infty
$$

where, as usual,

$$
M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t\right)^{1 / p}, \quad 0<p<\infty
$$

and

$$
M_{\infty}(r, f)=\sup _{0 \leq t<2 \pi}\left|f\left(r e^{i t}\right)\right|
$$

Throughout this paper, we identify a holomorphic function $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ with its sequence of Taylor coefficients $(\hat{f}(n))_{n=0}^{\infty}$. Hardy and Littlewood proved that if f belongs to $H^{p}, 0<p<1$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+1)^{p-2}|\hat{f}(n)|^{p}<\infty \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|\hat{f}(n)|=o\left((n+1)^{1 / p-1}\right), \quad n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

(see [7] for information and references).
In [13] it was proved that if $f \in H^{p}, 0<p<1$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} 2^{-n(1-p)}\left(\sup _{0 \leq k \leq 2^{n}}|\hat{f}(k)|\right)^{p}<\infty \tag{1.3}
\end{equation*}
$$

[^0]which is equivalent to
$$
\sum_{n=0}^{\infty}(n+1)^{p-2}\left(\sup _{0 \leq k \leq n}|\hat{f}(k)|\right)^{p}<\infty
$$

It is easy to see that condition (1.3) is stronger than (1.1) and (1.2). We will show that (1.3) is the strongest condition that the moduli of the coefficients of a function $f \in H^{p}(0<p<1)$ must satisfy. In the terminology of [2], this means that the smallest solid space containing $H^{p}(0<p<1)$ is the vector space of sequences satisfying (1.3).

Recall that a sequence space X is solid (cf. [2]) if $\left(b_{n}\right) \in X$ whenever $\left(a_{n}\right) \in$ X and $\left|b_{n}\right| \leq\left|a_{n}\right|$. The solid hull of X is the smallest solid space containing X. Explicitly,

$$
S(X)=\left\{\left(\lambda_{n}\right): \text { there exists }\left(a_{n}\right) \in X \text { such that }\left|\lambda_{n}\right| \leq\left|a_{n}\right|\right\} .
$$

To state our first result in a more precise form, we need to introduce some more notation. A complex sequence $\left(a_{n}\right)$ is of class $l(p, q), 0<p, q \leq \infty$, if

$$
\left\|\left(a_{n}\right)\right\|_{p, q}^{q}=\left\|\left(a_{n}\right)\right\|_{l(p, q)}^{q}=\sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}}\left|a_{k}\right|^{p}\right)^{q / p}<\infty
$$

where $I_{0}=\{0\}$ and $I_{n}=\left\{k \in N: 2^{n-1} \leq k<2^{n}\right\}$ for $n=1,2, \ldots$. In the case where p or q is infinite, replace the corresponding sum by a supremum. Note that $l(p, p)=l^{p}$.

For $t \in R$ we write D^{t} for the sequence $\left((n+1)^{t}\right)_{0}^{\infty}$. If $\lambda=\left(\lambda_{n}\right)$ is a sequence and X a sequence space, we write $\lambda X=\left\{\left(\lambda_{n} x_{n}\right):\left(x_{n}\right) \in X\right\}$; thus, for example, $\left(a_{n}\right) \in D^{t} l^{\infty}$ if and only if $\left|a_{n}\right|=O\left(n^{t}\right)$.

Here is our main result.
Theorem 1. If $0<p<1$, then $S\left(H^{p}\right)=D^{1 / p-1} l(\infty, p)$.
We also determine the solid hull of the Bergman space A^{p} for $0<p \leq 1$.
The Bergman space A^{p} for $0<p<\infty$ consists of all holomorphic functions f on U such that

$$
\|f\|_{A^{p}}=\left(\int_{U}|f(z)|^{p} d m(z)\right)^{1 / p}<\infty
$$

where $d m(z)$ stands for the Lebesgue measure in the plane.
It is well known that if $0<p \leq 1$ then $A^{p} \subset D^{2 / p-1} l^{\infty}$ and $A^{p} \subset D^{3 / p-1} l^{p}$ (see [17]). We improve both these inclusions by showing the following theorem.

Theorem 2. If $0<p \leq 1$, then $S\left(A^{p}\right)=D^{2 / p-1} l(\infty, p)$.
Our results can be applied to various problems concerning multipliers. Thus they easily imply the main result in [9], for instance. Details will be given in Section 4.

Given two vector spaces A, B of sequences, we denote by (A, B) the space of multipliers from A to B. More precisely,

$$
(A, B)=\left\{\lambda=\left(\lambda_{n}\right):\left(\lambda_{n} a_{n}\right) \in B \text { for every }\left(a_{n}\right) \in A\right\}
$$

The D-dual of a sequence space A, denoted by A^{D}, is defined to be (A, D), the multipliers from A to D. The Köthe dual is obtained when $D=l^{1}$ and will be denoted A^{K}. As in [2], let $A(1,1)$ be the space of all $f \in H(U)$ such that $f^{\prime} \in A^{1}$.

An easy consequence of Theorem 2 is the following statement.
Corollary 3. $\quad S(A(1,1))=l(\infty, 1)$.
Anderson and Shields [2, p. 263] showed that the second Köthe dual of $A(1,1)$ is $l(\infty, 1)$ (i.e., $\left.A(1,1)^{K K}=l(\infty, 1)\right)$ and that $S(A(1,1)) \subset A(1,1)^{K K}$. They conjectured that the inclusion is strict. Corollary 3 disproves this conjecture.

Analogously, we have $S\left(A^{1}\right)=\left(A^{1}\right)^{K K}=D^{1} l(\infty, 1)$. (See Theorem 4.2.)
Our method of determining the solid hulls can be applied more generally to the mixed norm spaces $H^{p, q, \alpha}$. The space $H^{p, q, \alpha}(0<p \leq \infty, 0<q, \alpha<\infty)$ consists of all $f \in H(U)$ for which

$$
\|f\|_{p, q, \alpha}=\left(\int_{0}^{1}(1-r)^{q \alpha-1} M_{p}(r, f)^{q} d r\right)^{1 / q}<\infty
$$

In particular, we have Bergman spaces $A^{p}=H^{p, p, 1 / p}$ for $0<p<\infty$.
The space $H^{p, q, \alpha}$ can also be defined when $q=\infty$, in which case it is sometimes known as the weighted Hardy space $H^{p, \alpha}=H^{p, \infty, \alpha}$, and consists of all $f \in$ $H(U)$ for which

$$
\|f\|_{p, \alpha}:=\|f\|_{p, \infty, \alpha}=\sup _{0<r<1}(1-r)^{\alpha} M_{p}(r, f)<\infty .
$$

Instead of Theorem 2 we prove the following result.
Theorem 4. If $0<p \leq 1$, then $S\left(H^{p, q, \alpha}\right)=D^{\alpha+1 / p-1} l(\infty, q)$.
Observe that $S\left(H^{p, q, \alpha}\right)=H^{2, q, \alpha}=D^{\alpha} l(2, q)$ for $2 \leq p \leq \infty$ (see $[1 ; 3 ; 14]$). Hence the problem of determining $S\left(H^{p}\right)$ for $1 \leq p<2$ and $S\left(H^{p, q, \alpha}\right)$ for $1<$ $p<2$ remains open.

2. Solid Hull of the Hardy Space $H^{p}, 0<p<1$

If $f(z)=\sum_{k=0}^{\infty} \hat{f}(k) z^{k}$ and $g(z)=\sum_{k=0}^{\infty} \hat{g}(k) z^{k}$ are holomorphic functions in U, then the holomorphic function $f \star g$ is defined by

$$
(f \star g)(z)=\sum_{k=0}^{\infty} \hat{f}(k) \hat{g}(k) z^{k}
$$

The main tool for proving our results are the polynomials $W_{n}(n \geq 0)$ constructed in [9]. Here we recall their construction and some of their properties.

Let $\omega: R \rightarrow R$ be a nonincreasing function of class C^{∞} such that $\omega(t)=1$ for $t \leq 1$ and $\omega(t)=0$ for $t \geq 2$. We define the polynomials $W_{n}=W_{n}^{\omega}(n \geq 0)$ as follows:

$$
W_{0}(z)=\sum_{k=0}^{\infty} \omega(k) z^{k}, \quad W_{n}(z)=\sum_{k=2^{n-1}}^{2^{n+1}} \varphi\left(\frac{k}{2^{n-1}}\right) z^{k} \quad \text { for } n \geq 1
$$

where $\varphi(t)=\omega(t / 2)-\omega(t), t \in R$.

The coefficients $\hat{W}_{n}(k)$ of these polynomials have the following properties:

$$
\begin{gather*}
\operatorname{supp}\left(\hat{W}_{n}\right) \subset\left[2^{n-1}, 2^{n+1}\right], \tag{2.1}\\
0 \leq \hat{W}_{n}(k) \leq 1 \text { for all } k, \tag{2.2}\\
\sum_{n=0}^{\infty} \hat{W}_{n}(k)=1 \text { for all } k, \tag{2.3}\\
\hat{W}_{n}(k)+\hat{W}_{n+1}(k)=1 \quad \text { for } 2^{n} \leq k \leq 2^{n+1}, n \geq 0 . \tag{2.4}
\end{gather*}
$$

Property (2.3) implies that

$$
f(z)=\sum_{n=0}^{\infty}\left(W_{n} \star f\right)(z), \quad f \in H(U)
$$

and the series is uniformly convergent on compact subsets of U.
Since $0 \leq \hat{W}_{n}(k) \leq 1$ for $n, k=0,1,2, \ldots$, we have

$$
\begin{equation*}
\left|W_{n}(z)\right| \leq 2^{n+1}, \quad z \in U, n=0,1,2, \ldots . \tag{2.5}
\end{equation*}
$$

Choose an integer N so that $N p>1$. Note that $\varphi\left(k / 2^{n-1}\right)=0$ if k is an integer such that $k \leq 2^{n-1}$ or $2^{n+1} \leq k$. Hence,

$$
\begin{align*}
\left(1-e^{i t}\right)^{N} W_{n}\left(e^{i t}\right) & =\sum_{k=-\infty}^{\infty} \varphi\left(\frac{k}{2^{n-1}}\right)\left(1-e^{i t}\right)^{N} e^{i k t} \\
& =\sum_{k=-\infty}^{\infty} \varphi\left(\frac{k}{2^{n-1}}\right) \sum_{m=0}^{N}\binom{N}{m}(-1)^{m} e^{i(m+k) t} \\
& =\sum_{m=0}^{N}(-1)^{m}\binom{N}{m} \sum_{k=-\infty}^{\infty} \varphi\left(\frac{k}{2^{n-1}}\right) e^{i(k+m) t} \\
& =\sum_{m=0}^{N}(-1)^{m}\binom{N}{m} \sum_{k=-\infty}^{\infty} \varphi\left(\frac{k-m}{2^{n-1}}\right) e^{i k t} \\
& =\sum_{k=-\infty}^{\infty}\left(\sum_{m=0}^{N}(-1)^{m}\binom{N}{m} \varphi\left(\frac{k-m}{2^{n-1}}\right)\right) e^{i k t} . \tag{2.6}
\end{align*}
$$

By the Lagrange theorem for symmetric differences, for each k there exists a $\xi_{k, N}$ such that

$$
\begin{equation*}
\sum_{m=0}^{N}(-1)^{m}\binom{N}{m} \varphi\left(\frac{k-m}{2^{n-1}}\right)=2^{(1-n) N} \varphi^{(N)}\left(\xi_{k, N}\right) \tag{2.7}
\end{equation*}
$$

It follows from (2.6) and (2.7) that

$$
\begin{equation*}
\left|W_{n}\left(e^{i t}\right)\right| \leq C t^{-N} 2^{n(1-N)} \tag{2.8}
\end{equation*}
$$

Using (2.5) and (2.8) now yields

$$
\begin{equation*}
\left\|W_{n}\right\|_{p}^{p}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|W_{n}\left(e^{i t}\right)\right|^{p} d t \leq C 2^{-n(1-p)} \tag{2.9}
\end{equation*}
$$

Observe that here we needed $N p>1$.
In this paper we follow the custom of using the letter C to stand for a positive constant that changes its value from one appearance to another while remaining independent of the important variables.

Proof of Theorem 1. Let $f \in H^{p}, 0<p<1$. Then, by [7, Thm. 5.11],

$$
\int_{0}^{1}(1-r)^{-p} M_{1}(r, f)^{p} d r<\infty
$$

Since $\sup _{k \in I_{n}}|\hat{f}(k)| r^{k} \leq M_{1}(r, f)$ for $n \geq 0$, it follows that

$$
\begin{aligned}
\infty>\int_{0}^{1}(1-r)^{-p} M_{1}(r, f)^{p} d r & \geq \sum_{n=1}^{\infty} \int_{1-2^{1-n}}^{1-2^{-n}}(1-r)^{-p}\left(\sup _{k \in I_{n}} \hat{f}(k) r^{k}\right)^{p} d r \\
& \geq C \sum_{n=1}^{\infty} 2^{-n(1-p)}\left(\sup _{k \in I_{n}}|\hat{f}(k)|\right)^{p}
\end{aligned}
$$

Thus, $H^{p} \subset D^{1 / p-1} l(\infty, p)$.
To show that $D^{1 / p-1} l(\infty, p)$ is the solid hull of H^{p}, it is enough to prove that if $\left(a_{n}\right) \in D^{1 / p-1} l(\infty, p)$ then there exists a $\left(b_{n}\right) \in H^{p}$ such that $\left|b_{n}\right| \geq\left|a_{n}\right|$ for all n.

Toward this end, let $\left(a_{n}\right) \in D^{1 / p-1} l(\infty, p)$. Define

$$
g(z)=\sum_{j=0}^{\infty} B_{j}\left(W_{j}(z)+W_{j+1}(z)\right)=\sum_{k=0}^{\infty} c_{k} z^{k}
$$

where $B_{j}=\sup _{2^{j} \leq k<2^{j+1}}\left|a_{k}\right|$. The function g belongs to H^{p} because

$$
\begin{aligned}
M_{p}^{p}(r, g) & \leq \sum_{j=0}^{\infty} B_{j}^{p}\left[M_{p}^{p}\left(1, W_{j}\right)+M_{p}^{p}\left(1, W_{j+1}\right)\right] \\
& \leq C \sum_{j=0}^{\infty} B_{j}^{p} 2^{-j(1-p)}<\infty
\end{aligned}
$$

Here we have used (2.9).
To prove that $\left|c_{k}\right| \geq\left|a_{k}\right|$ for $k=1,2, \ldots$, choose n so that $2^{n} \leq k<2^{n+1}$. It follows from (2.2) and (2.4) that

$$
\begin{aligned}
c_{k} & =\sum_{j=0}^{\infty} B_{j}\left(\hat{W}_{j}(k)+\hat{W}_{j+1}(k)\right) \geq B_{n}\left(\hat{W}_{n}(k)+\hat{W}_{n+1}(k)\right) \\
& =B_{n}=\sup _{2^{n} \leq j<2^{n+1}}\left|a_{j}\right| \geq\left|a_{k}\right|
\end{aligned}
$$

Now the function $h(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, where $b_{0}=a_{0}$ and where $b_{n}=c_{n}$ for $n \geq$ 1 , belongs to H^{p}, and $\left|b_{n}\right| \geq\left|a_{n}\right|$ for all $n \geq 0$.

Remark. Note that the proof of Theorem 1 shows that the solid hull of $H^{p}, 0<$ $p<1$, may also be described as the set

$$
\left\{\left(a_{n}\right): \sum_{n=0}^{\infty} 2^{-n(1-p)} \sup _{0 \leq k \leq 2^{n}}\left|a_{k}\right|<\infty\right\}
$$

3. The Solid Hull of the Mixed Norm Space $H^{p, q, \alpha}, 0<p \leq 1$

Proof of Theorem 4. Let $f \in H^{p, q, \alpha}$. In order to prove that $f \in D^{\alpha+1 / p-1} l(\infty, q)$, we use the familiar inequality

$$
M_{p}(r, f) \geq C(1-r)^{1 / p-1} M_{1}\left(r^{2}, f\right), \quad 0<p \leq 1
$$

(see [7, Thm. 5.9]) to obtain

$$
\begin{aligned}
\infty & >\int_{0}^{1}(1-r)^{q \alpha-1} M_{p}(r, f)^{q} d r \\
& \geq C \int_{0}^{1}(1-r)^{q(\alpha+1 / p-1)} M_{1}(r, f)^{q} d r \\
& \geq C \sum_{n=1}^{\infty} \int_{1-2^{1-n}}^{1-2^{-n}}(1-r)^{q(\alpha+1 / p-1)-1}\left(\sup _{k \in I_{n}}\left|a_{k}\right| r^{k}\right)^{q} d r \\
& \geq C \sum_{n=1}^{\infty} 2^{-n q(\alpha+1 / p-1)}\left(\sup _{k \in I_{n}}\left|a_{k}\right|\right)^{q} .
\end{aligned}
$$

Thus, $f \in D^{\alpha+1 / p-1} l(\infty, q)$.
Similarly, if $q=\infty$ then

$$
\begin{aligned}
\infty>\sup _{0<r<1}(1-r)^{\alpha} M_{p}(r, f) & \geq C \sup _{0<r<1}(1-r)^{\alpha+1 / p-1} M_{1}(r, f) \\
& \geq C \sup _{0<r<1} \sup _{n} \sup _{k \in I_{n}}(1-r)^{\alpha+1 / p-1}\left|a_{k}\right| r^{k} \\
& \geq C \sup _{n} 2^{-n(\alpha+1 / p-1)} \sup _{k \in I_{n}}\left|a_{k}\right| ;
\end{aligned}
$$

that is, $f \in D^{\alpha+1 / p-1} l(\infty, \infty)$.
Now let $\left(a_{n}\right) \in D^{\alpha+1 / p-1} l(\infty, q)$ for $0<q<\infty$. As before, define

$$
h(z)=\sum_{j=0}^{\infty} C_{j}\left(W_{j}(z)+W_{j+1}(z)\right)=\sum_{k=0}^{\infty} d_{k} z^{k}
$$

where $C_{j}=\sup _{k \in I_{j}}\left|a_{k}\right|$.
The function h belongs to $H^{p, q, \alpha}(0<p \leq 1,0<q, \alpha<\infty)$ because

$$
\begin{align*}
& \int_{0}^{1}(1-r)^{q \alpha-1} M_{p}(r, h)^{q} d r \\
& \quad \leq \int_{0}^{1}(1-r)^{q \alpha-1}\left(\sum_{j=0}^{\infty} C_{j}^{p}\left[M_{p}^{p}\left(r, W_{j}\right)+M_{p}^{p}\left(r, W_{j+1}\right)\right]\right)^{q / p} d r \tag{3.1}
\end{align*}
$$

Using [9, Lemma 2.1] together with (2.1) and (2.9) yields

$$
\begin{equation*}
M_{p}^{p}\left(r, W_{j}\right) \leq r^{2^{j-1} p}\left\|W_{j}\right\|_{p}^{p} \leq C r^{2^{j-1} p} 2^{-j(1-p)}, \quad j=1,2, \ldots \tag{3.2}
\end{equation*}
$$

It follows from (3.1) and (3.2) that

$$
\begin{aligned}
\int_{0}^{1}(1-r)^{q \alpha-1} M_{p}(r, h)^{q} d r & \leq C \int_{0}^{1}(1-r)^{q \alpha-1}\left(\sum_{j}^{\infty} C_{j}^{p} 2^{-j(1-p)} r^{2^{j-1} p}\right)^{q / p} d r \\
& \leq C \sum_{j}^{\infty} C_{j}^{q} 2^{-j q(\alpha+1 / p-1)}<\infty
\end{aligned}
$$

Here we have used [14, Prop. 4.1].
As before, we have $\left|d_{k}\right| \geq\left|a_{k}\right|, k=1,2, \ldots$. The function $\psi(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$, where $b_{0}=a_{0}$ and where $b_{k}=d_{k}$ for $k=1,2, \ldots$, belongs to $H^{p, q, \alpha}$, and $\left|b_{k}\right| \geq$ $\left|a_{k}\right|$ for all $k \geq 0$.

The case $q=\infty$ may be treated similarly.

4. Applications to Multipliers

The next lemma is due to Kellog. He states it for exponents no smaller than 1, but it then follows for all exponents because $\left(\lambda_{n}\right) \in(l(a, b), l(c, d))$ if and only if $\left(\lambda_{n}^{1 / t}\right) \in(l(a t, b t), l(c t, d t))$.

Lemma 4.1 [11]. If $0<a, b, c, d \leq \infty$, then

$$
(l(a, b), l(c, d))=l(a \ominus c, b \ominus d)
$$

where $a \oplus c=\infty$ if $a \leq c, b \oplus d=\infty$ if $b \leq d$, and

$$
\begin{aligned}
& \frac{1}{a \ominus c}=\frac{1}{c}-\frac{1}{a} \quad \text { for } 0<c<a \\
& \frac{1}{b \ominus d}=\frac{1}{d}-\frac{1}{b} \quad \text { for } 0<d<b
\end{aligned}
$$

In [2] it is proved that if X is any solid space and A any vector space of sequences then $(A, X)=(S(A), X)$.

Since $l(u, v)$ are solid spaces, we have $\left(H^{p}, l(u, v)\right)=\left(S\left(H^{p}\right), l(u, v)\right)$ and $\left(H^{p, q, \alpha}, l(u, v)\right)=\left(S\left(H^{p, q, \alpha}\right), l(u, v)\right)$. Together with Lemma 4.1 and Theorems 1 and 4 , this yields our last two results.

Theorem 4.2. Let $0<p<1$. Then

$$
\left(H^{p}, l(u, v)\right)=D^{1-1 / p} l(u, p \ominus v)
$$

Theorem 4.3. If $0<p \leq 1$, then

$$
\left(H^{p, q, \alpha}, l(u, v)\right)=D^{1-1 / p-\alpha} l(u, q \ominus v)
$$

In particular, if $u=v$ then $\left(H^{p}, l^{u}\right)=D^{1-1 / p} l(u, p \Theta u)$. This was proved in [9] by a different method. Similarly, from Theorem 4.3 we deduce that $\left(H^{p, q, \alpha}, l^{u}\right)=$ $D^{1-1 / p-\alpha} l(u, q \Theta u)$ for $0<p \leq 1$ (see [10]).

Remark. The referee pointed out to us that Theorem 4.3 was already known; see Theorem 5.2 in [6] and remark (2) following that result. By the same result of [6], the answer when $1<p<2$ cannot be of the form $D^{t} l(a, b)$.

References

[1] P. Ahern and M. Jevtić, Duality and multipliers for mixed norm spaces, Michigan Math. J. 30 (1983), 53-64.
[2] J. M. Anderson and A. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc. 224 (1976), 255-265.
[3] G. Bennett, D. Stegenga, and R. Timony, Coefficients of Bloch and Lipschitz functions, Illinois J. Math. 25 (1981), 520-531.
[4] O. Blasco, Multipliers on spaces of analytic functions, Canad. J. Math. 45 (1995), 44-64.
[5] S. Buckley, Mixed norms and analytic function spaces, Math. Proc. R. Ir. Acad. 100A (2000), 1-9.
[6] -, Relative solidity for spaces of holomorphic functions, Math. Proc. R. Ir. Acad. 104A (2004), 83-97.
[7] P. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
[8] P. Duren and A. Shields, Properties of $H^{p}(0<p<1)$ and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), 255-262.
[9] M. Jevtić and M. Pavlović, On multipliers from H^{p} to $l^{q}, 0<q<p<1$, Arch. Math. 56 (1991), 174-180.
[10] -, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged) 64 (1998), 531-545.
[11] C. Kellogg, An extension of the Hausdorff-Young theorem, Michigan Math. J. 18 (1971), 121-127.
[12] S. Kisliakov, Fourier coefficients of boundary values of analytic functions in the disc and bidisc, Trudy Mat. Inst. Steklov. 155 (1981), 77-91.
[13] M. Mateljević and M. Pavlović, An extension of the Hardy-Littlewood inequality, Mat. Vesnik 6 (1982), 55-61.
[14] -, L^{p}-behavior of the integral means of analytic functions, Studia Math. 77 (1984), 219-237.
[15] -, Multipliers of H^{p} and BMOA, Pacific J. Math. 146 (1990), 71-84.
[16] M. Pavlović, Mixed norm spaces of analytic and harmonic functions, II, Publ. Inst. Math. (Beograd) (N.S.) 41(55) (1985), 97-110.
[17] D. Vukotić, On the coefficient multipliers of Bergman spaces, J. London Math. Soc. (2) 50 (1994), 341-348.
[18] A. Zygmund, Trigonometric series I, II, Cambridge Univ. Press, New York, 1959.

Matematički Fakultet
Studentski trg 16
11000 Beograd
Serbia

[^0]: Received April 20, 2005. Revision received October 13, 2005.
 The authors were supported in part by MNZZS Grant no. 144010, Serbia.

